1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2006-2011 Intel Corporation 4 * 5 * Authors: 6 * Eric Anholt <eric@anholt.net> 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/i2c.h> 11 12 #include <drm/drm_crtc.h> 13 14 #include "cdv_device.h" 15 #include "framebuffer.h" 16 #include "gma_display.h" 17 #include "power.h" 18 #include "psb_drv.h" 19 #include "psb_intel_drv.h" 20 #include "psb_intel_reg.h" 21 22 static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit, 23 struct drm_crtc *crtc, int target, 24 int refclk, struct gma_clock_t *best_clock); 25 26 27 #define CDV_LIMIT_SINGLE_LVDS_96 0 28 #define CDV_LIMIT_SINGLE_LVDS_100 1 29 #define CDV_LIMIT_DAC_HDMI_27 2 30 #define CDV_LIMIT_DAC_HDMI_96 3 31 #define CDV_LIMIT_DP_27 4 32 #define CDV_LIMIT_DP_100 5 33 34 static const struct gma_limit_t cdv_intel_limits[] = { 35 { /* CDV_SINGLE_LVDS_96MHz */ 36 .dot = {.min = 20000, .max = 115500}, 37 .vco = {.min = 1800000, .max = 3600000}, 38 .n = {.min = 2, .max = 6}, 39 .m = {.min = 60, .max = 160}, 40 .m1 = {.min = 0, .max = 0}, 41 .m2 = {.min = 58, .max = 158}, 42 .p = {.min = 28, .max = 140}, 43 .p1 = {.min = 2, .max = 10}, 44 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14}, 45 .find_pll = gma_find_best_pll, 46 }, 47 { /* CDV_SINGLE_LVDS_100MHz */ 48 .dot = {.min = 20000, .max = 115500}, 49 .vco = {.min = 1800000, .max = 3600000}, 50 .n = {.min = 2, .max = 6}, 51 .m = {.min = 60, .max = 160}, 52 .m1 = {.min = 0, .max = 0}, 53 .m2 = {.min = 58, .max = 158}, 54 .p = {.min = 28, .max = 140}, 55 .p1 = {.min = 2, .max = 10}, 56 /* The single-channel range is 25-112Mhz, and dual-channel 57 * is 80-224Mhz. Prefer single channel as much as possible. 58 */ 59 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14}, 60 .find_pll = gma_find_best_pll, 61 }, 62 { /* CDV_DAC_HDMI_27MHz */ 63 .dot = {.min = 20000, .max = 400000}, 64 .vco = {.min = 1809000, .max = 3564000}, 65 .n = {.min = 1, .max = 1}, 66 .m = {.min = 67, .max = 132}, 67 .m1 = {.min = 0, .max = 0}, 68 .m2 = {.min = 65, .max = 130}, 69 .p = {.min = 5, .max = 90}, 70 .p1 = {.min = 1, .max = 9}, 71 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5}, 72 .find_pll = gma_find_best_pll, 73 }, 74 { /* CDV_DAC_HDMI_96MHz */ 75 .dot = {.min = 20000, .max = 400000}, 76 .vco = {.min = 1800000, .max = 3600000}, 77 .n = {.min = 2, .max = 6}, 78 .m = {.min = 60, .max = 160}, 79 .m1 = {.min = 0, .max = 0}, 80 .m2 = {.min = 58, .max = 158}, 81 .p = {.min = 5, .max = 100}, 82 .p1 = {.min = 1, .max = 10}, 83 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5}, 84 .find_pll = gma_find_best_pll, 85 }, 86 { /* CDV_DP_27MHz */ 87 .dot = {.min = 160000, .max = 272000}, 88 .vco = {.min = 1809000, .max = 3564000}, 89 .n = {.min = 1, .max = 1}, 90 .m = {.min = 67, .max = 132}, 91 .m1 = {.min = 0, .max = 0}, 92 .m2 = {.min = 65, .max = 130}, 93 .p = {.min = 5, .max = 90}, 94 .p1 = {.min = 1, .max = 9}, 95 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10}, 96 .find_pll = cdv_intel_find_dp_pll, 97 }, 98 { /* CDV_DP_100MHz */ 99 .dot = {.min = 160000, .max = 272000}, 100 .vco = {.min = 1800000, .max = 3600000}, 101 .n = {.min = 2, .max = 6}, 102 .m = {.min = 60, .max = 164}, 103 .m1 = {.min = 0, .max = 0}, 104 .m2 = {.min = 58, .max = 162}, 105 .p = {.min = 5, .max = 100}, 106 .p1 = {.min = 1, .max = 10}, 107 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10}, 108 .find_pll = cdv_intel_find_dp_pll, 109 } 110 }; 111 112 #define _wait_for(COND, MS, W) ({ \ 113 unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \ 114 int ret__ = 0; \ 115 while (!(COND)) { \ 116 if (time_after(jiffies, timeout__)) { \ 117 ret__ = -ETIMEDOUT; \ 118 break; \ 119 } \ 120 if (W && !in_dbg_master()) \ 121 msleep(W); \ 122 } \ 123 ret__; \ 124 }) 125 126 #define wait_for(COND, MS) _wait_for(COND, MS, 1) 127 128 129 int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val) 130 { 131 int ret; 132 133 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); 134 if (ret) { 135 DRM_ERROR("timeout waiting for SB to idle before read\n"); 136 return ret; 137 } 138 139 REG_WRITE(SB_ADDR, reg); 140 REG_WRITE(SB_PCKT, 141 SET_FIELD(SB_OPCODE_READ, SB_OPCODE) | 142 SET_FIELD(SB_DEST_DPLL, SB_DEST) | 143 SET_FIELD(0xf, SB_BYTE_ENABLE)); 144 145 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); 146 if (ret) { 147 DRM_ERROR("timeout waiting for SB to idle after read\n"); 148 return ret; 149 } 150 151 *val = REG_READ(SB_DATA); 152 153 return 0; 154 } 155 156 int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val) 157 { 158 int ret; 159 static bool dpio_debug = true; 160 u32 temp; 161 162 if (dpio_debug) { 163 if (cdv_sb_read(dev, reg, &temp) == 0) 164 DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp); 165 DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val); 166 } 167 168 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); 169 if (ret) { 170 DRM_ERROR("timeout waiting for SB to idle before write\n"); 171 return ret; 172 } 173 174 REG_WRITE(SB_ADDR, reg); 175 REG_WRITE(SB_DATA, val); 176 REG_WRITE(SB_PCKT, 177 SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) | 178 SET_FIELD(SB_DEST_DPLL, SB_DEST) | 179 SET_FIELD(0xf, SB_BYTE_ENABLE)); 180 181 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); 182 if (ret) { 183 DRM_ERROR("timeout waiting for SB to idle after write\n"); 184 return ret; 185 } 186 187 if (dpio_debug) { 188 if (cdv_sb_read(dev, reg, &temp) == 0) 189 DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp); 190 } 191 192 return 0; 193 } 194 195 /* Reset the DPIO configuration register. The BIOS does this at every 196 * mode set. 197 */ 198 void cdv_sb_reset(struct drm_device *dev) 199 { 200 201 REG_WRITE(DPIO_CFG, 0); 202 REG_READ(DPIO_CFG); 203 REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N); 204 } 205 206 /* Unlike most Intel display engines, on Cedarview the DPLL registers 207 * are behind this sideband bus. They must be programmed while the 208 * DPLL reference clock is on in the DPLL control register, but before 209 * the DPLL is enabled in the DPLL control register. 210 */ 211 static int 212 cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc, 213 struct gma_clock_t *clock, bool is_lvds, u32 ddi_select) 214 { 215 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 216 int pipe = gma_crtc->pipe; 217 u32 m, n_vco, p; 218 int ret = 0; 219 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B; 220 int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB; 221 u32 ref_value; 222 u32 lane_reg, lane_value; 223 224 cdv_sb_reset(dev); 225 226 REG_WRITE(dpll_reg, DPLL_SYNCLOCK_ENABLE | DPLL_VGA_MODE_DIS); 227 228 udelay(100); 229 230 /* Follow the BIOS and write the REF/SFR Register. Hardcoded value */ 231 ref_value = 0x68A701; 232 233 cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value); 234 235 /* We don't know what the other fields of these regs are, so 236 * leave them in place. 237 */ 238 /* 239 * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk 240 * for the pipe A/B. Display spec 1.06 has wrong definition. 241 * Correct definition is like below: 242 * 243 * refclka mean use clock from same PLL 244 * 245 * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll 246 * 247 * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA 248 * 249 */ 250 ret = cdv_sb_read(dev, ref_sfr, &ref_value); 251 if (ret) 252 return ret; 253 ref_value &= ~(REF_CLK_MASK); 254 255 /* use DPLL_A for pipeB on CRT/HDMI */ 256 if (pipe == 1 && !is_lvds && !(ddi_select & DP_MASK)) { 257 DRM_DEBUG_KMS("use DPLLA for pipe B\n"); 258 ref_value |= REF_CLK_DPLLA; 259 } else { 260 DRM_DEBUG_KMS("use their DPLL for pipe A/B\n"); 261 ref_value |= REF_CLK_DPLL; 262 } 263 ret = cdv_sb_write(dev, ref_sfr, ref_value); 264 if (ret) 265 return ret; 266 267 ret = cdv_sb_read(dev, SB_M(pipe), &m); 268 if (ret) 269 return ret; 270 m &= ~SB_M_DIVIDER_MASK; 271 m |= ((clock->m2) << SB_M_DIVIDER_SHIFT); 272 ret = cdv_sb_write(dev, SB_M(pipe), m); 273 if (ret) 274 return ret; 275 276 ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco); 277 if (ret) 278 return ret; 279 280 /* Follow the BIOS to program the N_DIVIDER REG */ 281 n_vco &= 0xFFFF; 282 n_vco |= 0x107; 283 n_vco &= ~(SB_N_VCO_SEL_MASK | 284 SB_N_DIVIDER_MASK | 285 SB_N_CB_TUNE_MASK); 286 287 n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT); 288 289 if (clock->vco < 2250000) { 290 n_vco |= (2 << SB_N_CB_TUNE_SHIFT); 291 n_vco |= (0 << SB_N_VCO_SEL_SHIFT); 292 } else if (clock->vco < 2750000) { 293 n_vco |= (1 << SB_N_CB_TUNE_SHIFT); 294 n_vco |= (1 << SB_N_VCO_SEL_SHIFT); 295 } else if (clock->vco < 3300000) { 296 n_vco |= (0 << SB_N_CB_TUNE_SHIFT); 297 n_vco |= (2 << SB_N_VCO_SEL_SHIFT); 298 } else { 299 n_vco |= (0 << SB_N_CB_TUNE_SHIFT); 300 n_vco |= (3 << SB_N_VCO_SEL_SHIFT); 301 } 302 303 ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco); 304 if (ret) 305 return ret; 306 307 ret = cdv_sb_read(dev, SB_P(pipe), &p); 308 if (ret) 309 return ret; 310 p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK); 311 p |= SET_FIELD(clock->p1, SB_P1_DIVIDER); 312 switch (clock->p2) { 313 case 5: 314 p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER); 315 break; 316 case 10: 317 p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER); 318 break; 319 case 14: 320 p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER); 321 break; 322 case 7: 323 p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER); 324 break; 325 default: 326 DRM_ERROR("Bad P2 clock: %d\n", clock->p2); 327 return -EINVAL; 328 } 329 ret = cdv_sb_write(dev, SB_P(pipe), p); 330 if (ret) 331 return ret; 332 333 if (ddi_select) { 334 if ((ddi_select & DDI_MASK) == DDI0_SELECT) { 335 lane_reg = PSB_LANE0; 336 cdv_sb_read(dev, lane_reg, &lane_value); 337 lane_value &= ~(LANE_PLL_MASK); 338 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe); 339 cdv_sb_write(dev, lane_reg, lane_value); 340 341 lane_reg = PSB_LANE1; 342 cdv_sb_read(dev, lane_reg, &lane_value); 343 lane_value &= ~(LANE_PLL_MASK); 344 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe); 345 cdv_sb_write(dev, lane_reg, lane_value); 346 } else { 347 lane_reg = PSB_LANE2; 348 cdv_sb_read(dev, lane_reg, &lane_value); 349 lane_value &= ~(LANE_PLL_MASK); 350 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe); 351 cdv_sb_write(dev, lane_reg, lane_value); 352 353 lane_reg = PSB_LANE3; 354 cdv_sb_read(dev, lane_reg, &lane_value); 355 lane_value &= ~(LANE_PLL_MASK); 356 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe); 357 cdv_sb_write(dev, lane_reg, lane_value); 358 } 359 } 360 return 0; 361 } 362 363 static const struct gma_limit_t *cdv_intel_limit(struct drm_crtc *crtc, 364 int refclk) 365 { 366 const struct gma_limit_t *limit; 367 if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { 368 /* 369 * Now only single-channel LVDS is supported on CDV. If it is 370 * incorrect, please add the dual-channel LVDS. 371 */ 372 if (refclk == 96000) 373 limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96]; 374 else 375 limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100]; 376 } else if (gma_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) || 377 gma_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) { 378 if (refclk == 27000) 379 limit = &cdv_intel_limits[CDV_LIMIT_DP_27]; 380 else 381 limit = &cdv_intel_limits[CDV_LIMIT_DP_100]; 382 } else { 383 if (refclk == 27000) 384 limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27]; 385 else 386 limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96]; 387 } 388 return limit; 389 } 390 391 /* m1 is reserved as 0 in CDV, n is a ring counter */ 392 static void cdv_intel_clock(int refclk, struct gma_clock_t *clock) 393 { 394 clock->m = clock->m2 + 2; 395 clock->p = clock->p1 * clock->p2; 396 clock->vco = (refclk * clock->m) / clock->n; 397 clock->dot = clock->vco / clock->p; 398 } 399 400 static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit, 401 struct drm_crtc *crtc, int target, 402 int refclk, 403 struct gma_clock_t *best_clock) 404 { 405 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 406 struct gma_clock_t clock; 407 408 memset(&clock, 0, sizeof(clock)); 409 410 switch (refclk) { 411 case 27000: 412 if (target < 200000) { 413 clock.p1 = 2; 414 clock.p2 = 10; 415 clock.n = 1; 416 clock.m1 = 0; 417 clock.m2 = 118; 418 } else { 419 clock.p1 = 1; 420 clock.p2 = 10; 421 clock.n = 1; 422 clock.m1 = 0; 423 clock.m2 = 98; 424 } 425 break; 426 427 case 100000: 428 if (target < 200000) { 429 clock.p1 = 2; 430 clock.p2 = 10; 431 clock.n = 5; 432 clock.m1 = 0; 433 clock.m2 = 160; 434 } else { 435 clock.p1 = 1; 436 clock.p2 = 10; 437 clock.n = 5; 438 clock.m1 = 0; 439 clock.m2 = 133; 440 } 441 break; 442 443 default: 444 return false; 445 } 446 447 gma_crtc->clock_funcs->clock(refclk, &clock); 448 memcpy(best_clock, &clock, sizeof(struct gma_clock_t)); 449 return true; 450 } 451 452 #define FIFO_PIPEA (1 << 0) 453 #define FIFO_PIPEB (1 << 1) 454 455 static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe) 456 { 457 struct drm_crtc *crtc; 458 struct drm_psb_private *dev_priv = dev->dev_private; 459 struct gma_crtc *gma_crtc = NULL; 460 461 crtc = dev_priv->pipe_to_crtc_mapping[pipe]; 462 gma_crtc = to_gma_crtc(crtc); 463 464 if (crtc->primary->fb == NULL || !gma_crtc->active) 465 return false; 466 return true; 467 } 468 469 void cdv_disable_sr(struct drm_device *dev) 470 { 471 if (REG_READ(FW_BLC_SELF) & FW_BLC_SELF_EN) { 472 473 /* Disable self-refresh before adjust WM */ 474 REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN)); 475 REG_READ(FW_BLC_SELF); 476 477 gma_wait_for_vblank(dev); 478 479 /* Cedarview workaround to write ovelay plane, which force to leave 480 * MAX_FIFO state. 481 */ 482 REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/); 483 REG_READ(OV_OVADD); 484 485 gma_wait_for_vblank(dev); 486 } 487 488 } 489 490 void cdv_update_wm(struct drm_device *dev, struct drm_crtc *crtc) 491 { 492 struct drm_psb_private *dev_priv = dev->dev_private; 493 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 494 495 /* Is only one pipe enabled? */ 496 if (cdv_intel_pipe_enabled(dev, 0) ^ cdv_intel_pipe_enabled(dev, 1)) { 497 u32 fw; 498 499 fw = REG_READ(DSPFW1); 500 fw &= ~DSP_FIFO_SR_WM_MASK; 501 fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT); 502 fw &= ~CURSOR_B_FIFO_WM_MASK; 503 fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT); 504 REG_WRITE(DSPFW1, fw); 505 506 fw = REG_READ(DSPFW2); 507 fw &= ~CURSOR_A_FIFO_WM_MASK; 508 fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT); 509 fw &= ~DSP_PLANE_C_FIFO_WM_MASK; 510 fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT); 511 REG_WRITE(DSPFW2, fw); 512 513 REG_WRITE(DSPFW3, 0x36000000); 514 515 /* ignore FW4 */ 516 517 /* Is pipe b lvds ? */ 518 if (gma_crtc->pipe == 1 && 519 gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { 520 REG_WRITE(DSPFW5, 0x00040330); 521 } else { 522 fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) | 523 (4 << DSP_PLANE_A_FIFO_WM1_SHIFT) | 524 (3 << CURSOR_B_FIFO_WM1_SHIFT) | 525 (4 << CURSOR_FIFO_SR_WM1_SHIFT); 526 REG_WRITE(DSPFW5, fw); 527 } 528 529 REG_WRITE(DSPFW6, 0x10); 530 531 gma_wait_for_vblank(dev); 532 533 /* enable self-refresh for single pipe active */ 534 REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN); 535 REG_READ(FW_BLC_SELF); 536 gma_wait_for_vblank(dev); 537 538 } else { 539 540 /* HW team suggested values... */ 541 REG_WRITE(DSPFW1, 0x3f880808); 542 REG_WRITE(DSPFW2, 0x0b020202); 543 REG_WRITE(DSPFW3, 0x24000000); 544 REG_WRITE(DSPFW4, 0x08030202); 545 REG_WRITE(DSPFW5, 0x01010101); 546 REG_WRITE(DSPFW6, 0x1d0); 547 548 gma_wait_for_vblank(dev); 549 550 dev_priv->ops->disable_sr(dev); 551 } 552 } 553 554 /* 555 * Return the pipe currently connected to the panel fitter, 556 * or -1 if the panel fitter is not present or not in use 557 */ 558 static int cdv_intel_panel_fitter_pipe(struct drm_device *dev) 559 { 560 u32 pfit_control; 561 562 pfit_control = REG_READ(PFIT_CONTROL); 563 564 /* See if the panel fitter is in use */ 565 if ((pfit_control & PFIT_ENABLE) == 0) 566 return -1; 567 return (pfit_control >> 29) & 0x3; 568 } 569 570 static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc, 571 struct drm_display_mode *mode, 572 struct drm_display_mode *adjusted_mode, 573 int x, int y, 574 struct drm_framebuffer *old_fb) 575 { 576 struct drm_device *dev = crtc->dev; 577 struct drm_psb_private *dev_priv = dev->dev_private; 578 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 579 int pipe = gma_crtc->pipe; 580 const struct psb_offset *map = &dev_priv->regmap[pipe]; 581 int refclk; 582 struct gma_clock_t clock; 583 u32 dpll = 0, dspcntr, pipeconf; 584 bool ok; 585 bool is_lvds = false; 586 bool is_dp = false; 587 struct drm_mode_config *mode_config = &dev->mode_config; 588 struct drm_connector *connector; 589 const struct gma_limit_t *limit; 590 u32 ddi_select = 0; 591 bool is_edp = false; 592 593 list_for_each_entry(connector, &mode_config->connector_list, head) { 594 struct gma_encoder *gma_encoder = 595 gma_attached_encoder(connector); 596 597 if (!connector->encoder 598 || connector->encoder->crtc != crtc) 599 continue; 600 601 ddi_select = gma_encoder->ddi_select; 602 switch (gma_encoder->type) { 603 case INTEL_OUTPUT_LVDS: 604 is_lvds = true; 605 break; 606 case INTEL_OUTPUT_ANALOG: 607 case INTEL_OUTPUT_HDMI: 608 break; 609 case INTEL_OUTPUT_DISPLAYPORT: 610 is_dp = true; 611 break; 612 case INTEL_OUTPUT_EDP: 613 is_edp = true; 614 break; 615 default: 616 DRM_ERROR("invalid output type.\n"); 617 return 0; 618 } 619 } 620 621 if (dev_priv->dplla_96mhz) 622 /* low-end sku, 96/100 mhz */ 623 refclk = 96000; 624 else 625 /* high-end sku, 27/100 mhz */ 626 refclk = 27000; 627 if (is_dp || is_edp) { 628 /* 629 * Based on the spec the low-end SKU has only CRT/LVDS. So it is 630 * unnecessary to consider it for DP/eDP. 631 * On the high-end SKU, it will use the 27/100M reference clk 632 * for DP/eDP. When using SSC clock, the ref clk is 100MHz.Otherwise 633 * it will be 27MHz. From the VBIOS code it seems that the pipe A choose 634 * 27MHz for DP/eDP while the Pipe B chooses the 100MHz. 635 */ 636 if (pipe == 0) 637 refclk = 27000; 638 else 639 refclk = 100000; 640 } 641 642 if (is_lvds && dev_priv->lvds_use_ssc) { 643 refclk = dev_priv->lvds_ssc_freq * 1000; 644 DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq); 645 } 646 647 drm_mode_debug_printmodeline(adjusted_mode); 648 649 limit = gma_crtc->clock_funcs->limit(crtc, refclk); 650 651 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, 652 &clock); 653 if (!ok) { 654 DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d", 655 adjusted_mode->clock, clock.dot); 656 return 0; 657 } 658 659 dpll = DPLL_VGA_MODE_DIS; 660 661 if (is_dp || is_edp) { 662 cdv_intel_dp_set_m_n(crtc, mode, adjusted_mode); 663 } else { 664 REG_WRITE(PIPE_GMCH_DATA_M(pipe), 0); 665 REG_WRITE(PIPE_GMCH_DATA_N(pipe), 0); 666 REG_WRITE(PIPE_DP_LINK_M(pipe), 0); 667 REG_WRITE(PIPE_DP_LINK_N(pipe), 0); 668 } 669 670 dpll |= DPLL_SYNCLOCK_ENABLE; 671 /* if (is_lvds) 672 dpll |= DPLLB_MODE_LVDS; 673 else 674 dpll |= DPLLB_MODE_DAC_SERIAL; */ 675 /* dpll |= (2 << 11); */ 676 677 /* setup pipeconf */ 678 pipeconf = REG_READ(map->conf); 679 680 pipeconf &= ~(PIPE_BPC_MASK); 681 if (is_edp) { 682 switch (dev_priv->edp.bpp) { 683 case 24: 684 pipeconf |= PIPE_8BPC; 685 break; 686 case 18: 687 pipeconf |= PIPE_6BPC; 688 break; 689 case 30: 690 pipeconf |= PIPE_10BPC; 691 break; 692 default: 693 pipeconf |= PIPE_8BPC; 694 break; 695 } 696 } else if (is_lvds) { 697 /* the BPC will be 6 if it is 18-bit LVDS panel */ 698 if ((REG_READ(LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP) 699 pipeconf |= PIPE_8BPC; 700 else 701 pipeconf |= PIPE_6BPC; 702 } else 703 pipeconf |= PIPE_8BPC; 704 705 /* Set up the display plane register */ 706 dspcntr = DISPPLANE_GAMMA_ENABLE; 707 708 if (pipe == 0) 709 dspcntr |= DISPPLANE_SEL_PIPE_A; 710 else 711 dspcntr |= DISPPLANE_SEL_PIPE_B; 712 713 dspcntr |= DISPLAY_PLANE_ENABLE; 714 pipeconf |= PIPEACONF_ENABLE; 715 716 REG_WRITE(map->dpll, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE); 717 REG_READ(map->dpll); 718 719 cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds, ddi_select); 720 721 udelay(150); 722 723 724 /* The LVDS pin pair needs to be on before the DPLLs are enabled. 725 * This is an exception to the general rule that mode_set doesn't turn 726 * things on. 727 */ 728 if (is_lvds) { 729 u32 lvds = REG_READ(LVDS); 730 731 lvds |= 732 LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | 733 LVDS_PIPEB_SELECT; 734 /* Set the B0-B3 data pairs corresponding to 735 * whether we're going to 736 * set the DPLLs for dual-channel mode or not. 737 */ 738 if (clock.p2 == 7) 739 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP; 740 else 741 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP); 742 743 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP) 744 * appropriately here, but we need to look more 745 * thoroughly into how panels behave in the two modes. 746 */ 747 748 REG_WRITE(LVDS, lvds); 749 REG_READ(LVDS); 750 } 751 752 dpll |= DPLL_VCO_ENABLE; 753 754 /* Disable the panel fitter if it was on our pipe */ 755 if (cdv_intel_panel_fitter_pipe(dev) == pipe) 756 REG_WRITE(PFIT_CONTROL, 0); 757 758 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B'); 759 drm_mode_debug_printmodeline(mode); 760 761 REG_WRITE(map->dpll, 762 (REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE); 763 REG_READ(map->dpll); 764 /* Wait for the clocks to stabilize. */ 765 udelay(150); /* 42 usec w/o calibration, 110 with. rounded up. */ 766 767 if (!(REG_READ(map->dpll) & DPLL_LOCK)) { 768 dev_err(dev->dev, "Failed to get DPLL lock\n"); 769 return -EBUSY; 770 } 771 772 { 773 int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock; 774 REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT)); 775 } 776 777 REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) | 778 ((adjusted_mode->crtc_htotal - 1) << 16)); 779 REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) | 780 ((adjusted_mode->crtc_hblank_end - 1) << 16)); 781 REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) | 782 ((adjusted_mode->crtc_hsync_end - 1) << 16)); 783 REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) | 784 ((adjusted_mode->crtc_vtotal - 1) << 16)); 785 REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) | 786 ((adjusted_mode->crtc_vblank_end - 1) << 16)); 787 REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) | 788 ((adjusted_mode->crtc_vsync_end - 1) << 16)); 789 /* pipesrc and dspsize control the size that is scaled from, 790 * which should always be the user's requested size. 791 */ 792 REG_WRITE(map->size, 793 ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1)); 794 REG_WRITE(map->pos, 0); 795 REG_WRITE(map->src, 796 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1)); 797 REG_WRITE(map->conf, pipeconf); 798 REG_READ(map->conf); 799 800 gma_wait_for_vblank(dev); 801 802 REG_WRITE(map->cntr, dspcntr); 803 804 /* Flush the plane changes */ 805 { 806 const struct drm_crtc_helper_funcs *crtc_funcs = 807 crtc->helper_private; 808 crtc_funcs->mode_set_base(crtc, x, y, old_fb); 809 } 810 811 gma_wait_for_vblank(dev); 812 813 return 0; 814 } 815 816 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */ 817 818 /* FIXME: why are we using this, should it be cdv_ in this tree ? */ 819 820 static void i8xx_clock(int refclk, struct gma_clock_t *clock) 821 { 822 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2); 823 clock->p = clock->p1 * clock->p2; 824 clock->vco = refclk * clock->m / (clock->n + 2); 825 clock->dot = clock->vco / clock->p; 826 } 827 828 /* Returns the clock of the currently programmed mode of the given pipe. */ 829 static int cdv_intel_crtc_clock_get(struct drm_device *dev, 830 struct drm_crtc *crtc) 831 { 832 struct drm_psb_private *dev_priv = dev->dev_private; 833 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 834 int pipe = gma_crtc->pipe; 835 const struct psb_offset *map = &dev_priv->regmap[pipe]; 836 u32 dpll; 837 u32 fp; 838 struct gma_clock_t clock; 839 bool is_lvds; 840 struct psb_pipe *p = &dev_priv->regs.pipe[pipe]; 841 842 if (gma_power_begin(dev, false)) { 843 dpll = REG_READ(map->dpll); 844 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 845 fp = REG_READ(map->fp0); 846 else 847 fp = REG_READ(map->fp1); 848 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN); 849 gma_power_end(dev); 850 } else { 851 dpll = p->dpll; 852 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 853 fp = p->fp0; 854 else 855 fp = p->fp1; 856 857 is_lvds = (pipe == 1) && 858 (dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN); 859 } 860 861 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 862 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 863 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 864 865 if (is_lvds) { 866 clock.p1 = 867 ffs((dpll & 868 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 869 DPLL_FPA01_P1_POST_DIV_SHIFT); 870 if (clock.p1 == 0) { 871 clock.p1 = 4; 872 dev_err(dev->dev, "PLL %d\n", dpll); 873 } 874 clock.p2 = 14; 875 876 if ((dpll & PLL_REF_INPUT_MASK) == 877 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 878 /* XXX: might not be 66MHz */ 879 i8xx_clock(66000, &clock); 880 } else 881 i8xx_clock(48000, &clock); 882 } else { 883 if (dpll & PLL_P1_DIVIDE_BY_TWO) 884 clock.p1 = 2; 885 else { 886 clock.p1 = 887 ((dpll & 888 DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 889 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 890 } 891 if (dpll & PLL_P2_DIVIDE_BY_4) 892 clock.p2 = 4; 893 else 894 clock.p2 = 2; 895 896 i8xx_clock(48000, &clock); 897 } 898 899 /* XXX: It would be nice to validate the clocks, but we can't reuse 900 * i830PllIsValid() because it relies on the xf86_config connector 901 * configuration being accurate, which it isn't necessarily. 902 */ 903 904 return clock.dot; 905 } 906 907 /** Returns the currently programmed mode of the given pipe. */ 908 struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev, 909 struct drm_crtc *crtc) 910 { 911 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 912 int pipe = gma_crtc->pipe; 913 struct drm_psb_private *dev_priv = dev->dev_private; 914 struct psb_pipe *p = &dev_priv->regs.pipe[pipe]; 915 const struct psb_offset *map = &dev_priv->regmap[pipe]; 916 struct drm_display_mode *mode; 917 int htot; 918 int hsync; 919 int vtot; 920 int vsync; 921 922 if (gma_power_begin(dev, false)) { 923 htot = REG_READ(map->htotal); 924 hsync = REG_READ(map->hsync); 925 vtot = REG_READ(map->vtotal); 926 vsync = REG_READ(map->vsync); 927 gma_power_end(dev); 928 } else { 929 htot = p->htotal; 930 hsync = p->hsync; 931 vtot = p->vtotal; 932 vsync = p->vsync; 933 } 934 935 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 936 if (!mode) 937 return NULL; 938 939 mode->clock = cdv_intel_crtc_clock_get(dev, crtc); 940 mode->hdisplay = (htot & 0xffff) + 1; 941 mode->htotal = ((htot & 0xffff0000) >> 16) + 1; 942 mode->hsync_start = (hsync & 0xffff) + 1; 943 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; 944 mode->vdisplay = (vtot & 0xffff) + 1; 945 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; 946 mode->vsync_start = (vsync & 0xffff) + 1; 947 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; 948 949 drm_mode_set_name(mode); 950 drm_mode_set_crtcinfo(mode, 0); 951 952 return mode; 953 } 954 955 const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = { 956 .dpms = gma_crtc_dpms, 957 .mode_set = cdv_intel_crtc_mode_set, 958 .mode_set_base = gma_pipe_set_base, 959 .prepare = gma_crtc_prepare, 960 .commit = gma_crtc_commit, 961 .disable = gma_crtc_disable, 962 }; 963 964 const struct gma_clock_funcs cdv_clock_funcs = { 965 .clock = cdv_intel_clock, 966 .limit = cdv_intel_limit, 967 .pll_is_valid = gma_pll_is_valid, 968 }; 969