1 /* 2 * Copyright (C) 2012 Samsung Electronics Co.Ltd 3 * Authors: 4 * Eunchul Kim <chulspro.kim@samsung.com> 5 * Jinyoung Jeon <jy0.jeon@samsung.com> 6 * Sangmin Lee <lsmin.lee@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License as published by the 10 * Free Software Foundation; either version 2 of the License, or (at your 11 * option) any later version. 12 * 13 */ 14 #include <linux/kernel.h> 15 #include <linux/component.h> 16 #include <linux/platform_device.h> 17 #include <linux/clk.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/mfd/syscon.h> 20 #include <linux/of_device.h> 21 #include <linux/regmap.h> 22 23 #include <drm/drmP.h> 24 #include <drm/exynos_drm.h> 25 #include "regs-gsc.h" 26 #include "exynos_drm_drv.h" 27 #include "exynos_drm_iommu.h" 28 #include "exynos_drm_ipp.h" 29 30 /* 31 * GSC stands for General SCaler and 32 * supports image scaler/rotator and input/output DMA operations. 33 * input DMA reads image data from the memory. 34 * output DMA writes image data to memory. 35 * GSC supports image rotation and image effect functions. 36 */ 37 38 39 #define GSC_MAX_CLOCKS 8 40 #define GSC_MAX_SRC 4 41 #define GSC_MAX_DST 16 42 #define GSC_RESET_TIMEOUT 50 43 #define GSC_BUF_STOP 1 44 #define GSC_BUF_START 2 45 #define GSC_REG_SZ 16 46 #define GSC_WIDTH_ITU_709 1280 47 #define GSC_SC_UP_MAX_RATIO 65536 48 #define GSC_SC_DOWN_RATIO_7_8 74898 49 #define GSC_SC_DOWN_RATIO_6_8 87381 50 #define GSC_SC_DOWN_RATIO_5_8 104857 51 #define GSC_SC_DOWN_RATIO_4_8 131072 52 #define GSC_SC_DOWN_RATIO_3_8 174762 53 #define GSC_SC_DOWN_RATIO_2_8 262144 54 #define GSC_CROP_MAX 8192 55 #define GSC_CROP_MIN 32 56 #define GSC_SCALE_MAX 4224 57 #define GSC_SCALE_MIN 32 58 #define GSC_COEF_RATIO 7 59 #define GSC_COEF_PHASE 9 60 #define GSC_COEF_ATTR 16 61 #define GSC_COEF_H_8T 8 62 #define GSC_COEF_V_4T 4 63 #define GSC_COEF_DEPTH 3 64 #define GSC_AUTOSUSPEND_DELAY 2000 65 66 #define get_gsc_context(dev) platform_get_drvdata(to_platform_device(dev)) 67 #define gsc_read(offset) readl(ctx->regs + (offset)) 68 #define gsc_write(cfg, offset) writel(cfg, ctx->regs + (offset)) 69 70 /* 71 * A structure of scaler. 72 * 73 * @range: narrow, wide. 74 * @pre_shfactor: pre sclaer shift factor. 75 * @pre_hratio: horizontal ratio of the prescaler. 76 * @pre_vratio: vertical ratio of the prescaler. 77 * @main_hratio: the main scaler's horizontal ratio. 78 * @main_vratio: the main scaler's vertical ratio. 79 */ 80 struct gsc_scaler { 81 bool range; 82 u32 pre_shfactor; 83 u32 pre_hratio; 84 u32 pre_vratio; 85 unsigned long main_hratio; 86 unsigned long main_vratio; 87 }; 88 89 /* 90 * A structure of gsc context. 91 * 92 * @regs_res: register resources. 93 * @regs: memory mapped io registers. 94 * @gsc_clk: gsc gate clock. 95 * @sc: scaler infomations. 96 * @id: gsc id. 97 * @irq: irq number. 98 * @rotation: supports rotation of src. 99 */ 100 struct gsc_context { 101 struct exynos_drm_ipp ipp; 102 struct drm_device *drm_dev; 103 struct device *dev; 104 struct exynos_drm_ipp_task *task; 105 struct exynos_drm_ipp_formats *formats; 106 unsigned int num_formats; 107 108 struct resource *regs_res; 109 void __iomem *regs; 110 const char **clk_names; 111 struct clk *clocks[GSC_MAX_CLOCKS]; 112 int num_clocks; 113 struct gsc_scaler sc; 114 int id; 115 int irq; 116 bool rotation; 117 }; 118 119 /** 120 * struct gsc_driverdata - per device type driver data for init time. 121 * 122 * @limits: picture size limits array 123 * @clk_names: names of clocks needed by this variant 124 * @num_clocks: the number of clocks needed by this variant 125 */ 126 struct gsc_driverdata { 127 const struct drm_exynos_ipp_limit *limits; 128 int num_limits; 129 const char *clk_names[GSC_MAX_CLOCKS]; 130 int num_clocks; 131 }; 132 133 /* 8-tap Filter Coefficient */ 134 static const int h_coef_8t[GSC_COEF_RATIO][GSC_COEF_ATTR][GSC_COEF_H_8T] = { 135 { /* Ratio <= 65536 (~8:8) */ 136 { 0, 0, 0, 128, 0, 0, 0, 0 }, 137 { -1, 2, -6, 127, 7, -2, 1, 0 }, 138 { -1, 4, -12, 125, 16, -5, 1, 0 }, 139 { -1, 5, -15, 120, 25, -8, 2, 0 }, 140 { -1, 6, -18, 114, 35, -10, 3, -1 }, 141 { -1, 6, -20, 107, 46, -13, 4, -1 }, 142 { -2, 7, -21, 99, 57, -16, 5, -1 }, 143 { -1, 6, -20, 89, 68, -18, 5, -1 }, 144 { -1, 6, -20, 79, 79, -20, 6, -1 }, 145 { -1, 5, -18, 68, 89, -20, 6, -1 }, 146 { -1, 5, -16, 57, 99, -21, 7, -2 }, 147 { -1, 4, -13, 46, 107, -20, 6, -1 }, 148 { -1, 3, -10, 35, 114, -18, 6, -1 }, 149 { 0, 2, -8, 25, 120, -15, 5, -1 }, 150 { 0, 1, -5, 16, 125, -12, 4, -1 }, 151 { 0, 1, -2, 7, 127, -6, 2, -1 } 152 }, { /* 65536 < Ratio <= 74898 (~8:7) */ 153 { 3, -8, 14, 111, 13, -8, 3, 0 }, 154 { 2, -6, 7, 112, 21, -10, 3, -1 }, 155 { 2, -4, 1, 110, 28, -12, 4, -1 }, 156 { 1, -2, -3, 106, 36, -13, 4, -1 }, 157 { 1, -1, -7, 103, 44, -15, 4, -1 }, 158 { 1, 1, -11, 97, 53, -16, 4, -1 }, 159 { 0, 2, -13, 91, 61, -16, 4, -1 }, 160 { 0, 3, -15, 85, 69, -17, 4, -1 }, 161 { 0, 3, -16, 77, 77, -16, 3, 0 }, 162 { -1, 4, -17, 69, 85, -15, 3, 0 }, 163 { -1, 4, -16, 61, 91, -13, 2, 0 }, 164 { -1, 4, -16, 53, 97, -11, 1, 1 }, 165 { -1, 4, -15, 44, 103, -7, -1, 1 }, 166 { -1, 4, -13, 36, 106, -3, -2, 1 }, 167 { -1, 4, -12, 28, 110, 1, -4, 2 }, 168 { -1, 3, -10, 21, 112, 7, -6, 2 } 169 }, { /* 74898 < Ratio <= 87381 (~8:6) */ 170 { 2, -11, 25, 96, 25, -11, 2, 0 }, 171 { 2, -10, 19, 96, 31, -12, 2, 0 }, 172 { 2, -9, 14, 94, 37, -12, 2, 0 }, 173 { 2, -8, 10, 92, 43, -12, 1, 0 }, 174 { 2, -7, 5, 90, 49, -12, 1, 0 }, 175 { 2, -5, 1, 86, 55, -12, 0, 1 }, 176 { 2, -4, -2, 82, 61, -11, -1, 1 }, 177 { 1, -3, -5, 77, 67, -9, -1, 1 }, 178 { 1, -2, -7, 72, 72, -7, -2, 1 }, 179 { 1, -1, -9, 67, 77, -5, -3, 1 }, 180 { 1, -1, -11, 61, 82, -2, -4, 2 }, 181 { 1, 0, -12, 55, 86, 1, -5, 2 }, 182 { 0, 1, -12, 49, 90, 5, -7, 2 }, 183 { 0, 1, -12, 43, 92, 10, -8, 2 }, 184 { 0, 2, -12, 37, 94, 14, -9, 2 }, 185 { 0, 2, -12, 31, 96, 19, -10, 2 } 186 }, { /* 87381 < Ratio <= 104857 (~8:5) */ 187 { -1, -8, 33, 80, 33, -8, -1, 0 }, 188 { -1, -8, 28, 80, 37, -7, -2, 1 }, 189 { 0, -8, 24, 79, 41, -7, -2, 1 }, 190 { 0, -8, 20, 78, 46, -6, -3, 1 }, 191 { 0, -8, 16, 76, 50, -4, -3, 1 }, 192 { 0, -7, 13, 74, 54, -3, -4, 1 }, 193 { 1, -7, 10, 71, 58, -1, -5, 1 }, 194 { 1, -6, 6, 68, 62, 1, -5, 1 }, 195 { 1, -6, 4, 65, 65, 4, -6, 1 }, 196 { 1, -5, 1, 62, 68, 6, -6, 1 }, 197 { 1, -5, -1, 58, 71, 10, -7, 1 }, 198 { 1, -4, -3, 54, 74, 13, -7, 0 }, 199 { 1, -3, -4, 50, 76, 16, -8, 0 }, 200 { 1, -3, -6, 46, 78, 20, -8, 0 }, 201 { 1, -2, -7, 41, 79, 24, -8, 0 }, 202 { 1, -2, -7, 37, 80, 28, -8, -1 } 203 }, { /* 104857 < Ratio <= 131072 (~8:4) */ 204 { -3, 0, 35, 64, 35, 0, -3, 0 }, 205 { -3, -1, 32, 64, 38, 1, -3, 0 }, 206 { -2, -2, 29, 63, 41, 2, -3, 0 }, 207 { -2, -3, 27, 63, 43, 4, -4, 0 }, 208 { -2, -3, 24, 61, 46, 6, -4, 0 }, 209 { -2, -3, 21, 60, 49, 7, -4, 0 }, 210 { -1, -4, 19, 59, 51, 9, -4, -1 }, 211 { -1, -4, 16, 57, 53, 12, -4, -1 }, 212 { -1, -4, 14, 55, 55, 14, -4, -1 }, 213 { -1, -4, 12, 53, 57, 16, -4, -1 }, 214 { -1, -4, 9, 51, 59, 19, -4, -1 }, 215 { 0, -4, 7, 49, 60, 21, -3, -2 }, 216 { 0, -4, 6, 46, 61, 24, -3, -2 }, 217 { 0, -4, 4, 43, 63, 27, -3, -2 }, 218 { 0, -3, 2, 41, 63, 29, -2, -2 }, 219 { 0, -3, 1, 38, 64, 32, -1, -3 } 220 }, { /* 131072 < Ratio <= 174762 (~8:3) */ 221 { -1, 8, 33, 48, 33, 8, -1, 0 }, 222 { -1, 7, 31, 49, 35, 9, -1, -1 }, 223 { -1, 6, 30, 49, 36, 10, -1, -1 }, 224 { -1, 5, 28, 48, 38, 12, -1, -1 }, 225 { -1, 4, 26, 48, 39, 13, 0, -1 }, 226 { -1, 3, 24, 47, 41, 15, 0, -1 }, 227 { -1, 2, 23, 47, 42, 16, 0, -1 }, 228 { -1, 2, 21, 45, 43, 18, 1, -1 }, 229 { -1, 1, 19, 45, 45, 19, 1, -1 }, 230 { -1, 1, 18, 43, 45, 21, 2, -1 }, 231 { -1, 0, 16, 42, 47, 23, 2, -1 }, 232 { -1, 0, 15, 41, 47, 24, 3, -1 }, 233 { -1, 0, 13, 39, 48, 26, 4, -1 }, 234 { -1, -1, 12, 38, 48, 28, 5, -1 }, 235 { -1, -1, 10, 36, 49, 30, 6, -1 }, 236 { -1, -1, 9, 35, 49, 31, 7, -1 } 237 }, { /* 174762 < Ratio <= 262144 (~8:2) */ 238 { 2, 13, 30, 38, 30, 13, 2, 0 }, 239 { 2, 12, 29, 38, 30, 14, 3, 0 }, 240 { 2, 11, 28, 38, 31, 15, 3, 0 }, 241 { 2, 10, 26, 38, 32, 16, 4, 0 }, 242 { 1, 10, 26, 37, 33, 17, 4, 0 }, 243 { 1, 9, 24, 37, 34, 18, 5, 0 }, 244 { 1, 8, 24, 37, 34, 19, 5, 0 }, 245 { 1, 7, 22, 36, 35, 20, 6, 1 }, 246 { 1, 6, 21, 36, 36, 21, 6, 1 }, 247 { 1, 6, 20, 35, 36, 22, 7, 1 }, 248 { 0, 5, 19, 34, 37, 24, 8, 1 }, 249 { 0, 5, 18, 34, 37, 24, 9, 1 }, 250 { 0, 4, 17, 33, 37, 26, 10, 1 }, 251 { 0, 4, 16, 32, 38, 26, 10, 2 }, 252 { 0, 3, 15, 31, 38, 28, 11, 2 }, 253 { 0, 3, 14, 30, 38, 29, 12, 2 } 254 } 255 }; 256 257 /* 4-tap Filter Coefficient */ 258 static const int v_coef_4t[GSC_COEF_RATIO][GSC_COEF_ATTR][GSC_COEF_V_4T] = { 259 { /* Ratio <= 65536 (~8:8) */ 260 { 0, 128, 0, 0 }, 261 { -4, 127, 5, 0 }, 262 { -6, 124, 11, -1 }, 263 { -8, 118, 19, -1 }, 264 { -8, 111, 27, -2 }, 265 { -8, 102, 37, -3 }, 266 { -8, 92, 48, -4 }, 267 { -7, 81, 59, -5 }, 268 { -6, 70, 70, -6 }, 269 { -5, 59, 81, -7 }, 270 { -4, 48, 92, -8 }, 271 { -3, 37, 102, -8 }, 272 { -2, 27, 111, -8 }, 273 { -1, 19, 118, -8 }, 274 { -1, 11, 124, -6 }, 275 { 0, 5, 127, -4 } 276 }, { /* 65536 < Ratio <= 74898 (~8:7) */ 277 { 8, 112, 8, 0 }, 278 { 4, 111, 14, -1 }, 279 { 1, 109, 20, -2 }, 280 { -2, 105, 27, -2 }, 281 { -3, 100, 34, -3 }, 282 { -5, 93, 43, -3 }, 283 { -5, 86, 51, -4 }, 284 { -5, 77, 60, -4 }, 285 { -5, 69, 69, -5 }, 286 { -4, 60, 77, -5 }, 287 { -4, 51, 86, -5 }, 288 { -3, 43, 93, -5 }, 289 { -3, 34, 100, -3 }, 290 { -2, 27, 105, -2 }, 291 { -2, 20, 109, 1 }, 292 { -1, 14, 111, 4 } 293 }, { /* 74898 < Ratio <= 87381 (~8:6) */ 294 { 16, 96, 16, 0 }, 295 { 12, 97, 21, -2 }, 296 { 8, 96, 26, -2 }, 297 { 5, 93, 32, -2 }, 298 { 2, 89, 39, -2 }, 299 { 0, 84, 46, -2 }, 300 { -1, 79, 53, -3 }, 301 { -2, 73, 59, -2 }, 302 { -2, 66, 66, -2 }, 303 { -2, 59, 73, -2 }, 304 { -3, 53, 79, -1 }, 305 { -2, 46, 84, 0 }, 306 { -2, 39, 89, 2 }, 307 { -2, 32, 93, 5 }, 308 { -2, 26, 96, 8 }, 309 { -2, 21, 97, 12 } 310 }, { /* 87381 < Ratio <= 104857 (~8:5) */ 311 { 22, 84, 22, 0 }, 312 { 18, 85, 26, -1 }, 313 { 14, 84, 31, -1 }, 314 { 11, 82, 36, -1 }, 315 { 8, 79, 42, -1 }, 316 { 6, 76, 47, -1 }, 317 { 4, 72, 52, 0 }, 318 { 2, 68, 58, 0 }, 319 { 1, 63, 63, 1 }, 320 { 0, 58, 68, 2 }, 321 { 0, 52, 72, 4 }, 322 { -1, 47, 76, 6 }, 323 { -1, 42, 79, 8 }, 324 { -1, 36, 82, 11 }, 325 { -1, 31, 84, 14 }, 326 { -1, 26, 85, 18 } 327 }, { /* 104857 < Ratio <= 131072 (~8:4) */ 328 { 26, 76, 26, 0 }, 329 { 22, 76, 30, 0 }, 330 { 19, 75, 34, 0 }, 331 { 16, 73, 38, 1 }, 332 { 13, 71, 43, 1 }, 333 { 10, 69, 47, 2 }, 334 { 8, 66, 51, 3 }, 335 { 6, 63, 55, 4 }, 336 { 5, 59, 59, 5 }, 337 { 4, 55, 63, 6 }, 338 { 3, 51, 66, 8 }, 339 { 2, 47, 69, 10 }, 340 { 1, 43, 71, 13 }, 341 { 1, 38, 73, 16 }, 342 { 0, 34, 75, 19 }, 343 { 0, 30, 76, 22 } 344 }, { /* 131072 < Ratio <= 174762 (~8:3) */ 345 { 29, 70, 29, 0 }, 346 { 26, 68, 32, 2 }, 347 { 23, 67, 36, 2 }, 348 { 20, 66, 39, 3 }, 349 { 17, 65, 43, 3 }, 350 { 15, 63, 46, 4 }, 351 { 12, 61, 50, 5 }, 352 { 10, 58, 53, 7 }, 353 { 8, 56, 56, 8 }, 354 { 7, 53, 58, 10 }, 355 { 5, 50, 61, 12 }, 356 { 4, 46, 63, 15 }, 357 { 3, 43, 65, 17 }, 358 { 3, 39, 66, 20 }, 359 { 2, 36, 67, 23 }, 360 { 2, 32, 68, 26 } 361 }, { /* 174762 < Ratio <= 262144 (~8:2) */ 362 { 32, 64, 32, 0 }, 363 { 28, 63, 34, 3 }, 364 { 25, 62, 37, 4 }, 365 { 22, 62, 40, 4 }, 366 { 19, 61, 43, 5 }, 367 { 17, 59, 46, 6 }, 368 { 15, 58, 48, 7 }, 369 { 13, 55, 51, 9 }, 370 { 11, 53, 53, 11 }, 371 { 9, 51, 55, 13 }, 372 { 7, 48, 58, 15 }, 373 { 6, 46, 59, 17 }, 374 { 5, 43, 61, 19 }, 375 { 4, 40, 62, 22 }, 376 { 4, 37, 62, 25 }, 377 { 3, 34, 63, 28 } 378 } 379 }; 380 381 static int gsc_sw_reset(struct gsc_context *ctx) 382 { 383 u32 cfg; 384 int count = GSC_RESET_TIMEOUT; 385 386 /* s/w reset */ 387 cfg = (GSC_SW_RESET_SRESET); 388 gsc_write(cfg, GSC_SW_RESET); 389 390 /* wait s/w reset complete */ 391 while (count--) { 392 cfg = gsc_read(GSC_SW_RESET); 393 if (!cfg) 394 break; 395 usleep_range(1000, 2000); 396 } 397 398 if (cfg) { 399 DRM_ERROR("failed to reset gsc h/w.\n"); 400 return -EBUSY; 401 } 402 403 /* reset sequence */ 404 cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK); 405 cfg |= (GSC_IN_BASE_ADDR_MASK | 406 GSC_IN_BASE_ADDR_PINGPONG(0)); 407 gsc_write(cfg, GSC_IN_BASE_ADDR_Y_MASK); 408 gsc_write(cfg, GSC_IN_BASE_ADDR_CB_MASK); 409 gsc_write(cfg, GSC_IN_BASE_ADDR_CR_MASK); 410 411 cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK); 412 cfg |= (GSC_OUT_BASE_ADDR_MASK | 413 GSC_OUT_BASE_ADDR_PINGPONG(0)); 414 gsc_write(cfg, GSC_OUT_BASE_ADDR_Y_MASK); 415 gsc_write(cfg, GSC_OUT_BASE_ADDR_CB_MASK); 416 gsc_write(cfg, GSC_OUT_BASE_ADDR_CR_MASK); 417 418 return 0; 419 } 420 421 static void gsc_handle_irq(struct gsc_context *ctx, bool enable, 422 bool overflow, bool done) 423 { 424 u32 cfg; 425 426 DRM_DEBUG_KMS("enable[%d]overflow[%d]level[%d]\n", 427 enable, overflow, done); 428 429 cfg = gsc_read(GSC_IRQ); 430 cfg |= (GSC_IRQ_OR_MASK | GSC_IRQ_FRMDONE_MASK); 431 432 if (enable) 433 cfg |= GSC_IRQ_ENABLE; 434 else 435 cfg &= ~GSC_IRQ_ENABLE; 436 437 if (overflow) 438 cfg &= ~GSC_IRQ_OR_MASK; 439 else 440 cfg |= GSC_IRQ_OR_MASK; 441 442 if (done) 443 cfg &= ~GSC_IRQ_FRMDONE_MASK; 444 else 445 cfg |= GSC_IRQ_FRMDONE_MASK; 446 447 gsc_write(cfg, GSC_IRQ); 448 } 449 450 451 static void gsc_src_set_fmt(struct gsc_context *ctx, u32 fmt, bool tiled) 452 { 453 u32 cfg; 454 455 DRM_DEBUG_KMS("fmt[0x%x]\n", fmt); 456 457 cfg = gsc_read(GSC_IN_CON); 458 cfg &= ~(GSC_IN_RGB_TYPE_MASK | GSC_IN_YUV422_1P_ORDER_MASK | 459 GSC_IN_CHROMA_ORDER_MASK | GSC_IN_FORMAT_MASK | 460 GSC_IN_TILE_TYPE_MASK | GSC_IN_TILE_MODE | 461 GSC_IN_CHROM_STRIDE_SEL_MASK | GSC_IN_RB_SWAP_MASK); 462 463 switch (fmt) { 464 case DRM_FORMAT_RGB565: 465 cfg |= GSC_IN_RGB565; 466 break; 467 case DRM_FORMAT_XRGB8888: 468 case DRM_FORMAT_ARGB8888: 469 cfg |= GSC_IN_XRGB8888; 470 break; 471 case DRM_FORMAT_BGRX8888: 472 cfg |= (GSC_IN_XRGB8888 | GSC_IN_RB_SWAP); 473 break; 474 case DRM_FORMAT_YUYV: 475 cfg |= (GSC_IN_YUV422_1P | 476 GSC_IN_YUV422_1P_ORDER_LSB_Y | 477 GSC_IN_CHROMA_ORDER_CBCR); 478 break; 479 case DRM_FORMAT_YVYU: 480 cfg |= (GSC_IN_YUV422_1P | 481 GSC_IN_YUV422_1P_ORDER_LSB_Y | 482 GSC_IN_CHROMA_ORDER_CRCB); 483 break; 484 case DRM_FORMAT_UYVY: 485 cfg |= (GSC_IN_YUV422_1P | 486 GSC_IN_YUV422_1P_OEDER_LSB_C | 487 GSC_IN_CHROMA_ORDER_CBCR); 488 break; 489 case DRM_FORMAT_VYUY: 490 cfg |= (GSC_IN_YUV422_1P | 491 GSC_IN_YUV422_1P_OEDER_LSB_C | 492 GSC_IN_CHROMA_ORDER_CRCB); 493 break; 494 case DRM_FORMAT_NV21: 495 cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV420_2P); 496 break; 497 case DRM_FORMAT_NV61: 498 cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV422_2P); 499 break; 500 case DRM_FORMAT_YUV422: 501 cfg |= GSC_IN_YUV422_3P; 502 break; 503 case DRM_FORMAT_YUV420: 504 cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV420_3P); 505 break; 506 case DRM_FORMAT_YVU420: 507 cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV420_3P); 508 break; 509 case DRM_FORMAT_NV12: 510 cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV420_2P); 511 break; 512 case DRM_FORMAT_NV16: 513 cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV422_2P); 514 break; 515 } 516 517 if (tiled) 518 cfg |= (GSC_IN_TILE_C_16x8 | GSC_IN_TILE_MODE); 519 520 gsc_write(cfg, GSC_IN_CON); 521 } 522 523 static void gsc_src_set_transf(struct gsc_context *ctx, unsigned int rotation) 524 { 525 unsigned int degree = rotation & DRM_MODE_ROTATE_MASK; 526 u32 cfg; 527 528 cfg = gsc_read(GSC_IN_CON); 529 cfg &= ~GSC_IN_ROT_MASK; 530 531 switch (degree) { 532 case DRM_MODE_ROTATE_0: 533 if (rotation & DRM_MODE_REFLECT_X) 534 cfg |= GSC_IN_ROT_XFLIP; 535 if (rotation & DRM_MODE_REFLECT_Y) 536 cfg |= GSC_IN_ROT_YFLIP; 537 break; 538 case DRM_MODE_ROTATE_90: 539 cfg |= GSC_IN_ROT_90; 540 if (rotation & DRM_MODE_REFLECT_X) 541 cfg |= GSC_IN_ROT_XFLIP; 542 if (rotation & DRM_MODE_REFLECT_Y) 543 cfg |= GSC_IN_ROT_YFLIP; 544 break; 545 case DRM_MODE_ROTATE_180: 546 cfg |= GSC_IN_ROT_180; 547 if (rotation & DRM_MODE_REFLECT_X) 548 cfg &= ~GSC_IN_ROT_XFLIP; 549 if (rotation & DRM_MODE_REFLECT_Y) 550 cfg &= ~GSC_IN_ROT_YFLIP; 551 break; 552 case DRM_MODE_ROTATE_270: 553 cfg |= GSC_IN_ROT_270; 554 if (rotation & DRM_MODE_REFLECT_X) 555 cfg &= ~GSC_IN_ROT_XFLIP; 556 if (rotation & DRM_MODE_REFLECT_Y) 557 cfg &= ~GSC_IN_ROT_YFLIP; 558 break; 559 } 560 561 gsc_write(cfg, GSC_IN_CON); 562 563 ctx->rotation = (cfg & GSC_IN_ROT_90) ? 1 : 0; 564 } 565 566 static void gsc_src_set_size(struct gsc_context *ctx, 567 struct exynos_drm_ipp_buffer *buf) 568 { 569 struct gsc_scaler *sc = &ctx->sc; 570 u32 cfg; 571 572 /* pixel offset */ 573 cfg = (GSC_SRCIMG_OFFSET_X(buf->rect.x) | 574 GSC_SRCIMG_OFFSET_Y(buf->rect.y)); 575 gsc_write(cfg, GSC_SRCIMG_OFFSET); 576 577 /* cropped size */ 578 cfg = (GSC_CROPPED_WIDTH(buf->rect.w) | 579 GSC_CROPPED_HEIGHT(buf->rect.h)); 580 gsc_write(cfg, GSC_CROPPED_SIZE); 581 582 /* original size */ 583 cfg = gsc_read(GSC_SRCIMG_SIZE); 584 cfg &= ~(GSC_SRCIMG_HEIGHT_MASK | 585 GSC_SRCIMG_WIDTH_MASK); 586 587 cfg |= (GSC_SRCIMG_WIDTH(buf->buf.pitch[0] / buf->format->cpp[0]) | 588 GSC_SRCIMG_HEIGHT(buf->buf.height)); 589 590 gsc_write(cfg, GSC_SRCIMG_SIZE); 591 592 cfg = gsc_read(GSC_IN_CON); 593 cfg &= ~GSC_IN_RGB_TYPE_MASK; 594 595 if (buf->rect.w >= GSC_WIDTH_ITU_709) 596 if (sc->range) 597 cfg |= GSC_IN_RGB_HD_WIDE; 598 else 599 cfg |= GSC_IN_RGB_HD_NARROW; 600 else 601 if (sc->range) 602 cfg |= GSC_IN_RGB_SD_WIDE; 603 else 604 cfg |= GSC_IN_RGB_SD_NARROW; 605 606 gsc_write(cfg, GSC_IN_CON); 607 } 608 609 static void gsc_src_set_buf_seq(struct gsc_context *ctx, u32 buf_id, 610 bool enqueue) 611 { 612 bool masked = !enqueue; 613 u32 cfg; 614 u32 mask = 0x00000001 << buf_id; 615 616 /* mask register set */ 617 cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK); 618 619 /* sequence id */ 620 cfg &= ~mask; 621 cfg |= masked << buf_id; 622 gsc_write(cfg, GSC_IN_BASE_ADDR_Y_MASK); 623 gsc_write(cfg, GSC_IN_BASE_ADDR_CB_MASK); 624 gsc_write(cfg, GSC_IN_BASE_ADDR_CR_MASK); 625 } 626 627 static void gsc_src_set_addr(struct gsc_context *ctx, u32 buf_id, 628 struct exynos_drm_ipp_buffer *buf) 629 { 630 /* address register set */ 631 gsc_write(buf->dma_addr[0], GSC_IN_BASE_ADDR_Y(buf_id)); 632 gsc_write(buf->dma_addr[1], GSC_IN_BASE_ADDR_CB(buf_id)); 633 gsc_write(buf->dma_addr[2], GSC_IN_BASE_ADDR_CR(buf_id)); 634 635 gsc_src_set_buf_seq(ctx, buf_id, true); 636 } 637 638 static void gsc_dst_set_fmt(struct gsc_context *ctx, u32 fmt, bool tiled) 639 { 640 u32 cfg; 641 642 DRM_DEBUG_KMS("fmt[0x%x]\n", fmt); 643 644 cfg = gsc_read(GSC_OUT_CON); 645 cfg &= ~(GSC_OUT_RGB_TYPE_MASK | GSC_OUT_YUV422_1P_ORDER_MASK | 646 GSC_OUT_CHROMA_ORDER_MASK | GSC_OUT_FORMAT_MASK | 647 GSC_OUT_CHROM_STRIDE_SEL_MASK | GSC_OUT_RB_SWAP_MASK | 648 GSC_OUT_GLOBAL_ALPHA_MASK); 649 650 switch (fmt) { 651 case DRM_FORMAT_RGB565: 652 cfg |= GSC_OUT_RGB565; 653 break; 654 case DRM_FORMAT_ARGB8888: 655 case DRM_FORMAT_XRGB8888: 656 cfg |= (GSC_OUT_XRGB8888 | GSC_OUT_GLOBAL_ALPHA(0xff)); 657 break; 658 case DRM_FORMAT_BGRX8888: 659 cfg |= (GSC_OUT_XRGB8888 | GSC_OUT_RB_SWAP); 660 break; 661 case DRM_FORMAT_YUYV: 662 cfg |= (GSC_OUT_YUV422_1P | 663 GSC_OUT_YUV422_1P_ORDER_LSB_Y | 664 GSC_OUT_CHROMA_ORDER_CBCR); 665 break; 666 case DRM_FORMAT_YVYU: 667 cfg |= (GSC_OUT_YUV422_1P | 668 GSC_OUT_YUV422_1P_ORDER_LSB_Y | 669 GSC_OUT_CHROMA_ORDER_CRCB); 670 break; 671 case DRM_FORMAT_UYVY: 672 cfg |= (GSC_OUT_YUV422_1P | 673 GSC_OUT_YUV422_1P_OEDER_LSB_C | 674 GSC_OUT_CHROMA_ORDER_CBCR); 675 break; 676 case DRM_FORMAT_VYUY: 677 cfg |= (GSC_OUT_YUV422_1P | 678 GSC_OUT_YUV422_1P_OEDER_LSB_C | 679 GSC_OUT_CHROMA_ORDER_CRCB); 680 break; 681 case DRM_FORMAT_NV21: 682 cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV420_2P); 683 break; 684 case DRM_FORMAT_NV61: 685 cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV422_2P); 686 break; 687 case DRM_FORMAT_YUV422: 688 cfg |= GSC_OUT_YUV422_3P; 689 break; 690 case DRM_FORMAT_YUV420: 691 cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV420_3P); 692 break; 693 case DRM_FORMAT_YVU420: 694 cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV420_3P); 695 break; 696 case DRM_FORMAT_NV12: 697 cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV420_2P); 698 break; 699 case DRM_FORMAT_NV16: 700 cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV422_2P); 701 break; 702 } 703 704 if (tiled) 705 cfg |= (GSC_IN_TILE_C_16x8 | GSC_OUT_TILE_MODE); 706 707 gsc_write(cfg, GSC_OUT_CON); 708 } 709 710 static int gsc_get_ratio_shift(u32 src, u32 dst, u32 *ratio) 711 { 712 DRM_DEBUG_KMS("src[%d]dst[%d]\n", src, dst); 713 714 if (src >= dst * 8) { 715 DRM_ERROR("failed to make ratio and shift.\n"); 716 return -EINVAL; 717 } else if (src >= dst * 4) 718 *ratio = 4; 719 else if (src >= dst * 2) 720 *ratio = 2; 721 else 722 *ratio = 1; 723 724 return 0; 725 } 726 727 static void gsc_get_prescaler_shfactor(u32 hratio, u32 vratio, u32 *shfactor) 728 { 729 if (hratio == 4 && vratio == 4) 730 *shfactor = 4; 731 else if ((hratio == 4 && vratio == 2) || 732 (hratio == 2 && vratio == 4)) 733 *shfactor = 3; 734 else if ((hratio == 4 && vratio == 1) || 735 (hratio == 1 && vratio == 4) || 736 (hratio == 2 && vratio == 2)) 737 *shfactor = 2; 738 else if (hratio == 1 && vratio == 1) 739 *shfactor = 0; 740 else 741 *shfactor = 1; 742 } 743 744 static int gsc_set_prescaler(struct gsc_context *ctx, struct gsc_scaler *sc, 745 struct drm_exynos_ipp_task_rect *src, 746 struct drm_exynos_ipp_task_rect *dst) 747 { 748 u32 cfg; 749 u32 src_w, src_h, dst_w, dst_h; 750 int ret = 0; 751 752 src_w = src->w; 753 src_h = src->h; 754 755 if (ctx->rotation) { 756 dst_w = dst->h; 757 dst_h = dst->w; 758 } else { 759 dst_w = dst->w; 760 dst_h = dst->h; 761 } 762 763 ret = gsc_get_ratio_shift(src_w, dst_w, &sc->pre_hratio); 764 if (ret) { 765 dev_err(ctx->dev, "failed to get ratio horizontal.\n"); 766 return ret; 767 } 768 769 ret = gsc_get_ratio_shift(src_h, dst_h, &sc->pre_vratio); 770 if (ret) { 771 dev_err(ctx->dev, "failed to get ratio vertical.\n"); 772 return ret; 773 } 774 775 DRM_DEBUG_KMS("pre_hratio[%d]pre_vratio[%d]\n", 776 sc->pre_hratio, sc->pre_vratio); 777 778 sc->main_hratio = (src_w << 16) / dst_w; 779 sc->main_vratio = (src_h << 16) / dst_h; 780 781 DRM_DEBUG_KMS("main_hratio[%ld]main_vratio[%ld]\n", 782 sc->main_hratio, sc->main_vratio); 783 784 gsc_get_prescaler_shfactor(sc->pre_hratio, sc->pre_vratio, 785 &sc->pre_shfactor); 786 787 DRM_DEBUG_KMS("pre_shfactor[%d]\n", sc->pre_shfactor); 788 789 cfg = (GSC_PRESC_SHFACTOR(sc->pre_shfactor) | 790 GSC_PRESC_H_RATIO(sc->pre_hratio) | 791 GSC_PRESC_V_RATIO(sc->pre_vratio)); 792 gsc_write(cfg, GSC_PRE_SCALE_RATIO); 793 794 return ret; 795 } 796 797 static void gsc_set_h_coef(struct gsc_context *ctx, unsigned long main_hratio) 798 { 799 int i, j, k, sc_ratio; 800 801 if (main_hratio <= GSC_SC_UP_MAX_RATIO) 802 sc_ratio = 0; 803 else if (main_hratio <= GSC_SC_DOWN_RATIO_7_8) 804 sc_ratio = 1; 805 else if (main_hratio <= GSC_SC_DOWN_RATIO_6_8) 806 sc_ratio = 2; 807 else if (main_hratio <= GSC_SC_DOWN_RATIO_5_8) 808 sc_ratio = 3; 809 else if (main_hratio <= GSC_SC_DOWN_RATIO_4_8) 810 sc_ratio = 4; 811 else if (main_hratio <= GSC_SC_DOWN_RATIO_3_8) 812 sc_ratio = 5; 813 else 814 sc_ratio = 6; 815 816 for (i = 0; i < GSC_COEF_PHASE; i++) 817 for (j = 0; j < GSC_COEF_H_8T; j++) 818 for (k = 0; k < GSC_COEF_DEPTH; k++) 819 gsc_write(h_coef_8t[sc_ratio][i][j], 820 GSC_HCOEF(i, j, k)); 821 } 822 823 static void gsc_set_v_coef(struct gsc_context *ctx, unsigned long main_vratio) 824 { 825 int i, j, k, sc_ratio; 826 827 if (main_vratio <= GSC_SC_UP_MAX_RATIO) 828 sc_ratio = 0; 829 else if (main_vratio <= GSC_SC_DOWN_RATIO_7_8) 830 sc_ratio = 1; 831 else if (main_vratio <= GSC_SC_DOWN_RATIO_6_8) 832 sc_ratio = 2; 833 else if (main_vratio <= GSC_SC_DOWN_RATIO_5_8) 834 sc_ratio = 3; 835 else if (main_vratio <= GSC_SC_DOWN_RATIO_4_8) 836 sc_ratio = 4; 837 else if (main_vratio <= GSC_SC_DOWN_RATIO_3_8) 838 sc_ratio = 5; 839 else 840 sc_ratio = 6; 841 842 for (i = 0; i < GSC_COEF_PHASE; i++) 843 for (j = 0; j < GSC_COEF_V_4T; j++) 844 for (k = 0; k < GSC_COEF_DEPTH; k++) 845 gsc_write(v_coef_4t[sc_ratio][i][j], 846 GSC_VCOEF(i, j, k)); 847 } 848 849 static void gsc_set_scaler(struct gsc_context *ctx, struct gsc_scaler *sc) 850 { 851 u32 cfg; 852 853 DRM_DEBUG_KMS("main_hratio[%ld]main_vratio[%ld]\n", 854 sc->main_hratio, sc->main_vratio); 855 856 gsc_set_h_coef(ctx, sc->main_hratio); 857 cfg = GSC_MAIN_H_RATIO_VALUE(sc->main_hratio); 858 gsc_write(cfg, GSC_MAIN_H_RATIO); 859 860 gsc_set_v_coef(ctx, sc->main_vratio); 861 cfg = GSC_MAIN_V_RATIO_VALUE(sc->main_vratio); 862 gsc_write(cfg, GSC_MAIN_V_RATIO); 863 } 864 865 static void gsc_dst_set_size(struct gsc_context *ctx, 866 struct exynos_drm_ipp_buffer *buf) 867 { 868 struct gsc_scaler *sc = &ctx->sc; 869 u32 cfg; 870 871 /* pixel offset */ 872 cfg = (GSC_DSTIMG_OFFSET_X(buf->rect.x) | 873 GSC_DSTIMG_OFFSET_Y(buf->rect.y)); 874 gsc_write(cfg, GSC_DSTIMG_OFFSET); 875 876 /* scaled size */ 877 if (ctx->rotation) 878 cfg = (GSC_SCALED_WIDTH(buf->rect.h) | 879 GSC_SCALED_HEIGHT(buf->rect.w)); 880 else 881 cfg = (GSC_SCALED_WIDTH(buf->rect.w) | 882 GSC_SCALED_HEIGHT(buf->rect.h)); 883 gsc_write(cfg, GSC_SCALED_SIZE); 884 885 /* original size */ 886 cfg = gsc_read(GSC_DSTIMG_SIZE); 887 cfg &= ~(GSC_DSTIMG_HEIGHT_MASK | GSC_DSTIMG_WIDTH_MASK); 888 cfg |= GSC_DSTIMG_WIDTH(buf->buf.pitch[0] / buf->format->cpp[0]) | 889 GSC_DSTIMG_HEIGHT(buf->buf.height); 890 gsc_write(cfg, GSC_DSTIMG_SIZE); 891 892 cfg = gsc_read(GSC_OUT_CON); 893 cfg &= ~GSC_OUT_RGB_TYPE_MASK; 894 895 if (buf->rect.w >= GSC_WIDTH_ITU_709) 896 if (sc->range) 897 cfg |= GSC_OUT_RGB_HD_WIDE; 898 else 899 cfg |= GSC_OUT_RGB_HD_NARROW; 900 else 901 if (sc->range) 902 cfg |= GSC_OUT_RGB_SD_WIDE; 903 else 904 cfg |= GSC_OUT_RGB_SD_NARROW; 905 906 gsc_write(cfg, GSC_OUT_CON); 907 } 908 909 static int gsc_dst_get_buf_seq(struct gsc_context *ctx) 910 { 911 u32 cfg, i, buf_num = GSC_REG_SZ; 912 u32 mask = 0x00000001; 913 914 cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK); 915 916 for (i = 0; i < GSC_REG_SZ; i++) 917 if (cfg & (mask << i)) 918 buf_num--; 919 920 DRM_DEBUG_KMS("buf_num[%d]\n", buf_num); 921 922 return buf_num; 923 } 924 925 static void gsc_dst_set_buf_seq(struct gsc_context *ctx, u32 buf_id, 926 bool enqueue) 927 { 928 bool masked = !enqueue; 929 u32 cfg; 930 u32 mask = 0x00000001 << buf_id; 931 932 /* mask register set */ 933 cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK); 934 935 /* sequence id */ 936 cfg &= ~mask; 937 cfg |= masked << buf_id; 938 gsc_write(cfg, GSC_OUT_BASE_ADDR_Y_MASK); 939 gsc_write(cfg, GSC_OUT_BASE_ADDR_CB_MASK); 940 gsc_write(cfg, GSC_OUT_BASE_ADDR_CR_MASK); 941 942 /* interrupt enable */ 943 if (enqueue && gsc_dst_get_buf_seq(ctx) >= GSC_BUF_START) 944 gsc_handle_irq(ctx, true, false, true); 945 946 /* interrupt disable */ 947 if (!enqueue && gsc_dst_get_buf_seq(ctx) <= GSC_BUF_STOP) 948 gsc_handle_irq(ctx, false, false, true); 949 } 950 951 static void gsc_dst_set_addr(struct gsc_context *ctx, 952 u32 buf_id, struct exynos_drm_ipp_buffer *buf) 953 { 954 /* address register set */ 955 gsc_write(buf->dma_addr[0], GSC_OUT_BASE_ADDR_Y(buf_id)); 956 gsc_write(buf->dma_addr[1], GSC_OUT_BASE_ADDR_CB(buf_id)); 957 gsc_write(buf->dma_addr[2], GSC_OUT_BASE_ADDR_CR(buf_id)); 958 959 gsc_dst_set_buf_seq(ctx, buf_id, true); 960 } 961 962 static int gsc_get_src_buf_index(struct gsc_context *ctx) 963 { 964 u32 cfg, curr_index, i; 965 u32 buf_id = GSC_MAX_SRC; 966 967 DRM_DEBUG_KMS("gsc id[%d]\n", ctx->id); 968 969 cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK); 970 curr_index = GSC_IN_CURR_GET_INDEX(cfg); 971 972 for (i = curr_index; i < GSC_MAX_SRC; i++) { 973 if (!((cfg >> i) & 0x1)) { 974 buf_id = i; 975 break; 976 } 977 } 978 979 DRM_DEBUG_KMS("cfg[0x%x]curr_index[%d]buf_id[%d]\n", cfg, 980 curr_index, buf_id); 981 982 if (buf_id == GSC_MAX_SRC) { 983 DRM_ERROR("failed to get in buffer index.\n"); 984 return -EINVAL; 985 } 986 987 gsc_src_set_buf_seq(ctx, buf_id, false); 988 989 return buf_id; 990 } 991 992 static int gsc_get_dst_buf_index(struct gsc_context *ctx) 993 { 994 u32 cfg, curr_index, i; 995 u32 buf_id = GSC_MAX_DST; 996 997 DRM_DEBUG_KMS("gsc id[%d]\n", ctx->id); 998 999 cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK); 1000 curr_index = GSC_OUT_CURR_GET_INDEX(cfg); 1001 1002 for (i = curr_index; i < GSC_MAX_DST; i++) { 1003 if (!((cfg >> i) & 0x1)) { 1004 buf_id = i; 1005 break; 1006 } 1007 } 1008 1009 if (buf_id == GSC_MAX_DST) { 1010 DRM_ERROR("failed to get out buffer index.\n"); 1011 return -EINVAL; 1012 } 1013 1014 gsc_dst_set_buf_seq(ctx, buf_id, false); 1015 1016 DRM_DEBUG_KMS("cfg[0x%x]curr_index[%d]buf_id[%d]\n", cfg, 1017 curr_index, buf_id); 1018 1019 return buf_id; 1020 } 1021 1022 static irqreturn_t gsc_irq_handler(int irq, void *dev_id) 1023 { 1024 struct gsc_context *ctx = dev_id; 1025 u32 status; 1026 int err = 0; 1027 1028 DRM_DEBUG_KMS("gsc id[%d]\n", ctx->id); 1029 1030 status = gsc_read(GSC_IRQ); 1031 if (status & GSC_IRQ_STATUS_OR_IRQ) { 1032 dev_err(ctx->dev, "occurred overflow at %d, status 0x%x.\n", 1033 ctx->id, status); 1034 err = -EINVAL; 1035 } 1036 1037 if (status & GSC_IRQ_STATUS_OR_FRM_DONE) { 1038 int src_buf_id, dst_buf_id; 1039 1040 dev_dbg(ctx->dev, "occurred frame done at %d, status 0x%x.\n", 1041 ctx->id, status); 1042 1043 src_buf_id = gsc_get_src_buf_index(ctx); 1044 dst_buf_id = gsc_get_dst_buf_index(ctx); 1045 1046 DRM_DEBUG_KMS("buf_id_src[%d]buf_id_dst[%d]\n", src_buf_id, 1047 dst_buf_id); 1048 1049 if (src_buf_id < 0 || dst_buf_id < 0) 1050 err = -EINVAL; 1051 } 1052 1053 if (ctx->task) { 1054 struct exynos_drm_ipp_task *task = ctx->task; 1055 1056 ctx->task = NULL; 1057 pm_runtime_mark_last_busy(ctx->dev); 1058 pm_runtime_put_autosuspend(ctx->dev); 1059 exynos_drm_ipp_task_done(task, err); 1060 } 1061 1062 return IRQ_HANDLED; 1063 } 1064 1065 static int gsc_reset(struct gsc_context *ctx) 1066 { 1067 struct gsc_scaler *sc = &ctx->sc; 1068 int ret; 1069 1070 /* reset h/w block */ 1071 ret = gsc_sw_reset(ctx); 1072 if (ret < 0) { 1073 dev_err(ctx->dev, "failed to reset hardware.\n"); 1074 return ret; 1075 } 1076 1077 /* scaler setting */ 1078 memset(&ctx->sc, 0x0, sizeof(ctx->sc)); 1079 sc->range = true; 1080 1081 return 0; 1082 } 1083 1084 static void gsc_start(struct gsc_context *ctx) 1085 { 1086 u32 cfg; 1087 1088 gsc_handle_irq(ctx, true, false, true); 1089 1090 /* enable one shot */ 1091 cfg = gsc_read(GSC_ENABLE); 1092 cfg &= ~(GSC_ENABLE_ON_CLEAR_MASK | 1093 GSC_ENABLE_CLK_GATE_MODE_MASK); 1094 cfg |= GSC_ENABLE_ON_CLEAR_ONESHOT; 1095 gsc_write(cfg, GSC_ENABLE); 1096 1097 /* src dma memory */ 1098 cfg = gsc_read(GSC_IN_CON); 1099 cfg &= ~(GSC_IN_PATH_MASK | GSC_IN_LOCAL_SEL_MASK); 1100 cfg |= GSC_IN_PATH_MEMORY; 1101 gsc_write(cfg, GSC_IN_CON); 1102 1103 /* dst dma memory */ 1104 cfg = gsc_read(GSC_OUT_CON); 1105 cfg |= GSC_OUT_PATH_MEMORY; 1106 gsc_write(cfg, GSC_OUT_CON); 1107 1108 gsc_set_scaler(ctx, &ctx->sc); 1109 1110 cfg = gsc_read(GSC_ENABLE); 1111 cfg |= GSC_ENABLE_ON; 1112 gsc_write(cfg, GSC_ENABLE); 1113 } 1114 1115 static int gsc_commit(struct exynos_drm_ipp *ipp, 1116 struct exynos_drm_ipp_task *task) 1117 { 1118 struct gsc_context *ctx = container_of(ipp, struct gsc_context, ipp); 1119 int ret; 1120 1121 pm_runtime_get_sync(ctx->dev); 1122 ctx->task = task; 1123 1124 ret = gsc_reset(ctx); 1125 if (ret) { 1126 pm_runtime_put_autosuspend(ctx->dev); 1127 ctx->task = NULL; 1128 return ret; 1129 } 1130 1131 gsc_src_set_fmt(ctx, task->src.buf.fourcc, task->src.buf.modifier); 1132 gsc_src_set_transf(ctx, task->transform.rotation); 1133 gsc_src_set_size(ctx, &task->src); 1134 gsc_src_set_addr(ctx, 0, &task->src); 1135 gsc_dst_set_fmt(ctx, task->dst.buf.fourcc, task->dst.buf.modifier); 1136 gsc_dst_set_size(ctx, &task->dst); 1137 gsc_dst_set_addr(ctx, 0, &task->dst); 1138 gsc_set_prescaler(ctx, &ctx->sc, &task->src.rect, &task->dst.rect); 1139 gsc_start(ctx); 1140 1141 return 0; 1142 } 1143 1144 static void gsc_abort(struct exynos_drm_ipp *ipp, 1145 struct exynos_drm_ipp_task *task) 1146 { 1147 struct gsc_context *ctx = 1148 container_of(ipp, struct gsc_context, ipp); 1149 1150 gsc_reset(ctx); 1151 if (ctx->task) { 1152 struct exynos_drm_ipp_task *task = ctx->task; 1153 1154 ctx->task = NULL; 1155 pm_runtime_mark_last_busy(ctx->dev); 1156 pm_runtime_put_autosuspend(ctx->dev); 1157 exynos_drm_ipp_task_done(task, -EIO); 1158 } 1159 } 1160 1161 static struct exynos_drm_ipp_funcs ipp_funcs = { 1162 .commit = gsc_commit, 1163 .abort = gsc_abort, 1164 }; 1165 1166 static int gsc_bind(struct device *dev, struct device *master, void *data) 1167 { 1168 struct gsc_context *ctx = dev_get_drvdata(dev); 1169 struct drm_device *drm_dev = data; 1170 struct exynos_drm_ipp *ipp = &ctx->ipp; 1171 1172 ctx->drm_dev = drm_dev; 1173 drm_iommu_attach_device(drm_dev, dev); 1174 1175 exynos_drm_ipp_register(drm_dev, ipp, &ipp_funcs, 1176 DRM_EXYNOS_IPP_CAP_CROP | DRM_EXYNOS_IPP_CAP_ROTATE | 1177 DRM_EXYNOS_IPP_CAP_SCALE | DRM_EXYNOS_IPP_CAP_CONVERT, 1178 ctx->formats, ctx->num_formats, "gsc"); 1179 1180 dev_info(dev, "The exynos gscaler has been probed successfully\n"); 1181 1182 return 0; 1183 } 1184 1185 static void gsc_unbind(struct device *dev, struct device *master, 1186 void *data) 1187 { 1188 struct gsc_context *ctx = dev_get_drvdata(dev); 1189 struct drm_device *drm_dev = data; 1190 struct exynos_drm_ipp *ipp = &ctx->ipp; 1191 1192 exynos_drm_ipp_unregister(drm_dev, ipp); 1193 drm_iommu_detach_device(drm_dev, dev); 1194 } 1195 1196 static const struct component_ops gsc_component_ops = { 1197 .bind = gsc_bind, 1198 .unbind = gsc_unbind, 1199 }; 1200 1201 static const unsigned int gsc_formats[] = { 1202 DRM_FORMAT_ARGB8888, 1203 DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB565, DRM_FORMAT_BGRX8888, 1204 DRM_FORMAT_NV12, DRM_FORMAT_NV16, DRM_FORMAT_NV21, DRM_FORMAT_NV61, 1205 DRM_FORMAT_UYVY, DRM_FORMAT_VYUY, DRM_FORMAT_YUYV, DRM_FORMAT_YVYU, 1206 DRM_FORMAT_YUV420, DRM_FORMAT_YVU420, DRM_FORMAT_YUV422, 1207 }; 1208 1209 static const unsigned int gsc_tiled_formats[] = { 1210 DRM_FORMAT_NV12, DRM_FORMAT_NV21, 1211 }; 1212 1213 static int gsc_probe(struct platform_device *pdev) 1214 { 1215 struct device *dev = &pdev->dev; 1216 struct gsc_driverdata *driver_data; 1217 struct exynos_drm_ipp_formats *formats; 1218 struct gsc_context *ctx; 1219 struct resource *res; 1220 int num_formats, ret, i, j; 1221 1222 ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL); 1223 if (!ctx) 1224 return -ENOMEM; 1225 1226 driver_data = (struct gsc_driverdata *)of_device_get_match_data(dev); 1227 ctx->dev = dev; 1228 ctx->num_clocks = driver_data->num_clocks; 1229 ctx->clk_names = driver_data->clk_names; 1230 1231 /* construct formats/limits array */ 1232 num_formats = ARRAY_SIZE(gsc_formats) + ARRAY_SIZE(gsc_tiled_formats); 1233 formats = devm_kcalloc(dev, num_formats, sizeof(*formats), GFP_KERNEL); 1234 if (!formats) 1235 return -ENOMEM; 1236 1237 /* linear formats */ 1238 for (i = 0; i < ARRAY_SIZE(gsc_formats); i++) { 1239 formats[i].fourcc = gsc_formats[i]; 1240 formats[i].type = DRM_EXYNOS_IPP_FORMAT_SOURCE | 1241 DRM_EXYNOS_IPP_FORMAT_DESTINATION; 1242 formats[i].limits = driver_data->limits; 1243 formats[i].num_limits = driver_data->num_limits; 1244 } 1245 1246 /* tiled formats */ 1247 for (j = i, i = 0; i < ARRAY_SIZE(gsc_tiled_formats); j++, i++) { 1248 formats[j].fourcc = gsc_tiled_formats[i]; 1249 formats[j].modifier = DRM_FORMAT_MOD_SAMSUNG_16_16_TILE; 1250 formats[j].type = DRM_EXYNOS_IPP_FORMAT_SOURCE | 1251 DRM_EXYNOS_IPP_FORMAT_DESTINATION; 1252 formats[j].limits = driver_data->limits; 1253 formats[j].num_limits = driver_data->num_limits; 1254 } 1255 1256 ctx->formats = formats; 1257 ctx->num_formats = num_formats; 1258 1259 /* clock control */ 1260 for (i = 0; i < ctx->num_clocks; i++) { 1261 ctx->clocks[i] = devm_clk_get(dev, ctx->clk_names[i]); 1262 if (IS_ERR(ctx->clocks[i])) { 1263 dev_err(dev, "failed to get clock: %s\n", 1264 ctx->clk_names[i]); 1265 return PTR_ERR(ctx->clocks[i]); 1266 } 1267 } 1268 1269 /* resource memory */ 1270 ctx->regs_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1271 ctx->regs = devm_ioremap_resource(dev, ctx->regs_res); 1272 if (IS_ERR(ctx->regs)) 1273 return PTR_ERR(ctx->regs); 1274 1275 /* resource irq */ 1276 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 1277 if (!res) { 1278 dev_err(dev, "failed to request irq resource.\n"); 1279 return -ENOENT; 1280 } 1281 1282 ctx->irq = res->start; 1283 ret = devm_request_irq(dev, ctx->irq, gsc_irq_handler, 0, 1284 dev_name(dev), ctx); 1285 if (ret < 0) { 1286 dev_err(dev, "failed to request irq.\n"); 1287 return ret; 1288 } 1289 1290 /* context initailization */ 1291 ctx->id = pdev->id; 1292 1293 platform_set_drvdata(pdev, ctx); 1294 1295 pm_runtime_use_autosuspend(dev); 1296 pm_runtime_set_autosuspend_delay(dev, GSC_AUTOSUSPEND_DELAY); 1297 pm_runtime_enable(dev); 1298 1299 ret = component_add(dev, &gsc_component_ops); 1300 if (ret) 1301 goto err_pm_dis; 1302 1303 dev_info(dev, "drm gsc registered successfully.\n"); 1304 1305 return 0; 1306 1307 err_pm_dis: 1308 pm_runtime_dont_use_autosuspend(dev); 1309 pm_runtime_disable(dev); 1310 return ret; 1311 } 1312 1313 static int gsc_remove(struct platform_device *pdev) 1314 { 1315 struct device *dev = &pdev->dev; 1316 1317 pm_runtime_dont_use_autosuspend(dev); 1318 pm_runtime_disable(dev); 1319 1320 return 0; 1321 } 1322 1323 static int __maybe_unused gsc_runtime_suspend(struct device *dev) 1324 { 1325 struct gsc_context *ctx = get_gsc_context(dev); 1326 int i; 1327 1328 DRM_DEBUG_KMS("id[%d]\n", ctx->id); 1329 1330 for (i = ctx->num_clocks - 1; i >= 0; i--) 1331 clk_disable_unprepare(ctx->clocks[i]); 1332 1333 return 0; 1334 } 1335 1336 static int __maybe_unused gsc_runtime_resume(struct device *dev) 1337 { 1338 struct gsc_context *ctx = get_gsc_context(dev); 1339 int i, ret; 1340 1341 DRM_DEBUG_KMS("id[%d]\n", ctx->id); 1342 1343 for (i = 0; i < ctx->num_clocks; i++) { 1344 ret = clk_prepare_enable(ctx->clocks[i]); 1345 if (ret) { 1346 while (--i > 0) 1347 clk_disable_unprepare(ctx->clocks[i]); 1348 return ret; 1349 } 1350 } 1351 return 0; 1352 } 1353 1354 static const struct dev_pm_ops gsc_pm_ops = { 1355 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1356 pm_runtime_force_resume) 1357 SET_RUNTIME_PM_OPS(gsc_runtime_suspend, gsc_runtime_resume, NULL) 1358 }; 1359 1360 static const struct drm_exynos_ipp_limit gsc_5250_limits[] = { 1361 { IPP_SIZE_LIMIT(BUFFER, .h = { 32, 4800, 8 }, .v = { 16, 3344, 8 }) }, 1362 { IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 2 }, .v = { 8, 3344, 2 }) }, 1363 { IPP_SIZE_LIMIT(ROTATED, .h = { 32, 2048 }, .v = { 16, 2048 }) }, 1364 { IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 }, 1365 .v = { (1 << 16) / 16, (1 << 16) * 8 }) }, 1366 }; 1367 1368 static const struct drm_exynos_ipp_limit gsc_5420_limits[] = { 1369 { IPP_SIZE_LIMIT(BUFFER, .h = { 32, 4800, 8 }, .v = { 16, 3344, 8 }) }, 1370 { IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 2 }, .v = { 8, 3344, 2 }) }, 1371 { IPP_SIZE_LIMIT(ROTATED, .h = { 16, 2016 }, .v = { 8, 2016 }) }, 1372 { IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 }, 1373 .v = { (1 << 16) / 16, (1 << 16) * 8 }) }, 1374 }; 1375 1376 static const struct drm_exynos_ipp_limit gsc_5433_limits[] = { 1377 { IPP_SIZE_LIMIT(BUFFER, .h = { 32, 8191, 16 }, .v = { 16, 8191, 2 }) }, 1378 { IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 1 }, .v = { 8, 3344, 1 }) }, 1379 { IPP_SIZE_LIMIT(ROTATED, .h = { 32, 2047 }, .v = { 8, 8191 }) }, 1380 { IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 }, 1381 .v = { (1 << 16) / 16, (1 << 16) * 8 }) }, 1382 }; 1383 1384 static struct gsc_driverdata gsc_exynos5250_drvdata = { 1385 .clk_names = {"gscl"}, 1386 .num_clocks = 1, 1387 .limits = gsc_5250_limits, 1388 .num_limits = ARRAY_SIZE(gsc_5250_limits), 1389 }; 1390 1391 static struct gsc_driverdata gsc_exynos5420_drvdata = { 1392 .clk_names = {"gscl"}, 1393 .num_clocks = 1, 1394 .limits = gsc_5420_limits, 1395 .num_limits = ARRAY_SIZE(gsc_5420_limits), 1396 }; 1397 1398 static struct gsc_driverdata gsc_exynos5433_drvdata = { 1399 .clk_names = {"pclk", "aclk", "aclk_xiu", "aclk_gsclbend"}, 1400 .num_clocks = 4, 1401 .limits = gsc_5433_limits, 1402 .num_limits = ARRAY_SIZE(gsc_5433_limits), 1403 }; 1404 1405 static const struct of_device_id exynos_drm_gsc_of_match[] = { 1406 { 1407 .compatible = "samsung,exynos5-gsc", 1408 .data = &gsc_exynos5250_drvdata, 1409 }, { 1410 .compatible = "samsung,exynos5250-gsc", 1411 .data = &gsc_exynos5250_drvdata, 1412 }, { 1413 .compatible = "samsung,exynos5420-gsc", 1414 .data = &gsc_exynos5420_drvdata, 1415 }, { 1416 .compatible = "samsung,exynos5433-gsc", 1417 .data = &gsc_exynos5433_drvdata, 1418 }, { 1419 }, 1420 }; 1421 MODULE_DEVICE_TABLE(of, exynos_drm_gsc_of_match); 1422 1423 struct platform_driver gsc_driver = { 1424 .probe = gsc_probe, 1425 .remove = gsc_remove, 1426 .driver = { 1427 .name = "exynos-drm-gsc", 1428 .owner = THIS_MODULE, 1429 .pm = &gsc_pm_ops, 1430 .of_match_table = of_match_ptr(exynos_drm_gsc_of_match), 1431 }, 1432 }; 1433