1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2006-2011 Intel Corporation 4 * 5 * Authors: 6 * Eric Anholt <eric@anholt.net> 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/i2c.h> 11 12 #include <drm/drm_crtc.h> 13 #include <drm/drm_modeset_helper_vtables.h> 14 15 #include "cdv_device.h" 16 #include "framebuffer.h" 17 #include "gma_display.h" 18 #include "power.h" 19 #include "psb_drv.h" 20 #include "psb_intel_drv.h" 21 #include "psb_intel_reg.h" 22 23 static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit, 24 struct drm_crtc *crtc, int target, 25 int refclk, struct gma_clock_t *best_clock); 26 27 28 #define CDV_LIMIT_SINGLE_LVDS_96 0 29 #define CDV_LIMIT_SINGLE_LVDS_100 1 30 #define CDV_LIMIT_DAC_HDMI_27 2 31 #define CDV_LIMIT_DAC_HDMI_96 3 32 #define CDV_LIMIT_DP_27 4 33 #define CDV_LIMIT_DP_100 5 34 35 static const struct gma_limit_t cdv_intel_limits[] = { 36 { /* CDV_SINGLE_LVDS_96MHz */ 37 .dot = {.min = 20000, .max = 115500}, 38 .vco = {.min = 1800000, .max = 3600000}, 39 .n = {.min = 2, .max = 6}, 40 .m = {.min = 60, .max = 160}, 41 .m1 = {.min = 0, .max = 0}, 42 .m2 = {.min = 58, .max = 158}, 43 .p = {.min = 28, .max = 140}, 44 .p1 = {.min = 2, .max = 10}, 45 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14}, 46 .find_pll = gma_find_best_pll, 47 }, 48 { /* CDV_SINGLE_LVDS_100MHz */ 49 .dot = {.min = 20000, .max = 115500}, 50 .vco = {.min = 1800000, .max = 3600000}, 51 .n = {.min = 2, .max = 6}, 52 .m = {.min = 60, .max = 160}, 53 .m1 = {.min = 0, .max = 0}, 54 .m2 = {.min = 58, .max = 158}, 55 .p = {.min = 28, .max = 140}, 56 .p1 = {.min = 2, .max = 10}, 57 /* The single-channel range is 25-112Mhz, and dual-channel 58 * is 80-224Mhz. Prefer single channel as much as possible. 59 */ 60 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14}, 61 .find_pll = gma_find_best_pll, 62 }, 63 { /* CDV_DAC_HDMI_27MHz */ 64 .dot = {.min = 20000, .max = 400000}, 65 .vco = {.min = 1809000, .max = 3564000}, 66 .n = {.min = 1, .max = 1}, 67 .m = {.min = 67, .max = 132}, 68 .m1 = {.min = 0, .max = 0}, 69 .m2 = {.min = 65, .max = 130}, 70 .p = {.min = 5, .max = 90}, 71 .p1 = {.min = 1, .max = 9}, 72 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5}, 73 .find_pll = gma_find_best_pll, 74 }, 75 { /* CDV_DAC_HDMI_96MHz */ 76 .dot = {.min = 20000, .max = 400000}, 77 .vco = {.min = 1800000, .max = 3600000}, 78 .n = {.min = 2, .max = 6}, 79 .m = {.min = 60, .max = 160}, 80 .m1 = {.min = 0, .max = 0}, 81 .m2 = {.min = 58, .max = 158}, 82 .p = {.min = 5, .max = 100}, 83 .p1 = {.min = 1, .max = 10}, 84 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5}, 85 .find_pll = gma_find_best_pll, 86 }, 87 { /* CDV_DP_27MHz */ 88 .dot = {.min = 160000, .max = 272000}, 89 .vco = {.min = 1809000, .max = 3564000}, 90 .n = {.min = 1, .max = 1}, 91 .m = {.min = 67, .max = 132}, 92 .m1 = {.min = 0, .max = 0}, 93 .m2 = {.min = 65, .max = 130}, 94 .p = {.min = 5, .max = 90}, 95 .p1 = {.min = 1, .max = 9}, 96 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10}, 97 .find_pll = cdv_intel_find_dp_pll, 98 }, 99 { /* CDV_DP_100MHz */ 100 .dot = {.min = 160000, .max = 272000}, 101 .vco = {.min = 1800000, .max = 3600000}, 102 .n = {.min = 2, .max = 6}, 103 .m = {.min = 60, .max = 164}, 104 .m1 = {.min = 0, .max = 0}, 105 .m2 = {.min = 58, .max = 162}, 106 .p = {.min = 5, .max = 100}, 107 .p1 = {.min = 1, .max = 10}, 108 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10}, 109 .find_pll = cdv_intel_find_dp_pll, 110 } 111 }; 112 113 #define _wait_for(COND, MS, W) ({ \ 114 unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \ 115 int ret__ = 0; \ 116 while (!(COND)) { \ 117 if (time_after(jiffies, timeout__)) { \ 118 ret__ = -ETIMEDOUT; \ 119 break; \ 120 } \ 121 if (W && !in_dbg_master()) \ 122 msleep(W); \ 123 } \ 124 ret__; \ 125 }) 126 127 #define wait_for(COND, MS) _wait_for(COND, MS, 1) 128 129 130 int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val) 131 { 132 int ret; 133 134 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); 135 if (ret) { 136 DRM_ERROR("timeout waiting for SB to idle before read\n"); 137 return ret; 138 } 139 140 REG_WRITE(SB_ADDR, reg); 141 REG_WRITE(SB_PCKT, 142 SET_FIELD(SB_OPCODE_READ, SB_OPCODE) | 143 SET_FIELD(SB_DEST_DPLL, SB_DEST) | 144 SET_FIELD(0xf, SB_BYTE_ENABLE)); 145 146 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); 147 if (ret) { 148 DRM_ERROR("timeout waiting for SB to idle after read\n"); 149 return ret; 150 } 151 152 *val = REG_READ(SB_DATA); 153 154 return 0; 155 } 156 157 int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val) 158 { 159 int ret; 160 static bool dpio_debug = true; 161 u32 temp; 162 163 if (dpio_debug) { 164 if (cdv_sb_read(dev, reg, &temp) == 0) 165 DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp); 166 DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val); 167 } 168 169 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); 170 if (ret) { 171 DRM_ERROR("timeout waiting for SB to idle before write\n"); 172 return ret; 173 } 174 175 REG_WRITE(SB_ADDR, reg); 176 REG_WRITE(SB_DATA, val); 177 REG_WRITE(SB_PCKT, 178 SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) | 179 SET_FIELD(SB_DEST_DPLL, SB_DEST) | 180 SET_FIELD(0xf, SB_BYTE_ENABLE)); 181 182 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); 183 if (ret) { 184 DRM_ERROR("timeout waiting for SB to idle after write\n"); 185 return ret; 186 } 187 188 if (dpio_debug) { 189 if (cdv_sb_read(dev, reg, &temp) == 0) 190 DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp); 191 } 192 193 return 0; 194 } 195 196 /* Reset the DPIO configuration register. The BIOS does this at every 197 * mode set. 198 */ 199 void cdv_sb_reset(struct drm_device *dev) 200 { 201 202 REG_WRITE(DPIO_CFG, 0); 203 REG_READ(DPIO_CFG); 204 REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N); 205 } 206 207 /* Unlike most Intel display engines, on Cedarview the DPLL registers 208 * are behind this sideband bus. They must be programmed while the 209 * DPLL reference clock is on in the DPLL control register, but before 210 * the DPLL is enabled in the DPLL control register. 211 */ 212 static int 213 cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc, 214 struct gma_clock_t *clock, bool is_lvds, u32 ddi_select) 215 { 216 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 217 int pipe = gma_crtc->pipe; 218 u32 m, n_vco, p; 219 int ret = 0; 220 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B; 221 int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB; 222 u32 ref_value; 223 u32 lane_reg, lane_value; 224 225 cdv_sb_reset(dev); 226 227 REG_WRITE(dpll_reg, DPLL_SYNCLOCK_ENABLE | DPLL_VGA_MODE_DIS); 228 229 udelay(100); 230 231 /* Follow the BIOS and write the REF/SFR Register. Hardcoded value */ 232 ref_value = 0x68A701; 233 234 cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value); 235 236 /* We don't know what the other fields of these regs are, so 237 * leave them in place. 238 */ 239 /* 240 * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk 241 * for the pipe A/B. Display spec 1.06 has wrong definition. 242 * Correct definition is like below: 243 * 244 * refclka mean use clock from same PLL 245 * 246 * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll 247 * 248 * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA 249 * 250 */ 251 ret = cdv_sb_read(dev, ref_sfr, &ref_value); 252 if (ret) 253 return ret; 254 ref_value &= ~(REF_CLK_MASK); 255 256 /* use DPLL_A for pipeB on CRT/HDMI */ 257 if (pipe == 1 && !is_lvds && !(ddi_select & DP_MASK)) { 258 DRM_DEBUG_KMS("use DPLLA for pipe B\n"); 259 ref_value |= REF_CLK_DPLLA; 260 } else { 261 DRM_DEBUG_KMS("use their DPLL for pipe A/B\n"); 262 ref_value |= REF_CLK_DPLL; 263 } 264 ret = cdv_sb_write(dev, ref_sfr, ref_value); 265 if (ret) 266 return ret; 267 268 ret = cdv_sb_read(dev, SB_M(pipe), &m); 269 if (ret) 270 return ret; 271 m &= ~SB_M_DIVIDER_MASK; 272 m |= ((clock->m2) << SB_M_DIVIDER_SHIFT); 273 ret = cdv_sb_write(dev, SB_M(pipe), m); 274 if (ret) 275 return ret; 276 277 ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco); 278 if (ret) 279 return ret; 280 281 /* Follow the BIOS to program the N_DIVIDER REG */ 282 n_vco &= 0xFFFF; 283 n_vco |= 0x107; 284 n_vco &= ~(SB_N_VCO_SEL_MASK | 285 SB_N_DIVIDER_MASK | 286 SB_N_CB_TUNE_MASK); 287 288 n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT); 289 290 if (clock->vco < 2250000) { 291 n_vco |= (2 << SB_N_CB_TUNE_SHIFT); 292 n_vco |= (0 << SB_N_VCO_SEL_SHIFT); 293 } else if (clock->vco < 2750000) { 294 n_vco |= (1 << SB_N_CB_TUNE_SHIFT); 295 n_vco |= (1 << SB_N_VCO_SEL_SHIFT); 296 } else if (clock->vco < 3300000) { 297 n_vco |= (0 << SB_N_CB_TUNE_SHIFT); 298 n_vco |= (2 << SB_N_VCO_SEL_SHIFT); 299 } else { 300 n_vco |= (0 << SB_N_CB_TUNE_SHIFT); 301 n_vco |= (3 << SB_N_VCO_SEL_SHIFT); 302 } 303 304 ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco); 305 if (ret) 306 return ret; 307 308 ret = cdv_sb_read(dev, SB_P(pipe), &p); 309 if (ret) 310 return ret; 311 p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK); 312 p |= SET_FIELD(clock->p1, SB_P1_DIVIDER); 313 switch (clock->p2) { 314 case 5: 315 p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER); 316 break; 317 case 10: 318 p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER); 319 break; 320 case 14: 321 p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER); 322 break; 323 case 7: 324 p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER); 325 break; 326 default: 327 DRM_ERROR("Bad P2 clock: %d\n", clock->p2); 328 return -EINVAL; 329 } 330 ret = cdv_sb_write(dev, SB_P(pipe), p); 331 if (ret) 332 return ret; 333 334 if (ddi_select) { 335 if ((ddi_select & DDI_MASK) == DDI0_SELECT) { 336 lane_reg = PSB_LANE0; 337 cdv_sb_read(dev, lane_reg, &lane_value); 338 lane_value &= ~(LANE_PLL_MASK); 339 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe); 340 cdv_sb_write(dev, lane_reg, lane_value); 341 342 lane_reg = PSB_LANE1; 343 cdv_sb_read(dev, lane_reg, &lane_value); 344 lane_value &= ~(LANE_PLL_MASK); 345 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe); 346 cdv_sb_write(dev, lane_reg, lane_value); 347 } else { 348 lane_reg = PSB_LANE2; 349 cdv_sb_read(dev, lane_reg, &lane_value); 350 lane_value &= ~(LANE_PLL_MASK); 351 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe); 352 cdv_sb_write(dev, lane_reg, lane_value); 353 354 lane_reg = PSB_LANE3; 355 cdv_sb_read(dev, lane_reg, &lane_value); 356 lane_value &= ~(LANE_PLL_MASK); 357 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe); 358 cdv_sb_write(dev, lane_reg, lane_value); 359 } 360 } 361 return 0; 362 } 363 364 static const struct gma_limit_t *cdv_intel_limit(struct drm_crtc *crtc, 365 int refclk) 366 { 367 const struct gma_limit_t *limit; 368 if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { 369 /* 370 * Now only single-channel LVDS is supported on CDV. If it is 371 * incorrect, please add the dual-channel LVDS. 372 */ 373 if (refclk == 96000) 374 limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96]; 375 else 376 limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100]; 377 } else if (gma_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) || 378 gma_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) { 379 if (refclk == 27000) 380 limit = &cdv_intel_limits[CDV_LIMIT_DP_27]; 381 else 382 limit = &cdv_intel_limits[CDV_LIMIT_DP_100]; 383 } else { 384 if (refclk == 27000) 385 limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27]; 386 else 387 limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96]; 388 } 389 return limit; 390 } 391 392 /* m1 is reserved as 0 in CDV, n is a ring counter */ 393 static void cdv_intel_clock(int refclk, struct gma_clock_t *clock) 394 { 395 clock->m = clock->m2 + 2; 396 clock->p = clock->p1 * clock->p2; 397 clock->vco = (refclk * clock->m) / clock->n; 398 clock->dot = clock->vco / clock->p; 399 } 400 401 static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit, 402 struct drm_crtc *crtc, int target, 403 int refclk, 404 struct gma_clock_t *best_clock) 405 { 406 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 407 struct gma_clock_t clock; 408 409 memset(&clock, 0, sizeof(clock)); 410 411 switch (refclk) { 412 case 27000: 413 if (target < 200000) { 414 clock.p1 = 2; 415 clock.p2 = 10; 416 clock.n = 1; 417 clock.m1 = 0; 418 clock.m2 = 118; 419 } else { 420 clock.p1 = 1; 421 clock.p2 = 10; 422 clock.n = 1; 423 clock.m1 = 0; 424 clock.m2 = 98; 425 } 426 break; 427 428 case 100000: 429 if (target < 200000) { 430 clock.p1 = 2; 431 clock.p2 = 10; 432 clock.n = 5; 433 clock.m1 = 0; 434 clock.m2 = 160; 435 } else { 436 clock.p1 = 1; 437 clock.p2 = 10; 438 clock.n = 5; 439 clock.m1 = 0; 440 clock.m2 = 133; 441 } 442 break; 443 444 default: 445 return false; 446 } 447 448 gma_crtc->clock_funcs->clock(refclk, &clock); 449 memcpy(best_clock, &clock, sizeof(struct gma_clock_t)); 450 return true; 451 } 452 453 #define FIFO_PIPEA (1 << 0) 454 #define FIFO_PIPEB (1 << 1) 455 456 static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe) 457 { 458 struct drm_crtc *crtc; 459 struct drm_psb_private *dev_priv = to_drm_psb_private(dev); 460 struct gma_crtc *gma_crtc = NULL; 461 462 crtc = dev_priv->pipe_to_crtc_mapping[pipe]; 463 gma_crtc = to_gma_crtc(crtc); 464 465 if (crtc->primary->fb == NULL || !gma_crtc->active) 466 return false; 467 return true; 468 } 469 470 void cdv_disable_sr(struct drm_device *dev) 471 { 472 if (REG_READ(FW_BLC_SELF) & FW_BLC_SELF_EN) { 473 474 /* Disable self-refresh before adjust WM */ 475 REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN)); 476 REG_READ(FW_BLC_SELF); 477 478 gma_wait_for_vblank(dev); 479 480 /* Cedarview workaround to write ovelay plane, which force to leave 481 * MAX_FIFO state. 482 */ 483 REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/); 484 REG_READ(OV_OVADD); 485 486 gma_wait_for_vblank(dev); 487 } 488 489 } 490 491 void cdv_update_wm(struct drm_device *dev, struct drm_crtc *crtc) 492 { 493 struct drm_psb_private *dev_priv = to_drm_psb_private(dev); 494 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 495 496 /* Is only one pipe enabled? */ 497 if (cdv_intel_pipe_enabled(dev, 0) ^ cdv_intel_pipe_enabled(dev, 1)) { 498 u32 fw; 499 500 fw = REG_READ(DSPFW1); 501 fw &= ~DSP_FIFO_SR_WM_MASK; 502 fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT); 503 fw &= ~CURSOR_B_FIFO_WM_MASK; 504 fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT); 505 REG_WRITE(DSPFW1, fw); 506 507 fw = REG_READ(DSPFW2); 508 fw &= ~CURSOR_A_FIFO_WM_MASK; 509 fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT); 510 fw &= ~DSP_PLANE_C_FIFO_WM_MASK; 511 fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT); 512 REG_WRITE(DSPFW2, fw); 513 514 REG_WRITE(DSPFW3, 0x36000000); 515 516 /* ignore FW4 */ 517 518 /* Is pipe b lvds ? */ 519 if (gma_crtc->pipe == 1 && 520 gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { 521 REG_WRITE(DSPFW5, 0x00040330); 522 } else { 523 fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) | 524 (4 << DSP_PLANE_A_FIFO_WM1_SHIFT) | 525 (3 << CURSOR_B_FIFO_WM1_SHIFT) | 526 (4 << CURSOR_FIFO_SR_WM1_SHIFT); 527 REG_WRITE(DSPFW5, fw); 528 } 529 530 REG_WRITE(DSPFW6, 0x10); 531 532 gma_wait_for_vblank(dev); 533 534 /* enable self-refresh for single pipe active */ 535 REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN); 536 REG_READ(FW_BLC_SELF); 537 gma_wait_for_vblank(dev); 538 539 } else { 540 541 /* HW team suggested values... */ 542 REG_WRITE(DSPFW1, 0x3f880808); 543 REG_WRITE(DSPFW2, 0x0b020202); 544 REG_WRITE(DSPFW3, 0x24000000); 545 REG_WRITE(DSPFW4, 0x08030202); 546 REG_WRITE(DSPFW5, 0x01010101); 547 REG_WRITE(DSPFW6, 0x1d0); 548 549 gma_wait_for_vblank(dev); 550 551 dev_priv->ops->disable_sr(dev); 552 } 553 } 554 555 /* 556 * Return the pipe currently connected to the panel fitter, 557 * or -1 if the panel fitter is not present or not in use 558 */ 559 static int cdv_intel_panel_fitter_pipe(struct drm_device *dev) 560 { 561 u32 pfit_control; 562 563 pfit_control = REG_READ(PFIT_CONTROL); 564 565 /* See if the panel fitter is in use */ 566 if ((pfit_control & PFIT_ENABLE) == 0) 567 return -1; 568 return (pfit_control >> 29) & 0x3; 569 } 570 571 static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc, 572 struct drm_display_mode *mode, 573 struct drm_display_mode *adjusted_mode, 574 int x, int y, 575 struct drm_framebuffer *old_fb) 576 { 577 struct drm_device *dev = crtc->dev; 578 struct drm_psb_private *dev_priv = to_drm_psb_private(dev); 579 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 580 int pipe = gma_crtc->pipe; 581 const struct psb_offset *map = &dev_priv->regmap[pipe]; 582 int refclk; 583 struct gma_clock_t clock; 584 u32 dpll = 0, dspcntr, pipeconf; 585 bool ok; 586 bool is_lvds = false; 587 bool is_dp = false; 588 struct drm_connector_list_iter conn_iter; 589 struct drm_connector *connector; 590 const struct gma_limit_t *limit; 591 u32 ddi_select = 0; 592 bool is_edp = false; 593 594 drm_connector_list_iter_begin(dev, &conn_iter); 595 drm_for_each_connector_iter(connector, &conn_iter) { 596 struct gma_encoder *gma_encoder = 597 gma_attached_encoder(connector); 598 599 if (!connector->encoder 600 || connector->encoder->crtc != crtc) 601 continue; 602 603 ddi_select = gma_encoder->ddi_select; 604 switch (gma_encoder->type) { 605 case INTEL_OUTPUT_LVDS: 606 is_lvds = true; 607 break; 608 case INTEL_OUTPUT_ANALOG: 609 case INTEL_OUTPUT_HDMI: 610 break; 611 case INTEL_OUTPUT_DISPLAYPORT: 612 is_dp = true; 613 break; 614 case INTEL_OUTPUT_EDP: 615 is_edp = true; 616 break; 617 default: 618 drm_connector_list_iter_end(&conn_iter); 619 DRM_ERROR("invalid output type.\n"); 620 return 0; 621 } 622 623 break; 624 } 625 drm_connector_list_iter_end(&conn_iter); 626 627 if (dev_priv->dplla_96mhz) 628 /* low-end sku, 96/100 mhz */ 629 refclk = 96000; 630 else 631 /* high-end sku, 27/100 mhz */ 632 refclk = 27000; 633 if (is_dp || is_edp) { 634 /* 635 * Based on the spec the low-end SKU has only CRT/LVDS. So it is 636 * unnecessary to consider it for DP/eDP. 637 * On the high-end SKU, it will use the 27/100M reference clk 638 * for DP/eDP. When using SSC clock, the ref clk is 100MHz.Otherwise 639 * it will be 27MHz. From the VBIOS code it seems that the pipe A choose 640 * 27MHz for DP/eDP while the Pipe B chooses the 100MHz. 641 */ 642 if (pipe == 0) 643 refclk = 27000; 644 else 645 refclk = 100000; 646 } 647 648 if (is_lvds && dev_priv->lvds_use_ssc) { 649 refclk = dev_priv->lvds_ssc_freq * 1000; 650 DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq); 651 } 652 653 drm_mode_debug_printmodeline(adjusted_mode); 654 655 limit = gma_crtc->clock_funcs->limit(crtc, refclk); 656 657 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, 658 &clock); 659 if (!ok) { 660 DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d", 661 adjusted_mode->clock, clock.dot); 662 return 0; 663 } 664 665 dpll = DPLL_VGA_MODE_DIS; 666 667 if (is_dp || is_edp) { 668 cdv_intel_dp_set_m_n(crtc, mode, adjusted_mode); 669 } else { 670 REG_WRITE(PIPE_GMCH_DATA_M(pipe), 0); 671 REG_WRITE(PIPE_GMCH_DATA_N(pipe), 0); 672 REG_WRITE(PIPE_DP_LINK_M(pipe), 0); 673 REG_WRITE(PIPE_DP_LINK_N(pipe), 0); 674 } 675 676 dpll |= DPLL_SYNCLOCK_ENABLE; 677 /* if (is_lvds) 678 dpll |= DPLLB_MODE_LVDS; 679 else 680 dpll |= DPLLB_MODE_DAC_SERIAL; */ 681 /* dpll |= (2 << 11); */ 682 683 /* setup pipeconf */ 684 pipeconf = REG_READ(map->conf); 685 686 pipeconf &= ~(PIPE_BPC_MASK); 687 if (is_edp) { 688 switch (dev_priv->edp.bpp) { 689 case 24: 690 pipeconf |= PIPE_8BPC; 691 break; 692 case 18: 693 pipeconf |= PIPE_6BPC; 694 break; 695 case 30: 696 pipeconf |= PIPE_10BPC; 697 break; 698 default: 699 pipeconf |= PIPE_8BPC; 700 break; 701 } 702 } else if (is_lvds) { 703 /* the BPC will be 6 if it is 18-bit LVDS panel */ 704 if ((REG_READ(LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP) 705 pipeconf |= PIPE_8BPC; 706 else 707 pipeconf |= PIPE_6BPC; 708 } else 709 pipeconf |= PIPE_8BPC; 710 711 /* Set up the display plane register */ 712 dspcntr = DISPPLANE_GAMMA_ENABLE; 713 714 if (pipe == 0) 715 dspcntr |= DISPPLANE_SEL_PIPE_A; 716 else 717 dspcntr |= DISPPLANE_SEL_PIPE_B; 718 719 dspcntr |= DISPLAY_PLANE_ENABLE; 720 pipeconf |= PIPEACONF_ENABLE; 721 722 REG_WRITE(map->dpll, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE); 723 REG_READ(map->dpll); 724 725 cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds, ddi_select); 726 727 udelay(150); 728 729 730 /* The LVDS pin pair needs to be on before the DPLLs are enabled. 731 * This is an exception to the general rule that mode_set doesn't turn 732 * things on. 733 */ 734 if (is_lvds) { 735 u32 lvds = REG_READ(LVDS); 736 737 lvds |= 738 LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | 739 LVDS_PIPEB_SELECT; 740 /* Set the B0-B3 data pairs corresponding to 741 * whether we're going to 742 * set the DPLLs for dual-channel mode or not. 743 */ 744 if (clock.p2 == 7) 745 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP; 746 else 747 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP); 748 749 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP) 750 * appropriately here, but we need to look more 751 * thoroughly into how panels behave in the two modes. 752 */ 753 754 REG_WRITE(LVDS, lvds); 755 REG_READ(LVDS); 756 } 757 758 dpll |= DPLL_VCO_ENABLE; 759 760 /* Disable the panel fitter if it was on our pipe */ 761 if (cdv_intel_panel_fitter_pipe(dev) == pipe) 762 REG_WRITE(PFIT_CONTROL, 0); 763 764 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B'); 765 drm_mode_debug_printmodeline(mode); 766 767 REG_WRITE(map->dpll, 768 (REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE); 769 REG_READ(map->dpll); 770 /* Wait for the clocks to stabilize. */ 771 udelay(150); /* 42 usec w/o calibration, 110 with. rounded up. */ 772 773 if (!(REG_READ(map->dpll) & DPLL_LOCK)) { 774 dev_err(dev->dev, "Failed to get DPLL lock\n"); 775 return -EBUSY; 776 } 777 778 { 779 int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock; 780 REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT)); 781 } 782 783 REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) | 784 ((adjusted_mode->crtc_htotal - 1) << 16)); 785 REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) | 786 ((adjusted_mode->crtc_hblank_end - 1) << 16)); 787 REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) | 788 ((adjusted_mode->crtc_hsync_end - 1) << 16)); 789 REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) | 790 ((adjusted_mode->crtc_vtotal - 1) << 16)); 791 REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) | 792 ((adjusted_mode->crtc_vblank_end - 1) << 16)); 793 REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) | 794 ((adjusted_mode->crtc_vsync_end - 1) << 16)); 795 /* pipesrc and dspsize control the size that is scaled from, 796 * which should always be the user's requested size. 797 */ 798 REG_WRITE(map->size, 799 ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1)); 800 REG_WRITE(map->pos, 0); 801 REG_WRITE(map->src, 802 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1)); 803 REG_WRITE(map->conf, pipeconf); 804 REG_READ(map->conf); 805 806 gma_wait_for_vblank(dev); 807 808 REG_WRITE(map->cntr, dspcntr); 809 810 /* Flush the plane changes */ 811 { 812 const struct drm_crtc_helper_funcs *crtc_funcs = 813 crtc->helper_private; 814 crtc_funcs->mode_set_base(crtc, x, y, old_fb); 815 } 816 817 gma_wait_for_vblank(dev); 818 819 return 0; 820 } 821 822 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */ 823 824 /* FIXME: why are we using this, should it be cdv_ in this tree ? */ 825 826 static void i8xx_clock(int refclk, struct gma_clock_t *clock) 827 { 828 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2); 829 clock->p = clock->p1 * clock->p2; 830 clock->vco = refclk * clock->m / (clock->n + 2); 831 clock->dot = clock->vco / clock->p; 832 } 833 834 /* Returns the clock of the currently programmed mode of the given pipe. */ 835 static int cdv_intel_crtc_clock_get(struct drm_device *dev, 836 struct drm_crtc *crtc) 837 { 838 struct drm_psb_private *dev_priv = to_drm_psb_private(dev); 839 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 840 int pipe = gma_crtc->pipe; 841 const struct psb_offset *map = &dev_priv->regmap[pipe]; 842 u32 dpll; 843 u32 fp; 844 struct gma_clock_t clock; 845 bool is_lvds; 846 struct psb_pipe *p = &dev_priv->regs.pipe[pipe]; 847 848 if (gma_power_begin(dev, false)) { 849 dpll = REG_READ(map->dpll); 850 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 851 fp = REG_READ(map->fp0); 852 else 853 fp = REG_READ(map->fp1); 854 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN); 855 gma_power_end(dev); 856 } else { 857 dpll = p->dpll; 858 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 859 fp = p->fp0; 860 else 861 fp = p->fp1; 862 863 is_lvds = (pipe == 1) && 864 (dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN); 865 } 866 867 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 868 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 869 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 870 871 if (is_lvds) { 872 clock.p1 = 873 ffs((dpll & 874 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 875 DPLL_FPA01_P1_POST_DIV_SHIFT); 876 if (clock.p1 == 0) { 877 clock.p1 = 4; 878 dev_err(dev->dev, "PLL %d\n", dpll); 879 } 880 clock.p2 = 14; 881 882 if ((dpll & PLL_REF_INPUT_MASK) == 883 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 884 /* XXX: might not be 66MHz */ 885 i8xx_clock(66000, &clock); 886 } else 887 i8xx_clock(48000, &clock); 888 } else { 889 if (dpll & PLL_P1_DIVIDE_BY_TWO) 890 clock.p1 = 2; 891 else { 892 clock.p1 = 893 ((dpll & 894 DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 895 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 896 } 897 if (dpll & PLL_P2_DIVIDE_BY_4) 898 clock.p2 = 4; 899 else 900 clock.p2 = 2; 901 902 i8xx_clock(48000, &clock); 903 } 904 905 /* XXX: It would be nice to validate the clocks, but we can't reuse 906 * i830PllIsValid() because it relies on the xf86_config connector 907 * configuration being accurate, which it isn't necessarily. 908 */ 909 910 return clock.dot; 911 } 912 913 /** Returns the currently programmed mode of the given pipe. */ 914 struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev, 915 struct drm_crtc *crtc) 916 { 917 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 918 int pipe = gma_crtc->pipe; 919 struct drm_psb_private *dev_priv = to_drm_psb_private(dev); 920 struct psb_pipe *p = &dev_priv->regs.pipe[pipe]; 921 const struct psb_offset *map = &dev_priv->regmap[pipe]; 922 struct drm_display_mode *mode; 923 int htot; 924 int hsync; 925 int vtot; 926 int vsync; 927 928 if (gma_power_begin(dev, false)) { 929 htot = REG_READ(map->htotal); 930 hsync = REG_READ(map->hsync); 931 vtot = REG_READ(map->vtotal); 932 vsync = REG_READ(map->vsync); 933 gma_power_end(dev); 934 } else { 935 htot = p->htotal; 936 hsync = p->hsync; 937 vtot = p->vtotal; 938 vsync = p->vsync; 939 } 940 941 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 942 if (!mode) 943 return NULL; 944 945 mode->clock = cdv_intel_crtc_clock_get(dev, crtc); 946 mode->hdisplay = (htot & 0xffff) + 1; 947 mode->htotal = ((htot & 0xffff0000) >> 16) + 1; 948 mode->hsync_start = (hsync & 0xffff) + 1; 949 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; 950 mode->vdisplay = (vtot & 0xffff) + 1; 951 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; 952 mode->vsync_start = (vsync & 0xffff) + 1; 953 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; 954 955 drm_mode_set_name(mode); 956 drm_mode_set_crtcinfo(mode, 0); 957 958 return mode; 959 } 960 961 const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = { 962 .dpms = gma_crtc_dpms, 963 .mode_set = cdv_intel_crtc_mode_set, 964 .mode_set_base = gma_pipe_set_base, 965 .prepare = gma_crtc_prepare, 966 .commit = gma_crtc_commit, 967 .disable = gma_crtc_disable, 968 }; 969 970 const struct gma_clock_funcs cdv_clock_funcs = { 971 .clock = cdv_intel_clock, 972 .limit = cdv_intel_limit, 973 .pll_is_valid = gma_pll_is_valid, 974 }; 975