1 /* 2 * Copyright (C) 2012 Samsung Electronics Co.Ltd 3 * Authors: 4 * Eunchul Kim <chulspro.kim@samsung.com> 5 * Jinyoung Jeon <jy0.jeon@samsung.com> 6 * Sangmin Lee <lsmin.lee@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License as published by the 10 * Free Software Foundation; either version 2 of the License, or (at your 11 * option) any later version. 12 * 13 */ 14 #include <linux/kernel.h> 15 #include <linux/component.h> 16 #include <linux/platform_device.h> 17 #include <linux/clk.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/mfd/syscon.h> 20 #include <linux/of_device.h> 21 #include <linux/regmap.h> 22 23 #include <drm/drmP.h> 24 #include <drm/exynos_drm.h> 25 #include "regs-gsc.h" 26 #include "exynos_drm_drv.h" 27 #include "exynos_drm_ipp.h" 28 29 /* 30 * GSC stands for General SCaler and 31 * supports image scaler/rotator and input/output DMA operations. 32 * input DMA reads image data from the memory. 33 * output DMA writes image data to memory. 34 * GSC supports image rotation and image effect functions. 35 */ 36 37 38 #define GSC_MAX_CLOCKS 8 39 #define GSC_MAX_SRC 4 40 #define GSC_MAX_DST 16 41 #define GSC_RESET_TIMEOUT 50 42 #define GSC_BUF_STOP 1 43 #define GSC_BUF_START 2 44 #define GSC_REG_SZ 16 45 #define GSC_WIDTH_ITU_709 1280 46 #define GSC_SC_UP_MAX_RATIO 65536 47 #define GSC_SC_DOWN_RATIO_7_8 74898 48 #define GSC_SC_DOWN_RATIO_6_8 87381 49 #define GSC_SC_DOWN_RATIO_5_8 104857 50 #define GSC_SC_DOWN_RATIO_4_8 131072 51 #define GSC_SC_DOWN_RATIO_3_8 174762 52 #define GSC_SC_DOWN_RATIO_2_8 262144 53 #define GSC_CROP_MAX 8192 54 #define GSC_CROP_MIN 32 55 #define GSC_SCALE_MAX 4224 56 #define GSC_SCALE_MIN 32 57 #define GSC_COEF_RATIO 7 58 #define GSC_COEF_PHASE 9 59 #define GSC_COEF_ATTR 16 60 #define GSC_COEF_H_8T 8 61 #define GSC_COEF_V_4T 4 62 #define GSC_COEF_DEPTH 3 63 #define GSC_AUTOSUSPEND_DELAY 2000 64 65 #define get_gsc_context(dev) platform_get_drvdata(to_platform_device(dev)) 66 #define gsc_read(offset) readl(ctx->regs + (offset)) 67 #define gsc_write(cfg, offset) writel(cfg, ctx->regs + (offset)) 68 69 /* 70 * A structure of scaler. 71 * 72 * @range: narrow, wide. 73 * @pre_shfactor: pre sclaer shift factor. 74 * @pre_hratio: horizontal ratio of the prescaler. 75 * @pre_vratio: vertical ratio of the prescaler. 76 * @main_hratio: the main scaler's horizontal ratio. 77 * @main_vratio: the main scaler's vertical ratio. 78 */ 79 struct gsc_scaler { 80 bool range; 81 u32 pre_shfactor; 82 u32 pre_hratio; 83 u32 pre_vratio; 84 unsigned long main_hratio; 85 unsigned long main_vratio; 86 }; 87 88 /* 89 * A structure of gsc context. 90 * 91 * @regs_res: register resources. 92 * @regs: memory mapped io registers. 93 * @gsc_clk: gsc gate clock. 94 * @sc: scaler infomations. 95 * @id: gsc id. 96 * @irq: irq number. 97 * @rotation: supports rotation of src. 98 */ 99 struct gsc_context { 100 struct exynos_drm_ipp ipp; 101 struct drm_device *drm_dev; 102 struct device *dev; 103 struct exynos_drm_ipp_task *task; 104 struct exynos_drm_ipp_formats *formats; 105 unsigned int num_formats; 106 107 struct resource *regs_res; 108 void __iomem *regs; 109 const char **clk_names; 110 struct clk *clocks[GSC_MAX_CLOCKS]; 111 int num_clocks; 112 struct gsc_scaler sc; 113 int id; 114 int irq; 115 bool rotation; 116 }; 117 118 /** 119 * struct gsc_driverdata - per device type driver data for init time. 120 * 121 * @limits: picture size limits array 122 * @clk_names: names of clocks needed by this variant 123 * @num_clocks: the number of clocks needed by this variant 124 */ 125 struct gsc_driverdata { 126 const struct drm_exynos_ipp_limit *limits; 127 int num_limits; 128 const char *clk_names[GSC_MAX_CLOCKS]; 129 int num_clocks; 130 }; 131 132 /* 8-tap Filter Coefficient */ 133 static const int h_coef_8t[GSC_COEF_RATIO][GSC_COEF_ATTR][GSC_COEF_H_8T] = { 134 { /* Ratio <= 65536 (~8:8) */ 135 { 0, 0, 0, 128, 0, 0, 0, 0 }, 136 { -1, 2, -6, 127, 7, -2, 1, 0 }, 137 { -1, 4, -12, 125, 16, -5, 1, 0 }, 138 { -1, 5, -15, 120, 25, -8, 2, 0 }, 139 { -1, 6, -18, 114, 35, -10, 3, -1 }, 140 { -1, 6, -20, 107, 46, -13, 4, -1 }, 141 { -2, 7, -21, 99, 57, -16, 5, -1 }, 142 { -1, 6, -20, 89, 68, -18, 5, -1 }, 143 { -1, 6, -20, 79, 79, -20, 6, -1 }, 144 { -1, 5, -18, 68, 89, -20, 6, -1 }, 145 { -1, 5, -16, 57, 99, -21, 7, -2 }, 146 { -1, 4, -13, 46, 107, -20, 6, -1 }, 147 { -1, 3, -10, 35, 114, -18, 6, -1 }, 148 { 0, 2, -8, 25, 120, -15, 5, -1 }, 149 { 0, 1, -5, 16, 125, -12, 4, -1 }, 150 { 0, 1, -2, 7, 127, -6, 2, -1 } 151 }, { /* 65536 < Ratio <= 74898 (~8:7) */ 152 { 3, -8, 14, 111, 13, -8, 3, 0 }, 153 { 2, -6, 7, 112, 21, -10, 3, -1 }, 154 { 2, -4, 1, 110, 28, -12, 4, -1 }, 155 { 1, -2, -3, 106, 36, -13, 4, -1 }, 156 { 1, -1, -7, 103, 44, -15, 4, -1 }, 157 { 1, 1, -11, 97, 53, -16, 4, -1 }, 158 { 0, 2, -13, 91, 61, -16, 4, -1 }, 159 { 0, 3, -15, 85, 69, -17, 4, -1 }, 160 { 0, 3, -16, 77, 77, -16, 3, 0 }, 161 { -1, 4, -17, 69, 85, -15, 3, 0 }, 162 { -1, 4, -16, 61, 91, -13, 2, 0 }, 163 { -1, 4, -16, 53, 97, -11, 1, 1 }, 164 { -1, 4, -15, 44, 103, -7, -1, 1 }, 165 { -1, 4, -13, 36, 106, -3, -2, 1 }, 166 { -1, 4, -12, 28, 110, 1, -4, 2 }, 167 { -1, 3, -10, 21, 112, 7, -6, 2 } 168 }, { /* 74898 < Ratio <= 87381 (~8:6) */ 169 { 2, -11, 25, 96, 25, -11, 2, 0 }, 170 { 2, -10, 19, 96, 31, -12, 2, 0 }, 171 { 2, -9, 14, 94, 37, -12, 2, 0 }, 172 { 2, -8, 10, 92, 43, -12, 1, 0 }, 173 { 2, -7, 5, 90, 49, -12, 1, 0 }, 174 { 2, -5, 1, 86, 55, -12, 0, 1 }, 175 { 2, -4, -2, 82, 61, -11, -1, 1 }, 176 { 1, -3, -5, 77, 67, -9, -1, 1 }, 177 { 1, -2, -7, 72, 72, -7, -2, 1 }, 178 { 1, -1, -9, 67, 77, -5, -3, 1 }, 179 { 1, -1, -11, 61, 82, -2, -4, 2 }, 180 { 1, 0, -12, 55, 86, 1, -5, 2 }, 181 { 0, 1, -12, 49, 90, 5, -7, 2 }, 182 { 0, 1, -12, 43, 92, 10, -8, 2 }, 183 { 0, 2, -12, 37, 94, 14, -9, 2 }, 184 { 0, 2, -12, 31, 96, 19, -10, 2 } 185 }, { /* 87381 < Ratio <= 104857 (~8:5) */ 186 { -1, -8, 33, 80, 33, -8, -1, 0 }, 187 { -1, -8, 28, 80, 37, -7, -2, 1 }, 188 { 0, -8, 24, 79, 41, -7, -2, 1 }, 189 { 0, -8, 20, 78, 46, -6, -3, 1 }, 190 { 0, -8, 16, 76, 50, -4, -3, 1 }, 191 { 0, -7, 13, 74, 54, -3, -4, 1 }, 192 { 1, -7, 10, 71, 58, -1, -5, 1 }, 193 { 1, -6, 6, 68, 62, 1, -5, 1 }, 194 { 1, -6, 4, 65, 65, 4, -6, 1 }, 195 { 1, -5, 1, 62, 68, 6, -6, 1 }, 196 { 1, -5, -1, 58, 71, 10, -7, 1 }, 197 { 1, -4, -3, 54, 74, 13, -7, 0 }, 198 { 1, -3, -4, 50, 76, 16, -8, 0 }, 199 { 1, -3, -6, 46, 78, 20, -8, 0 }, 200 { 1, -2, -7, 41, 79, 24, -8, 0 }, 201 { 1, -2, -7, 37, 80, 28, -8, -1 } 202 }, { /* 104857 < Ratio <= 131072 (~8:4) */ 203 { -3, 0, 35, 64, 35, 0, -3, 0 }, 204 { -3, -1, 32, 64, 38, 1, -3, 0 }, 205 { -2, -2, 29, 63, 41, 2, -3, 0 }, 206 { -2, -3, 27, 63, 43, 4, -4, 0 }, 207 { -2, -3, 24, 61, 46, 6, -4, 0 }, 208 { -2, -3, 21, 60, 49, 7, -4, 0 }, 209 { -1, -4, 19, 59, 51, 9, -4, -1 }, 210 { -1, -4, 16, 57, 53, 12, -4, -1 }, 211 { -1, -4, 14, 55, 55, 14, -4, -1 }, 212 { -1, -4, 12, 53, 57, 16, -4, -1 }, 213 { -1, -4, 9, 51, 59, 19, -4, -1 }, 214 { 0, -4, 7, 49, 60, 21, -3, -2 }, 215 { 0, -4, 6, 46, 61, 24, -3, -2 }, 216 { 0, -4, 4, 43, 63, 27, -3, -2 }, 217 { 0, -3, 2, 41, 63, 29, -2, -2 }, 218 { 0, -3, 1, 38, 64, 32, -1, -3 } 219 }, { /* 131072 < Ratio <= 174762 (~8:3) */ 220 { -1, 8, 33, 48, 33, 8, -1, 0 }, 221 { -1, 7, 31, 49, 35, 9, -1, -1 }, 222 { -1, 6, 30, 49, 36, 10, -1, -1 }, 223 { -1, 5, 28, 48, 38, 12, -1, -1 }, 224 { -1, 4, 26, 48, 39, 13, 0, -1 }, 225 { -1, 3, 24, 47, 41, 15, 0, -1 }, 226 { -1, 2, 23, 47, 42, 16, 0, -1 }, 227 { -1, 2, 21, 45, 43, 18, 1, -1 }, 228 { -1, 1, 19, 45, 45, 19, 1, -1 }, 229 { -1, 1, 18, 43, 45, 21, 2, -1 }, 230 { -1, 0, 16, 42, 47, 23, 2, -1 }, 231 { -1, 0, 15, 41, 47, 24, 3, -1 }, 232 { -1, 0, 13, 39, 48, 26, 4, -1 }, 233 { -1, -1, 12, 38, 48, 28, 5, -1 }, 234 { -1, -1, 10, 36, 49, 30, 6, -1 }, 235 { -1, -1, 9, 35, 49, 31, 7, -1 } 236 }, { /* 174762 < Ratio <= 262144 (~8:2) */ 237 { 2, 13, 30, 38, 30, 13, 2, 0 }, 238 { 2, 12, 29, 38, 30, 14, 3, 0 }, 239 { 2, 11, 28, 38, 31, 15, 3, 0 }, 240 { 2, 10, 26, 38, 32, 16, 4, 0 }, 241 { 1, 10, 26, 37, 33, 17, 4, 0 }, 242 { 1, 9, 24, 37, 34, 18, 5, 0 }, 243 { 1, 8, 24, 37, 34, 19, 5, 0 }, 244 { 1, 7, 22, 36, 35, 20, 6, 1 }, 245 { 1, 6, 21, 36, 36, 21, 6, 1 }, 246 { 1, 6, 20, 35, 36, 22, 7, 1 }, 247 { 0, 5, 19, 34, 37, 24, 8, 1 }, 248 { 0, 5, 18, 34, 37, 24, 9, 1 }, 249 { 0, 4, 17, 33, 37, 26, 10, 1 }, 250 { 0, 4, 16, 32, 38, 26, 10, 2 }, 251 { 0, 3, 15, 31, 38, 28, 11, 2 }, 252 { 0, 3, 14, 30, 38, 29, 12, 2 } 253 } 254 }; 255 256 /* 4-tap Filter Coefficient */ 257 static const int v_coef_4t[GSC_COEF_RATIO][GSC_COEF_ATTR][GSC_COEF_V_4T] = { 258 { /* Ratio <= 65536 (~8:8) */ 259 { 0, 128, 0, 0 }, 260 { -4, 127, 5, 0 }, 261 { -6, 124, 11, -1 }, 262 { -8, 118, 19, -1 }, 263 { -8, 111, 27, -2 }, 264 { -8, 102, 37, -3 }, 265 { -8, 92, 48, -4 }, 266 { -7, 81, 59, -5 }, 267 { -6, 70, 70, -6 }, 268 { -5, 59, 81, -7 }, 269 { -4, 48, 92, -8 }, 270 { -3, 37, 102, -8 }, 271 { -2, 27, 111, -8 }, 272 { -1, 19, 118, -8 }, 273 { -1, 11, 124, -6 }, 274 { 0, 5, 127, -4 } 275 }, { /* 65536 < Ratio <= 74898 (~8:7) */ 276 { 8, 112, 8, 0 }, 277 { 4, 111, 14, -1 }, 278 { 1, 109, 20, -2 }, 279 { -2, 105, 27, -2 }, 280 { -3, 100, 34, -3 }, 281 { -5, 93, 43, -3 }, 282 { -5, 86, 51, -4 }, 283 { -5, 77, 60, -4 }, 284 { -5, 69, 69, -5 }, 285 { -4, 60, 77, -5 }, 286 { -4, 51, 86, -5 }, 287 { -3, 43, 93, -5 }, 288 { -3, 34, 100, -3 }, 289 { -2, 27, 105, -2 }, 290 { -2, 20, 109, 1 }, 291 { -1, 14, 111, 4 } 292 }, { /* 74898 < Ratio <= 87381 (~8:6) */ 293 { 16, 96, 16, 0 }, 294 { 12, 97, 21, -2 }, 295 { 8, 96, 26, -2 }, 296 { 5, 93, 32, -2 }, 297 { 2, 89, 39, -2 }, 298 { 0, 84, 46, -2 }, 299 { -1, 79, 53, -3 }, 300 { -2, 73, 59, -2 }, 301 { -2, 66, 66, -2 }, 302 { -2, 59, 73, -2 }, 303 { -3, 53, 79, -1 }, 304 { -2, 46, 84, 0 }, 305 { -2, 39, 89, 2 }, 306 { -2, 32, 93, 5 }, 307 { -2, 26, 96, 8 }, 308 { -2, 21, 97, 12 } 309 }, { /* 87381 < Ratio <= 104857 (~8:5) */ 310 { 22, 84, 22, 0 }, 311 { 18, 85, 26, -1 }, 312 { 14, 84, 31, -1 }, 313 { 11, 82, 36, -1 }, 314 { 8, 79, 42, -1 }, 315 { 6, 76, 47, -1 }, 316 { 4, 72, 52, 0 }, 317 { 2, 68, 58, 0 }, 318 { 1, 63, 63, 1 }, 319 { 0, 58, 68, 2 }, 320 { 0, 52, 72, 4 }, 321 { -1, 47, 76, 6 }, 322 { -1, 42, 79, 8 }, 323 { -1, 36, 82, 11 }, 324 { -1, 31, 84, 14 }, 325 { -1, 26, 85, 18 } 326 }, { /* 104857 < Ratio <= 131072 (~8:4) */ 327 { 26, 76, 26, 0 }, 328 { 22, 76, 30, 0 }, 329 { 19, 75, 34, 0 }, 330 { 16, 73, 38, 1 }, 331 { 13, 71, 43, 1 }, 332 { 10, 69, 47, 2 }, 333 { 8, 66, 51, 3 }, 334 { 6, 63, 55, 4 }, 335 { 5, 59, 59, 5 }, 336 { 4, 55, 63, 6 }, 337 { 3, 51, 66, 8 }, 338 { 2, 47, 69, 10 }, 339 { 1, 43, 71, 13 }, 340 { 1, 38, 73, 16 }, 341 { 0, 34, 75, 19 }, 342 { 0, 30, 76, 22 } 343 }, { /* 131072 < Ratio <= 174762 (~8:3) */ 344 { 29, 70, 29, 0 }, 345 { 26, 68, 32, 2 }, 346 { 23, 67, 36, 2 }, 347 { 20, 66, 39, 3 }, 348 { 17, 65, 43, 3 }, 349 { 15, 63, 46, 4 }, 350 { 12, 61, 50, 5 }, 351 { 10, 58, 53, 7 }, 352 { 8, 56, 56, 8 }, 353 { 7, 53, 58, 10 }, 354 { 5, 50, 61, 12 }, 355 { 4, 46, 63, 15 }, 356 { 3, 43, 65, 17 }, 357 { 3, 39, 66, 20 }, 358 { 2, 36, 67, 23 }, 359 { 2, 32, 68, 26 } 360 }, { /* 174762 < Ratio <= 262144 (~8:2) */ 361 { 32, 64, 32, 0 }, 362 { 28, 63, 34, 3 }, 363 { 25, 62, 37, 4 }, 364 { 22, 62, 40, 4 }, 365 { 19, 61, 43, 5 }, 366 { 17, 59, 46, 6 }, 367 { 15, 58, 48, 7 }, 368 { 13, 55, 51, 9 }, 369 { 11, 53, 53, 11 }, 370 { 9, 51, 55, 13 }, 371 { 7, 48, 58, 15 }, 372 { 6, 46, 59, 17 }, 373 { 5, 43, 61, 19 }, 374 { 4, 40, 62, 22 }, 375 { 4, 37, 62, 25 }, 376 { 3, 34, 63, 28 } 377 } 378 }; 379 380 static int gsc_sw_reset(struct gsc_context *ctx) 381 { 382 u32 cfg; 383 int count = GSC_RESET_TIMEOUT; 384 385 /* s/w reset */ 386 cfg = (GSC_SW_RESET_SRESET); 387 gsc_write(cfg, GSC_SW_RESET); 388 389 /* wait s/w reset complete */ 390 while (count--) { 391 cfg = gsc_read(GSC_SW_RESET); 392 if (!cfg) 393 break; 394 usleep_range(1000, 2000); 395 } 396 397 if (cfg) { 398 DRM_ERROR("failed to reset gsc h/w.\n"); 399 return -EBUSY; 400 } 401 402 /* reset sequence */ 403 cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK); 404 cfg |= (GSC_IN_BASE_ADDR_MASK | 405 GSC_IN_BASE_ADDR_PINGPONG(0)); 406 gsc_write(cfg, GSC_IN_BASE_ADDR_Y_MASK); 407 gsc_write(cfg, GSC_IN_BASE_ADDR_CB_MASK); 408 gsc_write(cfg, GSC_IN_BASE_ADDR_CR_MASK); 409 410 cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK); 411 cfg |= (GSC_OUT_BASE_ADDR_MASK | 412 GSC_OUT_BASE_ADDR_PINGPONG(0)); 413 gsc_write(cfg, GSC_OUT_BASE_ADDR_Y_MASK); 414 gsc_write(cfg, GSC_OUT_BASE_ADDR_CB_MASK); 415 gsc_write(cfg, GSC_OUT_BASE_ADDR_CR_MASK); 416 417 return 0; 418 } 419 420 static void gsc_handle_irq(struct gsc_context *ctx, bool enable, 421 bool overflow, bool done) 422 { 423 u32 cfg; 424 425 DRM_DEBUG_KMS("enable[%d]overflow[%d]level[%d]\n", 426 enable, overflow, done); 427 428 cfg = gsc_read(GSC_IRQ); 429 cfg |= (GSC_IRQ_OR_MASK | GSC_IRQ_FRMDONE_MASK); 430 431 if (enable) 432 cfg |= GSC_IRQ_ENABLE; 433 else 434 cfg &= ~GSC_IRQ_ENABLE; 435 436 if (overflow) 437 cfg &= ~GSC_IRQ_OR_MASK; 438 else 439 cfg |= GSC_IRQ_OR_MASK; 440 441 if (done) 442 cfg &= ~GSC_IRQ_FRMDONE_MASK; 443 else 444 cfg |= GSC_IRQ_FRMDONE_MASK; 445 446 gsc_write(cfg, GSC_IRQ); 447 } 448 449 450 static void gsc_src_set_fmt(struct gsc_context *ctx, u32 fmt, bool tiled) 451 { 452 u32 cfg; 453 454 DRM_DEBUG_KMS("fmt[0x%x]\n", fmt); 455 456 cfg = gsc_read(GSC_IN_CON); 457 cfg &= ~(GSC_IN_RGB_TYPE_MASK | GSC_IN_YUV422_1P_ORDER_MASK | 458 GSC_IN_CHROMA_ORDER_MASK | GSC_IN_FORMAT_MASK | 459 GSC_IN_TILE_TYPE_MASK | GSC_IN_TILE_MODE | 460 GSC_IN_CHROM_STRIDE_SEL_MASK | GSC_IN_RB_SWAP_MASK); 461 462 switch (fmt) { 463 case DRM_FORMAT_RGB565: 464 cfg |= GSC_IN_RGB565; 465 break; 466 case DRM_FORMAT_XRGB8888: 467 case DRM_FORMAT_ARGB8888: 468 cfg |= GSC_IN_XRGB8888; 469 break; 470 case DRM_FORMAT_BGRX8888: 471 cfg |= (GSC_IN_XRGB8888 | GSC_IN_RB_SWAP); 472 break; 473 case DRM_FORMAT_YUYV: 474 cfg |= (GSC_IN_YUV422_1P | 475 GSC_IN_YUV422_1P_ORDER_LSB_Y | 476 GSC_IN_CHROMA_ORDER_CBCR); 477 break; 478 case DRM_FORMAT_YVYU: 479 cfg |= (GSC_IN_YUV422_1P | 480 GSC_IN_YUV422_1P_ORDER_LSB_Y | 481 GSC_IN_CHROMA_ORDER_CRCB); 482 break; 483 case DRM_FORMAT_UYVY: 484 cfg |= (GSC_IN_YUV422_1P | 485 GSC_IN_YUV422_1P_OEDER_LSB_C | 486 GSC_IN_CHROMA_ORDER_CBCR); 487 break; 488 case DRM_FORMAT_VYUY: 489 cfg |= (GSC_IN_YUV422_1P | 490 GSC_IN_YUV422_1P_OEDER_LSB_C | 491 GSC_IN_CHROMA_ORDER_CRCB); 492 break; 493 case DRM_FORMAT_NV21: 494 cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV420_2P); 495 break; 496 case DRM_FORMAT_NV61: 497 cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV422_2P); 498 break; 499 case DRM_FORMAT_YUV422: 500 cfg |= GSC_IN_YUV422_3P; 501 break; 502 case DRM_FORMAT_YUV420: 503 cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV420_3P); 504 break; 505 case DRM_FORMAT_YVU420: 506 cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV420_3P); 507 break; 508 case DRM_FORMAT_NV12: 509 cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV420_2P); 510 break; 511 case DRM_FORMAT_NV16: 512 cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV422_2P); 513 break; 514 } 515 516 if (tiled) 517 cfg |= (GSC_IN_TILE_C_16x8 | GSC_IN_TILE_MODE); 518 519 gsc_write(cfg, GSC_IN_CON); 520 } 521 522 static void gsc_src_set_transf(struct gsc_context *ctx, unsigned int rotation) 523 { 524 unsigned int degree = rotation & DRM_MODE_ROTATE_MASK; 525 u32 cfg; 526 527 cfg = gsc_read(GSC_IN_CON); 528 cfg &= ~GSC_IN_ROT_MASK; 529 530 switch (degree) { 531 case DRM_MODE_ROTATE_0: 532 if (rotation & DRM_MODE_REFLECT_X) 533 cfg |= GSC_IN_ROT_XFLIP; 534 if (rotation & DRM_MODE_REFLECT_Y) 535 cfg |= GSC_IN_ROT_YFLIP; 536 break; 537 case DRM_MODE_ROTATE_90: 538 cfg |= GSC_IN_ROT_90; 539 if (rotation & DRM_MODE_REFLECT_X) 540 cfg |= GSC_IN_ROT_XFLIP; 541 if (rotation & DRM_MODE_REFLECT_Y) 542 cfg |= GSC_IN_ROT_YFLIP; 543 break; 544 case DRM_MODE_ROTATE_180: 545 cfg |= GSC_IN_ROT_180; 546 if (rotation & DRM_MODE_REFLECT_X) 547 cfg &= ~GSC_IN_ROT_XFLIP; 548 if (rotation & DRM_MODE_REFLECT_Y) 549 cfg &= ~GSC_IN_ROT_YFLIP; 550 break; 551 case DRM_MODE_ROTATE_270: 552 cfg |= GSC_IN_ROT_270; 553 if (rotation & DRM_MODE_REFLECT_X) 554 cfg &= ~GSC_IN_ROT_XFLIP; 555 if (rotation & DRM_MODE_REFLECT_Y) 556 cfg &= ~GSC_IN_ROT_YFLIP; 557 break; 558 } 559 560 gsc_write(cfg, GSC_IN_CON); 561 562 ctx->rotation = (cfg & GSC_IN_ROT_90) ? 1 : 0; 563 } 564 565 static void gsc_src_set_size(struct gsc_context *ctx, 566 struct exynos_drm_ipp_buffer *buf) 567 { 568 struct gsc_scaler *sc = &ctx->sc; 569 u32 cfg; 570 571 /* pixel offset */ 572 cfg = (GSC_SRCIMG_OFFSET_X(buf->rect.x) | 573 GSC_SRCIMG_OFFSET_Y(buf->rect.y)); 574 gsc_write(cfg, GSC_SRCIMG_OFFSET); 575 576 /* cropped size */ 577 cfg = (GSC_CROPPED_WIDTH(buf->rect.w) | 578 GSC_CROPPED_HEIGHT(buf->rect.h)); 579 gsc_write(cfg, GSC_CROPPED_SIZE); 580 581 /* original size */ 582 cfg = gsc_read(GSC_SRCIMG_SIZE); 583 cfg &= ~(GSC_SRCIMG_HEIGHT_MASK | 584 GSC_SRCIMG_WIDTH_MASK); 585 586 cfg |= (GSC_SRCIMG_WIDTH(buf->buf.pitch[0] / buf->format->cpp[0]) | 587 GSC_SRCIMG_HEIGHT(buf->buf.height)); 588 589 gsc_write(cfg, GSC_SRCIMG_SIZE); 590 591 cfg = gsc_read(GSC_IN_CON); 592 cfg &= ~GSC_IN_RGB_TYPE_MASK; 593 594 if (buf->rect.w >= GSC_WIDTH_ITU_709) 595 if (sc->range) 596 cfg |= GSC_IN_RGB_HD_WIDE; 597 else 598 cfg |= GSC_IN_RGB_HD_NARROW; 599 else 600 if (sc->range) 601 cfg |= GSC_IN_RGB_SD_WIDE; 602 else 603 cfg |= GSC_IN_RGB_SD_NARROW; 604 605 gsc_write(cfg, GSC_IN_CON); 606 } 607 608 static void gsc_src_set_buf_seq(struct gsc_context *ctx, u32 buf_id, 609 bool enqueue) 610 { 611 bool masked = !enqueue; 612 u32 cfg; 613 u32 mask = 0x00000001 << buf_id; 614 615 /* mask register set */ 616 cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK); 617 618 /* sequence id */ 619 cfg &= ~mask; 620 cfg |= masked << buf_id; 621 gsc_write(cfg, GSC_IN_BASE_ADDR_Y_MASK); 622 gsc_write(cfg, GSC_IN_BASE_ADDR_CB_MASK); 623 gsc_write(cfg, GSC_IN_BASE_ADDR_CR_MASK); 624 } 625 626 static void gsc_src_set_addr(struct gsc_context *ctx, u32 buf_id, 627 struct exynos_drm_ipp_buffer *buf) 628 { 629 /* address register set */ 630 gsc_write(buf->dma_addr[0], GSC_IN_BASE_ADDR_Y(buf_id)); 631 gsc_write(buf->dma_addr[1], GSC_IN_BASE_ADDR_CB(buf_id)); 632 gsc_write(buf->dma_addr[2], GSC_IN_BASE_ADDR_CR(buf_id)); 633 634 gsc_src_set_buf_seq(ctx, buf_id, true); 635 } 636 637 static void gsc_dst_set_fmt(struct gsc_context *ctx, u32 fmt, bool tiled) 638 { 639 u32 cfg; 640 641 DRM_DEBUG_KMS("fmt[0x%x]\n", fmt); 642 643 cfg = gsc_read(GSC_OUT_CON); 644 cfg &= ~(GSC_OUT_RGB_TYPE_MASK | GSC_OUT_YUV422_1P_ORDER_MASK | 645 GSC_OUT_CHROMA_ORDER_MASK | GSC_OUT_FORMAT_MASK | 646 GSC_OUT_CHROM_STRIDE_SEL_MASK | GSC_OUT_RB_SWAP_MASK | 647 GSC_OUT_GLOBAL_ALPHA_MASK); 648 649 switch (fmt) { 650 case DRM_FORMAT_RGB565: 651 cfg |= GSC_OUT_RGB565; 652 break; 653 case DRM_FORMAT_ARGB8888: 654 case DRM_FORMAT_XRGB8888: 655 cfg |= (GSC_OUT_XRGB8888 | GSC_OUT_GLOBAL_ALPHA(0xff)); 656 break; 657 case DRM_FORMAT_BGRX8888: 658 cfg |= (GSC_OUT_XRGB8888 | GSC_OUT_RB_SWAP); 659 break; 660 case DRM_FORMAT_YUYV: 661 cfg |= (GSC_OUT_YUV422_1P | 662 GSC_OUT_YUV422_1P_ORDER_LSB_Y | 663 GSC_OUT_CHROMA_ORDER_CBCR); 664 break; 665 case DRM_FORMAT_YVYU: 666 cfg |= (GSC_OUT_YUV422_1P | 667 GSC_OUT_YUV422_1P_ORDER_LSB_Y | 668 GSC_OUT_CHROMA_ORDER_CRCB); 669 break; 670 case DRM_FORMAT_UYVY: 671 cfg |= (GSC_OUT_YUV422_1P | 672 GSC_OUT_YUV422_1P_OEDER_LSB_C | 673 GSC_OUT_CHROMA_ORDER_CBCR); 674 break; 675 case DRM_FORMAT_VYUY: 676 cfg |= (GSC_OUT_YUV422_1P | 677 GSC_OUT_YUV422_1P_OEDER_LSB_C | 678 GSC_OUT_CHROMA_ORDER_CRCB); 679 break; 680 case DRM_FORMAT_NV21: 681 cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV420_2P); 682 break; 683 case DRM_FORMAT_NV61: 684 cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV422_2P); 685 break; 686 case DRM_FORMAT_YUV422: 687 cfg |= GSC_OUT_YUV422_3P; 688 break; 689 case DRM_FORMAT_YUV420: 690 cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV420_3P); 691 break; 692 case DRM_FORMAT_YVU420: 693 cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV420_3P); 694 break; 695 case DRM_FORMAT_NV12: 696 cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV420_2P); 697 break; 698 case DRM_FORMAT_NV16: 699 cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV422_2P); 700 break; 701 } 702 703 if (tiled) 704 cfg |= (GSC_IN_TILE_C_16x8 | GSC_OUT_TILE_MODE); 705 706 gsc_write(cfg, GSC_OUT_CON); 707 } 708 709 static int gsc_get_ratio_shift(u32 src, u32 dst, u32 *ratio) 710 { 711 DRM_DEBUG_KMS("src[%d]dst[%d]\n", src, dst); 712 713 if (src >= dst * 8) { 714 DRM_ERROR("failed to make ratio and shift.\n"); 715 return -EINVAL; 716 } else if (src >= dst * 4) 717 *ratio = 4; 718 else if (src >= dst * 2) 719 *ratio = 2; 720 else 721 *ratio = 1; 722 723 return 0; 724 } 725 726 static void gsc_get_prescaler_shfactor(u32 hratio, u32 vratio, u32 *shfactor) 727 { 728 if (hratio == 4 && vratio == 4) 729 *shfactor = 4; 730 else if ((hratio == 4 && vratio == 2) || 731 (hratio == 2 && vratio == 4)) 732 *shfactor = 3; 733 else if ((hratio == 4 && vratio == 1) || 734 (hratio == 1 && vratio == 4) || 735 (hratio == 2 && vratio == 2)) 736 *shfactor = 2; 737 else if (hratio == 1 && vratio == 1) 738 *shfactor = 0; 739 else 740 *shfactor = 1; 741 } 742 743 static int gsc_set_prescaler(struct gsc_context *ctx, struct gsc_scaler *sc, 744 struct drm_exynos_ipp_task_rect *src, 745 struct drm_exynos_ipp_task_rect *dst) 746 { 747 u32 cfg; 748 u32 src_w, src_h, dst_w, dst_h; 749 int ret = 0; 750 751 src_w = src->w; 752 src_h = src->h; 753 754 if (ctx->rotation) { 755 dst_w = dst->h; 756 dst_h = dst->w; 757 } else { 758 dst_w = dst->w; 759 dst_h = dst->h; 760 } 761 762 ret = gsc_get_ratio_shift(src_w, dst_w, &sc->pre_hratio); 763 if (ret) { 764 dev_err(ctx->dev, "failed to get ratio horizontal.\n"); 765 return ret; 766 } 767 768 ret = gsc_get_ratio_shift(src_h, dst_h, &sc->pre_vratio); 769 if (ret) { 770 dev_err(ctx->dev, "failed to get ratio vertical.\n"); 771 return ret; 772 } 773 774 DRM_DEBUG_KMS("pre_hratio[%d]pre_vratio[%d]\n", 775 sc->pre_hratio, sc->pre_vratio); 776 777 sc->main_hratio = (src_w << 16) / dst_w; 778 sc->main_vratio = (src_h << 16) / dst_h; 779 780 DRM_DEBUG_KMS("main_hratio[%ld]main_vratio[%ld]\n", 781 sc->main_hratio, sc->main_vratio); 782 783 gsc_get_prescaler_shfactor(sc->pre_hratio, sc->pre_vratio, 784 &sc->pre_shfactor); 785 786 DRM_DEBUG_KMS("pre_shfactor[%d]\n", sc->pre_shfactor); 787 788 cfg = (GSC_PRESC_SHFACTOR(sc->pre_shfactor) | 789 GSC_PRESC_H_RATIO(sc->pre_hratio) | 790 GSC_PRESC_V_RATIO(sc->pre_vratio)); 791 gsc_write(cfg, GSC_PRE_SCALE_RATIO); 792 793 return ret; 794 } 795 796 static void gsc_set_h_coef(struct gsc_context *ctx, unsigned long main_hratio) 797 { 798 int i, j, k, sc_ratio; 799 800 if (main_hratio <= GSC_SC_UP_MAX_RATIO) 801 sc_ratio = 0; 802 else if (main_hratio <= GSC_SC_DOWN_RATIO_7_8) 803 sc_ratio = 1; 804 else if (main_hratio <= GSC_SC_DOWN_RATIO_6_8) 805 sc_ratio = 2; 806 else if (main_hratio <= GSC_SC_DOWN_RATIO_5_8) 807 sc_ratio = 3; 808 else if (main_hratio <= GSC_SC_DOWN_RATIO_4_8) 809 sc_ratio = 4; 810 else if (main_hratio <= GSC_SC_DOWN_RATIO_3_8) 811 sc_ratio = 5; 812 else 813 sc_ratio = 6; 814 815 for (i = 0; i < GSC_COEF_PHASE; i++) 816 for (j = 0; j < GSC_COEF_H_8T; j++) 817 for (k = 0; k < GSC_COEF_DEPTH; k++) 818 gsc_write(h_coef_8t[sc_ratio][i][j], 819 GSC_HCOEF(i, j, k)); 820 } 821 822 static void gsc_set_v_coef(struct gsc_context *ctx, unsigned long main_vratio) 823 { 824 int i, j, k, sc_ratio; 825 826 if (main_vratio <= GSC_SC_UP_MAX_RATIO) 827 sc_ratio = 0; 828 else if (main_vratio <= GSC_SC_DOWN_RATIO_7_8) 829 sc_ratio = 1; 830 else if (main_vratio <= GSC_SC_DOWN_RATIO_6_8) 831 sc_ratio = 2; 832 else if (main_vratio <= GSC_SC_DOWN_RATIO_5_8) 833 sc_ratio = 3; 834 else if (main_vratio <= GSC_SC_DOWN_RATIO_4_8) 835 sc_ratio = 4; 836 else if (main_vratio <= GSC_SC_DOWN_RATIO_3_8) 837 sc_ratio = 5; 838 else 839 sc_ratio = 6; 840 841 for (i = 0; i < GSC_COEF_PHASE; i++) 842 for (j = 0; j < GSC_COEF_V_4T; j++) 843 for (k = 0; k < GSC_COEF_DEPTH; k++) 844 gsc_write(v_coef_4t[sc_ratio][i][j], 845 GSC_VCOEF(i, j, k)); 846 } 847 848 static void gsc_set_scaler(struct gsc_context *ctx, struct gsc_scaler *sc) 849 { 850 u32 cfg; 851 852 DRM_DEBUG_KMS("main_hratio[%ld]main_vratio[%ld]\n", 853 sc->main_hratio, sc->main_vratio); 854 855 gsc_set_h_coef(ctx, sc->main_hratio); 856 cfg = GSC_MAIN_H_RATIO_VALUE(sc->main_hratio); 857 gsc_write(cfg, GSC_MAIN_H_RATIO); 858 859 gsc_set_v_coef(ctx, sc->main_vratio); 860 cfg = GSC_MAIN_V_RATIO_VALUE(sc->main_vratio); 861 gsc_write(cfg, GSC_MAIN_V_RATIO); 862 } 863 864 static void gsc_dst_set_size(struct gsc_context *ctx, 865 struct exynos_drm_ipp_buffer *buf) 866 { 867 struct gsc_scaler *sc = &ctx->sc; 868 u32 cfg; 869 870 /* pixel offset */ 871 cfg = (GSC_DSTIMG_OFFSET_X(buf->rect.x) | 872 GSC_DSTIMG_OFFSET_Y(buf->rect.y)); 873 gsc_write(cfg, GSC_DSTIMG_OFFSET); 874 875 /* scaled size */ 876 if (ctx->rotation) 877 cfg = (GSC_SCALED_WIDTH(buf->rect.h) | 878 GSC_SCALED_HEIGHT(buf->rect.w)); 879 else 880 cfg = (GSC_SCALED_WIDTH(buf->rect.w) | 881 GSC_SCALED_HEIGHT(buf->rect.h)); 882 gsc_write(cfg, GSC_SCALED_SIZE); 883 884 /* original size */ 885 cfg = gsc_read(GSC_DSTIMG_SIZE); 886 cfg &= ~(GSC_DSTIMG_HEIGHT_MASK | GSC_DSTIMG_WIDTH_MASK); 887 cfg |= GSC_DSTIMG_WIDTH(buf->buf.pitch[0] / buf->format->cpp[0]) | 888 GSC_DSTIMG_HEIGHT(buf->buf.height); 889 gsc_write(cfg, GSC_DSTIMG_SIZE); 890 891 cfg = gsc_read(GSC_OUT_CON); 892 cfg &= ~GSC_OUT_RGB_TYPE_MASK; 893 894 if (buf->rect.w >= GSC_WIDTH_ITU_709) 895 if (sc->range) 896 cfg |= GSC_OUT_RGB_HD_WIDE; 897 else 898 cfg |= GSC_OUT_RGB_HD_NARROW; 899 else 900 if (sc->range) 901 cfg |= GSC_OUT_RGB_SD_WIDE; 902 else 903 cfg |= GSC_OUT_RGB_SD_NARROW; 904 905 gsc_write(cfg, GSC_OUT_CON); 906 } 907 908 static int gsc_dst_get_buf_seq(struct gsc_context *ctx) 909 { 910 u32 cfg, i, buf_num = GSC_REG_SZ; 911 u32 mask = 0x00000001; 912 913 cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK); 914 915 for (i = 0; i < GSC_REG_SZ; i++) 916 if (cfg & (mask << i)) 917 buf_num--; 918 919 DRM_DEBUG_KMS("buf_num[%d]\n", buf_num); 920 921 return buf_num; 922 } 923 924 static void gsc_dst_set_buf_seq(struct gsc_context *ctx, u32 buf_id, 925 bool enqueue) 926 { 927 bool masked = !enqueue; 928 u32 cfg; 929 u32 mask = 0x00000001 << buf_id; 930 931 /* mask register set */ 932 cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK); 933 934 /* sequence id */ 935 cfg &= ~mask; 936 cfg |= masked << buf_id; 937 gsc_write(cfg, GSC_OUT_BASE_ADDR_Y_MASK); 938 gsc_write(cfg, GSC_OUT_BASE_ADDR_CB_MASK); 939 gsc_write(cfg, GSC_OUT_BASE_ADDR_CR_MASK); 940 941 /* interrupt enable */ 942 if (enqueue && gsc_dst_get_buf_seq(ctx) >= GSC_BUF_START) 943 gsc_handle_irq(ctx, true, false, true); 944 945 /* interrupt disable */ 946 if (!enqueue && gsc_dst_get_buf_seq(ctx) <= GSC_BUF_STOP) 947 gsc_handle_irq(ctx, false, false, true); 948 } 949 950 static void gsc_dst_set_addr(struct gsc_context *ctx, 951 u32 buf_id, struct exynos_drm_ipp_buffer *buf) 952 { 953 /* address register set */ 954 gsc_write(buf->dma_addr[0], GSC_OUT_BASE_ADDR_Y(buf_id)); 955 gsc_write(buf->dma_addr[1], GSC_OUT_BASE_ADDR_CB(buf_id)); 956 gsc_write(buf->dma_addr[2], GSC_OUT_BASE_ADDR_CR(buf_id)); 957 958 gsc_dst_set_buf_seq(ctx, buf_id, true); 959 } 960 961 static int gsc_get_src_buf_index(struct gsc_context *ctx) 962 { 963 u32 cfg, curr_index, i; 964 u32 buf_id = GSC_MAX_SRC; 965 966 DRM_DEBUG_KMS("gsc id[%d]\n", ctx->id); 967 968 cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK); 969 curr_index = GSC_IN_CURR_GET_INDEX(cfg); 970 971 for (i = curr_index; i < GSC_MAX_SRC; i++) { 972 if (!((cfg >> i) & 0x1)) { 973 buf_id = i; 974 break; 975 } 976 } 977 978 DRM_DEBUG_KMS("cfg[0x%x]curr_index[%d]buf_id[%d]\n", cfg, 979 curr_index, buf_id); 980 981 if (buf_id == GSC_MAX_SRC) { 982 DRM_ERROR("failed to get in buffer index.\n"); 983 return -EINVAL; 984 } 985 986 gsc_src_set_buf_seq(ctx, buf_id, false); 987 988 return buf_id; 989 } 990 991 static int gsc_get_dst_buf_index(struct gsc_context *ctx) 992 { 993 u32 cfg, curr_index, i; 994 u32 buf_id = GSC_MAX_DST; 995 996 DRM_DEBUG_KMS("gsc id[%d]\n", ctx->id); 997 998 cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK); 999 curr_index = GSC_OUT_CURR_GET_INDEX(cfg); 1000 1001 for (i = curr_index; i < GSC_MAX_DST; i++) { 1002 if (!((cfg >> i) & 0x1)) { 1003 buf_id = i; 1004 break; 1005 } 1006 } 1007 1008 if (buf_id == GSC_MAX_DST) { 1009 DRM_ERROR("failed to get out buffer index.\n"); 1010 return -EINVAL; 1011 } 1012 1013 gsc_dst_set_buf_seq(ctx, buf_id, false); 1014 1015 DRM_DEBUG_KMS("cfg[0x%x]curr_index[%d]buf_id[%d]\n", cfg, 1016 curr_index, buf_id); 1017 1018 return buf_id; 1019 } 1020 1021 static irqreturn_t gsc_irq_handler(int irq, void *dev_id) 1022 { 1023 struct gsc_context *ctx = dev_id; 1024 u32 status; 1025 int err = 0; 1026 1027 DRM_DEBUG_KMS("gsc id[%d]\n", ctx->id); 1028 1029 status = gsc_read(GSC_IRQ); 1030 if (status & GSC_IRQ_STATUS_OR_IRQ) { 1031 dev_err(ctx->dev, "occurred overflow at %d, status 0x%x.\n", 1032 ctx->id, status); 1033 err = -EINVAL; 1034 } 1035 1036 if (status & GSC_IRQ_STATUS_OR_FRM_DONE) { 1037 int src_buf_id, dst_buf_id; 1038 1039 dev_dbg(ctx->dev, "occurred frame done at %d, status 0x%x.\n", 1040 ctx->id, status); 1041 1042 src_buf_id = gsc_get_src_buf_index(ctx); 1043 dst_buf_id = gsc_get_dst_buf_index(ctx); 1044 1045 DRM_DEBUG_KMS("buf_id_src[%d]buf_id_dst[%d]\n", src_buf_id, 1046 dst_buf_id); 1047 1048 if (src_buf_id < 0 || dst_buf_id < 0) 1049 err = -EINVAL; 1050 } 1051 1052 if (ctx->task) { 1053 struct exynos_drm_ipp_task *task = ctx->task; 1054 1055 ctx->task = NULL; 1056 pm_runtime_mark_last_busy(ctx->dev); 1057 pm_runtime_put_autosuspend(ctx->dev); 1058 exynos_drm_ipp_task_done(task, err); 1059 } 1060 1061 return IRQ_HANDLED; 1062 } 1063 1064 static int gsc_reset(struct gsc_context *ctx) 1065 { 1066 struct gsc_scaler *sc = &ctx->sc; 1067 int ret; 1068 1069 /* reset h/w block */ 1070 ret = gsc_sw_reset(ctx); 1071 if (ret < 0) { 1072 dev_err(ctx->dev, "failed to reset hardware.\n"); 1073 return ret; 1074 } 1075 1076 /* scaler setting */ 1077 memset(&ctx->sc, 0x0, sizeof(ctx->sc)); 1078 sc->range = true; 1079 1080 return 0; 1081 } 1082 1083 static void gsc_start(struct gsc_context *ctx) 1084 { 1085 u32 cfg; 1086 1087 gsc_handle_irq(ctx, true, false, true); 1088 1089 /* enable one shot */ 1090 cfg = gsc_read(GSC_ENABLE); 1091 cfg &= ~(GSC_ENABLE_ON_CLEAR_MASK | 1092 GSC_ENABLE_CLK_GATE_MODE_MASK); 1093 cfg |= GSC_ENABLE_ON_CLEAR_ONESHOT; 1094 gsc_write(cfg, GSC_ENABLE); 1095 1096 /* src dma memory */ 1097 cfg = gsc_read(GSC_IN_CON); 1098 cfg &= ~(GSC_IN_PATH_MASK | GSC_IN_LOCAL_SEL_MASK); 1099 cfg |= GSC_IN_PATH_MEMORY; 1100 gsc_write(cfg, GSC_IN_CON); 1101 1102 /* dst dma memory */ 1103 cfg = gsc_read(GSC_OUT_CON); 1104 cfg |= GSC_OUT_PATH_MEMORY; 1105 gsc_write(cfg, GSC_OUT_CON); 1106 1107 gsc_set_scaler(ctx, &ctx->sc); 1108 1109 cfg = gsc_read(GSC_ENABLE); 1110 cfg |= GSC_ENABLE_ON; 1111 gsc_write(cfg, GSC_ENABLE); 1112 } 1113 1114 static int gsc_commit(struct exynos_drm_ipp *ipp, 1115 struct exynos_drm_ipp_task *task) 1116 { 1117 struct gsc_context *ctx = container_of(ipp, struct gsc_context, ipp); 1118 int ret; 1119 1120 pm_runtime_get_sync(ctx->dev); 1121 ctx->task = task; 1122 1123 ret = gsc_reset(ctx); 1124 if (ret) { 1125 pm_runtime_put_autosuspend(ctx->dev); 1126 ctx->task = NULL; 1127 return ret; 1128 } 1129 1130 gsc_src_set_fmt(ctx, task->src.buf.fourcc, task->src.buf.modifier); 1131 gsc_src_set_transf(ctx, task->transform.rotation); 1132 gsc_src_set_size(ctx, &task->src); 1133 gsc_src_set_addr(ctx, 0, &task->src); 1134 gsc_dst_set_fmt(ctx, task->dst.buf.fourcc, task->dst.buf.modifier); 1135 gsc_dst_set_size(ctx, &task->dst); 1136 gsc_dst_set_addr(ctx, 0, &task->dst); 1137 gsc_set_prescaler(ctx, &ctx->sc, &task->src.rect, &task->dst.rect); 1138 gsc_start(ctx); 1139 1140 return 0; 1141 } 1142 1143 static void gsc_abort(struct exynos_drm_ipp *ipp, 1144 struct exynos_drm_ipp_task *task) 1145 { 1146 struct gsc_context *ctx = 1147 container_of(ipp, struct gsc_context, ipp); 1148 1149 gsc_reset(ctx); 1150 if (ctx->task) { 1151 struct exynos_drm_ipp_task *task = ctx->task; 1152 1153 ctx->task = NULL; 1154 pm_runtime_mark_last_busy(ctx->dev); 1155 pm_runtime_put_autosuspend(ctx->dev); 1156 exynos_drm_ipp_task_done(task, -EIO); 1157 } 1158 } 1159 1160 static struct exynos_drm_ipp_funcs ipp_funcs = { 1161 .commit = gsc_commit, 1162 .abort = gsc_abort, 1163 }; 1164 1165 static int gsc_bind(struct device *dev, struct device *master, void *data) 1166 { 1167 struct gsc_context *ctx = dev_get_drvdata(dev); 1168 struct drm_device *drm_dev = data; 1169 struct exynos_drm_ipp *ipp = &ctx->ipp; 1170 1171 ctx->drm_dev = drm_dev; 1172 exynos_drm_register_dma(drm_dev, dev); 1173 1174 exynos_drm_ipp_register(drm_dev, ipp, &ipp_funcs, 1175 DRM_EXYNOS_IPP_CAP_CROP | DRM_EXYNOS_IPP_CAP_ROTATE | 1176 DRM_EXYNOS_IPP_CAP_SCALE | DRM_EXYNOS_IPP_CAP_CONVERT, 1177 ctx->formats, ctx->num_formats, "gsc"); 1178 1179 dev_info(dev, "The exynos gscaler has been probed successfully\n"); 1180 1181 return 0; 1182 } 1183 1184 static void gsc_unbind(struct device *dev, struct device *master, 1185 void *data) 1186 { 1187 struct gsc_context *ctx = dev_get_drvdata(dev); 1188 struct drm_device *drm_dev = data; 1189 struct exynos_drm_ipp *ipp = &ctx->ipp; 1190 1191 exynos_drm_ipp_unregister(drm_dev, ipp); 1192 exynos_drm_unregister_dma(drm_dev, dev); 1193 } 1194 1195 static const struct component_ops gsc_component_ops = { 1196 .bind = gsc_bind, 1197 .unbind = gsc_unbind, 1198 }; 1199 1200 static const unsigned int gsc_formats[] = { 1201 DRM_FORMAT_ARGB8888, 1202 DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB565, DRM_FORMAT_BGRX8888, 1203 DRM_FORMAT_NV12, DRM_FORMAT_NV16, DRM_FORMAT_NV21, DRM_FORMAT_NV61, 1204 DRM_FORMAT_UYVY, DRM_FORMAT_VYUY, DRM_FORMAT_YUYV, DRM_FORMAT_YVYU, 1205 DRM_FORMAT_YUV420, DRM_FORMAT_YVU420, DRM_FORMAT_YUV422, 1206 }; 1207 1208 static const unsigned int gsc_tiled_formats[] = { 1209 DRM_FORMAT_NV12, DRM_FORMAT_NV21, 1210 }; 1211 1212 static int gsc_probe(struct platform_device *pdev) 1213 { 1214 struct device *dev = &pdev->dev; 1215 struct gsc_driverdata *driver_data; 1216 struct exynos_drm_ipp_formats *formats; 1217 struct gsc_context *ctx; 1218 struct resource *res; 1219 int num_formats, ret, i, j; 1220 1221 ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL); 1222 if (!ctx) 1223 return -ENOMEM; 1224 1225 driver_data = (struct gsc_driverdata *)of_device_get_match_data(dev); 1226 ctx->dev = dev; 1227 ctx->num_clocks = driver_data->num_clocks; 1228 ctx->clk_names = driver_data->clk_names; 1229 1230 /* construct formats/limits array */ 1231 num_formats = ARRAY_SIZE(gsc_formats) + ARRAY_SIZE(gsc_tiled_formats); 1232 formats = devm_kcalloc(dev, num_formats, sizeof(*formats), GFP_KERNEL); 1233 if (!formats) 1234 return -ENOMEM; 1235 1236 /* linear formats */ 1237 for (i = 0; i < ARRAY_SIZE(gsc_formats); i++) { 1238 formats[i].fourcc = gsc_formats[i]; 1239 formats[i].type = DRM_EXYNOS_IPP_FORMAT_SOURCE | 1240 DRM_EXYNOS_IPP_FORMAT_DESTINATION; 1241 formats[i].limits = driver_data->limits; 1242 formats[i].num_limits = driver_data->num_limits; 1243 } 1244 1245 /* tiled formats */ 1246 for (j = i, i = 0; i < ARRAY_SIZE(gsc_tiled_formats); j++, i++) { 1247 formats[j].fourcc = gsc_tiled_formats[i]; 1248 formats[j].modifier = DRM_FORMAT_MOD_SAMSUNG_16_16_TILE; 1249 formats[j].type = DRM_EXYNOS_IPP_FORMAT_SOURCE | 1250 DRM_EXYNOS_IPP_FORMAT_DESTINATION; 1251 formats[j].limits = driver_data->limits; 1252 formats[j].num_limits = driver_data->num_limits; 1253 } 1254 1255 ctx->formats = formats; 1256 ctx->num_formats = num_formats; 1257 1258 /* clock control */ 1259 for (i = 0; i < ctx->num_clocks; i++) { 1260 ctx->clocks[i] = devm_clk_get(dev, ctx->clk_names[i]); 1261 if (IS_ERR(ctx->clocks[i])) { 1262 dev_err(dev, "failed to get clock: %s\n", 1263 ctx->clk_names[i]); 1264 return PTR_ERR(ctx->clocks[i]); 1265 } 1266 } 1267 1268 /* resource memory */ 1269 ctx->regs_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1270 ctx->regs = devm_ioremap_resource(dev, ctx->regs_res); 1271 if (IS_ERR(ctx->regs)) 1272 return PTR_ERR(ctx->regs); 1273 1274 /* resource irq */ 1275 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 1276 if (!res) { 1277 dev_err(dev, "failed to request irq resource.\n"); 1278 return -ENOENT; 1279 } 1280 1281 ctx->irq = res->start; 1282 ret = devm_request_irq(dev, ctx->irq, gsc_irq_handler, 0, 1283 dev_name(dev), ctx); 1284 if (ret < 0) { 1285 dev_err(dev, "failed to request irq.\n"); 1286 return ret; 1287 } 1288 1289 /* context initailization */ 1290 ctx->id = pdev->id; 1291 1292 platform_set_drvdata(pdev, ctx); 1293 1294 pm_runtime_use_autosuspend(dev); 1295 pm_runtime_set_autosuspend_delay(dev, GSC_AUTOSUSPEND_DELAY); 1296 pm_runtime_enable(dev); 1297 1298 ret = component_add(dev, &gsc_component_ops); 1299 if (ret) 1300 goto err_pm_dis; 1301 1302 dev_info(dev, "drm gsc registered successfully.\n"); 1303 1304 return 0; 1305 1306 err_pm_dis: 1307 pm_runtime_dont_use_autosuspend(dev); 1308 pm_runtime_disable(dev); 1309 return ret; 1310 } 1311 1312 static int gsc_remove(struct platform_device *pdev) 1313 { 1314 struct device *dev = &pdev->dev; 1315 1316 pm_runtime_dont_use_autosuspend(dev); 1317 pm_runtime_disable(dev); 1318 1319 return 0; 1320 } 1321 1322 static int __maybe_unused gsc_runtime_suspend(struct device *dev) 1323 { 1324 struct gsc_context *ctx = get_gsc_context(dev); 1325 int i; 1326 1327 DRM_DEBUG_KMS("id[%d]\n", ctx->id); 1328 1329 for (i = ctx->num_clocks - 1; i >= 0; i--) 1330 clk_disable_unprepare(ctx->clocks[i]); 1331 1332 return 0; 1333 } 1334 1335 static int __maybe_unused gsc_runtime_resume(struct device *dev) 1336 { 1337 struct gsc_context *ctx = get_gsc_context(dev); 1338 int i, ret; 1339 1340 DRM_DEBUG_KMS("id[%d]\n", ctx->id); 1341 1342 for (i = 0; i < ctx->num_clocks; i++) { 1343 ret = clk_prepare_enable(ctx->clocks[i]); 1344 if (ret) { 1345 while (--i > 0) 1346 clk_disable_unprepare(ctx->clocks[i]); 1347 return ret; 1348 } 1349 } 1350 return 0; 1351 } 1352 1353 static const struct dev_pm_ops gsc_pm_ops = { 1354 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1355 pm_runtime_force_resume) 1356 SET_RUNTIME_PM_OPS(gsc_runtime_suspend, gsc_runtime_resume, NULL) 1357 }; 1358 1359 static const struct drm_exynos_ipp_limit gsc_5250_limits[] = { 1360 { IPP_SIZE_LIMIT(BUFFER, .h = { 32, 4800, 8 }, .v = { 16, 3344, 8 }) }, 1361 { IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 2 }, .v = { 8, 3344, 2 }) }, 1362 { IPP_SIZE_LIMIT(ROTATED, .h = { 32, 2048 }, .v = { 16, 2048 }) }, 1363 { IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 }, 1364 .v = { (1 << 16) / 16, (1 << 16) * 8 }) }, 1365 }; 1366 1367 static const struct drm_exynos_ipp_limit gsc_5420_limits[] = { 1368 { IPP_SIZE_LIMIT(BUFFER, .h = { 32, 4800, 8 }, .v = { 16, 3344, 8 }) }, 1369 { IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 2 }, .v = { 8, 3344, 2 }) }, 1370 { IPP_SIZE_LIMIT(ROTATED, .h = { 16, 2016 }, .v = { 8, 2016 }) }, 1371 { IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 }, 1372 .v = { (1 << 16) / 16, (1 << 16) * 8 }) }, 1373 }; 1374 1375 static const struct drm_exynos_ipp_limit gsc_5433_limits[] = { 1376 { IPP_SIZE_LIMIT(BUFFER, .h = { 32, 8191, 16 }, .v = { 16, 8191, 2 }) }, 1377 { IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 1 }, .v = { 8, 3344, 1 }) }, 1378 { IPP_SIZE_LIMIT(ROTATED, .h = { 32, 2047 }, .v = { 8, 8191 }) }, 1379 { IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 }, 1380 .v = { (1 << 16) / 16, (1 << 16) * 8 }) }, 1381 }; 1382 1383 static struct gsc_driverdata gsc_exynos5250_drvdata = { 1384 .clk_names = {"gscl"}, 1385 .num_clocks = 1, 1386 .limits = gsc_5250_limits, 1387 .num_limits = ARRAY_SIZE(gsc_5250_limits), 1388 }; 1389 1390 static struct gsc_driverdata gsc_exynos5420_drvdata = { 1391 .clk_names = {"gscl"}, 1392 .num_clocks = 1, 1393 .limits = gsc_5420_limits, 1394 .num_limits = ARRAY_SIZE(gsc_5420_limits), 1395 }; 1396 1397 static struct gsc_driverdata gsc_exynos5433_drvdata = { 1398 .clk_names = {"pclk", "aclk", "aclk_xiu", "aclk_gsclbend"}, 1399 .num_clocks = 4, 1400 .limits = gsc_5433_limits, 1401 .num_limits = ARRAY_SIZE(gsc_5433_limits), 1402 }; 1403 1404 static const struct of_device_id exynos_drm_gsc_of_match[] = { 1405 { 1406 .compatible = "samsung,exynos5-gsc", 1407 .data = &gsc_exynos5250_drvdata, 1408 }, { 1409 .compatible = "samsung,exynos5250-gsc", 1410 .data = &gsc_exynos5250_drvdata, 1411 }, { 1412 .compatible = "samsung,exynos5420-gsc", 1413 .data = &gsc_exynos5420_drvdata, 1414 }, { 1415 .compatible = "samsung,exynos5433-gsc", 1416 .data = &gsc_exynos5433_drvdata, 1417 }, { 1418 }, 1419 }; 1420 MODULE_DEVICE_TABLE(of, exynos_drm_gsc_of_match); 1421 1422 struct platform_driver gsc_driver = { 1423 .probe = gsc_probe, 1424 .remove = gsc_remove, 1425 .driver = { 1426 .name = "exynos-drm-gsc", 1427 .owner = THIS_MODULE, 1428 .pm = &gsc_pm_ops, 1429 .of_match_table = of_match_ptr(exynos_drm_gsc_of_match), 1430 }, 1431 }; 1432