1 /* 2 * Copyright © 2006-2011 Intel Corporation 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, write to the Free Software Foundation, Inc., 15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 16 * 17 * Authors: 18 * Eric Anholt <eric@anholt.net> 19 */ 20 21 #include <linux/i2c.h> 22 23 #include <drm/drmP.h> 24 #include "framebuffer.h" 25 #include "psb_drv.h" 26 #include "psb_intel_drv.h" 27 #include "psb_intel_reg.h" 28 #include "gma_display.h" 29 #include "power.h" 30 #include "cdv_device.h" 31 32 static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit, 33 struct drm_crtc *crtc, int target, 34 int refclk, struct gma_clock_t *best_clock); 35 36 37 #define CDV_LIMIT_SINGLE_LVDS_96 0 38 #define CDV_LIMIT_SINGLE_LVDS_100 1 39 #define CDV_LIMIT_DAC_HDMI_27 2 40 #define CDV_LIMIT_DAC_HDMI_96 3 41 #define CDV_LIMIT_DP_27 4 42 #define CDV_LIMIT_DP_100 5 43 44 static const struct gma_limit_t cdv_intel_limits[] = { 45 { /* CDV_SINGLE_LVDS_96MHz */ 46 .dot = {.min = 20000, .max = 115500}, 47 .vco = {.min = 1800000, .max = 3600000}, 48 .n = {.min = 2, .max = 6}, 49 .m = {.min = 60, .max = 160}, 50 .m1 = {.min = 0, .max = 0}, 51 .m2 = {.min = 58, .max = 158}, 52 .p = {.min = 28, .max = 140}, 53 .p1 = {.min = 2, .max = 10}, 54 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14}, 55 .find_pll = gma_find_best_pll, 56 }, 57 { /* CDV_SINGLE_LVDS_100MHz */ 58 .dot = {.min = 20000, .max = 115500}, 59 .vco = {.min = 1800000, .max = 3600000}, 60 .n = {.min = 2, .max = 6}, 61 .m = {.min = 60, .max = 160}, 62 .m1 = {.min = 0, .max = 0}, 63 .m2 = {.min = 58, .max = 158}, 64 .p = {.min = 28, .max = 140}, 65 .p1 = {.min = 2, .max = 10}, 66 /* The single-channel range is 25-112Mhz, and dual-channel 67 * is 80-224Mhz. Prefer single channel as much as possible. 68 */ 69 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14}, 70 .find_pll = gma_find_best_pll, 71 }, 72 { /* CDV_DAC_HDMI_27MHz */ 73 .dot = {.min = 20000, .max = 400000}, 74 .vco = {.min = 1809000, .max = 3564000}, 75 .n = {.min = 1, .max = 1}, 76 .m = {.min = 67, .max = 132}, 77 .m1 = {.min = 0, .max = 0}, 78 .m2 = {.min = 65, .max = 130}, 79 .p = {.min = 5, .max = 90}, 80 .p1 = {.min = 1, .max = 9}, 81 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5}, 82 .find_pll = gma_find_best_pll, 83 }, 84 { /* CDV_DAC_HDMI_96MHz */ 85 .dot = {.min = 20000, .max = 400000}, 86 .vco = {.min = 1800000, .max = 3600000}, 87 .n = {.min = 2, .max = 6}, 88 .m = {.min = 60, .max = 160}, 89 .m1 = {.min = 0, .max = 0}, 90 .m2 = {.min = 58, .max = 158}, 91 .p = {.min = 5, .max = 100}, 92 .p1 = {.min = 1, .max = 10}, 93 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5}, 94 .find_pll = gma_find_best_pll, 95 }, 96 { /* CDV_DP_27MHz */ 97 .dot = {.min = 160000, .max = 272000}, 98 .vco = {.min = 1809000, .max = 3564000}, 99 .n = {.min = 1, .max = 1}, 100 .m = {.min = 67, .max = 132}, 101 .m1 = {.min = 0, .max = 0}, 102 .m2 = {.min = 65, .max = 130}, 103 .p = {.min = 5, .max = 90}, 104 .p1 = {.min = 1, .max = 9}, 105 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10}, 106 .find_pll = cdv_intel_find_dp_pll, 107 }, 108 { /* CDV_DP_100MHz */ 109 .dot = {.min = 160000, .max = 272000}, 110 .vco = {.min = 1800000, .max = 3600000}, 111 .n = {.min = 2, .max = 6}, 112 .m = {.min = 60, .max = 164}, 113 .m1 = {.min = 0, .max = 0}, 114 .m2 = {.min = 58, .max = 162}, 115 .p = {.min = 5, .max = 100}, 116 .p1 = {.min = 1, .max = 10}, 117 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10}, 118 .find_pll = cdv_intel_find_dp_pll, 119 } 120 }; 121 122 #define _wait_for(COND, MS, W) ({ \ 123 unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \ 124 int ret__ = 0; \ 125 while (!(COND)) { \ 126 if (time_after(jiffies, timeout__)) { \ 127 ret__ = -ETIMEDOUT; \ 128 break; \ 129 } \ 130 if (W && !in_dbg_master()) \ 131 msleep(W); \ 132 } \ 133 ret__; \ 134 }) 135 136 #define wait_for(COND, MS) _wait_for(COND, MS, 1) 137 138 139 int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val) 140 { 141 int ret; 142 143 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); 144 if (ret) { 145 DRM_ERROR("timeout waiting for SB to idle before read\n"); 146 return ret; 147 } 148 149 REG_WRITE(SB_ADDR, reg); 150 REG_WRITE(SB_PCKT, 151 SET_FIELD(SB_OPCODE_READ, SB_OPCODE) | 152 SET_FIELD(SB_DEST_DPLL, SB_DEST) | 153 SET_FIELD(0xf, SB_BYTE_ENABLE)); 154 155 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); 156 if (ret) { 157 DRM_ERROR("timeout waiting for SB to idle after read\n"); 158 return ret; 159 } 160 161 *val = REG_READ(SB_DATA); 162 163 return 0; 164 } 165 166 int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val) 167 { 168 int ret; 169 static bool dpio_debug = true; 170 u32 temp; 171 172 if (dpio_debug) { 173 if (cdv_sb_read(dev, reg, &temp) == 0) 174 DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp); 175 DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val); 176 } 177 178 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); 179 if (ret) { 180 DRM_ERROR("timeout waiting for SB to idle before write\n"); 181 return ret; 182 } 183 184 REG_WRITE(SB_ADDR, reg); 185 REG_WRITE(SB_DATA, val); 186 REG_WRITE(SB_PCKT, 187 SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) | 188 SET_FIELD(SB_DEST_DPLL, SB_DEST) | 189 SET_FIELD(0xf, SB_BYTE_ENABLE)); 190 191 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); 192 if (ret) { 193 DRM_ERROR("timeout waiting for SB to idle after write\n"); 194 return ret; 195 } 196 197 if (dpio_debug) { 198 if (cdv_sb_read(dev, reg, &temp) == 0) 199 DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp); 200 } 201 202 return 0; 203 } 204 205 /* Reset the DPIO configuration register. The BIOS does this at every 206 * mode set. 207 */ 208 void cdv_sb_reset(struct drm_device *dev) 209 { 210 211 REG_WRITE(DPIO_CFG, 0); 212 REG_READ(DPIO_CFG); 213 REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N); 214 } 215 216 /* Unlike most Intel display engines, on Cedarview the DPLL registers 217 * are behind this sideband bus. They must be programmed while the 218 * DPLL reference clock is on in the DPLL control register, but before 219 * the DPLL is enabled in the DPLL control register. 220 */ 221 static int 222 cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc, 223 struct gma_clock_t *clock, bool is_lvds, u32 ddi_select) 224 { 225 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 226 int pipe = gma_crtc->pipe; 227 u32 m, n_vco, p; 228 int ret = 0; 229 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B; 230 int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB; 231 u32 ref_value; 232 u32 lane_reg, lane_value; 233 234 cdv_sb_reset(dev); 235 236 REG_WRITE(dpll_reg, DPLL_SYNCLOCK_ENABLE | DPLL_VGA_MODE_DIS); 237 238 udelay(100); 239 240 /* Follow the BIOS and write the REF/SFR Register. Hardcoded value */ 241 ref_value = 0x68A701; 242 243 cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value); 244 245 /* We don't know what the other fields of these regs are, so 246 * leave them in place. 247 */ 248 /* 249 * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk 250 * for the pipe A/B. Display spec 1.06 has wrong definition. 251 * Correct definition is like below: 252 * 253 * refclka mean use clock from same PLL 254 * 255 * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll 256 * 257 * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA 258 * 259 */ 260 ret = cdv_sb_read(dev, ref_sfr, &ref_value); 261 if (ret) 262 return ret; 263 ref_value &= ~(REF_CLK_MASK); 264 265 /* use DPLL_A for pipeB on CRT/HDMI */ 266 if (pipe == 1 && !is_lvds && !(ddi_select & DP_MASK)) { 267 DRM_DEBUG_KMS("use DPLLA for pipe B\n"); 268 ref_value |= REF_CLK_DPLLA; 269 } else { 270 DRM_DEBUG_KMS("use their DPLL for pipe A/B\n"); 271 ref_value |= REF_CLK_DPLL; 272 } 273 ret = cdv_sb_write(dev, ref_sfr, ref_value); 274 if (ret) 275 return ret; 276 277 ret = cdv_sb_read(dev, SB_M(pipe), &m); 278 if (ret) 279 return ret; 280 m &= ~SB_M_DIVIDER_MASK; 281 m |= ((clock->m2) << SB_M_DIVIDER_SHIFT); 282 ret = cdv_sb_write(dev, SB_M(pipe), m); 283 if (ret) 284 return ret; 285 286 ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco); 287 if (ret) 288 return ret; 289 290 /* Follow the BIOS to program the N_DIVIDER REG */ 291 n_vco &= 0xFFFF; 292 n_vco |= 0x107; 293 n_vco &= ~(SB_N_VCO_SEL_MASK | 294 SB_N_DIVIDER_MASK | 295 SB_N_CB_TUNE_MASK); 296 297 n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT); 298 299 if (clock->vco < 2250000) { 300 n_vco |= (2 << SB_N_CB_TUNE_SHIFT); 301 n_vco |= (0 << SB_N_VCO_SEL_SHIFT); 302 } else if (clock->vco < 2750000) { 303 n_vco |= (1 << SB_N_CB_TUNE_SHIFT); 304 n_vco |= (1 << SB_N_VCO_SEL_SHIFT); 305 } else if (clock->vco < 3300000) { 306 n_vco |= (0 << SB_N_CB_TUNE_SHIFT); 307 n_vco |= (2 << SB_N_VCO_SEL_SHIFT); 308 } else { 309 n_vco |= (0 << SB_N_CB_TUNE_SHIFT); 310 n_vco |= (3 << SB_N_VCO_SEL_SHIFT); 311 } 312 313 ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco); 314 if (ret) 315 return ret; 316 317 ret = cdv_sb_read(dev, SB_P(pipe), &p); 318 if (ret) 319 return ret; 320 p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK); 321 p |= SET_FIELD(clock->p1, SB_P1_DIVIDER); 322 switch (clock->p2) { 323 case 5: 324 p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER); 325 break; 326 case 10: 327 p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER); 328 break; 329 case 14: 330 p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER); 331 break; 332 case 7: 333 p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER); 334 break; 335 default: 336 DRM_ERROR("Bad P2 clock: %d\n", clock->p2); 337 return -EINVAL; 338 } 339 ret = cdv_sb_write(dev, SB_P(pipe), p); 340 if (ret) 341 return ret; 342 343 if (ddi_select) { 344 if ((ddi_select & DDI_MASK) == DDI0_SELECT) { 345 lane_reg = PSB_LANE0; 346 cdv_sb_read(dev, lane_reg, &lane_value); 347 lane_value &= ~(LANE_PLL_MASK); 348 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe); 349 cdv_sb_write(dev, lane_reg, lane_value); 350 351 lane_reg = PSB_LANE1; 352 cdv_sb_read(dev, lane_reg, &lane_value); 353 lane_value &= ~(LANE_PLL_MASK); 354 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe); 355 cdv_sb_write(dev, lane_reg, lane_value); 356 } else { 357 lane_reg = PSB_LANE2; 358 cdv_sb_read(dev, lane_reg, &lane_value); 359 lane_value &= ~(LANE_PLL_MASK); 360 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe); 361 cdv_sb_write(dev, lane_reg, lane_value); 362 363 lane_reg = PSB_LANE3; 364 cdv_sb_read(dev, lane_reg, &lane_value); 365 lane_value &= ~(LANE_PLL_MASK); 366 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe); 367 cdv_sb_write(dev, lane_reg, lane_value); 368 } 369 } 370 return 0; 371 } 372 373 static const struct gma_limit_t *cdv_intel_limit(struct drm_crtc *crtc, 374 int refclk) 375 { 376 const struct gma_limit_t *limit; 377 if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { 378 /* 379 * Now only single-channel LVDS is supported on CDV. If it is 380 * incorrect, please add the dual-channel LVDS. 381 */ 382 if (refclk == 96000) 383 limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96]; 384 else 385 limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100]; 386 } else if (gma_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) || 387 gma_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) { 388 if (refclk == 27000) 389 limit = &cdv_intel_limits[CDV_LIMIT_DP_27]; 390 else 391 limit = &cdv_intel_limits[CDV_LIMIT_DP_100]; 392 } else { 393 if (refclk == 27000) 394 limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27]; 395 else 396 limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96]; 397 } 398 return limit; 399 } 400 401 /* m1 is reserved as 0 in CDV, n is a ring counter */ 402 static void cdv_intel_clock(int refclk, struct gma_clock_t *clock) 403 { 404 clock->m = clock->m2 + 2; 405 clock->p = clock->p1 * clock->p2; 406 clock->vco = (refclk * clock->m) / clock->n; 407 clock->dot = clock->vco / clock->p; 408 } 409 410 static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit, 411 struct drm_crtc *crtc, int target, 412 int refclk, 413 struct gma_clock_t *best_clock) 414 { 415 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 416 struct gma_clock_t clock; 417 418 switch (refclk) { 419 case 27000: 420 if (target < 200000) { 421 clock.p1 = 2; 422 clock.p2 = 10; 423 clock.n = 1; 424 clock.m1 = 0; 425 clock.m2 = 118; 426 } else { 427 clock.p1 = 1; 428 clock.p2 = 10; 429 clock.n = 1; 430 clock.m1 = 0; 431 clock.m2 = 98; 432 } 433 break; 434 435 case 100000: 436 if (target < 200000) { 437 clock.p1 = 2; 438 clock.p2 = 10; 439 clock.n = 5; 440 clock.m1 = 0; 441 clock.m2 = 160; 442 } else { 443 clock.p1 = 1; 444 clock.p2 = 10; 445 clock.n = 5; 446 clock.m1 = 0; 447 clock.m2 = 133; 448 } 449 break; 450 451 default: 452 return false; 453 } 454 455 gma_crtc->clock_funcs->clock(refclk, &clock); 456 memcpy(best_clock, &clock, sizeof(struct gma_clock_t)); 457 return true; 458 } 459 460 #define FIFO_PIPEA (1 << 0) 461 #define FIFO_PIPEB (1 << 1) 462 463 static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe) 464 { 465 struct drm_crtc *crtc; 466 struct drm_psb_private *dev_priv = dev->dev_private; 467 struct gma_crtc *gma_crtc = NULL; 468 469 crtc = dev_priv->pipe_to_crtc_mapping[pipe]; 470 gma_crtc = to_gma_crtc(crtc); 471 472 if (crtc->primary->fb == NULL || !gma_crtc->active) 473 return false; 474 return true; 475 } 476 477 void cdv_disable_sr(struct drm_device *dev) 478 { 479 if (REG_READ(FW_BLC_SELF) & FW_BLC_SELF_EN) { 480 481 /* Disable self-refresh before adjust WM */ 482 REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN)); 483 REG_READ(FW_BLC_SELF); 484 485 gma_wait_for_vblank(dev); 486 487 /* Cedarview workaround to write ovelay plane, which force to leave 488 * MAX_FIFO state. 489 */ 490 REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/); 491 REG_READ(OV_OVADD); 492 493 gma_wait_for_vblank(dev); 494 } 495 496 } 497 498 void cdv_update_wm(struct drm_device *dev, struct drm_crtc *crtc) 499 { 500 struct drm_psb_private *dev_priv = dev->dev_private; 501 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 502 503 /* Is only one pipe enabled? */ 504 if (cdv_intel_pipe_enabled(dev, 0) ^ cdv_intel_pipe_enabled(dev, 1)) { 505 u32 fw; 506 507 fw = REG_READ(DSPFW1); 508 fw &= ~DSP_FIFO_SR_WM_MASK; 509 fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT); 510 fw &= ~CURSOR_B_FIFO_WM_MASK; 511 fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT); 512 REG_WRITE(DSPFW1, fw); 513 514 fw = REG_READ(DSPFW2); 515 fw &= ~CURSOR_A_FIFO_WM_MASK; 516 fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT); 517 fw &= ~DSP_PLANE_C_FIFO_WM_MASK; 518 fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT); 519 REG_WRITE(DSPFW2, fw); 520 521 REG_WRITE(DSPFW3, 0x36000000); 522 523 /* ignore FW4 */ 524 525 /* Is pipe b lvds ? */ 526 if (gma_crtc->pipe == 1 && 527 gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { 528 REG_WRITE(DSPFW5, 0x00040330); 529 } else { 530 fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) | 531 (4 << DSP_PLANE_A_FIFO_WM1_SHIFT) | 532 (3 << CURSOR_B_FIFO_WM1_SHIFT) | 533 (4 << CURSOR_FIFO_SR_WM1_SHIFT); 534 REG_WRITE(DSPFW5, fw); 535 } 536 537 REG_WRITE(DSPFW6, 0x10); 538 539 gma_wait_for_vblank(dev); 540 541 /* enable self-refresh for single pipe active */ 542 REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN); 543 REG_READ(FW_BLC_SELF); 544 gma_wait_for_vblank(dev); 545 546 } else { 547 548 /* HW team suggested values... */ 549 REG_WRITE(DSPFW1, 0x3f880808); 550 REG_WRITE(DSPFW2, 0x0b020202); 551 REG_WRITE(DSPFW3, 0x24000000); 552 REG_WRITE(DSPFW4, 0x08030202); 553 REG_WRITE(DSPFW5, 0x01010101); 554 REG_WRITE(DSPFW6, 0x1d0); 555 556 gma_wait_for_vblank(dev); 557 558 dev_priv->ops->disable_sr(dev); 559 } 560 } 561 562 /** 563 * Return the pipe currently connected to the panel fitter, 564 * or -1 if the panel fitter is not present or not in use 565 */ 566 static int cdv_intel_panel_fitter_pipe(struct drm_device *dev) 567 { 568 u32 pfit_control; 569 570 pfit_control = REG_READ(PFIT_CONTROL); 571 572 /* See if the panel fitter is in use */ 573 if ((pfit_control & PFIT_ENABLE) == 0) 574 return -1; 575 return (pfit_control >> 29) & 0x3; 576 } 577 578 static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc, 579 struct drm_display_mode *mode, 580 struct drm_display_mode *adjusted_mode, 581 int x, int y, 582 struct drm_framebuffer *old_fb) 583 { 584 struct drm_device *dev = crtc->dev; 585 struct drm_psb_private *dev_priv = dev->dev_private; 586 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 587 int pipe = gma_crtc->pipe; 588 const struct psb_offset *map = &dev_priv->regmap[pipe]; 589 int refclk; 590 struct gma_clock_t clock; 591 u32 dpll = 0, dspcntr, pipeconf; 592 bool ok; 593 bool is_crt = false, is_lvds = false, is_tv = false; 594 bool is_hdmi = false, is_dp = false; 595 struct drm_mode_config *mode_config = &dev->mode_config; 596 struct drm_connector *connector; 597 const struct gma_limit_t *limit; 598 u32 ddi_select = 0; 599 bool is_edp = false; 600 601 list_for_each_entry(connector, &mode_config->connector_list, head) { 602 struct gma_encoder *gma_encoder = 603 gma_attached_encoder(connector); 604 605 if (!connector->encoder 606 || connector->encoder->crtc != crtc) 607 continue; 608 609 ddi_select = gma_encoder->ddi_select; 610 switch (gma_encoder->type) { 611 case INTEL_OUTPUT_LVDS: 612 is_lvds = true; 613 break; 614 case INTEL_OUTPUT_TVOUT: 615 is_tv = true; 616 break; 617 case INTEL_OUTPUT_ANALOG: 618 is_crt = true; 619 break; 620 case INTEL_OUTPUT_HDMI: 621 is_hdmi = true; 622 break; 623 case INTEL_OUTPUT_DISPLAYPORT: 624 is_dp = true; 625 break; 626 case INTEL_OUTPUT_EDP: 627 is_edp = true; 628 break; 629 default: 630 DRM_ERROR("invalid output type.\n"); 631 return 0; 632 } 633 } 634 635 if (dev_priv->dplla_96mhz) 636 /* low-end sku, 96/100 mhz */ 637 refclk = 96000; 638 else 639 /* high-end sku, 27/100 mhz */ 640 refclk = 27000; 641 if (is_dp || is_edp) { 642 /* 643 * Based on the spec the low-end SKU has only CRT/LVDS. So it is 644 * unnecessary to consider it for DP/eDP. 645 * On the high-end SKU, it will use the 27/100M reference clk 646 * for DP/eDP. When using SSC clock, the ref clk is 100MHz.Otherwise 647 * it will be 27MHz. From the VBIOS code it seems that the pipe A choose 648 * 27MHz for DP/eDP while the Pipe B chooses the 100MHz. 649 */ 650 if (pipe == 0) 651 refclk = 27000; 652 else 653 refclk = 100000; 654 } 655 656 if (is_lvds && dev_priv->lvds_use_ssc) { 657 refclk = dev_priv->lvds_ssc_freq * 1000; 658 DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq); 659 } 660 661 drm_mode_debug_printmodeline(adjusted_mode); 662 663 limit = gma_crtc->clock_funcs->limit(crtc, refclk); 664 665 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, 666 &clock); 667 if (!ok) { 668 DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d", 669 adjusted_mode->clock, clock.dot); 670 return 0; 671 } 672 673 dpll = DPLL_VGA_MODE_DIS; 674 if (is_tv) { 675 /* XXX: just matching BIOS for now */ 676 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */ 677 dpll |= 3; 678 } 679 /* dpll |= PLL_REF_INPUT_DREFCLK; */ 680 681 if (is_dp || is_edp) { 682 cdv_intel_dp_set_m_n(crtc, mode, adjusted_mode); 683 } else { 684 REG_WRITE(PIPE_GMCH_DATA_M(pipe), 0); 685 REG_WRITE(PIPE_GMCH_DATA_N(pipe), 0); 686 REG_WRITE(PIPE_DP_LINK_M(pipe), 0); 687 REG_WRITE(PIPE_DP_LINK_N(pipe), 0); 688 } 689 690 dpll |= DPLL_SYNCLOCK_ENABLE; 691 /* if (is_lvds) 692 dpll |= DPLLB_MODE_LVDS; 693 else 694 dpll |= DPLLB_MODE_DAC_SERIAL; */ 695 /* dpll |= (2 << 11); */ 696 697 /* setup pipeconf */ 698 pipeconf = REG_READ(map->conf); 699 700 pipeconf &= ~(PIPE_BPC_MASK); 701 if (is_edp) { 702 switch (dev_priv->edp.bpp) { 703 case 24: 704 pipeconf |= PIPE_8BPC; 705 break; 706 case 18: 707 pipeconf |= PIPE_6BPC; 708 break; 709 case 30: 710 pipeconf |= PIPE_10BPC; 711 break; 712 default: 713 pipeconf |= PIPE_8BPC; 714 break; 715 } 716 } else if (is_lvds) { 717 /* the BPC will be 6 if it is 18-bit LVDS panel */ 718 if ((REG_READ(LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP) 719 pipeconf |= PIPE_8BPC; 720 else 721 pipeconf |= PIPE_6BPC; 722 } else 723 pipeconf |= PIPE_8BPC; 724 725 /* Set up the display plane register */ 726 dspcntr = DISPPLANE_GAMMA_ENABLE; 727 728 if (pipe == 0) 729 dspcntr |= DISPPLANE_SEL_PIPE_A; 730 else 731 dspcntr |= DISPPLANE_SEL_PIPE_B; 732 733 dspcntr |= DISPLAY_PLANE_ENABLE; 734 pipeconf |= PIPEACONF_ENABLE; 735 736 REG_WRITE(map->dpll, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE); 737 REG_READ(map->dpll); 738 739 cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds, ddi_select); 740 741 udelay(150); 742 743 744 /* The LVDS pin pair needs to be on before the DPLLs are enabled. 745 * This is an exception to the general rule that mode_set doesn't turn 746 * things on. 747 */ 748 if (is_lvds) { 749 u32 lvds = REG_READ(LVDS); 750 751 lvds |= 752 LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | 753 LVDS_PIPEB_SELECT; 754 /* Set the B0-B3 data pairs corresponding to 755 * whether we're going to 756 * set the DPLLs for dual-channel mode or not. 757 */ 758 if (clock.p2 == 7) 759 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP; 760 else 761 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP); 762 763 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP) 764 * appropriately here, but we need to look more 765 * thoroughly into how panels behave in the two modes. 766 */ 767 768 REG_WRITE(LVDS, lvds); 769 REG_READ(LVDS); 770 } 771 772 dpll |= DPLL_VCO_ENABLE; 773 774 /* Disable the panel fitter if it was on our pipe */ 775 if (cdv_intel_panel_fitter_pipe(dev) == pipe) 776 REG_WRITE(PFIT_CONTROL, 0); 777 778 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B'); 779 drm_mode_debug_printmodeline(mode); 780 781 REG_WRITE(map->dpll, 782 (REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE); 783 REG_READ(map->dpll); 784 /* Wait for the clocks to stabilize. */ 785 udelay(150); /* 42 usec w/o calibration, 110 with. rounded up. */ 786 787 if (!(REG_READ(map->dpll) & DPLL_LOCK)) { 788 dev_err(dev->dev, "Failed to get DPLL lock\n"); 789 return -EBUSY; 790 } 791 792 { 793 int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock; 794 REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT)); 795 } 796 797 REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) | 798 ((adjusted_mode->crtc_htotal - 1) << 16)); 799 REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) | 800 ((adjusted_mode->crtc_hblank_end - 1) << 16)); 801 REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) | 802 ((adjusted_mode->crtc_hsync_end - 1) << 16)); 803 REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) | 804 ((adjusted_mode->crtc_vtotal - 1) << 16)); 805 REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) | 806 ((adjusted_mode->crtc_vblank_end - 1) << 16)); 807 REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) | 808 ((adjusted_mode->crtc_vsync_end - 1) << 16)); 809 /* pipesrc and dspsize control the size that is scaled from, 810 * which should always be the user's requested size. 811 */ 812 REG_WRITE(map->size, 813 ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1)); 814 REG_WRITE(map->pos, 0); 815 REG_WRITE(map->src, 816 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1)); 817 REG_WRITE(map->conf, pipeconf); 818 REG_READ(map->conf); 819 820 gma_wait_for_vblank(dev); 821 822 REG_WRITE(map->cntr, dspcntr); 823 824 /* Flush the plane changes */ 825 { 826 const struct drm_crtc_helper_funcs *crtc_funcs = 827 crtc->helper_private; 828 crtc_funcs->mode_set_base(crtc, x, y, old_fb); 829 } 830 831 gma_wait_for_vblank(dev); 832 833 return 0; 834 } 835 836 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */ 837 838 /* FIXME: why are we using this, should it be cdv_ in this tree ? */ 839 840 static void i8xx_clock(int refclk, struct gma_clock_t *clock) 841 { 842 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2); 843 clock->p = clock->p1 * clock->p2; 844 clock->vco = refclk * clock->m / (clock->n + 2); 845 clock->dot = clock->vco / clock->p; 846 } 847 848 /* Returns the clock of the currently programmed mode of the given pipe. */ 849 static int cdv_intel_crtc_clock_get(struct drm_device *dev, 850 struct drm_crtc *crtc) 851 { 852 struct drm_psb_private *dev_priv = dev->dev_private; 853 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 854 int pipe = gma_crtc->pipe; 855 const struct psb_offset *map = &dev_priv->regmap[pipe]; 856 u32 dpll; 857 u32 fp; 858 struct gma_clock_t clock; 859 bool is_lvds; 860 struct psb_pipe *p = &dev_priv->regs.pipe[pipe]; 861 862 if (gma_power_begin(dev, false)) { 863 dpll = REG_READ(map->dpll); 864 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 865 fp = REG_READ(map->fp0); 866 else 867 fp = REG_READ(map->fp1); 868 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN); 869 gma_power_end(dev); 870 } else { 871 dpll = p->dpll; 872 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 873 fp = p->fp0; 874 else 875 fp = p->fp1; 876 877 is_lvds = (pipe == 1) && 878 (dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN); 879 } 880 881 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 882 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 883 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 884 885 if (is_lvds) { 886 clock.p1 = 887 ffs((dpll & 888 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 889 DPLL_FPA01_P1_POST_DIV_SHIFT); 890 if (clock.p1 == 0) { 891 clock.p1 = 4; 892 dev_err(dev->dev, "PLL %d\n", dpll); 893 } 894 clock.p2 = 14; 895 896 if ((dpll & PLL_REF_INPUT_MASK) == 897 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 898 /* XXX: might not be 66MHz */ 899 i8xx_clock(66000, &clock); 900 } else 901 i8xx_clock(48000, &clock); 902 } else { 903 if (dpll & PLL_P1_DIVIDE_BY_TWO) 904 clock.p1 = 2; 905 else { 906 clock.p1 = 907 ((dpll & 908 DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 909 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 910 } 911 if (dpll & PLL_P2_DIVIDE_BY_4) 912 clock.p2 = 4; 913 else 914 clock.p2 = 2; 915 916 i8xx_clock(48000, &clock); 917 } 918 919 /* XXX: It would be nice to validate the clocks, but we can't reuse 920 * i830PllIsValid() because it relies on the xf86_config connector 921 * configuration being accurate, which it isn't necessarily. 922 */ 923 924 return clock.dot; 925 } 926 927 /** Returns the currently programmed mode of the given pipe. */ 928 struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev, 929 struct drm_crtc *crtc) 930 { 931 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 932 int pipe = gma_crtc->pipe; 933 struct drm_psb_private *dev_priv = dev->dev_private; 934 struct psb_pipe *p = &dev_priv->regs.pipe[pipe]; 935 const struct psb_offset *map = &dev_priv->regmap[pipe]; 936 struct drm_display_mode *mode; 937 int htot; 938 int hsync; 939 int vtot; 940 int vsync; 941 942 if (gma_power_begin(dev, false)) { 943 htot = REG_READ(map->htotal); 944 hsync = REG_READ(map->hsync); 945 vtot = REG_READ(map->vtotal); 946 vsync = REG_READ(map->vsync); 947 gma_power_end(dev); 948 } else { 949 htot = p->htotal; 950 hsync = p->hsync; 951 vtot = p->vtotal; 952 vsync = p->vsync; 953 } 954 955 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 956 if (!mode) 957 return NULL; 958 959 mode->clock = cdv_intel_crtc_clock_get(dev, crtc); 960 mode->hdisplay = (htot & 0xffff) + 1; 961 mode->htotal = ((htot & 0xffff0000) >> 16) + 1; 962 mode->hsync_start = (hsync & 0xffff) + 1; 963 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; 964 mode->vdisplay = (vtot & 0xffff) + 1; 965 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; 966 mode->vsync_start = (vsync & 0xffff) + 1; 967 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; 968 969 drm_mode_set_name(mode); 970 drm_mode_set_crtcinfo(mode, 0); 971 972 return mode; 973 } 974 975 const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = { 976 .dpms = gma_crtc_dpms, 977 .mode_set = cdv_intel_crtc_mode_set, 978 .mode_set_base = gma_pipe_set_base, 979 .prepare = gma_crtc_prepare, 980 .commit = gma_crtc_commit, 981 .disable = gma_crtc_disable, 982 }; 983 984 const struct drm_crtc_funcs cdv_intel_crtc_funcs = { 985 .cursor_set = gma_crtc_cursor_set, 986 .cursor_move = gma_crtc_cursor_move, 987 .gamma_set = gma_crtc_gamma_set, 988 .set_config = gma_crtc_set_config, 989 .destroy = gma_crtc_destroy, 990 }; 991 992 const struct gma_clock_funcs cdv_clock_funcs = { 993 .clock = cdv_intel_clock, 994 .limit = cdv_intel_limit, 995 .pll_is_valid = gma_pll_is_valid, 996 }; 997