1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2006-2011 Intel Corporation
4  *
5  * Authors:
6  *	Eric Anholt <eric@anholt.net>
7  */
8 
9 #include <linux/i2c.h>
10 
11 #include <drm/drmP.h>
12 #include "framebuffer.h"
13 #include "psb_drv.h"
14 #include "psb_intel_drv.h"
15 #include "psb_intel_reg.h"
16 #include "gma_display.h"
17 #include "power.h"
18 #include "cdv_device.h"
19 
20 static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
21 				  struct drm_crtc *crtc, int target,
22 				  int refclk, struct gma_clock_t *best_clock);
23 
24 
25 #define CDV_LIMIT_SINGLE_LVDS_96	0
26 #define CDV_LIMIT_SINGLE_LVDS_100	1
27 #define CDV_LIMIT_DAC_HDMI_27		2
28 #define CDV_LIMIT_DAC_HDMI_96		3
29 #define CDV_LIMIT_DP_27			4
30 #define CDV_LIMIT_DP_100		5
31 
32 static const struct gma_limit_t cdv_intel_limits[] = {
33 	{			/* CDV_SINGLE_LVDS_96MHz */
34 	 .dot = {.min = 20000, .max = 115500},
35 	 .vco = {.min = 1800000, .max = 3600000},
36 	 .n = {.min = 2, .max = 6},
37 	 .m = {.min = 60, .max = 160},
38 	 .m1 = {.min = 0, .max = 0},
39 	 .m2 = {.min = 58, .max = 158},
40 	 .p = {.min = 28, .max = 140},
41 	 .p1 = {.min = 2, .max = 10},
42 	 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
43 	 .find_pll = gma_find_best_pll,
44 	 },
45 	{			/* CDV_SINGLE_LVDS_100MHz */
46 	 .dot = {.min = 20000, .max = 115500},
47 	 .vco = {.min = 1800000, .max = 3600000},
48 	 .n = {.min = 2, .max = 6},
49 	 .m = {.min = 60, .max = 160},
50 	 .m1 = {.min = 0, .max = 0},
51 	 .m2 = {.min = 58, .max = 158},
52 	 .p = {.min = 28, .max = 140},
53 	 .p1 = {.min = 2, .max = 10},
54 	 /* The single-channel range is 25-112Mhz, and dual-channel
55 	  * is 80-224Mhz.  Prefer single channel as much as possible.
56 	  */
57 	 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
58 	 .find_pll = gma_find_best_pll,
59 	 },
60 	{			/* CDV_DAC_HDMI_27MHz */
61 	 .dot = {.min = 20000, .max = 400000},
62 	 .vco = {.min = 1809000, .max = 3564000},
63 	 .n = {.min = 1, .max = 1},
64 	 .m = {.min = 67, .max = 132},
65 	 .m1 = {.min = 0, .max = 0},
66 	 .m2 = {.min = 65, .max = 130},
67 	 .p = {.min = 5, .max = 90},
68 	 .p1 = {.min = 1, .max = 9},
69 	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
70 	 .find_pll = gma_find_best_pll,
71 	 },
72 	{			/* CDV_DAC_HDMI_96MHz */
73 	 .dot = {.min = 20000, .max = 400000},
74 	 .vco = {.min = 1800000, .max = 3600000},
75 	 .n = {.min = 2, .max = 6},
76 	 .m = {.min = 60, .max = 160},
77 	 .m1 = {.min = 0, .max = 0},
78 	 .m2 = {.min = 58, .max = 158},
79 	 .p = {.min = 5, .max = 100},
80 	 .p1 = {.min = 1, .max = 10},
81 	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
82 	 .find_pll = gma_find_best_pll,
83 	 },
84 	{			/* CDV_DP_27MHz */
85 	 .dot = {.min = 160000, .max = 272000},
86 	 .vco = {.min = 1809000, .max = 3564000},
87 	 .n = {.min = 1, .max = 1},
88 	 .m = {.min = 67, .max = 132},
89 	 .m1 = {.min = 0, .max = 0},
90 	 .m2 = {.min = 65, .max = 130},
91 	 .p = {.min = 5, .max = 90},
92 	 .p1 = {.min = 1, .max = 9},
93 	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
94 	 .find_pll = cdv_intel_find_dp_pll,
95 	 },
96 	{			/* CDV_DP_100MHz */
97 	 .dot = {.min = 160000, .max = 272000},
98 	 .vco = {.min = 1800000, .max = 3600000},
99 	 .n = {.min = 2, .max = 6},
100 	 .m = {.min = 60, .max = 164},
101 	 .m1 = {.min = 0, .max = 0},
102 	 .m2 = {.min = 58, .max = 162},
103 	 .p = {.min = 5, .max = 100},
104 	 .p1 = {.min = 1, .max = 10},
105 	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
106 	 .find_pll = cdv_intel_find_dp_pll,
107 	}
108 };
109 
110 #define _wait_for(COND, MS, W) ({ \
111 	unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);	\
112 	int ret__ = 0;							\
113 	while (!(COND)) {						\
114 		if (time_after(jiffies, timeout__)) {			\
115 			ret__ = -ETIMEDOUT;				\
116 			break;						\
117 		}							\
118 		if (W && !in_dbg_master())				\
119 			msleep(W);					\
120 	}								\
121 	ret__;								\
122 })
123 
124 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
125 
126 
127 int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val)
128 {
129 	int ret;
130 
131 	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
132 	if (ret) {
133 		DRM_ERROR("timeout waiting for SB to idle before read\n");
134 		return ret;
135 	}
136 
137 	REG_WRITE(SB_ADDR, reg);
138 	REG_WRITE(SB_PCKT,
139 		   SET_FIELD(SB_OPCODE_READ, SB_OPCODE) |
140 		   SET_FIELD(SB_DEST_DPLL, SB_DEST) |
141 		   SET_FIELD(0xf, SB_BYTE_ENABLE));
142 
143 	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
144 	if (ret) {
145 		DRM_ERROR("timeout waiting for SB to idle after read\n");
146 		return ret;
147 	}
148 
149 	*val = REG_READ(SB_DATA);
150 
151 	return 0;
152 }
153 
154 int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val)
155 {
156 	int ret;
157 	static bool dpio_debug = true;
158 	u32 temp;
159 
160 	if (dpio_debug) {
161 		if (cdv_sb_read(dev, reg, &temp) == 0)
162 			DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp);
163 		DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val);
164 	}
165 
166 	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
167 	if (ret) {
168 		DRM_ERROR("timeout waiting for SB to idle before write\n");
169 		return ret;
170 	}
171 
172 	REG_WRITE(SB_ADDR, reg);
173 	REG_WRITE(SB_DATA, val);
174 	REG_WRITE(SB_PCKT,
175 		   SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) |
176 		   SET_FIELD(SB_DEST_DPLL, SB_DEST) |
177 		   SET_FIELD(0xf, SB_BYTE_ENABLE));
178 
179 	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
180 	if (ret) {
181 		DRM_ERROR("timeout waiting for SB to idle after write\n");
182 		return ret;
183 	}
184 
185 	if (dpio_debug) {
186 		if (cdv_sb_read(dev, reg, &temp) == 0)
187 			DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp);
188 	}
189 
190 	return 0;
191 }
192 
193 /* Reset the DPIO configuration register.  The BIOS does this at every
194  * mode set.
195  */
196 void cdv_sb_reset(struct drm_device *dev)
197 {
198 
199 	REG_WRITE(DPIO_CFG, 0);
200 	REG_READ(DPIO_CFG);
201 	REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N);
202 }
203 
204 /* Unlike most Intel display engines, on Cedarview the DPLL registers
205  * are behind this sideband bus.  They must be programmed while the
206  * DPLL reference clock is on in the DPLL control register, but before
207  * the DPLL is enabled in the DPLL control register.
208  */
209 static int
210 cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc,
211 		       struct gma_clock_t *clock, bool is_lvds, u32 ddi_select)
212 {
213 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
214 	int pipe = gma_crtc->pipe;
215 	u32 m, n_vco, p;
216 	int ret = 0;
217 	int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
218 	int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB;
219 	u32 ref_value;
220 	u32 lane_reg, lane_value;
221 
222 	cdv_sb_reset(dev);
223 
224 	REG_WRITE(dpll_reg, DPLL_SYNCLOCK_ENABLE | DPLL_VGA_MODE_DIS);
225 
226 	udelay(100);
227 
228 	/* Follow the BIOS and write the REF/SFR Register. Hardcoded value */
229 	ref_value = 0x68A701;
230 
231 	cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value);
232 
233 	/* We don't know what the other fields of these regs are, so
234 	 * leave them in place.
235 	 */
236 	/*
237 	 * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk
238 	 * for the pipe A/B. Display spec 1.06 has wrong definition.
239 	 * Correct definition is like below:
240 	 *
241 	 * refclka mean use clock from same PLL
242 	 *
243 	 * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll
244 	 *
245 	 * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA
246 	 *
247 	 */
248 	ret = cdv_sb_read(dev, ref_sfr, &ref_value);
249 	if (ret)
250 		return ret;
251 	ref_value &= ~(REF_CLK_MASK);
252 
253 	/* use DPLL_A for pipeB on CRT/HDMI */
254 	if (pipe == 1 && !is_lvds && !(ddi_select & DP_MASK)) {
255 		DRM_DEBUG_KMS("use DPLLA for pipe B\n");
256 		ref_value |= REF_CLK_DPLLA;
257 	} else {
258 		DRM_DEBUG_KMS("use their DPLL for pipe A/B\n");
259 		ref_value |= REF_CLK_DPLL;
260 	}
261 	ret = cdv_sb_write(dev, ref_sfr, ref_value);
262 	if (ret)
263 		return ret;
264 
265 	ret = cdv_sb_read(dev, SB_M(pipe), &m);
266 	if (ret)
267 		return ret;
268 	m &= ~SB_M_DIVIDER_MASK;
269 	m |= ((clock->m2) << SB_M_DIVIDER_SHIFT);
270 	ret = cdv_sb_write(dev, SB_M(pipe), m);
271 	if (ret)
272 		return ret;
273 
274 	ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco);
275 	if (ret)
276 		return ret;
277 
278 	/* Follow the BIOS to program the N_DIVIDER REG */
279 	n_vco &= 0xFFFF;
280 	n_vco |= 0x107;
281 	n_vco &= ~(SB_N_VCO_SEL_MASK |
282 		   SB_N_DIVIDER_MASK |
283 		   SB_N_CB_TUNE_MASK);
284 
285 	n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT);
286 
287 	if (clock->vco < 2250000) {
288 		n_vco |= (2 << SB_N_CB_TUNE_SHIFT);
289 		n_vco |= (0 << SB_N_VCO_SEL_SHIFT);
290 	} else if (clock->vco < 2750000) {
291 		n_vco |= (1 << SB_N_CB_TUNE_SHIFT);
292 		n_vco |= (1 << SB_N_VCO_SEL_SHIFT);
293 	} else if (clock->vco < 3300000) {
294 		n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
295 		n_vco |= (2 << SB_N_VCO_SEL_SHIFT);
296 	} else {
297 		n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
298 		n_vco |= (3 << SB_N_VCO_SEL_SHIFT);
299 	}
300 
301 	ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco);
302 	if (ret)
303 		return ret;
304 
305 	ret = cdv_sb_read(dev, SB_P(pipe), &p);
306 	if (ret)
307 		return ret;
308 	p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK);
309 	p |= SET_FIELD(clock->p1, SB_P1_DIVIDER);
310 	switch (clock->p2) {
311 	case 5:
312 		p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER);
313 		break;
314 	case 10:
315 		p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER);
316 		break;
317 	case 14:
318 		p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER);
319 		break;
320 	case 7:
321 		p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER);
322 		break;
323 	default:
324 		DRM_ERROR("Bad P2 clock: %d\n", clock->p2);
325 		return -EINVAL;
326 	}
327 	ret = cdv_sb_write(dev, SB_P(pipe), p);
328 	if (ret)
329 		return ret;
330 
331 	if (ddi_select) {
332 		if ((ddi_select & DDI_MASK) == DDI0_SELECT) {
333 			lane_reg = PSB_LANE0;
334 			cdv_sb_read(dev, lane_reg, &lane_value);
335 			lane_value &= ~(LANE_PLL_MASK);
336 			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
337 			cdv_sb_write(dev, lane_reg, lane_value);
338 
339 			lane_reg = PSB_LANE1;
340 			cdv_sb_read(dev, lane_reg, &lane_value);
341 			lane_value &= ~(LANE_PLL_MASK);
342 			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
343 			cdv_sb_write(dev, lane_reg, lane_value);
344 		} else {
345 			lane_reg = PSB_LANE2;
346 			cdv_sb_read(dev, lane_reg, &lane_value);
347 			lane_value &= ~(LANE_PLL_MASK);
348 			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
349 			cdv_sb_write(dev, lane_reg, lane_value);
350 
351 			lane_reg = PSB_LANE3;
352 			cdv_sb_read(dev, lane_reg, &lane_value);
353 			lane_value &= ~(LANE_PLL_MASK);
354 			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
355 			cdv_sb_write(dev, lane_reg, lane_value);
356 		}
357 	}
358 	return 0;
359 }
360 
361 static const struct gma_limit_t *cdv_intel_limit(struct drm_crtc *crtc,
362 						 int refclk)
363 {
364 	const struct gma_limit_t *limit;
365 	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
366 		/*
367 		 * Now only single-channel LVDS is supported on CDV. If it is
368 		 * incorrect, please add the dual-channel LVDS.
369 		 */
370 		if (refclk == 96000)
371 			limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96];
372 		else
373 			limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100];
374 	} else if (gma_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
375 			gma_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
376 		if (refclk == 27000)
377 			limit = &cdv_intel_limits[CDV_LIMIT_DP_27];
378 		else
379 			limit = &cdv_intel_limits[CDV_LIMIT_DP_100];
380 	} else {
381 		if (refclk == 27000)
382 			limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27];
383 		else
384 			limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96];
385 	}
386 	return limit;
387 }
388 
389 /* m1 is reserved as 0 in CDV, n is a ring counter */
390 static void cdv_intel_clock(int refclk, struct gma_clock_t *clock)
391 {
392 	clock->m = clock->m2 + 2;
393 	clock->p = clock->p1 * clock->p2;
394 	clock->vco = (refclk * clock->m) / clock->n;
395 	clock->dot = clock->vco / clock->p;
396 }
397 
398 static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
399 				  struct drm_crtc *crtc, int target,
400 				  int refclk,
401 				  struct gma_clock_t *best_clock)
402 {
403 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
404 	struct gma_clock_t clock;
405 
406 	switch (refclk) {
407 	case 27000:
408 		if (target < 200000) {
409 			clock.p1 = 2;
410 			clock.p2 = 10;
411 			clock.n = 1;
412 			clock.m1 = 0;
413 			clock.m2 = 118;
414 		} else {
415 			clock.p1 = 1;
416 			clock.p2 = 10;
417 			clock.n = 1;
418 			clock.m1 = 0;
419 			clock.m2 = 98;
420 		}
421 		break;
422 
423 	case 100000:
424 		if (target < 200000) {
425 			clock.p1 = 2;
426 			clock.p2 = 10;
427 			clock.n = 5;
428 			clock.m1 = 0;
429 			clock.m2 = 160;
430 		} else {
431 			clock.p1 = 1;
432 			clock.p2 = 10;
433 			clock.n = 5;
434 			clock.m1 = 0;
435 			clock.m2 = 133;
436 		}
437 		break;
438 
439 	default:
440 		return false;
441 	}
442 
443 	gma_crtc->clock_funcs->clock(refclk, &clock);
444 	memcpy(best_clock, &clock, sizeof(struct gma_clock_t));
445 	return true;
446 }
447 
448 #define		FIFO_PIPEA		(1 << 0)
449 #define		FIFO_PIPEB		(1 << 1)
450 
451 static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe)
452 {
453 	struct drm_crtc *crtc;
454 	struct drm_psb_private *dev_priv = dev->dev_private;
455 	struct gma_crtc *gma_crtc = NULL;
456 
457 	crtc = dev_priv->pipe_to_crtc_mapping[pipe];
458 	gma_crtc = to_gma_crtc(crtc);
459 
460 	if (crtc->primary->fb == NULL || !gma_crtc->active)
461 		return false;
462 	return true;
463 }
464 
465 void cdv_disable_sr(struct drm_device *dev)
466 {
467 	if (REG_READ(FW_BLC_SELF) & FW_BLC_SELF_EN) {
468 
469 		/* Disable self-refresh before adjust WM */
470 		REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN));
471 		REG_READ(FW_BLC_SELF);
472 
473 		gma_wait_for_vblank(dev);
474 
475 		/* Cedarview workaround to write ovelay plane, which force to leave
476 		 * MAX_FIFO state.
477 		 */
478 		REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/);
479 		REG_READ(OV_OVADD);
480 
481 		gma_wait_for_vblank(dev);
482 	}
483 
484 }
485 
486 void cdv_update_wm(struct drm_device *dev, struct drm_crtc *crtc)
487 {
488 	struct drm_psb_private *dev_priv = dev->dev_private;
489 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
490 
491 	/* Is only one pipe enabled? */
492 	if (cdv_intel_pipe_enabled(dev, 0) ^ cdv_intel_pipe_enabled(dev, 1)) {
493 		u32 fw;
494 
495 		fw = REG_READ(DSPFW1);
496 		fw &= ~DSP_FIFO_SR_WM_MASK;
497 		fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT);
498 		fw &= ~CURSOR_B_FIFO_WM_MASK;
499 		fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT);
500 		REG_WRITE(DSPFW1, fw);
501 
502 		fw = REG_READ(DSPFW2);
503 		fw &= ~CURSOR_A_FIFO_WM_MASK;
504 		fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT);
505 		fw &= ~DSP_PLANE_C_FIFO_WM_MASK;
506 		fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT);
507 		REG_WRITE(DSPFW2, fw);
508 
509 		REG_WRITE(DSPFW3, 0x36000000);
510 
511 		/* ignore FW4 */
512 
513 		/* Is pipe b lvds ? */
514 		if (gma_crtc->pipe == 1 &&
515 		    gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
516 			REG_WRITE(DSPFW5, 0x00040330);
517 		} else {
518 			fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) |
519 			     (4 << DSP_PLANE_A_FIFO_WM1_SHIFT) |
520 			     (3 << CURSOR_B_FIFO_WM1_SHIFT) |
521 			     (4 << CURSOR_FIFO_SR_WM1_SHIFT);
522 			REG_WRITE(DSPFW5, fw);
523 		}
524 
525 		REG_WRITE(DSPFW6, 0x10);
526 
527 		gma_wait_for_vblank(dev);
528 
529 		/* enable self-refresh for single pipe active */
530 		REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
531 		REG_READ(FW_BLC_SELF);
532 		gma_wait_for_vblank(dev);
533 
534 	} else {
535 
536 		/* HW team suggested values... */
537 		REG_WRITE(DSPFW1, 0x3f880808);
538 		REG_WRITE(DSPFW2, 0x0b020202);
539 		REG_WRITE(DSPFW3, 0x24000000);
540 		REG_WRITE(DSPFW4, 0x08030202);
541 		REG_WRITE(DSPFW5, 0x01010101);
542 		REG_WRITE(DSPFW6, 0x1d0);
543 
544 		gma_wait_for_vblank(dev);
545 
546 		dev_priv->ops->disable_sr(dev);
547 	}
548 }
549 
550 /**
551  * Return the pipe currently connected to the panel fitter,
552  * or -1 if the panel fitter is not present or not in use
553  */
554 static int cdv_intel_panel_fitter_pipe(struct drm_device *dev)
555 {
556 	u32 pfit_control;
557 
558 	pfit_control = REG_READ(PFIT_CONTROL);
559 
560 	/* See if the panel fitter is in use */
561 	if ((pfit_control & PFIT_ENABLE) == 0)
562 		return -1;
563 	return (pfit_control >> 29) & 0x3;
564 }
565 
566 static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc,
567 			       struct drm_display_mode *mode,
568 			       struct drm_display_mode *adjusted_mode,
569 			       int x, int y,
570 			       struct drm_framebuffer *old_fb)
571 {
572 	struct drm_device *dev = crtc->dev;
573 	struct drm_psb_private *dev_priv = dev->dev_private;
574 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
575 	int pipe = gma_crtc->pipe;
576 	const struct psb_offset *map = &dev_priv->regmap[pipe];
577 	int refclk;
578 	struct gma_clock_t clock;
579 	u32 dpll = 0, dspcntr, pipeconf;
580 	bool ok;
581 	bool is_crt = false, is_lvds = false, is_tv = false;
582 	bool is_hdmi = false, is_dp = false;
583 	struct drm_mode_config *mode_config = &dev->mode_config;
584 	struct drm_connector *connector;
585 	const struct gma_limit_t *limit;
586 	u32 ddi_select = 0;
587 	bool is_edp = false;
588 
589 	list_for_each_entry(connector, &mode_config->connector_list, head) {
590 		struct gma_encoder *gma_encoder =
591 					gma_attached_encoder(connector);
592 
593 		if (!connector->encoder
594 		    || connector->encoder->crtc != crtc)
595 			continue;
596 
597 		ddi_select = gma_encoder->ddi_select;
598 		switch (gma_encoder->type) {
599 		case INTEL_OUTPUT_LVDS:
600 			is_lvds = true;
601 			break;
602 		case INTEL_OUTPUT_TVOUT:
603 			is_tv = true;
604 			break;
605 		case INTEL_OUTPUT_ANALOG:
606 			is_crt = true;
607 			break;
608 		case INTEL_OUTPUT_HDMI:
609 			is_hdmi = true;
610 			break;
611 		case INTEL_OUTPUT_DISPLAYPORT:
612 			is_dp = true;
613 			break;
614 		case INTEL_OUTPUT_EDP:
615 			is_edp = true;
616 			break;
617 		default:
618 			DRM_ERROR("invalid output type.\n");
619 			return 0;
620 		}
621 	}
622 
623 	if (dev_priv->dplla_96mhz)
624 		/* low-end sku, 96/100 mhz */
625 		refclk = 96000;
626 	else
627 		/* high-end sku, 27/100 mhz */
628 		refclk = 27000;
629 	if (is_dp || is_edp) {
630 		/*
631 		 * Based on the spec the low-end SKU has only CRT/LVDS. So it is
632 		 * unnecessary to consider it for DP/eDP.
633 		 * On the high-end SKU, it will use the 27/100M reference clk
634 		 * for DP/eDP. When using SSC clock, the ref clk is 100MHz.Otherwise
635 		 * it will be 27MHz. From the VBIOS code it seems that the pipe A choose
636 		 * 27MHz for DP/eDP while the Pipe B chooses the 100MHz.
637 		 */
638 		if (pipe == 0)
639 			refclk = 27000;
640 		else
641 			refclk = 100000;
642 	}
643 
644 	if (is_lvds && dev_priv->lvds_use_ssc) {
645 		refclk = dev_priv->lvds_ssc_freq * 1000;
646 		DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq);
647 	}
648 
649 	drm_mode_debug_printmodeline(adjusted_mode);
650 
651 	limit = gma_crtc->clock_funcs->limit(crtc, refclk);
652 
653 	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
654 				 &clock);
655 	if (!ok) {
656 		DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
657 			  adjusted_mode->clock, clock.dot);
658 		return 0;
659 	}
660 
661 	dpll = DPLL_VGA_MODE_DIS;
662 	if (is_tv) {
663 		/* XXX: just matching BIOS for now */
664 /*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
665 		dpll |= 3;
666 	}
667 /*		dpll |= PLL_REF_INPUT_DREFCLK; */
668 
669 	if (is_dp || is_edp) {
670 		cdv_intel_dp_set_m_n(crtc, mode, adjusted_mode);
671 	} else {
672 		REG_WRITE(PIPE_GMCH_DATA_M(pipe), 0);
673 		REG_WRITE(PIPE_GMCH_DATA_N(pipe), 0);
674 		REG_WRITE(PIPE_DP_LINK_M(pipe), 0);
675 		REG_WRITE(PIPE_DP_LINK_N(pipe), 0);
676 	}
677 
678 	dpll |= DPLL_SYNCLOCK_ENABLE;
679 /*	if (is_lvds)
680 		dpll |= DPLLB_MODE_LVDS;
681 	else
682 		dpll |= DPLLB_MODE_DAC_SERIAL; */
683 	/* dpll |= (2 << 11); */
684 
685 	/* setup pipeconf */
686 	pipeconf = REG_READ(map->conf);
687 
688 	pipeconf &= ~(PIPE_BPC_MASK);
689 	if (is_edp) {
690 		switch (dev_priv->edp.bpp) {
691 		case 24:
692 			pipeconf |= PIPE_8BPC;
693 			break;
694 		case 18:
695 			pipeconf |= PIPE_6BPC;
696 			break;
697 		case 30:
698 			pipeconf |= PIPE_10BPC;
699 			break;
700 		default:
701 			pipeconf |= PIPE_8BPC;
702 			break;
703 		}
704 	} else if (is_lvds) {
705 		/* the BPC will be 6 if it is 18-bit LVDS panel */
706 		if ((REG_READ(LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
707 			pipeconf |= PIPE_8BPC;
708 		else
709 			pipeconf |= PIPE_6BPC;
710 	} else
711 		pipeconf |= PIPE_8BPC;
712 
713 	/* Set up the display plane register */
714 	dspcntr = DISPPLANE_GAMMA_ENABLE;
715 
716 	if (pipe == 0)
717 		dspcntr |= DISPPLANE_SEL_PIPE_A;
718 	else
719 		dspcntr |= DISPPLANE_SEL_PIPE_B;
720 
721 	dspcntr |= DISPLAY_PLANE_ENABLE;
722 	pipeconf |= PIPEACONF_ENABLE;
723 
724 	REG_WRITE(map->dpll, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE);
725 	REG_READ(map->dpll);
726 
727 	cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds, ddi_select);
728 
729 	udelay(150);
730 
731 
732 	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
733 	 * This is an exception to the general rule that mode_set doesn't turn
734 	 * things on.
735 	 */
736 	if (is_lvds) {
737 		u32 lvds = REG_READ(LVDS);
738 
739 		lvds |=
740 		    LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP |
741 		    LVDS_PIPEB_SELECT;
742 		/* Set the B0-B3 data pairs corresponding to
743 		 * whether we're going to
744 		 * set the DPLLs for dual-channel mode or not.
745 		 */
746 		if (clock.p2 == 7)
747 			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
748 		else
749 			lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
750 
751 		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
752 		 * appropriately here, but we need to look more
753 		 * thoroughly into how panels behave in the two modes.
754 		 */
755 
756 		REG_WRITE(LVDS, lvds);
757 		REG_READ(LVDS);
758 	}
759 
760 	dpll |= DPLL_VCO_ENABLE;
761 
762 	/* Disable the panel fitter if it was on our pipe */
763 	if (cdv_intel_panel_fitter_pipe(dev) == pipe)
764 		REG_WRITE(PFIT_CONTROL, 0);
765 
766 	DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
767 	drm_mode_debug_printmodeline(mode);
768 
769 	REG_WRITE(map->dpll,
770 		(REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE);
771 	REG_READ(map->dpll);
772 	/* Wait for the clocks to stabilize. */
773 	udelay(150); /* 42 usec w/o calibration, 110 with.  rounded up. */
774 
775 	if (!(REG_READ(map->dpll) & DPLL_LOCK)) {
776 		dev_err(dev->dev, "Failed to get DPLL lock\n");
777 		return -EBUSY;
778 	}
779 
780 	{
781 		int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
782 		REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
783 	}
784 
785 	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
786 		  ((adjusted_mode->crtc_htotal - 1) << 16));
787 	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
788 		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
789 	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
790 		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
791 	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
792 		  ((adjusted_mode->crtc_vtotal - 1) << 16));
793 	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
794 		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
795 	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
796 		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
797 	/* pipesrc and dspsize control the size that is scaled from,
798 	 * which should always be the user's requested size.
799 	 */
800 	REG_WRITE(map->size,
801 		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
802 	REG_WRITE(map->pos, 0);
803 	REG_WRITE(map->src,
804 		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
805 	REG_WRITE(map->conf, pipeconf);
806 	REG_READ(map->conf);
807 
808 	gma_wait_for_vblank(dev);
809 
810 	REG_WRITE(map->cntr, dspcntr);
811 
812 	/* Flush the plane changes */
813 	{
814 		const struct drm_crtc_helper_funcs *crtc_funcs =
815 		    crtc->helper_private;
816 		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
817 	}
818 
819 	gma_wait_for_vblank(dev);
820 
821 	return 0;
822 }
823 
824 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
825 
826 /* FIXME: why are we using this, should it be cdv_ in this tree ? */
827 
828 static void i8xx_clock(int refclk, struct gma_clock_t *clock)
829 {
830 	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
831 	clock->p = clock->p1 * clock->p2;
832 	clock->vco = refclk * clock->m / (clock->n + 2);
833 	clock->dot = clock->vco / clock->p;
834 }
835 
836 /* Returns the clock of the currently programmed mode of the given pipe. */
837 static int cdv_intel_crtc_clock_get(struct drm_device *dev,
838 				struct drm_crtc *crtc)
839 {
840 	struct drm_psb_private *dev_priv = dev->dev_private;
841 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
842 	int pipe = gma_crtc->pipe;
843 	const struct psb_offset *map = &dev_priv->regmap[pipe];
844 	u32 dpll;
845 	u32 fp;
846 	struct gma_clock_t clock;
847 	bool is_lvds;
848 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
849 
850 	if (gma_power_begin(dev, false)) {
851 		dpll = REG_READ(map->dpll);
852 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
853 			fp = REG_READ(map->fp0);
854 		else
855 			fp = REG_READ(map->fp1);
856 		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
857 		gma_power_end(dev);
858 	} else {
859 		dpll = p->dpll;
860 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
861 			fp = p->fp0;
862 		else
863 			fp = p->fp1;
864 
865 		is_lvds = (pipe == 1) &&
866 				(dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN);
867 	}
868 
869 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
870 	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
871 	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
872 
873 	if (is_lvds) {
874 		clock.p1 =
875 		    ffs((dpll &
876 			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
877 			DPLL_FPA01_P1_POST_DIV_SHIFT);
878 		if (clock.p1 == 0) {
879 			clock.p1 = 4;
880 			dev_err(dev->dev, "PLL %d\n", dpll);
881 		}
882 		clock.p2 = 14;
883 
884 		if ((dpll & PLL_REF_INPUT_MASK) ==
885 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
886 			/* XXX: might not be 66MHz */
887 			i8xx_clock(66000, &clock);
888 		} else
889 			i8xx_clock(48000, &clock);
890 	} else {
891 		if (dpll & PLL_P1_DIVIDE_BY_TWO)
892 			clock.p1 = 2;
893 		else {
894 			clock.p1 =
895 			    ((dpll &
896 			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
897 			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
898 		}
899 		if (dpll & PLL_P2_DIVIDE_BY_4)
900 			clock.p2 = 4;
901 		else
902 			clock.p2 = 2;
903 
904 		i8xx_clock(48000, &clock);
905 	}
906 
907 	/* XXX: It would be nice to validate the clocks, but we can't reuse
908 	 * i830PllIsValid() because it relies on the xf86_config connector
909 	 * configuration being accurate, which it isn't necessarily.
910 	 */
911 
912 	return clock.dot;
913 }
914 
915 /** Returns the currently programmed mode of the given pipe. */
916 struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev,
917 					     struct drm_crtc *crtc)
918 {
919 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
920 	int pipe = gma_crtc->pipe;
921 	struct drm_psb_private *dev_priv = dev->dev_private;
922 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
923 	const struct psb_offset *map = &dev_priv->regmap[pipe];
924 	struct drm_display_mode *mode;
925 	int htot;
926 	int hsync;
927 	int vtot;
928 	int vsync;
929 
930 	if (gma_power_begin(dev, false)) {
931 		htot = REG_READ(map->htotal);
932 		hsync = REG_READ(map->hsync);
933 		vtot = REG_READ(map->vtotal);
934 		vsync = REG_READ(map->vsync);
935 		gma_power_end(dev);
936 	} else {
937 		htot = p->htotal;
938 		hsync = p->hsync;
939 		vtot = p->vtotal;
940 		vsync = p->vsync;
941 	}
942 
943 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
944 	if (!mode)
945 		return NULL;
946 
947 	mode->clock = cdv_intel_crtc_clock_get(dev, crtc);
948 	mode->hdisplay = (htot & 0xffff) + 1;
949 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
950 	mode->hsync_start = (hsync & 0xffff) + 1;
951 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
952 	mode->vdisplay = (vtot & 0xffff) + 1;
953 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
954 	mode->vsync_start = (vsync & 0xffff) + 1;
955 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
956 
957 	drm_mode_set_name(mode);
958 	drm_mode_set_crtcinfo(mode, 0);
959 
960 	return mode;
961 }
962 
963 const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = {
964 	.dpms = gma_crtc_dpms,
965 	.mode_set = cdv_intel_crtc_mode_set,
966 	.mode_set_base = gma_pipe_set_base,
967 	.prepare = gma_crtc_prepare,
968 	.commit = gma_crtc_commit,
969 	.disable = gma_crtc_disable,
970 };
971 
972 const struct drm_crtc_funcs cdv_intel_crtc_funcs = {
973 	.cursor_set = gma_crtc_cursor_set,
974 	.cursor_move = gma_crtc_cursor_move,
975 	.gamma_set = gma_crtc_gamma_set,
976 	.set_config = gma_crtc_set_config,
977 	.destroy = gma_crtc_destroy,
978 };
979 
980 const struct gma_clock_funcs cdv_clock_funcs = {
981 	.clock = cdv_intel_clock,
982 	.limit = cdv_intel_limit,
983 	.pll_is_valid = gma_pll_is_valid,
984 };
985