xref: /openbmc/linux/drivers/gpu/drm/exynos/exynos_drm_gsc.c (revision a0ae2562c6c4b2721d9fddba63b7286c13517d9f)
1 /*
2  * Copyright (C) 2012 Samsung Electronics Co.Ltd
3  * Authors:
4  *	Eunchul Kim <chulspro.kim@samsung.com>
5  *	Jinyoung Jeon <jy0.jeon@samsung.com>
6  *	Sangmin Lee <lsmin.lee@samsung.com>
7  *
8  * This program is free software; you can redistribute  it and/or modify it
9  * under  the terms of  the GNU General  Public License as published by the
10  * Free Software Foundation;  either version 2 of the  License, or (at your
11  * option) any later version.
12  *
13  */
14 #include <linux/kernel.h>
15 #include <linux/component.h>
16 #include <linux/platform_device.h>
17 #include <linux/clk.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/mfd/syscon.h>
20 #include <linux/of_device.h>
21 #include <linux/regmap.h>
22 
23 #include <drm/drmP.h>
24 #include <drm/exynos_drm.h>
25 #include "regs-gsc.h"
26 #include "exynos_drm_drv.h"
27 #include "exynos_drm_iommu.h"
28 #include "exynos_drm_ipp.h"
29 
30 /*
31  * GSC stands for General SCaler and
32  * supports image scaler/rotator and input/output DMA operations.
33  * input DMA reads image data from the memory.
34  * output DMA writes image data to memory.
35  * GSC supports image rotation and image effect functions.
36  */
37 
38 
39 #define GSC_MAX_CLOCKS	8
40 #define GSC_MAX_SRC		4
41 #define GSC_MAX_DST		16
42 #define GSC_RESET_TIMEOUT	50
43 #define GSC_BUF_STOP	1
44 #define GSC_BUF_START	2
45 #define GSC_REG_SZ		16
46 #define GSC_WIDTH_ITU_709	1280
47 #define GSC_SC_UP_MAX_RATIO		65536
48 #define GSC_SC_DOWN_RATIO_7_8		74898
49 #define GSC_SC_DOWN_RATIO_6_8		87381
50 #define GSC_SC_DOWN_RATIO_5_8		104857
51 #define GSC_SC_DOWN_RATIO_4_8		131072
52 #define GSC_SC_DOWN_RATIO_3_8		174762
53 #define GSC_SC_DOWN_RATIO_2_8		262144
54 #define GSC_CROP_MAX	8192
55 #define GSC_CROP_MIN	32
56 #define GSC_SCALE_MAX	4224
57 #define GSC_SCALE_MIN	32
58 #define GSC_COEF_RATIO	7
59 #define GSC_COEF_PHASE	9
60 #define GSC_COEF_ATTR	16
61 #define GSC_COEF_H_8T	8
62 #define GSC_COEF_V_4T	4
63 #define GSC_COEF_DEPTH	3
64 #define GSC_AUTOSUSPEND_DELAY		2000
65 
66 #define get_gsc_context(dev)	platform_get_drvdata(to_platform_device(dev))
67 #define gsc_read(offset)		readl(ctx->regs + (offset))
68 #define gsc_write(cfg, offset)	writel(cfg, ctx->regs + (offset))
69 
70 /*
71  * A structure of scaler.
72  *
73  * @range: narrow, wide.
74  * @pre_shfactor: pre sclaer shift factor.
75  * @pre_hratio: horizontal ratio of the prescaler.
76  * @pre_vratio: vertical ratio of the prescaler.
77  * @main_hratio: the main scaler's horizontal ratio.
78  * @main_vratio: the main scaler's vertical ratio.
79  */
80 struct gsc_scaler {
81 	bool	range;
82 	u32	pre_shfactor;
83 	u32	pre_hratio;
84 	u32	pre_vratio;
85 	unsigned long main_hratio;
86 	unsigned long main_vratio;
87 };
88 
89 /*
90  * A structure of gsc context.
91  *
92  * @regs_res: register resources.
93  * @regs: memory mapped io registers.
94  * @gsc_clk: gsc gate clock.
95  * @sc: scaler infomations.
96  * @id: gsc id.
97  * @irq: irq number.
98  * @rotation: supports rotation of src.
99  */
100 struct gsc_context {
101 	struct exynos_drm_ipp ipp;
102 	struct drm_device *drm_dev;
103 	struct device	*dev;
104 	struct exynos_drm_ipp_task	*task;
105 	struct exynos_drm_ipp_formats	*formats;
106 	unsigned int			num_formats;
107 
108 	struct resource	*regs_res;
109 	void __iomem	*regs;
110 	const char	**clk_names;
111 	struct clk	*clocks[GSC_MAX_CLOCKS];
112 	int		num_clocks;
113 	struct gsc_scaler	sc;
114 	int	id;
115 	int	irq;
116 	bool	rotation;
117 };
118 
119 /**
120  * struct gsc_driverdata - per device type driver data for init time.
121  *
122  * @limits: picture size limits array
123  * @clk_names: names of clocks needed by this variant
124  * @num_clocks: the number of clocks needed by this variant
125  */
126 struct gsc_driverdata {
127 	const struct drm_exynos_ipp_limit *limits;
128 	int		num_limits;
129 	const char	*clk_names[GSC_MAX_CLOCKS];
130 	int		num_clocks;
131 };
132 
133 /* 8-tap Filter Coefficient */
134 static const int h_coef_8t[GSC_COEF_RATIO][GSC_COEF_ATTR][GSC_COEF_H_8T] = {
135 	{	/* Ratio <= 65536 (~8:8) */
136 		{  0,  0,   0, 128,   0,   0,  0,  0 },
137 		{ -1,  2,  -6, 127,   7,  -2,  1,  0 },
138 		{ -1,  4, -12, 125,  16,  -5,  1,  0 },
139 		{ -1,  5, -15, 120,  25,  -8,  2,  0 },
140 		{ -1,  6, -18, 114,  35, -10,  3, -1 },
141 		{ -1,  6, -20, 107,  46, -13,  4, -1 },
142 		{ -2,  7, -21,  99,  57, -16,  5, -1 },
143 		{ -1,  6, -20,  89,  68, -18,  5, -1 },
144 		{ -1,  6, -20,  79,  79, -20,  6, -1 },
145 		{ -1,  5, -18,  68,  89, -20,  6, -1 },
146 		{ -1,  5, -16,  57,  99, -21,  7, -2 },
147 		{ -1,  4, -13,  46, 107, -20,  6, -1 },
148 		{ -1,  3, -10,  35, 114, -18,  6, -1 },
149 		{  0,  2,  -8,  25, 120, -15,  5, -1 },
150 		{  0,  1,  -5,  16, 125, -12,  4, -1 },
151 		{  0,  1,  -2,   7, 127,  -6,  2, -1 }
152 	}, {	/* 65536 < Ratio <= 74898 (~8:7) */
153 		{  3, -8,  14, 111,  13,  -8,  3,  0 },
154 		{  2, -6,   7, 112,  21, -10,  3, -1 },
155 		{  2, -4,   1, 110,  28, -12,  4, -1 },
156 		{  1, -2,  -3, 106,  36, -13,  4, -1 },
157 		{  1, -1,  -7, 103,  44, -15,  4, -1 },
158 		{  1,  1, -11,  97,  53, -16,  4, -1 },
159 		{  0,  2, -13,  91,  61, -16,  4, -1 },
160 		{  0,  3, -15,  85,  69, -17,  4, -1 },
161 		{  0,  3, -16,  77,  77, -16,  3,  0 },
162 		{ -1,  4, -17,  69,  85, -15,  3,  0 },
163 		{ -1,  4, -16,  61,  91, -13,  2,  0 },
164 		{ -1,  4, -16,  53,  97, -11,  1,  1 },
165 		{ -1,  4, -15,  44, 103,  -7, -1,  1 },
166 		{ -1,  4, -13,  36, 106,  -3, -2,  1 },
167 		{ -1,  4, -12,  28, 110,   1, -4,  2 },
168 		{ -1,  3, -10,  21, 112,   7, -6,  2 }
169 	}, {	/* 74898 < Ratio <= 87381 (~8:6) */
170 		{ 2, -11,  25,  96, 25, -11,   2,  0 },
171 		{ 2, -10,  19,  96, 31, -12,   2,  0 },
172 		{ 2,  -9,  14,  94, 37, -12,   2,  0 },
173 		{ 2,  -8,  10,  92, 43, -12,   1,  0 },
174 		{ 2,  -7,   5,  90, 49, -12,   1,  0 },
175 		{ 2,  -5,   1,  86, 55, -12,   0,  1 },
176 		{ 2,  -4,  -2,  82, 61, -11,  -1,  1 },
177 		{ 1,  -3,  -5,  77, 67,  -9,  -1,  1 },
178 		{ 1,  -2,  -7,  72, 72,  -7,  -2,  1 },
179 		{ 1,  -1,  -9,  67, 77,  -5,  -3,  1 },
180 		{ 1,  -1, -11,  61, 82,  -2,  -4,  2 },
181 		{ 1,   0, -12,  55, 86,   1,  -5,  2 },
182 		{ 0,   1, -12,  49, 90,   5,  -7,  2 },
183 		{ 0,   1, -12,  43, 92,  10,  -8,  2 },
184 		{ 0,   2, -12,  37, 94,  14,  -9,  2 },
185 		{ 0,   2, -12,  31, 96,  19, -10,  2 }
186 	}, {	/* 87381 < Ratio <= 104857 (~8:5) */
187 		{ -1,  -8, 33,  80, 33,  -8,  -1,  0 },
188 		{ -1,  -8, 28,  80, 37,  -7,  -2,  1 },
189 		{  0,  -8, 24,  79, 41,  -7,  -2,  1 },
190 		{  0,  -8, 20,  78, 46,  -6,  -3,  1 },
191 		{  0,  -8, 16,  76, 50,  -4,  -3,  1 },
192 		{  0,  -7, 13,  74, 54,  -3,  -4,  1 },
193 		{  1,  -7, 10,  71, 58,  -1,  -5,  1 },
194 		{  1,  -6,  6,  68, 62,   1,  -5,  1 },
195 		{  1,  -6,  4,  65, 65,   4,  -6,  1 },
196 		{  1,  -5,  1,  62, 68,   6,  -6,  1 },
197 		{  1,  -5, -1,  58, 71,  10,  -7,  1 },
198 		{  1,  -4, -3,  54, 74,  13,  -7,  0 },
199 		{  1,  -3, -4,  50, 76,  16,  -8,  0 },
200 		{  1,  -3, -6,  46, 78,  20,  -8,  0 },
201 		{  1,  -2, -7,  41, 79,  24,  -8,  0 },
202 		{  1,  -2, -7,  37, 80,  28,  -8, -1 }
203 	}, {	/* 104857 < Ratio <= 131072 (~8:4) */
204 		{ -3,   0, 35,  64, 35,   0,  -3,  0 },
205 		{ -3,  -1, 32,  64, 38,   1,  -3,  0 },
206 		{ -2,  -2, 29,  63, 41,   2,  -3,  0 },
207 		{ -2,  -3, 27,  63, 43,   4,  -4,  0 },
208 		{ -2,  -3, 24,  61, 46,   6,  -4,  0 },
209 		{ -2,  -3, 21,  60, 49,   7,  -4,  0 },
210 		{ -1,  -4, 19,  59, 51,   9,  -4, -1 },
211 		{ -1,  -4, 16,  57, 53,  12,  -4, -1 },
212 		{ -1,  -4, 14,  55, 55,  14,  -4, -1 },
213 		{ -1,  -4, 12,  53, 57,  16,  -4, -1 },
214 		{ -1,  -4,  9,  51, 59,  19,  -4, -1 },
215 		{  0,  -4,  7,  49, 60,  21,  -3, -2 },
216 		{  0,  -4,  6,  46, 61,  24,  -3, -2 },
217 		{  0,  -4,  4,  43, 63,  27,  -3, -2 },
218 		{  0,  -3,  2,  41, 63,  29,  -2, -2 },
219 		{  0,  -3,  1,  38, 64,  32,  -1, -3 }
220 	}, {	/* 131072 < Ratio <= 174762 (~8:3) */
221 		{ -1,   8, 33,  48, 33,   8,  -1,  0 },
222 		{ -1,   7, 31,  49, 35,   9,  -1, -1 },
223 		{ -1,   6, 30,  49, 36,  10,  -1, -1 },
224 		{ -1,   5, 28,  48, 38,  12,  -1, -1 },
225 		{ -1,   4, 26,  48, 39,  13,   0, -1 },
226 		{ -1,   3, 24,  47, 41,  15,   0, -1 },
227 		{ -1,   2, 23,  47, 42,  16,   0, -1 },
228 		{ -1,   2, 21,  45, 43,  18,   1, -1 },
229 		{ -1,   1, 19,  45, 45,  19,   1, -1 },
230 		{ -1,   1, 18,  43, 45,  21,   2, -1 },
231 		{ -1,   0, 16,  42, 47,  23,   2, -1 },
232 		{ -1,   0, 15,  41, 47,  24,   3, -1 },
233 		{ -1,   0, 13,  39, 48,  26,   4, -1 },
234 		{ -1,  -1, 12,  38, 48,  28,   5, -1 },
235 		{ -1,  -1, 10,  36, 49,  30,   6, -1 },
236 		{ -1,  -1,  9,  35, 49,  31,   7, -1 }
237 	}, {	/* 174762 < Ratio <= 262144 (~8:2) */
238 		{  2,  13, 30,  38, 30,  13,   2,  0 },
239 		{  2,  12, 29,  38, 30,  14,   3,  0 },
240 		{  2,  11, 28,  38, 31,  15,   3,  0 },
241 		{  2,  10, 26,  38, 32,  16,   4,  0 },
242 		{  1,  10, 26,  37, 33,  17,   4,  0 },
243 		{  1,   9, 24,  37, 34,  18,   5,  0 },
244 		{  1,   8, 24,  37, 34,  19,   5,  0 },
245 		{  1,   7, 22,  36, 35,  20,   6,  1 },
246 		{  1,   6, 21,  36, 36,  21,   6,  1 },
247 		{  1,   6, 20,  35, 36,  22,   7,  1 },
248 		{  0,   5, 19,  34, 37,  24,   8,  1 },
249 		{  0,   5, 18,  34, 37,  24,   9,  1 },
250 		{  0,   4, 17,  33, 37,  26,  10,  1 },
251 		{  0,   4, 16,  32, 38,  26,  10,  2 },
252 		{  0,   3, 15,  31, 38,  28,  11,  2 },
253 		{  0,   3, 14,  30, 38,  29,  12,  2 }
254 	}
255 };
256 
257 /* 4-tap Filter Coefficient */
258 static const int v_coef_4t[GSC_COEF_RATIO][GSC_COEF_ATTR][GSC_COEF_V_4T] = {
259 	{	/* Ratio <= 65536 (~8:8) */
260 		{  0, 128,   0,  0 },
261 		{ -4, 127,   5,  0 },
262 		{ -6, 124,  11, -1 },
263 		{ -8, 118,  19, -1 },
264 		{ -8, 111,  27, -2 },
265 		{ -8, 102,  37, -3 },
266 		{ -8,  92,  48, -4 },
267 		{ -7,  81,  59, -5 },
268 		{ -6,  70,  70, -6 },
269 		{ -5,  59,  81, -7 },
270 		{ -4,  48,  92, -8 },
271 		{ -3,  37, 102, -8 },
272 		{ -2,  27, 111, -8 },
273 		{ -1,  19, 118, -8 },
274 		{ -1,  11, 124, -6 },
275 		{  0,   5, 127, -4 }
276 	}, {	/* 65536 < Ratio <= 74898 (~8:7) */
277 		{  8, 112,   8,  0 },
278 		{  4, 111,  14, -1 },
279 		{  1, 109,  20, -2 },
280 		{ -2, 105,  27, -2 },
281 		{ -3, 100,  34, -3 },
282 		{ -5,  93,  43, -3 },
283 		{ -5,  86,  51, -4 },
284 		{ -5,  77,  60, -4 },
285 		{ -5,  69,  69, -5 },
286 		{ -4,  60,  77, -5 },
287 		{ -4,  51,  86, -5 },
288 		{ -3,  43,  93, -5 },
289 		{ -3,  34, 100, -3 },
290 		{ -2,  27, 105, -2 },
291 		{ -2,  20, 109,  1 },
292 		{ -1,  14, 111,  4 }
293 	}, {	/* 74898 < Ratio <= 87381 (~8:6) */
294 		{ 16,  96,  16,  0 },
295 		{ 12,  97,  21, -2 },
296 		{  8,  96,  26, -2 },
297 		{  5,  93,  32, -2 },
298 		{  2,  89,  39, -2 },
299 		{  0,  84,  46, -2 },
300 		{ -1,  79,  53, -3 },
301 		{ -2,  73,  59, -2 },
302 		{ -2,  66,  66, -2 },
303 		{ -2,  59,  73, -2 },
304 		{ -3,  53,  79, -1 },
305 		{ -2,  46,  84,  0 },
306 		{ -2,  39,  89,  2 },
307 		{ -2,  32,  93,  5 },
308 		{ -2,  26,  96,  8 },
309 		{ -2,  21,  97, 12 }
310 	}, {	/* 87381 < Ratio <= 104857 (~8:5) */
311 		{ 22,  84,  22,  0 },
312 		{ 18,  85,  26, -1 },
313 		{ 14,  84,  31, -1 },
314 		{ 11,  82,  36, -1 },
315 		{  8,  79,  42, -1 },
316 		{  6,  76,  47, -1 },
317 		{  4,  72,  52,  0 },
318 		{  2,  68,  58,  0 },
319 		{  1,  63,  63,  1 },
320 		{  0,  58,  68,  2 },
321 		{  0,  52,  72,  4 },
322 		{ -1,  47,  76,  6 },
323 		{ -1,  42,  79,  8 },
324 		{ -1,  36,  82, 11 },
325 		{ -1,  31,  84, 14 },
326 		{ -1,  26,  85, 18 }
327 	}, {	/* 104857 < Ratio <= 131072 (~8:4) */
328 		{ 26,  76,  26,  0 },
329 		{ 22,  76,  30,  0 },
330 		{ 19,  75,  34,  0 },
331 		{ 16,  73,  38,  1 },
332 		{ 13,  71,  43,  1 },
333 		{ 10,  69,  47,  2 },
334 		{  8,  66,  51,  3 },
335 		{  6,  63,  55,  4 },
336 		{  5,  59,  59,  5 },
337 		{  4,  55,  63,  6 },
338 		{  3,  51,  66,  8 },
339 		{  2,  47,  69, 10 },
340 		{  1,  43,  71, 13 },
341 		{  1,  38,  73, 16 },
342 		{  0,  34,  75, 19 },
343 		{  0,  30,  76, 22 }
344 	}, {	/* 131072 < Ratio <= 174762 (~8:3) */
345 		{ 29,  70,  29,  0 },
346 		{ 26,  68,  32,  2 },
347 		{ 23,  67,  36,  2 },
348 		{ 20,  66,  39,  3 },
349 		{ 17,  65,  43,  3 },
350 		{ 15,  63,  46,  4 },
351 		{ 12,  61,  50,  5 },
352 		{ 10,  58,  53,  7 },
353 		{  8,  56,  56,  8 },
354 		{  7,  53,  58, 10 },
355 		{  5,  50,  61, 12 },
356 		{  4,  46,  63, 15 },
357 		{  3,  43,  65, 17 },
358 		{  3,  39,  66, 20 },
359 		{  2,  36,  67, 23 },
360 		{  2,  32,  68, 26 }
361 	}, {	/* 174762 < Ratio <= 262144 (~8:2) */
362 		{ 32,  64,  32,  0 },
363 		{ 28,  63,  34,  3 },
364 		{ 25,  62,  37,  4 },
365 		{ 22,  62,  40,  4 },
366 		{ 19,  61,  43,  5 },
367 		{ 17,  59,  46,  6 },
368 		{ 15,  58,  48,  7 },
369 		{ 13,  55,  51,  9 },
370 		{ 11,  53,  53, 11 },
371 		{  9,  51,  55, 13 },
372 		{  7,  48,  58, 15 },
373 		{  6,  46,  59, 17 },
374 		{  5,  43,  61, 19 },
375 		{  4,  40,  62, 22 },
376 		{  4,  37,  62, 25 },
377 		{  3,  34,  63, 28 }
378 	}
379 };
380 
381 static int gsc_sw_reset(struct gsc_context *ctx)
382 {
383 	u32 cfg;
384 	int count = GSC_RESET_TIMEOUT;
385 
386 	/* s/w reset */
387 	cfg = (GSC_SW_RESET_SRESET);
388 	gsc_write(cfg, GSC_SW_RESET);
389 
390 	/* wait s/w reset complete */
391 	while (count--) {
392 		cfg = gsc_read(GSC_SW_RESET);
393 		if (!cfg)
394 			break;
395 		usleep_range(1000, 2000);
396 	}
397 
398 	if (cfg) {
399 		DRM_ERROR("failed to reset gsc h/w.\n");
400 		return -EBUSY;
401 	}
402 
403 	/* reset sequence */
404 	cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK);
405 	cfg |= (GSC_IN_BASE_ADDR_MASK |
406 		GSC_IN_BASE_ADDR_PINGPONG(0));
407 	gsc_write(cfg, GSC_IN_BASE_ADDR_Y_MASK);
408 	gsc_write(cfg, GSC_IN_BASE_ADDR_CB_MASK);
409 	gsc_write(cfg, GSC_IN_BASE_ADDR_CR_MASK);
410 
411 	cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK);
412 	cfg |= (GSC_OUT_BASE_ADDR_MASK |
413 		GSC_OUT_BASE_ADDR_PINGPONG(0));
414 	gsc_write(cfg, GSC_OUT_BASE_ADDR_Y_MASK);
415 	gsc_write(cfg, GSC_OUT_BASE_ADDR_CB_MASK);
416 	gsc_write(cfg, GSC_OUT_BASE_ADDR_CR_MASK);
417 
418 	return 0;
419 }
420 
421 static void gsc_handle_irq(struct gsc_context *ctx, bool enable,
422 		bool overflow, bool done)
423 {
424 	u32 cfg;
425 
426 	DRM_DEBUG_KMS("enable[%d]overflow[%d]level[%d]\n",
427 			enable, overflow, done);
428 
429 	cfg = gsc_read(GSC_IRQ);
430 	cfg |= (GSC_IRQ_OR_MASK | GSC_IRQ_FRMDONE_MASK);
431 
432 	if (enable)
433 		cfg |= GSC_IRQ_ENABLE;
434 	else
435 		cfg &= ~GSC_IRQ_ENABLE;
436 
437 	if (overflow)
438 		cfg &= ~GSC_IRQ_OR_MASK;
439 	else
440 		cfg |= GSC_IRQ_OR_MASK;
441 
442 	if (done)
443 		cfg &= ~GSC_IRQ_FRMDONE_MASK;
444 	else
445 		cfg |= GSC_IRQ_FRMDONE_MASK;
446 
447 	gsc_write(cfg, GSC_IRQ);
448 }
449 
450 
451 static void gsc_src_set_fmt(struct gsc_context *ctx, u32 fmt)
452 {
453 	u32 cfg;
454 
455 	DRM_DEBUG_KMS("fmt[0x%x]\n", fmt);
456 
457 	cfg = gsc_read(GSC_IN_CON);
458 	cfg &= ~(GSC_IN_RGB_TYPE_MASK | GSC_IN_YUV422_1P_ORDER_MASK |
459 		 GSC_IN_CHROMA_ORDER_MASK | GSC_IN_FORMAT_MASK |
460 		 GSC_IN_TILE_TYPE_MASK | GSC_IN_TILE_MODE |
461 		 GSC_IN_CHROM_STRIDE_SEL_MASK | GSC_IN_RB_SWAP_MASK);
462 
463 	switch (fmt) {
464 	case DRM_FORMAT_RGB565:
465 		cfg |= GSC_IN_RGB565;
466 		break;
467 	case DRM_FORMAT_XRGB8888:
468 	case DRM_FORMAT_ARGB8888:
469 		cfg |= GSC_IN_XRGB8888;
470 		break;
471 	case DRM_FORMAT_BGRX8888:
472 		cfg |= (GSC_IN_XRGB8888 | GSC_IN_RB_SWAP);
473 		break;
474 	case DRM_FORMAT_YUYV:
475 		cfg |= (GSC_IN_YUV422_1P |
476 			GSC_IN_YUV422_1P_ORDER_LSB_Y |
477 			GSC_IN_CHROMA_ORDER_CBCR);
478 		break;
479 	case DRM_FORMAT_YVYU:
480 		cfg |= (GSC_IN_YUV422_1P |
481 			GSC_IN_YUV422_1P_ORDER_LSB_Y |
482 			GSC_IN_CHROMA_ORDER_CRCB);
483 		break;
484 	case DRM_FORMAT_UYVY:
485 		cfg |= (GSC_IN_YUV422_1P |
486 			GSC_IN_YUV422_1P_OEDER_LSB_C |
487 			GSC_IN_CHROMA_ORDER_CBCR);
488 		break;
489 	case DRM_FORMAT_VYUY:
490 		cfg |= (GSC_IN_YUV422_1P |
491 			GSC_IN_YUV422_1P_OEDER_LSB_C |
492 			GSC_IN_CHROMA_ORDER_CRCB);
493 		break;
494 	case DRM_FORMAT_NV21:
495 	case DRM_FORMAT_NV61:
496 		cfg |= (GSC_IN_CHROMA_ORDER_CRCB |
497 			GSC_IN_YUV420_2P);
498 		break;
499 	case DRM_FORMAT_YUV422:
500 		cfg |= GSC_IN_YUV422_3P;
501 		break;
502 	case DRM_FORMAT_YUV420:
503 	case DRM_FORMAT_YVU420:
504 		cfg |= GSC_IN_YUV420_3P;
505 		break;
506 	case DRM_FORMAT_NV12:
507 	case DRM_FORMAT_NV16:
508 		cfg |= (GSC_IN_CHROMA_ORDER_CBCR |
509 			GSC_IN_YUV420_2P);
510 		break;
511 	}
512 
513 	gsc_write(cfg, GSC_IN_CON);
514 }
515 
516 static void gsc_src_set_transf(struct gsc_context *ctx, unsigned int rotation)
517 {
518 	unsigned int degree = rotation & DRM_MODE_ROTATE_MASK;
519 	u32 cfg;
520 
521 	cfg = gsc_read(GSC_IN_CON);
522 	cfg &= ~GSC_IN_ROT_MASK;
523 
524 	switch (degree) {
525 	case DRM_MODE_ROTATE_0:
526 		if (rotation & DRM_MODE_REFLECT_Y)
527 			cfg |= GSC_IN_ROT_XFLIP;
528 		if (rotation & DRM_MODE_REFLECT_X)
529 			cfg |= GSC_IN_ROT_YFLIP;
530 		break;
531 	case DRM_MODE_ROTATE_90:
532 		cfg |= GSC_IN_ROT_90;
533 		if (rotation & DRM_MODE_REFLECT_Y)
534 			cfg |= GSC_IN_ROT_XFLIP;
535 		if (rotation & DRM_MODE_REFLECT_X)
536 			cfg |= GSC_IN_ROT_YFLIP;
537 		break;
538 	case DRM_MODE_ROTATE_180:
539 		cfg |= GSC_IN_ROT_180;
540 		if (rotation & DRM_MODE_REFLECT_Y)
541 			cfg &= ~GSC_IN_ROT_XFLIP;
542 		if (rotation & DRM_MODE_REFLECT_X)
543 			cfg &= ~GSC_IN_ROT_YFLIP;
544 		break;
545 	case DRM_MODE_ROTATE_270:
546 		cfg |= GSC_IN_ROT_270;
547 		if (rotation & DRM_MODE_REFLECT_Y)
548 			cfg &= ~GSC_IN_ROT_XFLIP;
549 		if (rotation & DRM_MODE_REFLECT_X)
550 			cfg &= ~GSC_IN_ROT_YFLIP;
551 		break;
552 	}
553 
554 	gsc_write(cfg, GSC_IN_CON);
555 
556 	ctx->rotation = (cfg & GSC_IN_ROT_90) ? 1 : 0;
557 }
558 
559 static void gsc_src_set_size(struct gsc_context *ctx,
560 			     struct exynos_drm_ipp_buffer *buf)
561 {
562 	struct gsc_scaler *sc = &ctx->sc;
563 	u32 cfg;
564 
565 	/* pixel offset */
566 	cfg = (GSC_SRCIMG_OFFSET_X(buf->rect.x) |
567 		GSC_SRCIMG_OFFSET_Y(buf->rect.y));
568 	gsc_write(cfg, GSC_SRCIMG_OFFSET);
569 
570 	/* cropped size */
571 	cfg = (GSC_CROPPED_WIDTH(buf->rect.w) |
572 		GSC_CROPPED_HEIGHT(buf->rect.h));
573 	gsc_write(cfg, GSC_CROPPED_SIZE);
574 
575 	/* original size */
576 	cfg = gsc_read(GSC_SRCIMG_SIZE);
577 	cfg &= ~(GSC_SRCIMG_HEIGHT_MASK |
578 		GSC_SRCIMG_WIDTH_MASK);
579 
580 	cfg |= (GSC_SRCIMG_WIDTH(buf->buf.width) |
581 		GSC_SRCIMG_HEIGHT(buf->buf.height));
582 
583 	gsc_write(cfg, GSC_SRCIMG_SIZE);
584 
585 	cfg = gsc_read(GSC_IN_CON);
586 	cfg &= ~GSC_IN_RGB_TYPE_MASK;
587 
588 	if (buf->rect.w >= GSC_WIDTH_ITU_709)
589 		if (sc->range)
590 			cfg |= GSC_IN_RGB_HD_WIDE;
591 		else
592 			cfg |= GSC_IN_RGB_HD_NARROW;
593 	else
594 		if (sc->range)
595 			cfg |= GSC_IN_RGB_SD_WIDE;
596 		else
597 			cfg |= GSC_IN_RGB_SD_NARROW;
598 
599 	gsc_write(cfg, GSC_IN_CON);
600 }
601 
602 static void gsc_src_set_buf_seq(struct gsc_context *ctx, u32 buf_id,
603 			       bool enqueue)
604 {
605 	bool masked = !enqueue;
606 	u32 cfg;
607 	u32 mask = 0x00000001 << buf_id;
608 
609 	/* mask register set */
610 	cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK);
611 
612 	/* sequence id */
613 	cfg &= ~mask;
614 	cfg |= masked << buf_id;
615 	gsc_write(cfg, GSC_IN_BASE_ADDR_Y_MASK);
616 	gsc_write(cfg, GSC_IN_BASE_ADDR_CB_MASK);
617 	gsc_write(cfg, GSC_IN_BASE_ADDR_CR_MASK);
618 }
619 
620 static void gsc_src_set_addr(struct gsc_context *ctx, u32 buf_id,
621 			    struct exynos_drm_ipp_buffer *buf)
622 {
623 	/* address register set */
624 	gsc_write(buf->dma_addr[0], GSC_IN_BASE_ADDR_Y(buf_id));
625 	gsc_write(buf->dma_addr[1], GSC_IN_BASE_ADDR_CB(buf_id));
626 	gsc_write(buf->dma_addr[2], GSC_IN_BASE_ADDR_CR(buf_id));
627 
628 	gsc_src_set_buf_seq(ctx, buf_id, true);
629 }
630 
631 static void gsc_dst_set_fmt(struct gsc_context *ctx, u32 fmt)
632 {
633 	u32 cfg;
634 
635 	DRM_DEBUG_KMS("fmt[0x%x]\n", fmt);
636 
637 	cfg = gsc_read(GSC_OUT_CON);
638 	cfg &= ~(GSC_OUT_RGB_TYPE_MASK | GSC_OUT_YUV422_1P_ORDER_MASK |
639 		 GSC_OUT_CHROMA_ORDER_MASK | GSC_OUT_FORMAT_MASK |
640 		 GSC_OUT_CHROM_STRIDE_SEL_MASK | GSC_OUT_RB_SWAP_MASK |
641 		 GSC_OUT_GLOBAL_ALPHA_MASK);
642 
643 	switch (fmt) {
644 	case DRM_FORMAT_RGB565:
645 		cfg |= GSC_OUT_RGB565;
646 		break;
647 	case DRM_FORMAT_ARGB8888:
648 	case DRM_FORMAT_XRGB8888:
649 		cfg |= (GSC_OUT_XRGB8888 | GSC_OUT_GLOBAL_ALPHA(0xff));
650 		break;
651 	case DRM_FORMAT_BGRX8888:
652 		cfg |= (GSC_OUT_XRGB8888 | GSC_OUT_RB_SWAP);
653 		break;
654 	case DRM_FORMAT_YUYV:
655 		cfg |= (GSC_OUT_YUV422_1P |
656 			GSC_OUT_YUV422_1P_ORDER_LSB_Y |
657 			GSC_OUT_CHROMA_ORDER_CBCR);
658 		break;
659 	case DRM_FORMAT_YVYU:
660 		cfg |= (GSC_OUT_YUV422_1P |
661 			GSC_OUT_YUV422_1P_ORDER_LSB_Y |
662 			GSC_OUT_CHROMA_ORDER_CRCB);
663 		break;
664 	case DRM_FORMAT_UYVY:
665 		cfg |= (GSC_OUT_YUV422_1P |
666 			GSC_OUT_YUV422_1P_OEDER_LSB_C |
667 			GSC_OUT_CHROMA_ORDER_CBCR);
668 		break;
669 	case DRM_FORMAT_VYUY:
670 		cfg |= (GSC_OUT_YUV422_1P |
671 			GSC_OUT_YUV422_1P_OEDER_LSB_C |
672 			GSC_OUT_CHROMA_ORDER_CRCB);
673 		break;
674 	case DRM_FORMAT_NV21:
675 	case DRM_FORMAT_NV61:
676 		cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV420_2P);
677 		break;
678 	case DRM_FORMAT_YUV422:
679 	case DRM_FORMAT_YUV420:
680 	case DRM_FORMAT_YVU420:
681 		cfg |= GSC_OUT_YUV420_3P;
682 		break;
683 	case DRM_FORMAT_NV12:
684 	case DRM_FORMAT_NV16:
685 		cfg |= (GSC_OUT_CHROMA_ORDER_CBCR |
686 			GSC_OUT_YUV420_2P);
687 		break;
688 	}
689 
690 	gsc_write(cfg, GSC_OUT_CON);
691 }
692 
693 static int gsc_get_ratio_shift(u32 src, u32 dst, u32 *ratio)
694 {
695 	DRM_DEBUG_KMS("src[%d]dst[%d]\n", src, dst);
696 
697 	if (src >= dst * 8) {
698 		DRM_ERROR("failed to make ratio and shift.\n");
699 		return -EINVAL;
700 	} else if (src >= dst * 4)
701 		*ratio = 4;
702 	else if (src >= dst * 2)
703 		*ratio = 2;
704 	else
705 		*ratio = 1;
706 
707 	return 0;
708 }
709 
710 static void gsc_get_prescaler_shfactor(u32 hratio, u32 vratio, u32 *shfactor)
711 {
712 	if (hratio == 4 && vratio == 4)
713 		*shfactor = 4;
714 	else if ((hratio == 4 && vratio == 2) ||
715 		 (hratio == 2 && vratio == 4))
716 		*shfactor = 3;
717 	else if ((hratio == 4 && vratio == 1) ||
718 		 (hratio == 1 && vratio == 4) ||
719 		 (hratio == 2 && vratio == 2))
720 		*shfactor = 2;
721 	else if (hratio == 1 && vratio == 1)
722 		*shfactor = 0;
723 	else
724 		*shfactor = 1;
725 }
726 
727 static int gsc_set_prescaler(struct gsc_context *ctx, struct gsc_scaler *sc,
728 			     struct drm_exynos_ipp_task_rect *src,
729 			     struct drm_exynos_ipp_task_rect *dst)
730 {
731 	u32 cfg;
732 	u32 src_w, src_h, dst_w, dst_h;
733 	int ret = 0;
734 
735 	src_w = src->w;
736 	src_h = src->h;
737 
738 	if (ctx->rotation) {
739 		dst_w = dst->h;
740 		dst_h = dst->w;
741 	} else {
742 		dst_w = dst->w;
743 		dst_h = dst->h;
744 	}
745 
746 	ret = gsc_get_ratio_shift(src_w, dst_w, &sc->pre_hratio);
747 	if (ret) {
748 		dev_err(ctx->dev, "failed to get ratio horizontal.\n");
749 		return ret;
750 	}
751 
752 	ret = gsc_get_ratio_shift(src_h, dst_h, &sc->pre_vratio);
753 	if (ret) {
754 		dev_err(ctx->dev, "failed to get ratio vertical.\n");
755 		return ret;
756 	}
757 
758 	DRM_DEBUG_KMS("pre_hratio[%d]pre_vratio[%d]\n",
759 		sc->pre_hratio, sc->pre_vratio);
760 
761 	sc->main_hratio = (src_w << 16) / dst_w;
762 	sc->main_vratio = (src_h << 16) / dst_h;
763 
764 	DRM_DEBUG_KMS("main_hratio[%ld]main_vratio[%ld]\n",
765 		sc->main_hratio, sc->main_vratio);
766 
767 	gsc_get_prescaler_shfactor(sc->pre_hratio, sc->pre_vratio,
768 		&sc->pre_shfactor);
769 
770 	DRM_DEBUG_KMS("pre_shfactor[%d]\n", sc->pre_shfactor);
771 
772 	cfg = (GSC_PRESC_SHFACTOR(sc->pre_shfactor) |
773 		GSC_PRESC_H_RATIO(sc->pre_hratio) |
774 		GSC_PRESC_V_RATIO(sc->pre_vratio));
775 	gsc_write(cfg, GSC_PRE_SCALE_RATIO);
776 
777 	return ret;
778 }
779 
780 static void gsc_set_h_coef(struct gsc_context *ctx, unsigned long main_hratio)
781 {
782 	int i, j, k, sc_ratio;
783 
784 	if (main_hratio <= GSC_SC_UP_MAX_RATIO)
785 		sc_ratio = 0;
786 	else if (main_hratio <= GSC_SC_DOWN_RATIO_7_8)
787 		sc_ratio = 1;
788 	else if (main_hratio <= GSC_SC_DOWN_RATIO_6_8)
789 		sc_ratio = 2;
790 	else if (main_hratio <= GSC_SC_DOWN_RATIO_5_8)
791 		sc_ratio = 3;
792 	else if (main_hratio <= GSC_SC_DOWN_RATIO_4_8)
793 		sc_ratio = 4;
794 	else if (main_hratio <= GSC_SC_DOWN_RATIO_3_8)
795 		sc_ratio = 5;
796 	else
797 		sc_ratio = 6;
798 
799 	for (i = 0; i < GSC_COEF_PHASE; i++)
800 		for (j = 0; j < GSC_COEF_H_8T; j++)
801 			for (k = 0; k < GSC_COEF_DEPTH; k++)
802 				gsc_write(h_coef_8t[sc_ratio][i][j],
803 					GSC_HCOEF(i, j, k));
804 }
805 
806 static void gsc_set_v_coef(struct gsc_context *ctx, unsigned long main_vratio)
807 {
808 	int i, j, k, sc_ratio;
809 
810 	if (main_vratio <= GSC_SC_UP_MAX_RATIO)
811 		sc_ratio = 0;
812 	else if (main_vratio <= GSC_SC_DOWN_RATIO_7_8)
813 		sc_ratio = 1;
814 	else if (main_vratio <= GSC_SC_DOWN_RATIO_6_8)
815 		sc_ratio = 2;
816 	else if (main_vratio <= GSC_SC_DOWN_RATIO_5_8)
817 		sc_ratio = 3;
818 	else if (main_vratio <= GSC_SC_DOWN_RATIO_4_8)
819 		sc_ratio = 4;
820 	else if (main_vratio <= GSC_SC_DOWN_RATIO_3_8)
821 		sc_ratio = 5;
822 	else
823 		sc_ratio = 6;
824 
825 	for (i = 0; i < GSC_COEF_PHASE; i++)
826 		for (j = 0; j < GSC_COEF_V_4T; j++)
827 			for (k = 0; k < GSC_COEF_DEPTH; k++)
828 				gsc_write(v_coef_4t[sc_ratio][i][j],
829 					GSC_VCOEF(i, j, k));
830 }
831 
832 static void gsc_set_scaler(struct gsc_context *ctx, struct gsc_scaler *sc)
833 {
834 	u32 cfg;
835 
836 	DRM_DEBUG_KMS("main_hratio[%ld]main_vratio[%ld]\n",
837 		sc->main_hratio, sc->main_vratio);
838 
839 	gsc_set_h_coef(ctx, sc->main_hratio);
840 	cfg = GSC_MAIN_H_RATIO_VALUE(sc->main_hratio);
841 	gsc_write(cfg, GSC_MAIN_H_RATIO);
842 
843 	gsc_set_v_coef(ctx, sc->main_vratio);
844 	cfg = GSC_MAIN_V_RATIO_VALUE(sc->main_vratio);
845 	gsc_write(cfg, GSC_MAIN_V_RATIO);
846 }
847 
848 static void gsc_dst_set_size(struct gsc_context *ctx,
849 			     struct exynos_drm_ipp_buffer *buf)
850 {
851 	struct gsc_scaler *sc = &ctx->sc;
852 	u32 cfg;
853 
854 	/* pixel offset */
855 	cfg = (GSC_DSTIMG_OFFSET_X(buf->rect.x) |
856 		GSC_DSTIMG_OFFSET_Y(buf->rect.y));
857 	gsc_write(cfg, GSC_DSTIMG_OFFSET);
858 
859 	/* scaled size */
860 	if (ctx->rotation)
861 		cfg = (GSC_SCALED_WIDTH(buf->rect.h) |
862 		       GSC_SCALED_HEIGHT(buf->rect.w));
863 	else
864 		cfg = (GSC_SCALED_WIDTH(buf->rect.w) |
865 		       GSC_SCALED_HEIGHT(buf->rect.h));
866 	gsc_write(cfg, GSC_SCALED_SIZE);
867 
868 	/* original size */
869 	cfg = gsc_read(GSC_DSTIMG_SIZE);
870 	cfg &= ~(GSC_DSTIMG_HEIGHT_MASK | GSC_DSTIMG_WIDTH_MASK);
871 	cfg |= GSC_DSTIMG_WIDTH(buf->buf.width) |
872 	       GSC_DSTIMG_HEIGHT(buf->buf.height);
873 	gsc_write(cfg, GSC_DSTIMG_SIZE);
874 
875 	cfg = gsc_read(GSC_OUT_CON);
876 	cfg &= ~GSC_OUT_RGB_TYPE_MASK;
877 
878 	if (buf->rect.w >= GSC_WIDTH_ITU_709)
879 		if (sc->range)
880 			cfg |= GSC_OUT_RGB_HD_WIDE;
881 		else
882 			cfg |= GSC_OUT_RGB_HD_NARROW;
883 	else
884 		if (sc->range)
885 			cfg |= GSC_OUT_RGB_SD_WIDE;
886 		else
887 			cfg |= GSC_OUT_RGB_SD_NARROW;
888 
889 	gsc_write(cfg, GSC_OUT_CON);
890 }
891 
892 static int gsc_dst_get_buf_seq(struct gsc_context *ctx)
893 {
894 	u32 cfg, i, buf_num = GSC_REG_SZ;
895 	u32 mask = 0x00000001;
896 
897 	cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK);
898 
899 	for (i = 0; i < GSC_REG_SZ; i++)
900 		if (cfg & (mask << i))
901 			buf_num--;
902 
903 	DRM_DEBUG_KMS("buf_num[%d]\n", buf_num);
904 
905 	return buf_num;
906 }
907 
908 static void gsc_dst_set_buf_seq(struct gsc_context *ctx, u32 buf_id,
909 				bool enqueue)
910 {
911 	bool masked = !enqueue;
912 	u32 cfg;
913 	u32 mask = 0x00000001 << buf_id;
914 
915 	/* mask register set */
916 	cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK);
917 
918 	/* sequence id */
919 	cfg &= ~mask;
920 	cfg |= masked << buf_id;
921 	gsc_write(cfg, GSC_OUT_BASE_ADDR_Y_MASK);
922 	gsc_write(cfg, GSC_OUT_BASE_ADDR_CB_MASK);
923 	gsc_write(cfg, GSC_OUT_BASE_ADDR_CR_MASK);
924 
925 	/* interrupt enable */
926 	if (enqueue && gsc_dst_get_buf_seq(ctx) >= GSC_BUF_START)
927 		gsc_handle_irq(ctx, true, false, true);
928 
929 	/* interrupt disable */
930 	if (!enqueue && gsc_dst_get_buf_seq(ctx) <= GSC_BUF_STOP)
931 		gsc_handle_irq(ctx, false, false, true);
932 }
933 
934 static void gsc_dst_set_addr(struct gsc_context *ctx,
935 			     u32 buf_id, struct exynos_drm_ipp_buffer *buf)
936 {
937 	/* address register set */
938 	gsc_write(buf->dma_addr[0], GSC_OUT_BASE_ADDR_Y(buf_id));
939 	gsc_write(buf->dma_addr[1], GSC_OUT_BASE_ADDR_CB(buf_id));
940 	gsc_write(buf->dma_addr[2], GSC_OUT_BASE_ADDR_CR(buf_id));
941 
942 	gsc_dst_set_buf_seq(ctx, buf_id, true);
943 }
944 
945 static int gsc_get_src_buf_index(struct gsc_context *ctx)
946 {
947 	u32 cfg, curr_index, i;
948 	u32 buf_id = GSC_MAX_SRC;
949 
950 	DRM_DEBUG_KMS("gsc id[%d]\n", ctx->id);
951 
952 	cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK);
953 	curr_index = GSC_IN_CURR_GET_INDEX(cfg);
954 
955 	for (i = curr_index; i < GSC_MAX_SRC; i++) {
956 		if (!((cfg >> i) & 0x1)) {
957 			buf_id = i;
958 			break;
959 		}
960 	}
961 
962 	DRM_DEBUG_KMS("cfg[0x%x]curr_index[%d]buf_id[%d]\n", cfg,
963 		curr_index, buf_id);
964 
965 	if (buf_id == GSC_MAX_SRC) {
966 		DRM_ERROR("failed to get in buffer index.\n");
967 		return -EINVAL;
968 	}
969 
970 	gsc_src_set_buf_seq(ctx, buf_id, false);
971 
972 	return buf_id;
973 }
974 
975 static int gsc_get_dst_buf_index(struct gsc_context *ctx)
976 {
977 	u32 cfg, curr_index, i;
978 	u32 buf_id = GSC_MAX_DST;
979 
980 	DRM_DEBUG_KMS("gsc id[%d]\n", ctx->id);
981 
982 	cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK);
983 	curr_index = GSC_OUT_CURR_GET_INDEX(cfg);
984 
985 	for (i = curr_index; i < GSC_MAX_DST; i++) {
986 		if (!((cfg >> i) & 0x1)) {
987 			buf_id = i;
988 			break;
989 		}
990 	}
991 
992 	if (buf_id == GSC_MAX_DST) {
993 		DRM_ERROR("failed to get out buffer index.\n");
994 		return -EINVAL;
995 	}
996 
997 	gsc_dst_set_buf_seq(ctx, buf_id, false);
998 
999 	DRM_DEBUG_KMS("cfg[0x%x]curr_index[%d]buf_id[%d]\n", cfg,
1000 		curr_index, buf_id);
1001 
1002 	return buf_id;
1003 }
1004 
1005 static irqreturn_t gsc_irq_handler(int irq, void *dev_id)
1006 {
1007 	struct gsc_context *ctx = dev_id;
1008 	u32 status;
1009 	int err = 0;
1010 
1011 	DRM_DEBUG_KMS("gsc id[%d]\n", ctx->id);
1012 
1013 	status = gsc_read(GSC_IRQ);
1014 	if (status & GSC_IRQ_STATUS_OR_IRQ) {
1015 		dev_err(ctx->dev, "occurred overflow at %d, status 0x%x.\n",
1016 			ctx->id, status);
1017 		err = -EINVAL;
1018 	}
1019 
1020 	if (status & GSC_IRQ_STATUS_OR_FRM_DONE) {
1021 		int src_buf_id, dst_buf_id;
1022 
1023 		dev_dbg(ctx->dev, "occurred frame done at %d, status 0x%x.\n",
1024 			ctx->id, status);
1025 
1026 		src_buf_id = gsc_get_src_buf_index(ctx);
1027 		dst_buf_id = gsc_get_dst_buf_index(ctx);
1028 
1029 		DRM_DEBUG_KMS("buf_id_src[%d]buf_id_dst[%d]\n",	src_buf_id,
1030 			      dst_buf_id);
1031 
1032 		if (src_buf_id < 0 || dst_buf_id < 0)
1033 			err = -EINVAL;
1034 	}
1035 
1036 	if (ctx->task) {
1037 		struct exynos_drm_ipp_task *task = ctx->task;
1038 
1039 		ctx->task = NULL;
1040 		pm_runtime_mark_last_busy(ctx->dev);
1041 		pm_runtime_put_autosuspend(ctx->dev);
1042 		exynos_drm_ipp_task_done(task, err);
1043 	}
1044 
1045 	return IRQ_HANDLED;
1046 }
1047 
1048 static int gsc_reset(struct gsc_context *ctx)
1049 {
1050 	struct gsc_scaler *sc = &ctx->sc;
1051 	int ret;
1052 
1053 	/* reset h/w block */
1054 	ret = gsc_sw_reset(ctx);
1055 	if (ret < 0) {
1056 		dev_err(ctx->dev, "failed to reset hardware.\n");
1057 		return ret;
1058 	}
1059 
1060 	/* scaler setting */
1061 	memset(&ctx->sc, 0x0, sizeof(ctx->sc));
1062 	sc->range = true;
1063 
1064 	return 0;
1065 }
1066 
1067 static void gsc_start(struct gsc_context *ctx)
1068 {
1069 	u32 cfg;
1070 
1071 	gsc_handle_irq(ctx, true, false, true);
1072 
1073 	/* enable one shot */
1074 	cfg = gsc_read(GSC_ENABLE);
1075 	cfg &= ~(GSC_ENABLE_ON_CLEAR_MASK |
1076 		GSC_ENABLE_CLK_GATE_MODE_MASK);
1077 	cfg |= GSC_ENABLE_ON_CLEAR_ONESHOT;
1078 	gsc_write(cfg, GSC_ENABLE);
1079 
1080 	/* src dma memory */
1081 	cfg = gsc_read(GSC_IN_CON);
1082 	cfg &= ~(GSC_IN_PATH_MASK | GSC_IN_LOCAL_SEL_MASK);
1083 	cfg |= GSC_IN_PATH_MEMORY;
1084 	gsc_write(cfg, GSC_IN_CON);
1085 
1086 	/* dst dma memory */
1087 	cfg = gsc_read(GSC_OUT_CON);
1088 	cfg |= GSC_OUT_PATH_MEMORY;
1089 	gsc_write(cfg, GSC_OUT_CON);
1090 
1091 	gsc_set_scaler(ctx, &ctx->sc);
1092 
1093 	cfg = gsc_read(GSC_ENABLE);
1094 	cfg |= GSC_ENABLE_ON;
1095 	gsc_write(cfg, GSC_ENABLE);
1096 }
1097 
1098 static int gsc_commit(struct exynos_drm_ipp *ipp,
1099 			  struct exynos_drm_ipp_task *task)
1100 {
1101 	struct gsc_context *ctx = container_of(ipp, struct gsc_context, ipp);
1102 	int ret;
1103 
1104 	pm_runtime_get_sync(ctx->dev);
1105 	ctx->task = task;
1106 
1107 	ret = gsc_reset(ctx);
1108 	if (ret) {
1109 		pm_runtime_put_autosuspend(ctx->dev);
1110 		ctx->task = NULL;
1111 		return ret;
1112 	}
1113 
1114 	gsc_src_set_fmt(ctx, task->src.buf.fourcc);
1115 	gsc_src_set_transf(ctx, task->transform.rotation);
1116 	gsc_src_set_size(ctx, &task->src);
1117 	gsc_src_set_addr(ctx, 0, &task->src);
1118 	gsc_dst_set_fmt(ctx, task->dst.buf.fourcc);
1119 	gsc_dst_set_size(ctx, &task->dst);
1120 	gsc_dst_set_addr(ctx, 0, &task->dst);
1121 	gsc_set_prescaler(ctx, &ctx->sc, &task->src.rect, &task->dst.rect);
1122 	gsc_start(ctx);
1123 
1124 	return 0;
1125 }
1126 
1127 static void gsc_abort(struct exynos_drm_ipp *ipp,
1128 			  struct exynos_drm_ipp_task *task)
1129 {
1130 	struct gsc_context *ctx =
1131 			container_of(ipp, struct gsc_context, ipp);
1132 
1133 	gsc_reset(ctx);
1134 	if (ctx->task) {
1135 		struct exynos_drm_ipp_task *task = ctx->task;
1136 
1137 		ctx->task = NULL;
1138 		pm_runtime_mark_last_busy(ctx->dev);
1139 		pm_runtime_put_autosuspend(ctx->dev);
1140 		exynos_drm_ipp_task_done(task, -EIO);
1141 	}
1142 }
1143 
1144 static struct exynos_drm_ipp_funcs ipp_funcs = {
1145 	.commit = gsc_commit,
1146 	.abort = gsc_abort,
1147 };
1148 
1149 static int gsc_bind(struct device *dev, struct device *master, void *data)
1150 {
1151 	struct gsc_context *ctx = dev_get_drvdata(dev);
1152 	struct drm_device *drm_dev = data;
1153 	struct exynos_drm_ipp *ipp = &ctx->ipp;
1154 
1155 	ctx->drm_dev = drm_dev;
1156 	drm_iommu_attach_device(drm_dev, dev);
1157 
1158 	exynos_drm_ipp_register(drm_dev, ipp, &ipp_funcs,
1159 			DRM_EXYNOS_IPP_CAP_CROP | DRM_EXYNOS_IPP_CAP_ROTATE |
1160 			DRM_EXYNOS_IPP_CAP_SCALE | DRM_EXYNOS_IPP_CAP_CONVERT,
1161 			ctx->formats, ctx->num_formats, "gsc");
1162 
1163 	dev_info(dev, "The exynos gscaler has been probed successfully\n");
1164 
1165 	return 0;
1166 }
1167 
1168 static void gsc_unbind(struct device *dev, struct device *master,
1169 			void *data)
1170 {
1171 	struct gsc_context *ctx = dev_get_drvdata(dev);
1172 	struct drm_device *drm_dev = data;
1173 	struct exynos_drm_ipp *ipp = &ctx->ipp;
1174 
1175 	exynos_drm_ipp_unregister(drm_dev, ipp);
1176 	drm_iommu_detach_device(drm_dev, dev);
1177 }
1178 
1179 static const struct component_ops gsc_component_ops = {
1180 	.bind	= gsc_bind,
1181 	.unbind = gsc_unbind,
1182 };
1183 
1184 static const unsigned int gsc_formats[] = {
1185 	DRM_FORMAT_ARGB8888,
1186 	DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB565, DRM_FORMAT_BGRX8888,
1187 	DRM_FORMAT_NV12, DRM_FORMAT_NV16, DRM_FORMAT_NV21, DRM_FORMAT_NV61,
1188 	DRM_FORMAT_UYVY, DRM_FORMAT_VYUY, DRM_FORMAT_YUYV, DRM_FORMAT_YVYU,
1189 	DRM_FORMAT_YUV420, DRM_FORMAT_YVU420, DRM_FORMAT_YUV422,
1190 };
1191 
1192 static int gsc_probe(struct platform_device *pdev)
1193 {
1194 	struct device *dev = &pdev->dev;
1195 	struct gsc_driverdata *driver_data;
1196 	struct exynos_drm_ipp_formats *formats;
1197 	struct gsc_context *ctx;
1198 	struct resource *res;
1199 	int ret, i;
1200 
1201 	ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
1202 	if (!ctx)
1203 		return -ENOMEM;
1204 
1205 	formats = devm_kcalloc(dev,
1206 			       ARRAY_SIZE(gsc_formats), sizeof(*formats),
1207 			       GFP_KERNEL);
1208 	if (!formats)
1209 		return -ENOMEM;
1210 
1211 	driver_data = (struct gsc_driverdata *)of_device_get_match_data(dev);
1212 	ctx->dev = dev;
1213 	ctx->num_clocks = driver_data->num_clocks;
1214 	ctx->clk_names = driver_data->clk_names;
1215 
1216 	for (i = 0; i < ARRAY_SIZE(gsc_formats); i++) {
1217 		formats[i].fourcc = gsc_formats[i];
1218 		formats[i].type = DRM_EXYNOS_IPP_FORMAT_SOURCE |
1219 				  DRM_EXYNOS_IPP_FORMAT_DESTINATION;
1220 		formats[i].limits = driver_data->limits;
1221 		formats[i].num_limits = driver_data->num_limits;
1222 	}
1223 	ctx->formats = formats;
1224 	ctx->num_formats = ARRAY_SIZE(gsc_formats);
1225 
1226 	/* clock control */
1227 	for (i = 0; i < ctx->num_clocks; i++) {
1228 		ctx->clocks[i] = devm_clk_get(dev, ctx->clk_names[i]);
1229 		if (IS_ERR(ctx->clocks[i])) {
1230 			dev_err(dev, "failed to get clock: %s\n",
1231 				ctx->clk_names[i]);
1232 			return PTR_ERR(ctx->clocks[i]);
1233 		}
1234 	}
1235 
1236 	/* resource memory */
1237 	ctx->regs_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1238 	ctx->regs = devm_ioremap_resource(dev, ctx->regs_res);
1239 	if (IS_ERR(ctx->regs))
1240 		return PTR_ERR(ctx->regs);
1241 
1242 	/* resource irq */
1243 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1244 	if (!res) {
1245 		dev_err(dev, "failed to request irq resource.\n");
1246 		return -ENOENT;
1247 	}
1248 
1249 	ctx->irq = res->start;
1250 	ret = devm_request_irq(dev, ctx->irq, gsc_irq_handler, 0,
1251 			       dev_name(dev), ctx);
1252 	if (ret < 0) {
1253 		dev_err(dev, "failed to request irq.\n");
1254 		return ret;
1255 	}
1256 
1257 	/* context initailization */
1258 	ctx->id = pdev->id;
1259 
1260 	platform_set_drvdata(pdev, ctx);
1261 
1262 	pm_runtime_use_autosuspend(dev);
1263 	pm_runtime_set_autosuspend_delay(dev, GSC_AUTOSUSPEND_DELAY);
1264 	pm_runtime_enable(dev);
1265 
1266 	ret = component_add(dev, &gsc_component_ops);
1267 	if (ret)
1268 		goto err_pm_dis;
1269 
1270 	dev_info(dev, "drm gsc registered successfully.\n");
1271 
1272 	return 0;
1273 
1274 err_pm_dis:
1275 	pm_runtime_dont_use_autosuspend(dev);
1276 	pm_runtime_disable(dev);
1277 	return ret;
1278 }
1279 
1280 static int gsc_remove(struct platform_device *pdev)
1281 {
1282 	struct device *dev = &pdev->dev;
1283 
1284 	pm_runtime_dont_use_autosuspend(dev);
1285 	pm_runtime_disable(dev);
1286 
1287 	return 0;
1288 }
1289 
1290 static int __maybe_unused gsc_runtime_suspend(struct device *dev)
1291 {
1292 	struct gsc_context *ctx = get_gsc_context(dev);
1293 	int i;
1294 
1295 	DRM_DEBUG_KMS("id[%d]\n", ctx->id);
1296 
1297 	for (i = ctx->num_clocks - 1; i >= 0; i--)
1298 		clk_disable_unprepare(ctx->clocks[i]);
1299 
1300 	return 0;
1301 }
1302 
1303 static int __maybe_unused gsc_runtime_resume(struct device *dev)
1304 {
1305 	struct gsc_context *ctx = get_gsc_context(dev);
1306 	int i, ret;
1307 
1308 	DRM_DEBUG_KMS("id[%d]\n", ctx->id);
1309 
1310 	for (i = 0; i < ctx->num_clocks; i++) {
1311 		ret = clk_prepare_enable(ctx->clocks[i]);
1312 		if (ret) {
1313 			while (--i > 0)
1314 				clk_disable_unprepare(ctx->clocks[i]);
1315 			return ret;
1316 		}
1317 	}
1318 	return 0;
1319 }
1320 
1321 static const struct dev_pm_ops gsc_pm_ops = {
1322 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1323 				pm_runtime_force_resume)
1324 	SET_RUNTIME_PM_OPS(gsc_runtime_suspend, gsc_runtime_resume, NULL)
1325 };
1326 
1327 static const struct drm_exynos_ipp_limit gsc_5250_limits[] = {
1328 	{ IPP_SIZE_LIMIT(BUFFER, .h = { 32, 4800, 8 }, .v = { 16, 3344, 8 }) },
1329 	{ IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 2 }, .v = { 8, 3344, 2 }) },
1330 	{ IPP_SIZE_LIMIT(ROTATED, .h = { 32, 2048 }, .v = { 16, 2048 }) },
1331 	{ IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 },
1332 			  .v = { (1 << 16) / 16, (1 << 16) * 8 }) },
1333 };
1334 
1335 static const struct drm_exynos_ipp_limit gsc_5420_limits[] = {
1336 	{ IPP_SIZE_LIMIT(BUFFER, .h = { 32, 4800, 8 }, .v = { 16, 3344, 8 }) },
1337 	{ IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 2 }, .v = { 8, 3344, 2 }) },
1338 	{ IPP_SIZE_LIMIT(ROTATED, .h = { 16, 2016 }, .v = { 8, 2016 }) },
1339 	{ IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 },
1340 			  .v = { (1 << 16) / 16, (1 << 16) * 8 }) },
1341 };
1342 
1343 static const struct drm_exynos_ipp_limit gsc_5433_limits[] = {
1344 	{ IPP_SIZE_LIMIT(BUFFER, .h = { 32, 8191, 2 }, .v = { 16, 8191, 2 }) },
1345 	{ IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 1 }, .v = { 8, 3344, 1 }) },
1346 	{ IPP_SIZE_LIMIT(ROTATED, .h = { 32, 2047 }, .v = { 8, 8191 }) },
1347 	{ IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 },
1348 			  .v = { (1 << 16) / 16, (1 << 16) * 8 }) },
1349 };
1350 
1351 static struct gsc_driverdata gsc_exynos5250_drvdata = {
1352 	.clk_names = {"gscl"},
1353 	.num_clocks = 1,
1354 	.limits = gsc_5250_limits,
1355 	.num_limits = ARRAY_SIZE(gsc_5250_limits),
1356 };
1357 
1358 static struct gsc_driverdata gsc_exynos5420_drvdata = {
1359 	.clk_names = {"gscl"},
1360 	.num_clocks = 1,
1361 	.limits = gsc_5420_limits,
1362 	.num_limits = ARRAY_SIZE(gsc_5420_limits),
1363 };
1364 
1365 static struct gsc_driverdata gsc_exynos5433_drvdata = {
1366 	.clk_names = {"pclk", "aclk", "aclk_xiu", "aclk_gsclbend"},
1367 	.num_clocks = 4,
1368 	.limits = gsc_5433_limits,
1369 	.num_limits = ARRAY_SIZE(gsc_5433_limits),
1370 };
1371 
1372 static const struct of_device_id exynos_drm_gsc_of_match[] = {
1373 	{
1374 		.compatible = "samsung,exynos5-gsc",
1375 		.data = &gsc_exynos5250_drvdata,
1376 	}, {
1377 		.compatible = "samsung,exynos5250-gsc",
1378 		.data = &gsc_exynos5250_drvdata,
1379 	}, {
1380 		.compatible = "samsung,exynos5420-gsc",
1381 		.data = &gsc_exynos5420_drvdata,
1382 	}, {
1383 		.compatible = "samsung,exynos5433-gsc",
1384 		.data = &gsc_exynos5433_drvdata,
1385 	}, {
1386 	},
1387 };
1388 MODULE_DEVICE_TABLE(of, exynos_drm_gsc_of_match);
1389 
1390 struct platform_driver gsc_driver = {
1391 	.probe		= gsc_probe,
1392 	.remove		= gsc_remove,
1393 	.driver		= {
1394 		.name	= "exynos-drm-gsc",
1395 		.owner	= THIS_MODULE,
1396 		.pm	= &gsc_pm_ops,
1397 		.of_match_table = of_match_ptr(exynos_drm_gsc_of_match),
1398 	},
1399 };
1400