1 /*
2  * Copyright © 2006-2011 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * Authors:
18  *	Eric Anholt <eric@anholt.net>
19  */
20 
21 #include <linux/i2c.h>
22 #include <linux/pm_runtime.h>
23 
24 #include <drm/drmP.h>
25 #include "framebuffer.h"
26 #include "psb_drv.h"
27 #include "psb_intel_drv.h"
28 #include "psb_intel_reg.h"
29 #include "psb_intel_display.h"
30 #include "power.h"
31 #include "cdv_device.h"
32 
33 
34 struct cdv_intel_range_t {
35 	int min, max;
36 };
37 
38 struct cdv_intel_p2_t {
39 	int dot_limit;
40 	int p2_slow, p2_fast;
41 };
42 
43 struct cdv_intel_clock_t {
44 	/* given values */
45 	int n;
46 	int m1, m2;
47 	int p1, p2;
48 	/* derived values */
49 	int dot;
50 	int vco;
51 	int m;
52 	int p;
53 };
54 
55 #define INTEL_P2_NUM		      2
56 
57 struct cdv_intel_limit_t {
58 	struct cdv_intel_range_t dot, vco, n, m, m1, m2, p, p1;
59 	struct cdv_intel_p2_t p2;
60 };
61 
62 #define CDV_LIMIT_SINGLE_LVDS_96	0
63 #define CDV_LIMIT_SINGLE_LVDS_100	1
64 #define CDV_LIMIT_DAC_HDMI_27		2
65 #define CDV_LIMIT_DAC_HDMI_96		3
66 
67 static const struct cdv_intel_limit_t cdv_intel_limits[] = {
68 	{			/* CDV_SIGNLE_LVDS_96MHz */
69 	 .dot = {.min = 20000, .max = 115500},
70 	 .vco = {.min = 1800000, .max = 3600000},
71 	 .n = {.min = 2, .max = 6},
72 	 .m = {.min = 60, .max = 160},
73 	 .m1 = {.min = 0, .max = 0},
74 	 .m2 = {.min = 58, .max = 158},
75 	 .p = {.min = 28, .max = 140},
76 	 .p1 = {.min = 2, .max = 10},
77 	 .p2 = {.dot_limit = 200000,
78 		.p2_slow = 14, .p2_fast = 14},
79 	 },
80 	{			/* CDV_SINGLE_LVDS_100MHz */
81 	 .dot = {.min = 20000, .max = 115500},
82 	 .vco = {.min = 1800000, .max = 3600000},
83 	 .n = {.min = 2, .max = 6},
84 	 .m = {.min = 60, .max = 160},
85 	 .m1 = {.min = 0, .max = 0},
86 	 .m2 = {.min = 58, .max = 158},
87 	 .p = {.min = 28, .max = 140},
88 	 .p1 = {.min = 2, .max = 10},
89 	 /* The single-channel range is 25-112Mhz, and dual-channel
90 	  * is 80-224Mhz.  Prefer single channel as much as possible.
91 	  */
92 	 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
93 	 },
94 	{			/* CDV_DAC_HDMI_27MHz */
95 	 .dot = {.min = 20000, .max = 400000},
96 	 .vco = {.min = 1809000, .max = 3564000},
97 	 .n = {.min = 1, .max = 1},
98 	 .m = {.min = 67, .max = 132},
99 	 .m1 = {.min = 0, .max = 0},
100 	 .m2 = {.min = 65, .max = 130},
101 	 .p = {.min = 5, .max = 90},
102 	 .p1 = {.min = 1, .max = 9},
103 	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
104 	 },
105 	{			/* CDV_DAC_HDMI_96MHz */
106 	 .dot = {.min = 20000, .max = 400000},
107 	 .vco = {.min = 1800000, .max = 3600000},
108 	 .n = {.min = 2, .max = 6},
109 	 .m = {.min = 60, .max = 160},
110 	 .m1 = {.min = 0, .max = 0},
111 	 .m2 = {.min = 58, .max = 158},
112 	 .p = {.min = 5, .max = 100},
113 	 .p1 = {.min = 1, .max = 10},
114 	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
115 	 },
116 };
117 
118 #define _wait_for(COND, MS, W) ({ \
119 	unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);	\
120 	int ret__ = 0;							\
121 	while (!(COND)) {						\
122 		if (time_after(jiffies, timeout__)) {			\
123 			ret__ = -ETIMEDOUT;				\
124 			break;						\
125 		}							\
126 		if (W && !in_dbg_master())				\
127 			msleep(W);					\
128 	}								\
129 	ret__;								\
130 })
131 
132 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
133 
134 
135 static int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val)
136 {
137 	int ret;
138 
139 	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
140 	if (ret) {
141 		DRM_ERROR("timeout waiting for SB to idle before read\n");
142 		return ret;
143 	}
144 
145 	REG_WRITE(SB_ADDR, reg);
146 	REG_WRITE(SB_PCKT,
147 		   SET_FIELD(SB_OPCODE_READ, SB_OPCODE) |
148 		   SET_FIELD(SB_DEST_DPLL, SB_DEST) |
149 		   SET_FIELD(0xf, SB_BYTE_ENABLE));
150 
151 	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
152 	if (ret) {
153 		DRM_ERROR("timeout waiting for SB to idle after read\n");
154 		return ret;
155 	}
156 
157 	*val = REG_READ(SB_DATA);
158 
159 	return 0;
160 }
161 
162 static int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val)
163 {
164 	int ret;
165 	static bool dpio_debug = true;
166 	u32 temp;
167 
168 	if (dpio_debug) {
169 		if (cdv_sb_read(dev, reg, &temp) == 0)
170 			DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp);
171 		DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val);
172 	}
173 
174 	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
175 	if (ret) {
176 		DRM_ERROR("timeout waiting for SB to idle before write\n");
177 		return ret;
178 	}
179 
180 	REG_WRITE(SB_ADDR, reg);
181 	REG_WRITE(SB_DATA, val);
182 	REG_WRITE(SB_PCKT,
183 		   SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) |
184 		   SET_FIELD(SB_DEST_DPLL, SB_DEST) |
185 		   SET_FIELD(0xf, SB_BYTE_ENABLE));
186 
187 	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
188 	if (ret) {
189 		DRM_ERROR("timeout waiting for SB to idle after write\n");
190 		return ret;
191 	}
192 
193 	if (dpio_debug) {
194 		if (cdv_sb_read(dev, reg, &temp) == 0)
195 			DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp);
196 	}
197 
198 	return 0;
199 }
200 
201 /* Reset the DPIO configuration register.  The BIOS does this at every
202  * mode set.
203  */
204 static void cdv_sb_reset(struct drm_device *dev)
205 {
206 
207 	REG_WRITE(DPIO_CFG, 0);
208 	REG_READ(DPIO_CFG);
209 	REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N);
210 }
211 
212 /* Unlike most Intel display engines, on Cedarview the DPLL registers
213  * are behind this sideband bus.  They must be programmed while the
214  * DPLL reference clock is on in the DPLL control register, but before
215  * the DPLL is enabled in the DPLL control register.
216  */
217 static int
218 cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc,
219 			       struct cdv_intel_clock_t *clock, bool is_lvds)
220 {
221 	struct psb_intel_crtc *psb_crtc = to_psb_intel_crtc(crtc);
222 	int pipe = psb_crtc->pipe;
223 	u32 m, n_vco, p;
224 	int ret = 0;
225 	int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
226 	int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB;
227 	u32 ref_value;
228 	u32 lane_reg, lane_value;
229 
230 	cdv_sb_reset(dev);
231 
232 	REG_WRITE(dpll_reg, DPLL_SYNCLOCK_ENABLE | DPLL_VGA_MODE_DIS);
233 
234 	udelay(100);
235 
236 	/* Follow the BIOS and write the REF/SFR Register. Hardcoded value */
237 	ref_value = 0x68A701;
238 
239 	cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value);
240 
241 	/* We don't know what the other fields of these regs are, so
242 	 * leave them in place.
243 	 */
244 	/*
245 	 * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk
246 	 * for the pipe A/B. Display spec 1.06 has wrong definition.
247 	 * Correct definition is like below:
248 	 *
249 	 * refclka mean use clock from same PLL
250 	 *
251 	 * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll
252 	 *
253 	 * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA
254 	 *
255 	 */
256 	ret = cdv_sb_read(dev, ref_sfr, &ref_value);
257 	if (ret)
258 		return ret;
259 	ref_value &= ~(REF_CLK_MASK);
260 
261 	/* use DPLL_A for pipeB on CRT/HDMI */
262 	if (pipe == 1 && !is_lvds) {
263 		DRM_DEBUG_KMS("use DPLLA for pipe B\n");
264 		ref_value |= REF_CLK_DPLLA;
265 	} else {
266 		DRM_DEBUG_KMS("use their DPLL for pipe A/B\n");
267 		ref_value |= REF_CLK_DPLL;
268 	}
269 	ret = cdv_sb_write(dev, ref_sfr, ref_value);
270 	if (ret)
271 		return ret;
272 
273 	ret = cdv_sb_read(dev, SB_M(pipe), &m);
274 	if (ret)
275 		return ret;
276 	m &= ~SB_M_DIVIDER_MASK;
277 	m |= ((clock->m2) << SB_M_DIVIDER_SHIFT);
278 	ret = cdv_sb_write(dev, SB_M(pipe), m);
279 	if (ret)
280 		return ret;
281 
282 	ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco);
283 	if (ret)
284 		return ret;
285 
286 	/* Follow the BIOS to program the N_DIVIDER REG */
287 	n_vco &= 0xFFFF;
288 	n_vco |= 0x107;
289 	n_vco &= ~(SB_N_VCO_SEL_MASK |
290 		   SB_N_DIVIDER_MASK |
291 		   SB_N_CB_TUNE_MASK);
292 
293 	n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT);
294 
295 	if (clock->vco < 2250000) {
296 		n_vco |= (2 << SB_N_CB_TUNE_SHIFT);
297 		n_vco |= (0 << SB_N_VCO_SEL_SHIFT);
298 	} else if (clock->vco < 2750000) {
299 		n_vco |= (1 << SB_N_CB_TUNE_SHIFT);
300 		n_vco |= (1 << SB_N_VCO_SEL_SHIFT);
301 	} else if (clock->vco < 3300000) {
302 		n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
303 		n_vco |= (2 << SB_N_VCO_SEL_SHIFT);
304 	} else {
305 		n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
306 		n_vco |= (3 << SB_N_VCO_SEL_SHIFT);
307 	}
308 
309 	ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco);
310 	if (ret)
311 		return ret;
312 
313 	ret = cdv_sb_read(dev, SB_P(pipe), &p);
314 	if (ret)
315 		return ret;
316 	p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK);
317 	p |= SET_FIELD(clock->p1, SB_P1_DIVIDER);
318 	switch (clock->p2) {
319 	case 5:
320 		p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER);
321 		break;
322 	case 10:
323 		p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER);
324 		break;
325 	case 14:
326 		p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER);
327 		break;
328 	case 7:
329 		p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER);
330 		break;
331 	default:
332 		DRM_ERROR("Bad P2 clock: %d\n", clock->p2);
333 		return -EINVAL;
334 	}
335 	ret = cdv_sb_write(dev, SB_P(pipe), p);
336 	if (ret)
337 		return ret;
338 
339 	lane_reg = PSB_LANE0;
340 	cdv_sb_read(dev, lane_reg, &lane_value);
341 	lane_value &= ~(LANE_PLL_MASK);
342 	lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
343 	cdv_sb_write(dev, lane_reg, lane_value);
344 
345 	lane_reg = PSB_LANE1;
346 	cdv_sb_read(dev, lane_reg, &lane_value);
347 	lane_value &= ~(LANE_PLL_MASK);
348 	lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
349 	cdv_sb_write(dev, lane_reg, lane_value);
350 
351 	lane_reg = PSB_LANE2;
352 	cdv_sb_read(dev, lane_reg, &lane_value);
353 	lane_value &= ~(LANE_PLL_MASK);
354 	lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
355 	cdv_sb_write(dev, lane_reg, lane_value);
356 
357 	lane_reg = PSB_LANE3;
358 	cdv_sb_read(dev, lane_reg, &lane_value);
359 	lane_value &= ~(LANE_PLL_MASK);
360 	lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
361 	cdv_sb_write(dev, lane_reg, lane_value);
362 
363 	return 0;
364 }
365 
366 /*
367  * Returns whether any encoder on the specified pipe is of the specified type
368  */
369 static bool cdv_intel_pipe_has_type(struct drm_crtc *crtc, int type)
370 {
371 	struct drm_device *dev = crtc->dev;
372 	struct drm_mode_config *mode_config = &dev->mode_config;
373 	struct drm_connector *l_entry;
374 
375 	list_for_each_entry(l_entry, &mode_config->connector_list, head) {
376 		if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
377 			struct psb_intel_encoder *psb_intel_encoder =
378 					psb_intel_attached_encoder(l_entry);
379 			if (psb_intel_encoder->type == type)
380 				return true;
381 		}
382 	}
383 	return false;
384 }
385 
386 static const struct cdv_intel_limit_t *cdv_intel_limit(struct drm_crtc *crtc,
387 							int refclk)
388 {
389 	const struct cdv_intel_limit_t *limit;
390 	if (cdv_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
391 		/*
392 		 * Now only single-channel LVDS is supported on CDV. If it is
393 		 * incorrect, please add the dual-channel LVDS.
394 		 */
395 		if (refclk == 96000)
396 			limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96];
397 		else
398 			limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100];
399 	} else {
400 		if (refclk == 27000)
401 			limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27];
402 		else
403 			limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96];
404 	}
405 	return limit;
406 }
407 
408 /* m1 is reserved as 0 in CDV, n is a ring counter */
409 static void cdv_intel_clock(struct drm_device *dev,
410 			int refclk, struct cdv_intel_clock_t *clock)
411 {
412 	clock->m = clock->m2 + 2;
413 	clock->p = clock->p1 * clock->p2;
414 	clock->vco = (refclk * clock->m) / clock->n;
415 	clock->dot = clock->vco / clock->p;
416 }
417 
418 
419 #define INTELPllInvalid(s)   { /* ErrorF (s) */; return false; }
420 static bool cdv_intel_PLL_is_valid(struct drm_crtc *crtc,
421 				const struct cdv_intel_limit_t *limit,
422 			       struct cdv_intel_clock_t *clock)
423 {
424 	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
425 		INTELPllInvalid("p1 out of range\n");
426 	if (clock->p < limit->p.min || limit->p.max < clock->p)
427 		INTELPllInvalid("p out of range\n");
428 	/* unnecessary to check the range of m(m1/M2)/n again */
429 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
430 		INTELPllInvalid("vco out of range\n");
431 	/* XXX: We may need to be checking "Dot clock"
432 	 * depending on the multiplier, connector, etc.,
433 	 * rather than just a single range.
434 	 */
435 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
436 		INTELPllInvalid("dot out of range\n");
437 
438 	return true;
439 }
440 
441 static bool cdv_intel_find_best_PLL(struct drm_crtc *crtc, int target,
442 				int refclk,
443 				struct cdv_intel_clock_t *best_clock)
444 {
445 	struct drm_device *dev = crtc->dev;
446 	struct cdv_intel_clock_t clock;
447 	const struct cdv_intel_limit_t *limit = cdv_intel_limit(crtc, refclk);
448 	int err = target;
449 
450 
451 	if (cdv_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
452 	    (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
453 		/*
454 		 * For LVDS, if the panel is on, just rely on its current
455 		 * settings for dual-channel.  We haven't figured out how to
456 		 * reliably set up different single/dual channel state, if we
457 		 * even can.
458 		 */
459 		if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
460 		    LVDS_CLKB_POWER_UP)
461 			clock.p2 = limit->p2.p2_fast;
462 		else
463 			clock.p2 = limit->p2.p2_slow;
464 	} else {
465 		if (target < limit->p2.dot_limit)
466 			clock.p2 = limit->p2.p2_slow;
467 		else
468 			clock.p2 = limit->p2.p2_fast;
469 	}
470 
471 	memset(best_clock, 0, sizeof(*best_clock));
472 	clock.m1 = 0;
473 	/* m1 is reserved as 0 in CDV, n is a ring counter.
474 	   So skip the m1 loop */
475 	for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) {
476 		for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max;
477 					     clock.m2++) {
478 			for (clock.p1 = limit->p1.min;
479 					clock.p1 <= limit->p1.max;
480 					clock.p1++) {
481 				int this_err;
482 
483 				cdv_intel_clock(dev, refclk, &clock);
484 
485 				if (!cdv_intel_PLL_is_valid(crtc,
486 								limit, &clock))
487 						continue;
488 
489 				this_err = abs(clock.dot - target);
490 				if (this_err < err) {
491 					*best_clock = clock;
492 					err = this_err;
493 				}
494 			}
495 		}
496 	}
497 
498 	return err != target;
499 }
500 
501 static int cdv_intel_pipe_set_base(struct drm_crtc *crtc,
502 			    int x, int y, struct drm_framebuffer *old_fb)
503 {
504 	struct drm_device *dev = crtc->dev;
505 	struct drm_psb_private *dev_priv = dev->dev_private;
506 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
507 	struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb);
508 	int pipe = psb_intel_crtc->pipe;
509 	const struct psb_offset *map = &dev_priv->regmap[pipe];
510 	unsigned long start, offset;
511 	u32 dspcntr;
512 	int ret = 0;
513 
514 	if (!gma_power_begin(dev, true))
515 		return 0;
516 
517 	/* no fb bound */
518 	if (!crtc->fb) {
519 		dev_err(dev->dev, "No FB bound\n");
520 		goto psb_intel_pipe_cleaner;
521 	}
522 
523 
524 	/* We are displaying this buffer, make sure it is actually loaded
525 	   into the GTT */
526 	ret = psb_gtt_pin(psbfb->gtt);
527 	if (ret < 0)
528 		goto psb_intel_pipe_set_base_exit;
529 	start = psbfb->gtt->offset;
530 	offset = y * crtc->fb->pitches[0] + x * (crtc->fb->bits_per_pixel / 8);
531 
532 	REG_WRITE(map->stride, crtc->fb->pitches[0]);
533 
534 	dspcntr = REG_READ(map->cntr);
535 	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
536 
537 	switch (crtc->fb->bits_per_pixel) {
538 	case 8:
539 		dspcntr |= DISPPLANE_8BPP;
540 		break;
541 	case 16:
542 		if (crtc->fb->depth == 15)
543 			dspcntr |= DISPPLANE_15_16BPP;
544 		else
545 			dspcntr |= DISPPLANE_16BPP;
546 		break;
547 	case 24:
548 	case 32:
549 		dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
550 		break;
551 	default:
552 		dev_err(dev->dev, "Unknown color depth\n");
553 		ret = -EINVAL;
554 		goto psb_intel_pipe_set_base_exit;
555 	}
556 	REG_WRITE(map->cntr, dspcntr);
557 
558 	dev_dbg(dev->dev,
559 		"Writing base %08lX %08lX %d %d\n", start, offset, x, y);
560 
561 	REG_WRITE(map->base, offset);
562 	REG_READ(map->base);
563 	REG_WRITE(map->surf, start);
564 	REG_READ(map->surf);
565 
566 psb_intel_pipe_cleaner:
567 	/* If there was a previous display we can now unpin it */
568 	if (old_fb)
569 		psb_gtt_unpin(to_psb_fb(old_fb)->gtt);
570 
571 psb_intel_pipe_set_base_exit:
572 	gma_power_end(dev);
573 	return ret;
574 }
575 
576 #define		FIFO_PIPEA		(1 << 0)
577 #define		FIFO_PIPEB		(1 << 1)
578 
579 static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe)
580 {
581 	struct drm_crtc *crtc;
582 	struct drm_psb_private *dev_priv = dev->dev_private;
583 	struct psb_intel_crtc *psb_intel_crtc = NULL;
584 
585 	crtc = dev_priv->pipe_to_crtc_mapping[pipe];
586 	psb_intel_crtc = to_psb_intel_crtc(crtc);
587 
588 	if (crtc->fb == NULL || !psb_intel_crtc->active)
589 		return false;
590 	return true;
591 }
592 
593 static bool cdv_intel_single_pipe_active (struct drm_device *dev)
594 {
595 	uint32_t pipe_enabled = 0;
596 
597 	if (cdv_intel_pipe_enabled(dev, 0))
598 		pipe_enabled |= FIFO_PIPEA;
599 
600 	if (cdv_intel_pipe_enabled(dev, 1))
601 		pipe_enabled |= FIFO_PIPEB;
602 
603 
604 	DRM_DEBUG_KMS("pipe enabled %x\n", pipe_enabled);
605 
606 	if (pipe_enabled == FIFO_PIPEA || pipe_enabled == FIFO_PIPEB)
607 		return true;
608 	else
609 		return false;
610 }
611 
612 static bool is_pipeb_lvds(struct drm_device *dev, struct drm_crtc *crtc)
613 {
614 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
615 	struct drm_mode_config *mode_config = &dev->mode_config;
616 	struct drm_connector *connector;
617 
618 	if (psb_intel_crtc->pipe != 1)
619 		return false;
620 
621 	list_for_each_entry(connector, &mode_config->connector_list, head) {
622 		struct psb_intel_encoder *psb_intel_encoder =
623 					psb_intel_attached_encoder(connector);
624 
625 		if (!connector->encoder
626 		    || connector->encoder->crtc != crtc)
627 			continue;
628 
629 		if (psb_intel_encoder->type == INTEL_OUTPUT_LVDS)
630 			return true;
631 	}
632 
633 	return false;
634 }
635 
636 static void cdv_intel_disable_self_refresh (struct drm_device *dev)
637 {
638 	if (REG_READ(FW_BLC_SELF) & FW_BLC_SELF_EN) {
639 
640 		/* Disable self-refresh before adjust WM */
641 		REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN));
642 		REG_READ(FW_BLC_SELF);
643 
644 		cdv_intel_wait_for_vblank(dev);
645 
646 		/* Cedarview workaround to write ovelay plane, which force to leave
647 		 * MAX_FIFO state.
648 		 */
649 		REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/);
650 		REG_READ(OV_OVADD);
651 
652 		cdv_intel_wait_for_vblank(dev);
653 	}
654 
655 }
656 
657 static void cdv_intel_update_watermark (struct drm_device *dev, struct drm_crtc *crtc)
658 {
659 
660 	if (cdv_intel_single_pipe_active(dev)) {
661 		u32 fw;
662 
663 		fw = REG_READ(DSPFW1);
664 		fw &= ~DSP_FIFO_SR_WM_MASK;
665 		fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT);
666 		fw &= ~CURSOR_B_FIFO_WM_MASK;
667 		fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT);
668 		REG_WRITE(DSPFW1, fw);
669 
670 		fw = REG_READ(DSPFW2);
671 		fw &= ~CURSOR_A_FIFO_WM_MASK;
672 		fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT);
673 		fw &= ~DSP_PLANE_C_FIFO_WM_MASK;
674 		fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT);
675 		REG_WRITE(DSPFW2, fw);
676 
677 		REG_WRITE(DSPFW3, 0x36000000);
678 
679 		/* ignore FW4 */
680 
681 		if (is_pipeb_lvds(dev, crtc)) {
682 			REG_WRITE(DSPFW5, 0x00040330);
683 		} else {
684 			fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) |
685 			     (4 << DSP_PLANE_A_FIFO_WM1_SHIFT) |
686 			     (3 << CURSOR_B_FIFO_WM1_SHIFT) |
687 			     (4 << CURSOR_FIFO_SR_WM1_SHIFT);
688 			REG_WRITE(DSPFW5, fw);
689 		}
690 
691 		REG_WRITE(DSPFW6, 0x10);
692 
693 		cdv_intel_wait_for_vblank(dev);
694 
695 		/* enable self-refresh for single pipe active */
696 		REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
697 		REG_READ(FW_BLC_SELF);
698 		cdv_intel_wait_for_vblank(dev);
699 
700 	} else {
701 
702 		/* HW team suggested values... */
703 		REG_WRITE(DSPFW1, 0x3f880808);
704 		REG_WRITE(DSPFW2, 0x0b020202);
705 		REG_WRITE(DSPFW3, 0x24000000);
706 		REG_WRITE(DSPFW4, 0x08030202);
707 		REG_WRITE(DSPFW5, 0x01010101);
708 		REG_WRITE(DSPFW6, 0x1d0);
709 
710 		cdv_intel_wait_for_vblank(dev);
711 
712 		cdv_intel_disable_self_refresh(dev);
713 
714 	}
715 }
716 
717 /** Loads the palette/gamma unit for the CRTC with the prepared values */
718 static void cdv_intel_crtc_load_lut(struct drm_crtc *crtc)
719 {
720 	struct drm_device *dev = crtc->dev;
721 	struct drm_psb_private *dev_priv = dev->dev_private;
722 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
723 	int palreg = PALETTE_A;
724 	int i;
725 
726 	/* The clocks have to be on to load the palette. */
727 	if (!crtc->enabled)
728 		return;
729 
730 	switch (psb_intel_crtc->pipe) {
731 	case 0:
732 		break;
733 	case 1:
734 		palreg = PALETTE_B;
735 		break;
736 	case 2:
737 		palreg = PALETTE_C;
738 		break;
739 	default:
740 		dev_err(dev->dev, "Illegal Pipe Number.\n");
741 		return;
742 	}
743 
744 	if (gma_power_begin(dev, false)) {
745 		for (i = 0; i < 256; i++) {
746 			REG_WRITE(palreg + 4 * i,
747 				  ((psb_intel_crtc->lut_r[i] +
748 				  psb_intel_crtc->lut_adj[i]) << 16) |
749 				  ((psb_intel_crtc->lut_g[i] +
750 				  psb_intel_crtc->lut_adj[i]) << 8) |
751 				  (psb_intel_crtc->lut_b[i] +
752 				  psb_intel_crtc->lut_adj[i]));
753 		}
754 		gma_power_end(dev);
755 	} else {
756 		for (i = 0; i < 256; i++) {
757 			dev_priv->regs.pipe[0].palette[i] =
758 				  ((psb_intel_crtc->lut_r[i] +
759 				  psb_intel_crtc->lut_adj[i]) << 16) |
760 				  ((psb_intel_crtc->lut_g[i] +
761 				  psb_intel_crtc->lut_adj[i]) << 8) |
762 				  (psb_intel_crtc->lut_b[i] +
763 				  psb_intel_crtc->lut_adj[i]);
764 		}
765 
766 	}
767 }
768 
769 /**
770  * Sets the power management mode of the pipe and plane.
771  *
772  * This code should probably grow support for turning the cursor off and back
773  * on appropriately at the same time as we're turning the pipe off/on.
774  */
775 static void cdv_intel_crtc_dpms(struct drm_crtc *crtc, int mode)
776 {
777 	struct drm_device *dev = crtc->dev;
778 	struct drm_psb_private *dev_priv = dev->dev_private;
779 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
780 	int pipe = psb_intel_crtc->pipe;
781 	const struct psb_offset *map = &dev_priv->regmap[pipe];
782 	u32 temp;
783 
784 	/* XXX: When our outputs are all unaware of DPMS modes other than off
785 	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
786 	 */
787 	cdv_intel_disable_self_refresh(dev);
788 
789 	switch (mode) {
790 	case DRM_MODE_DPMS_ON:
791 	case DRM_MODE_DPMS_STANDBY:
792 	case DRM_MODE_DPMS_SUSPEND:
793 		if (psb_intel_crtc->active)
794 			return;
795 
796 		psb_intel_crtc->active = true;
797 
798 		/* Enable the DPLL */
799 		temp = REG_READ(map->dpll);
800 		if ((temp & DPLL_VCO_ENABLE) == 0) {
801 			REG_WRITE(map->dpll, temp);
802 			REG_READ(map->dpll);
803 			/* Wait for the clocks to stabilize. */
804 			udelay(150);
805 			REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
806 			REG_READ(map->dpll);
807 			/* Wait for the clocks to stabilize. */
808 			udelay(150);
809 			REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
810 			REG_READ(map->dpll);
811 			/* Wait for the clocks to stabilize. */
812 			udelay(150);
813 		}
814 
815 		/* Jim Bish - switch plan and pipe per scott */
816 		/* Enable the plane */
817 		temp = REG_READ(map->cntr);
818 		if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
819 			REG_WRITE(map->cntr,
820 				  temp | DISPLAY_PLANE_ENABLE);
821 			/* Flush the plane changes */
822 			REG_WRITE(map->base, REG_READ(map->base));
823 		}
824 
825 		udelay(150);
826 
827 		/* Enable the pipe */
828 		temp = REG_READ(map->conf);
829 		if ((temp & PIPEACONF_ENABLE) == 0)
830 			REG_WRITE(map->conf, temp | PIPEACONF_ENABLE);
831 
832 		temp = REG_READ(map->status);
833 		temp &= ~(0xFFFF);
834 		temp |= PIPE_FIFO_UNDERRUN;
835 		REG_WRITE(map->status, temp);
836 		REG_READ(map->status);
837 
838 		cdv_intel_update_watermark(dev, crtc);
839 		cdv_intel_crtc_load_lut(crtc);
840 
841 		/* Give the overlay scaler a chance to enable
842 		 * if it's on this pipe */
843 		/* psb_intel_crtc_dpms_video(crtc, true); TODO */
844 		psb_intel_crtc->crtc_enable = true;
845 		break;
846 	case DRM_MODE_DPMS_OFF:
847 		if (!psb_intel_crtc->active)
848 			return;
849 
850 		psb_intel_crtc->active = false;
851 
852 		/* Give the overlay scaler a chance to disable
853 		 * if it's on this pipe */
854 		/* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
855 
856 		/* Disable the VGA plane that we never use */
857 		REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
858 
859 		/* Jim Bish - changed pipe/plane here as well. */
860 
861 		drm_vblank_off(dev, pipe);
862 		/* Wait for vblank for the disable to take effect */
863 		cdv_intel_wait_for_vblank(dev);
864 
865 		/* Next, disable display pipes */
866 		temp = REG_READ(map->conf);
867 		if ((temp & PIPEACONF_ENABLE) != 0) {
868 			REG_WRITE(map->conf, temp & ~PIPEACONF_ENABLE);
869 			REG_READ(map->conf);
870 		}
871 
872 		/* Wait for vblank for the disable to take effect. */
873 		cdv_intel_wait_for_vblank(dev);
874 
875 		udelay(150);
876 
877 		/* Disable display plane */
878 		temp = REG_READ(map->cntr);
879 		if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
880 			REG_WRITE(map->cntr,
881 				  temp & ~DISPLAY_PLANE_ENABLE);
882 			/* Flush the plane changes */
883 			REG_WRITE(map->base, REG_READ(map->base));
884 			REG_READ(map->base);
885 		}
886 
887 		temp = REG_READ(map->dpll);
888 		if ((temp & DPLL_VCO_ENABLE) != 0) {
889 			REG_WRITE(map->dpll, temp & ~DPLL_VCO_ENABLE);
890 			REG_READ(map->dpll);
891 		}
892 
893 		/* Wait for the clocks to turn off. */
894 		udelay(150);
895 		cdv_intel_update_watermark(dev, crtc);
896 		psb_intel_crtc->crtc_enable = false;
897 		break;
898 	}
899 	/*Set FIFO Watermarks*/
900 	REG_WRITE(DSPARB, 0x3F3E);
901 }
902 
903 static void cdv_intel_crtc_prepare(struct drm_crtc *crtc)
904 {
905 	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
906 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
907 }
908 
909 static void cdv_intel_crtc_commit(struct drm_crtc *crtc)
910 {
911 	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
912 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
913 }
914 
915 static bool cdv_intel_crtc_mode_fixup(struct drm_crtc *crtc,
916 				  const struct drm_display_mode *mode,
917 				  struct drm_display_mode *adjusted_mode)
918 {
919 	return true;
920 }
921 
922 
923 /**
924  * Return the pipe currently connected to the panel fitter,
925  * or -1 if the panel fitter is not present or not in use
926  */
927 static int cdv_intel_panel_fitter_pipe(struct drm_device *dev)
928 {
929 	u32 pfit_control;
930 
931 	pfit_control = REG_READ(PFIT_CONTROL);
932 
933 	/* See if the panel fitter is in use */
934 	if ((pfit_control & PFIT_ENABLE) == 0)
935 		return -1;
936 	return (pfit_control >> 29) & 0x3;
937 }
938 
939 static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc,
940 			       struct drm_display_mode *mode,
941 			       struct drm_display_mode *adjusted_mode,
942 			       int x, int y,
943 			       struct drm_framebuffer *old_fb)
944 {
945 	struct drm_device *dev = crtc->dev;
946 	struct drm_psb_private *dev_priv = dev->dev_private;
947 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
948 	int pipe = psb_intel_crtc->pipe;
949 	const struct psb_offset *map = &dev_priv->regmap[pipe];
950 	int refclk;
951 	struct cdv_intel_clock_t clock;
952 	u32 dpll = 0, dspcntr, pipeconf;
953 	bool ok;
954 	bool is_crt = false, is_lvds = false, is_tv = false;
955 	bool is_hdmi = false;
956 	struct drm_mode_config *mode_config = &dev->mode_config;
957 	struct drm_connector *connector;
958 
959 	list_for_each_entry(connector, &mode_config->connector_list, head) {
960 		struct psb_intel_encoder *psb_intel_encoder =
961 					psb_intel_attached_encoder(connector);
962 
963 		if (!connector->encoder
964 		    || connector->encoder->crtc != crtc)
965 			continue;
966 
967 		switch (psb_intel_encoder->type) {
968 		case INTEL_OUTPUT_LVDS:
969 			is_lvds = true;
970 			break;
971 		case INTEL_OUTPUT_TVOUT:
972 			is_tv = true;
973 			break;
974 		case INTEL_OUTPUT_ANALOG:
975 			is_crt = true;
976 			break;
977 		case INTEL_OUTPUT_HDMI:
978 			is_hdmi = true;
979 			break;
980 		}
981 	}
982 
983 	if (dev_priv->dplla_96mhz)
984 		/* low-end sku, 96/100 mhz */
985 		refclk = 96000;
986 	else
987 		/* high-end sku, 27/100 mhz */
988 		refclk = 27000;
989 
990 	if (is_lvds && dev_priv->lvds_use_ssc) {
991 		refclk = dev_priv->lvds_ssc_freq * 1000;
992 		DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq);
993 	}
994 
995 	drm_mode_debug_printmodeline(adjusted_mode);
996 
997 	ok = cdv_intel_find_best_PLL(crtc, adjusted_mode->clock, refclk,
998 				 &clock);
999 	if (!ok) {
1000 		dev_err(dev->dev, "Couldn't find PLL settings for mode!\n");
1001 		return 0;
1002 	}
1003 
1004 	dpll = DPLL_VGA_MODE_DIS;
1005 	if (is_tv) {
1006 		/* XXX: just matching BIOS for now */
1007 /*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
1008 		dpll |= 3;
1009 	}
1010 /*		dpll |= PLL_REF_INPUT_DREFCLK; */
1011 
1012 	dpll |= DPLL_SYNCLOCK_ENABLE;
1013 /*	if (is_lvds)
1014 		dpll |= DPLLB_MODE_LVDS;
1015 	else
1016 		dpll |= DPLLB_MODE_DAC_SERIAL; */
1017 	/* dpll |= (2 << 11); */
1018 
1019 	/* setup pipeconf */
1020 	pipeconf = REG_READ(map->conf);
1021 
1022 	/* Set up the display plane register */
1023 	dspcntr = DISPPLANE_GAMMA_ENABLE;
1024 
1025 	if (pipe == 0)
1026 		dspcntr |= DISPPLANE_SEL_PIPE_A;
1027 	else
1028 		dspcntr |= DISPPLANE_SEL_PIPE_B;
1029 
1030 	dspcntr |= DISPLAY_PLANE_ENABLE;
1031 	pipeconf |= PIPEACONF_ENABLE;
1032 
1033 	REG_WRITE(map->dpll, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE);
1034 	REG_READ(map->dpll);
1035 
1036 	cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds);
1037 
1038 	udelay(150);
1039 
1040 
1041 	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
1042 	 * This is an exception to the general rule that mode_set doesn't turn
1043 	 * things on.
1044 	 */
1045 	if (is_lvds) {
1046 		u32 lvds = REG_READ(LVDS);
1047 
1048 		lvds |=
1049 		    LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP |
1050 		    LVDS_PIPEB_SELECT;
1051 		/* Set the B0-B3 data pairs corresponding to
1052 		 * whether we're going to
1053 		 * set the DPLLs for dual-channel mode or not.
1054 		 */
1055 		if (clock.p2 == 7)
1056 			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
1057 		else
1058 			lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
1059 
1060 		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
1061 		 * appropriately here, but we need to look more
1062 		 * thoroughly into how panels behave in the two modes.
1063 		 */
1064 
1065 		REG_WRITE(LVDS, lvds);
1066 		REG_READ(LVDS);
1067 	}
1068 
1069 	dpll |= DPLL_VCO_ENABLE;
1070 
1071 	/* Disable the panel fitter if it was on our pipe */
1072 	if (cdv_intel_panel_fitter_pipe(dev) == pipe)
1073 		REG_WRITE(PFIT_CONTROL, 0);
1074 
1075 	DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
1076 	drm_mode_debug_printmodeline(mode);
1077 
1078 	REG_WRITE(map->dpll,
1079 		(REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE);
1080 	REG_READ(map->dpll);
1081 	/* Wait for the clocks to stabilize. */
1082 	udelay(150); /* 42 usec w/o calibration, 110 with.  rounded up. */
1083 
1084 	if (!(REG_READ(map->dpll) & DPLL_LOCK)) {
1085 		dev_err(dev->dev, "Failed to get DPLL lock\n");
1086 		return -EBUSY;
1087 	}
1088 
1089 	{
1090 		int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
1091 		REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
1092 	}
1093 
1094 	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
1095 		  ((adjusted_mode->crtc_htotal - 1) << 16));
1096 	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
1097 		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
1098 	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
1099 		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
1100 	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
1101 		  ((adjusted_mode->crtc_vtotal - 1) << 16));
1102 	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
1103 		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
1104 	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
1105 		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
1106 	/* pipesrc and dspsize control the size that is scaled from,
1107 	 * which should always be the user's requested size.
1108 	 */
1109 	REG_WRITE(map->size,
1110 		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
1111 	REG_WRITE(map->pos, 0);
1112 	REG_WRITE(map->src,
1113 		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
1114 	REG_WRITE(map->conf, pipeconf);
1115 	REG_READ(map->conf);
1116 
1117 	cdv_intel_wait_for_vblank(dev);
1118 
1119 	REG_WRITE(map->cntr, dspcntr);
1120 
1121 	/* Flush the plane changes */
1122 	{
1123 		struct drm_crtc_helper_funcs *crtc_funcs =
1124 		    crtc->helper_private;
1125 		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
1126 	}
1127 
1128 	cdv_intel_wait_for_vblank(dev);
1129 
1130 	return 0;
1131 }
1132 
1133 
1134 /**
1135  * Save HW states of giving crtc
1136  */
1137 static void cdv_intel_crtc_save(struct drm_crtc *crtc)
1138 {
1139 	struct drm_device *dev = crtc->dev;
1140 	struct drm_psb_private *dev_priv = dev->dev_private;
1141 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1142 	struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
1143 	const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
1144 	uint32_t paletteReg;
1145 	int i;
1146 
1147 	if (!crtc_state) {
1148 		dev_dbg(dev->dev, "No CRTC state found\n");
1149 		return;
1150 	}
1151 
1152 	crtc_state->saveDSPCNTR = REG_READ(map->cntr);
1153 	crtc_state->savePIPECONF = REG_READ(map->conf);
1154 	crtc_state->savePIPESRC = REG_READ(map->src);
1155 	crtc_state->saveFP0 = REG_READ(map->fp0);
1156 	crtc_state->saveFP1 = REG_READ(map->fp1);
1157 	crtc_state->saveDPLL = REG_READ(map->dpll);
1158 	crtc_state->saveHTOTAL = REG_READ(map->htotal);
1159 	crtc_state->saveHBLANK = REG_READ(map->hblank);
1160 	crtc_state->saveHSYNC = REG_READ(map->hsync);
1161 	crtc_state->saveVTOTAL = REG_READ(map->vtotal);
1162 	crtc_state->saveVBLANK = REG_READ(map->vblank);
1163 	crtc_state->saveVSYNC = REG_READ(map->vsync);
1164 	crtc_state->saveDSPSTRIDE = REG_READ(map->stride);
1165 
1166 	/*NOTE: DSPSIZE DSPPOS only for psb*/
1167 	crtc_state->saveDSPSIZE = REG_READ(map->size);
1168 	crtc_state->saveDSPPOS = REG_READ(map->pos);
1169 
1170 	crtc_state->saveDSPBASE = REG_READ(map->base);
1171 
1172 	DRM_DEBUG("(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1173 			crtc_state->saveDSPCNTR,
1174 			crtc_state->savePIPECONF,
1175 			crtc_state->savePIPESRC,
1176 			crtc_state->saveFP0,
1177 			crtc_state->saveFP1,
1178 			crtc_state->saveDPLL,
1179 			crtc_state->saveHTOTAL,
1180 			crtc_state->saveHBLANK,
1181 			crtc_state->saveHSYNC,
1182 			crtc_state->saveVTOTAL,
1183 			crtc_state->saveVBLANK,
1184 			crtc_state->saveVSYNC,
1185 			crtc_state->saveDSPSTRIDE,
1186 			crtc_state->saveDSPSIZE,
1187 			crtc_state->saveDSPPOS,
1188 			crtc_state->saveDSPBASE
1189 		);
1190 
1191 	paletteReg = map->palette;
1192 	for (i = 0; i < 256; ++i)
1193 		crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2));
1194 }
1195 
1196 /**
1197  * Restore HW states of giving crtc
1198  */
1199 static void cdv_intel_crtc_restore(struct drm_crtc *crtc)
1200 {
1201 	struct drm_device *dev = crtc->dev;
1202 	struct drm_psb_private *dev_priv = dev->dev_private;
1203 	struct psb_intel_crtc *psb_intel_crtc =  to_psb_intel_crtc(crtc);
1204 	struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
1205 	const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
1206 	uint32_t paletteReg;
1207 	int i;
1208 
1209 	if (!crtc_state) {
1210 		dev_dbg(dev->dev, "No crtc state\n");
1211 		return;
1212 	}
1213 
1214 	DRM_DEBUG(
1215 		"current:(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1216 		REG_READ(map->cntr),
1217 		REG_READ(map->conf),
1218 		REG_READ(map->src),
1219 		REG_READ(map->fp0),
1220 		REG_READ(map->fp1),
1221 		REG_READ(map->dpll),
1222 		REG_READ(map->htotal),
1223 		REG_READ(map->hblank),
1224 		REG_READ(map->hsync),
1225 		REG_READ(map->vtotal),
1226 		REG_READ(map->vblank),
1227 		REG_READ(map->vsync),
1228 		REG_READ(map->stride),
1229 		REG_READ(map->size),
1230 		REG_READ(map->pos),
1231 		REG_READ(map->base)
1232 	);
1233 
1234 	DRM_DEBUG(
1235 		"saved: (%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1236 		crtc_state->saveDSPCNTR,
1237 		crtc_state->savePIPECONF,
1238 		crtc_state->savePIPESRC,
1239 		crtc_state->saveFP0,
1240 		crtc_state->saveFP1,
1241 		crtc_state->saveDPLL,
1242 		crtc_state->saveHTOTAL,
1243 		crtc_state->saveHBLANK,
1244 		crtc_state->saveHSYNC,
1245 		crtc_state->saveVTOTAL,
1246 		crtc_state->saveVBLANK,
1247 		crtc_state->saveVSYNC,
1248 		crtc_state->saveDSPSTRIDE,
1249 		crtc_state->saveDSPSIZE,
1250 		crtc_state->saveDSPPOS,
1251 		crtc_state->saveDSPBASE
1252 	);
1253 
1254 
1255 	if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
1256 		REG_WRITE(map->dpll,
1257 				crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
1258 		REG_READ(map->dpll);
1259 		DRM_DEBUG("write dpll: %x\n",
1260 				REG_READ(map->dpll));
1261 		udelay(150);
1262 	}
1263 
1264 	REG_WRITE(map->fp0, crtc_state->saveFP0);
1265 	REG_READ(map->fp0);
1266 
1267 	REG_WRITE(map->fp1, crtc_state->saveFP1);
1268 	REG_READ(map->fp1);
1269 
1270 	REG_WRITE(map->dpll, crtc_state->saveDPLL);
1271 	REG_READ(map->dpll);
1272 	udelay(150);
1273 
1274 	REG_WRITE(map->htotal, crtc_state->saveHTOTAL);
1275 	REG_WRITE(map->hblank, crtc_state->saveHBLANK);
1276 	REG_WRITE(map->hsync, crtc_state->saveHSYNC);
1277 	REG_WRITE(map->vtotal, crtc_state->saveVTOTAL);
1278 	REG_WRITE(map->vblank, crtc_state->saveVBLANK);
1279 	REG_WRITE(map->vsync, crtc_state->saveVSYNC);
1280 	REG_WRITE(map->stride, crtc_state->saveDSPSTRIDE);
1281 
1282 	REG_WRITE(map->size, crtc_state->saveDSPSIZE);
1283 	REG_WRITE(map->pos, crtc_state->saveDSPPOS);
1284 
1285 	REG_WRITE(map->src, crtc_state->savePIPESRC);
1286 	REG_WRITE(map->base, crtc_state->saveDSPBASE);
1287 	REG_WRITE(map->conf, crtc_state->savePIPECONF);
1288 
1289 	cdv_intel_wait_for_vblank(dev);
1290 
1291 	REG_WRITE(map->cntr, crtc_state->saveDSPCNTR);
1292 	REG_WRITE(map->base, crtc_state->saveDSPBASE);
1293 
1294 	cdv_intel_wait_for_vblank(dev);
1295 
1296 	paletteReg = map->palette;
1297 	for (i = 0; i < 256; ++i)
1298 		REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]);
1299 }
1300 
1301 static int cdv_intel_crtc_cursor_set(struct drm_crtc *crtc,
1302 				 struct drm_file *file_priv,
1303 				 uint32_t handle,
1304 				 uint32_t width, uint32_t height)
1305 {
1306 	struct drm_device *dev = crtc->dev;
1307 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1308 	int pipe = psb_intel_crtc->pipe;
1309 	uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
1310 	uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
1311 	uint32_t temp;
1312 	size_t addr = 0;
1313 	struct gtt_range *gt;
1314 	struct drm_gem_object *obj;
1315 	int ret;
1316 
1317 	/* if we want to turn of the cursor ignore width and height */
1318 	if (!handle) {
1319 		/* turn off the cursor */
1320 		temp = CURSOR_MODE_DISABLE;
1321 
1322 		if (gma_power_begin(dev, false)) {
1323 			REG_WRITE(control, temp);
1324 			REG_WRITE(base, 0);
1325 			gma_power_end(dev);
1326 		}
1327 
1328 		/* unpin the old GEM object */
1329 		if (psb_intel_crtc->cursor_obj) {
1330 			gt = container_of(psb_intel_crtc->cursor_obj,
1331 							struct gtt_range, gem);
1332 			psb_gtt_unpin(gt);
1333 			drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1334 			psb_intel_crtc->cursor_obj = NULL;
1335 		}
1336 
1337 		return 0;
1338 	}
1339 
1340 	/* Currently we only support 64x64 cursors */
1341 	if (width != 64 || height != 64) {
1342 		dev_dbg(dev->dev, "we currently only support 64x64 cursors\n");
1343 		return -EINVAL;
1344 	}
1345 
1346 	obj = drm_gem_object_lookup(dev, file_priv, handle);
1347 	if (!obj)
1348 		return -ENOENT;
1349 
1350 	if (obj->size < width * height * 4) {
1351 		dev_dbg(dev->dev, "buffer is to small\n");
1352 		return -ENOMEM;
1353 	}
1354 
1355 	gt = container_of(obj, struct gtt_range, gem);
1356 
1357 	/* Pin the memory into the GTT */
1358 	ret = psb_gtt_pin(gt);
1359 	if (ret) {
1360 		dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
1361 		return ret;
1362 	}
1363 
1364 	addr = gt->offset;	/* Or resource.start ??? */
1365 
1366 	psb_intel_crtc->cursor_addr = addr;
1367 
1368 	temp = 0;
1369 	/* set the pipe for the cursor */
1370 	temp |= (pipe << 28);
1371 	temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1372 
1373 	if (gma_power_begin(dev, false)) {
1374 		REG_WRITE(control, temp);
1375 		REG_WRITE(base, addr);
1376 		gma_power_end(dev);
1377 	}
1378 
1379 	/* unpin the old GEM object */
1380 	if (psb_intel_crtc->cursor_obj) {
1381 		gt = container_of(psb_intel_crtc->cursor_obj,
1382 							struct gtt_range, gem);
1383 		psb_gtt_unpin(gt);
1384 		drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1385 		psb_intel_crtc->cursor_obj = obj;
1386 	}
1387 	return 0;
1388 }
1389 
1390 static int cdv_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1391 {
1392 	struct drm_device *dev = crtc->dev;
1393 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1394 	int pipe = psb_intel_crtc->pipe;
1395 	uint32_t temp = 0;
1396 	uint32_t adder;
1397 
1398 
1399 	if (x < 0) {
1400 		temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
1401 		x = -x;
1402 	}
1403 	if (y < 0) {
1404 		temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
1405 		y = -y;
1406 	}
1407 
1408 	temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
1409 	temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1410 
1411 	adder = psb_intel_crtc->cursor_addr;
1412 
1413 	if (gma_power_begin(dev, false)) {
1414 		REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
1415 		REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
1416 		gma_power_end(dev);
1417 	}
1418 	return 0;
1419 }
1420 
1421 static void cdv_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red,
1422 			 u16 *green, u16 *blue, uint32_t start, uint32_t size)
1423 {
1424 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1425 	int i;
1426 	int end = (start + size > 256) ? 256 : start + size;
1427 
1428 	for (i = start; i < end; i++) {
1429 		psb_intel_crtc->lut_r[i] = red[i] >> 8;
1430 		psb_intel_crtc->lut_g[i] = green[i] >> 8;
1431 		psb_intel_crtc->lut_b[i] = blue[i] >> 8;
1432 	}
1433 
1434 	cdv_intel_crtc_load_lut(crtc);
1435 }
1436 
1437 static int cdv_crtc_set_config(struct drm_mode_set *set)
1438 {
1439 	int ret = 0;
1440 	struct drm_device *dev = set->crtc->dev;
1441 	struct drm_psb_private *dev_priv = dev->dev_private;
1442 
1443 	if (!dev_priv->rpm_enabled)
1444 		return drm_crtc_helper_set_config(set);
1445 
1446 	pm_runtime_forbid(&dev->pdev->dev);
1447 
1448 	ret = drm_crtc_helper_set_config(set);
1449 
1450 	pm_runtime_allow(&dev->pdev->dev);
1451 
1452 	return ret;
1453 }
1454 
1455 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
1456 
1457 /* FIXME: why are we using this, should it be cdv_ in this tree ? */
1458 
1459 static void i8xx_clock(int refclk, struct cdv_intel_clock_t *clock)
1460 {
1461 	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
1462 	clock->p = clock->p1 * clock->p2;
1463 	clock->vco = refclk * clock->m / (clock->n + 2);
1464 	clock->dot = clock->vco / clock->p;
1465 }
1466 
1467 /* Returns the clock of the currently programmed mode of the given pipe. */
1468 static int cdv_intel_crtc_clock_get(struct drm_device *dev,
1469 				struct drm_crtc *crtc)
1470 {
1471 	struct drm_psb_private *dev_priv = dev->dev_private;
1472 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1473 	int pipe = psb_intel_crtc->pipe;
1474 	const struct psb_offset *map = &dev_priv->regmap[pipe];
1475 	u32 dpll;
1476 	u32 fp;
1477 	struct cdv_intel_clock_t clock;
1478 	bool is_lvds;
1479 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1480 
1481 	if (gma_power_begin(dev, false)) {
1482 		dpll = REG_READ(map->dpll);
1483 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1484 			fp = REG_READ(map->fp0);
1485 		else
1486 			fp = REG_READ(map->fp1);
1487 		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
1488 		gma_power_end(dev);
1489 	} else {
1490 		dpll = p->dpll;
1491 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1492 			fp = p->fp0;
1493 		else
1494 			fp = p->fp1;
1495 
1496 		is_lvds = (pipe == 1) &&
1497 				(dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN);
1498 	}
1499 
1500 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1501 	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1502 	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1503 
1504 	if (is_lvds) {
1505 		clock.p1 =
1506 		    ffs((dpll &
1507 			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1508 			DPLL_FPA01_P1_POST_DIV_SHIFT);
1509 		if (clock.p1 == 0) {
1510 			clock.p1 = 4;
1511 			dev_err(dev->dev, "PLL %d\n", dpll);
1512 		}
1513 		clock.p2 = 14;
1514 
1515 		if ((dpll & PLL_REF_INPUT_MASK) ==
1516 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1517 			/* XXX: might not be 66MHz */
1518 			i8xx_clock(66000, &clock);
1519 		} else
1520 			i8xx_clock(48000, &clock);
1521 	} else {
1522 		if (dpll & PLL_P1_DIVIDE_BY_TWO)
1523 			clock.p1 = 2;
1524 		else {
1525 			clock.p1 =
1526 			    ((dpll &
1527 			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1528 			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1529 		}
1530 		if (dpll & PLL_P2_DIVIDE_BY_4)
1531 			clock.p2 = 4;
1532 		else
1533 			clock.p2 = 2;
1534 
1535 		i8xx_clock(48000, &clock);
1536 	}
1537 
1538 	/* XXX: It would be nice to validate the clocks, but we can't reuse
1539 	 * i830PllIsValid() because it relies on the xf86_config connector
1540 	 * configuration being accurate, which it isn't necessarily.
1541 	 */
1542 
1543 	return clock.dot;
1544 }
1545 
1546 /** Returns the currently programmed mode of the given pipe. */
1547 struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev,
1548 					     struct drm_crtc *crtc)
1549 {
1550 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1551 	int pipe = psb_intel_crtc->pipe;
1552 	struct drm_psb_private *dev_priv = dev->dev_private;
1553 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1554 	const struct psb_offset *map = &dev_priv->regmap[pipe];
1555 	struct drm_display_mode *mode;
1556 	int htot;
1557 	int hsync;
1558 	int vtot;
1559 	int vsync;
1560 
1561 	if (gma_power_begin(dev, false)) {
1562 		htot = REG_READ(map->htotal);
1563 		hsync = REG_READ(map->hsync);
1564 		vtot = REG_READ(map->vtotal);
1565 		vsync = REG_READ(map->vsync);
1566 		gma_power_end(dev);
1567 	} else {
1568 		htot = p->htotal;
1569 		hsync = p->hsync;
1570 		vtot = p->vtotal;
1571 		vsync = p->vsync;
1572 	}
1573 
1574 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1575 	if (!mode)
1576 		return NULL;
1577 
1578 	mode->clock = cdv_intel_crtc_clock_get(dev, crtc);
1579 	mode->hdisplay = (htot & 0xffff) + 1;
1580 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1581 	mode->hsync_start = (hsync & 0xffff) + 1;
1582 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1583 	mode->vdisplay = (vtot & 0xffff) + 1;
1584 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1585 	mode->vsync_start = (vsync & 0xffff) + 1;
1586 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1587 
1588 	drm_mode_set_name(mode);
1589 	drm_mode_set_crtcinfo(mode, 0);
1590 
1591 	return mode;
1592 }
1593 
1594 static void cdv_intel_crtc_destroy(struct drm_crtc *crtc)
1595 {
1596 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1597 
1598 	kfree(psb_intel_crtc->crtc_state);
1599 	drm_crtc_cleanup(crtc);
1600 	kfree(psb_intel_crtc);
1601 }
1602 
1603 const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = {
1604 	.dpms = cdv_intel_crtc_dpms,
1605 	.mode_fixup = cdv_intel_crtc_mode_fixup,
1606 	.mode_set = cdv_intel_crtc_mode_set,
1607 	.mode_set_base = cdv_intel_pipe_set_base,
1608 	.prepare = cdv_intel_crtc_prepare,
1609 	.commit = cdv_intel_crtc_commit,
1610 };
1611 
1612 const struct drm_crtc_funcs cdv_intel_crtc_funcs = {
1613 	.save = cdv_intel_crtc_save,
1614 	.restore = cdv_intel_crtc_restore,
1615 	.cursor_set = cdv_intel_crtc_cursor_set,
1616 	.cursor_move = cdv_intel_crtc_cursor_move,
1617 	.gamma_set = cdv_intel_crtc_gamma_set,
1618 	.set_config = cdv_crtc_set_config,
1619 	.destroy = cdv_intel_crtc_destroy,
1620 };
1621