1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012 Samsung Electronics Co.Ltd
4  * Authors:
5  *	Eunchul Kim <chulspro.kim@samsung.com>
6  *	Jinyoung Jeon <jy0.jeon@samsung.com>
7  *	Sangmin Lee <lsmin.lee@samsung.com>
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/component.h>
12 #include <linux/kernel.h>
13 #include <linux/mfd/syscon.h>
14 #include <linux/of_device.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/regmap.h>
18 
19 #include <drm/drm_fourcc.h>
20 #include <drm/drm_print.h>
21 #include <drm/exynos_drm.h>
22 
23 #include "exynos_drm_drv.h"
24 #include "exynos_drm_ipp.h"
25 #include "regs-gsc.h"
26 
27 /*
28  * GSC stands for General SCaler and
29  * supports image scaler/rotator and input/output DMA operations.
30  * input DMA reads image data from the memory.
31  * output DMA writes image data to memory.
32  * GSC supports image rotation and image effect functions.
33  */
34 
35 
36 #define GSC_MAX_CLOCKS	8
37 #define GSC_MAX_SRC		4
38 #define GSC_MAX_DST		16
39 #define GSC_RESET_TIMEOUT	50
40 #define GSC_BUF_STOP	1
41 #define GSC_BUF_START	2
42 #define GSC_REG_SZ		16
43 #define GSC_WIDTH_ITU_709	1280
44 #define GSC_SC_UP_MAX_RATIO		65536
45 #define GSC_SC_DOWN_RATIO_7_8		74898
46 #define GSC_SC_DOWN_RATIO_6_8		87381
47 #define GSC_SC_DOWN_RATIO_5_8		104857
48 #define GSC_SC_DOWN_RATIO_4_8		131072
49 #define GSC_SC_DOWN_RATIO_3_8		174762
50 #define GSC_SC_DOWN_RATIO_2_8		262144
51 #define GSC_CROP_MAX	8192
52 #define GSC_CROP_MIN	32
53 #define GSC_SCALE_MAX	4224
54 #define GSC_SCALE_MIN	32
55 #define GSC_COEF_RATIO	7
56 #define GSC_COEF_PHASE	9
57 #define GSC_COEF_ATTR	16
58 #define GSC_COEF_H_8T	8
59 #define GSC_COEF_V_4T	4
60 #define GSC_COEF_DEPTH	3
61 #define GSC_AUTOSUSPEND_DELAY		2000
62 
63 #define get_gsc_context(dev)	dev_get_drvdata(dev)
64 #define gsc_read(offset)		readl(ctx->regs + (offset))
65 #define gsc_write(cfg, offset)	writel(cfg, ctx->regs + (offset))
66 
67 /*
68  * A structure of scaler.
69  *
70  * @range: narrow, wide.
71  * @pre_shfactor: pre sclaer shift factor.
72  * @pre_hratio: horizontal ratio of the prescaler.
73  * @pre_vratio: vertical ratio of the prescaler.
74  * @main_hratio: the main scaler's horizontal ratio.
75  * @main_vratio: the main scaler's vertical ratio.
76  */
77 struct gsc_scaler {
78 	bool	range;
79 	u32	pre_shfactor;
80 	u32	pre_hratio;
81 	u32	pre_vratio;
82 	unsigned long main_hratio;
83 	unsigned long main_vratio;
84 };
85 
86 /*
87  * A structure of gsc context.
88  *
89  * @regs_res: register resources.
90  * @regs: memory mapped io registers.
91  * @gsc_clk: gsc gate clock.
92  * @sc: scaler infomations.
93  * @id: gsc id.
94  * @irq: irq number.
95  * @rotation: supports rotation of src.
96  */
97 struct gsc_context {
98 	struct exynos_drm_ipp ipp;
99 	struct drm_device *drm_dev;
100 	void		*dma_priv;
101 	struct device	*dev;
102 	struct exynos_drm_ipp_task	*task;
103 	struct exynos_drm_ipp_formats	*formats;
104 	unsigned int			num_formats;
105 
106 	struct resource	*regs_res;
107 	void __iomem	*regs;
108 	const char	**clk_names;
109 	struct clk	*clocks[GSC_MAX_CLOCKS];
110 	int		num_clocks;
111 	struct gsc_scaler	sc;
112 	int	id;
113 	int	irq;
114 	bool	rotation;
115 };
116 
117 /**
118  * struct gsc_driverdata - per device type driver data for init time.
119  *
120  * @limits: picture size limits array
121  * @num_limits: number of items in the aforementioned array
122  * @clk_names: names of clocks needed by this variant
123  * @num_clocks: the number of clocks needed by this variant
124  */
125 struct gsc_driverdata {
126 	const struct drm_exynos_ipp_limit *limits;
127 	int		num_limits;
128 	const char	*clk_names[GSC_MAX_CLOCKS];
129 	int		num_clocks;
130 };
131 
132 /* 8-tap Filter Coefficient */
133 static const int h_coef_8t[GSC_COEF_RATIO][GSC_COEF_ATTR][GSC_COEF_H_8T] = {
134 	{	/* Ratio <= 65536 (~8:8) */
135 		{  0,  0,   0, 128,   0,   0,  0,  0 },
136 		{ -1,  2,  -6, 127,   7,  -2,  1,  0 },
137 		{ -1,  4, -12, 125,  16,  -5,  1,  0 },
138 		{ -1,  5, -15, 120,  25,  -8,  2,  0 },
139 		{ -1,  6, -18, 114,  35, -10,  3, -1 },
140 		{ -1,  6, -20, 107,  46, -13,  4, -1 },
141 		{ -2,  7, -21,  99,  57, -16,  5, -1 },
142 		{ -1,  6, -20,  89,  68, -18,  5, -1 },
143 		{ -1,  6, -20,  79,  79, -20,  6, -1 },
144 		{ -1,  5, -18,  68,  89, -20,  6, -1 },
145 		{ -1,  5, -16,  57,  99, -21,  7, -2 },
146 		{ -1,  4, -13,  46, 107, -20,  6, -1 },
147 		{ -1,  3, -10,  35, 114, -18,  6, -1 },
148 		{  0,  2,  -8,  25, 120, -15,  5, -1 },
149 		{  0,  1,  -5,  16, 125, -12,  4, -1 },
150 		{  0,  1,  -2,   7, 127,  -6,  2, -1 }
151 	}, {	/* 65536 < Ratio <= 74898 (~8:7) */
152 		{  3, -8,  14, 111,  13,  -8,  3,  0 },
153 		{  2, -6,   7, 112,  21, -10,  3, -1 },
154 		{  2, -4,   1, 110,  28, -12,  4, -1 },
155 		{  1, -2,  -3, 106,  36, -13,  4, -1 },
156 		{  1, -1,  -7, 103,  44, -15,  4, -1 },
157 		{  1,  1, -11,  97,  53, -16,  4, -1 },
158 		{  0,  2, -13,  91,  61, -16,  4, -1 },
159 		{  0,  3, -15,  85,  69, -17,  4, -1 },
160 		{  0,  3, -16,  77,  77, -16,  3,  0 },
161 		{ -1,  4, -17,  69,  85, -15,  3,  0 },
162 		{ -1,  4, -16,  61,  91, -13,  2,  0 },
163 		{ -1,  4, -16,  53,  97, -11,  1,  1 },
164 		{ -1,  4, -15,  44, 103,  -7, -1,  1 },
165 		{ -1,  4, -13,  36, 106,  -3, -2,  1 },
166 		{ -1,  4, -12,  28, 110,   1, -4,  2 },
167 		{ -1,  3, -10,  21, 112,   7, -6,  2 }
168 	}, {	/* 74898 < Ratio <= 87381 (~8:6) */
169 		{ 2, -11,  25,  96, 25, -11,   2,  0 },
170 		{ 2, -10,  19,  96, 31, -12,   2,  0 },
171 		{ 2,  -9,  14,  94, 37, -12,   2,  0 },
172 		{ 2,  -8,  10,  92, 43, -12,   1,  0 },
173 		{ 2,  -7,   5,  90, 49, -12,   1,  0 },
174 		{ 2,  -5,   1,  86, 55, -12,   0,  1 },
175 		{ 2,  -4,  -2,  82, 61, -11,  -1,  1 },
176 		{ 1,  -3,  -5,  77, 67,  -9,  -1,  1 },
177 		{ 1,  -2,  -7,  72, 72,  -7,  -2,  1 },
178 		{ 1,  -1,  -9,  67, 77,  -5,  -3,  1 },
179 		{ 1,  -1, -11,  61, 82,  -2,  -4,  2 },
180 		{ 1,   0, -12,  55, 86,   1,  -5,  2 },
181 		{ 0,   1, -12,  49, 90,   5,  -7,  2 },
182 		{ 0,   1, -12,  43, 92,  10,  -8,  2 },
183 		{ 0,   2, -12,  37, 94,  14,  -9,  2 },
184 		{ 0,   2, -12,  31, 96,  19, -10,  2 }
185 	}, {	/* 87381 < Ratio <= 104857 (~8:5) */
186 		{ -1,  -8, 33,  80, 33,  -8,  -1,  0 },
187 		{ -1,  -8, 28,  80, 37,  -7,  -2,  1 },
188 		{  0,  -8, 24,  79, 41,  -7,  -2,  1 },
189 		{  0,  -8, 20,  78, 46,  -6,  -3,  1 },
190 		{  0,  -8, 16,  76, 50,  -4,  -3,  1 },
191 		{  0,  -7, 13,  74, 54,  -3,  -4,  1 },
192 		{  1,  -7, 10,  71, 58,  -1,  -5,  1 },
193 		{  1,  -6,  6,  68, 62,   1,  -5,  1 },
194 		{  1,  -6,  4,  65, 65,   4,  -6,  1 },
195 		{  1,  -5,  1,  62, 68,   6,  -6,  1 },
196 		{  1,  -5, -1,  58, 71,  10,  -7,  1 },
197 		{  1,  -4, -3,  54, 74,  13,  -7,  0 },
198 		{  1,  -3, -4,  50, 76,  16,  -8,  0 },
199 		{  1,  -3, -6,  46, 78,  20,  -8,  0 },
200 		{  1,  -2, -7,  41, 79,  24,  -8,  0 },
201 		{  1,  -2, -7,  37, 80,  28,  -8, -1 }
202 	}, {	/* 104857 < Ratio <= 131072 (~8:4) */
203 		{ -3,   0, 35,  64, 35,   0,  -3,  0 },
204 		{ -3,  -1, 32,  64, 38,   1,  -3,  0 },
205 		{ -2,  -2, 29,  63, 41,   2,  -3,  0 },
206 		{ -2,  -3, 27,  63, 43,   4,  -4,  0 },
207 		{ -2,  -3, 24,  61, 46,   6,  -4,  0 },
208 		{ -2,  -3, 21,  60, 49,   7,  -4,  0 },
209 		{ -1,  -4, 19,  59, 51,   9,  -4, -1 },
210 		{ -1,  -4, 16,  57, 53,  12,  -4, -1 },
211 		{ -1,  -4, 14,  55, 55,  14,  -4, -1 },
212 		{ -1,  -4, 12,  53, 57,  16,  -4, -1 },
213 		{ -1,  -4,  9,  51, 59,  19,  -4, -1 },
214 		{  0,  -4,  7,  49, 60,  21,  -3, -2 },
215 		{  0,  -4,  6,  46, 61,  24,  -3, -2 },
216 		{  0,  -4,  4,  43, 63,  27,  -3, -2 },
217 		{  0,  -3,  2,  41, 63,  29,  -2, -2 },
218 		{  0,  -3,  1,  38, 64,  32,  -1, -3 }
219 	}, {	/* 131072 < Ratio <= 174762 (~8:3) */
220 		{ -1,   8, 33,  48, 33,   8,  -1,  0 },
221 		{ -1,   7, 31,  49, 35,   9,  -1, -1 },
222 		{ -1,   6, 30,  49, 36,  10,  -1, -1 },
223 		{ -1,   5, 28,  48, 38,  12,  -1, -1 },
224 		{ -1,   4, 26,  48, 39,  13,   0, -1 },
225 		{ -1,   3, 24,  47, 41,  15,   0, -1 },
226 		{ -1,   2, 23,  47, 42,  16,   0, -1 },
227 		{ -1,   2, 21,  45, 43,  18,   1, -1 },
228 		{ -1,   1, 19,  45, 45,  19,   1, -1 },
229 		{ -1,   1, 18,  43, 45,  21,   2, -1 },
230 		{ -1,   0, 16,  42, 47,  23,   2, -1 },
231 		{ -1,   0, 15,  41, 47,  24,   3, -1 },
232 		{ -1,   0, 13,  39, 48,  26,   4, -1 },
233 		{ -1,  -1, 12,  38, 48,  28,   5, -1 },
234 		{ -1,  -1, 10,  36, 49,  30,   6, -1 },
235 		{ -1,  -1,  9,  35, 49,  31,   7, -1 }
236 	}, {	/* 174762 < Ratio <= 262144 (~8:2) */
237 		{  2,  13, 30,  38, 30,  13,   2,  0 },
238 		{  2,  12, 29,  38, 30,  14,   3,  0 },
239 		{  2,  11, 28,  38, 31,  15,   3,  0 },
240 		{  2,  10, 26,  38, 32,  16,   4,  0 },
241 		{  1,  10, 26,  37, 33,  17,   4,  0 },
242 		{  1,   9, 24,  37, 34,  18,   5,  0 },
243 		{  1,   8, 24,  37, 34,  19,   5,  0 },
244 		{  1,   7, 22,  36, 35,  20,   6,  1 },
245 		{  1,   6, 21,  36, 36,  21,   6,  1 },
246 		{  1,   6, 20,  35, 36,  22,   7,  1 },
247 		{  0,   5, 19,  34, 37,  24,   8,  1 },
248 		{  0,   5, 18,  34, 37,  24,   9,  1 },
249 		{  0,   4, 17,  33, 37,  26,  10,  1 },
250 		{  0,   4, 16,  32, 38,  26,  10,  2 },
251 		{  0,   3, 15,  31, 38,  28,  11,  2 },
252 		{  0,   3, 14,  30, 38,  29,  12,  2 }
253 	}
254 };
255 
256 /* 4-tap Filter Coefficient */
257 static const int v_coef_4t[GSC_COEF_RATIO][GSC_COEF_ATTR][GSC_COEF_V_4T] = {
258 	{	/* Ratio <= 65536 (~8:8) */
259 		{  0, 128,   0,  0 },
260 		{ -4, 127,   5,  0 },
261 		{ -6, 124,  11, -1 },
262 		{ -8, 118,  19, -1 },
263 		{ -8, 111,  27, -2 },
264 		{ -8, 102,  37, -3 },
265 		{ -8,  92,  48, -4 },
266 		{ -7,  81,  59, -5 },
267 		{ -6,  70,  70, -6 },
268 		{ -5,  59,  81, -7 },
269 		{ -4,  48,  92, -8 },
270 		{ -3,  37, 102, -8 },
271 		{ -2,  27, 111, -8 },
272 		{ -1,  19, 118, -8 },
273 		{ -1,  11, 124, -6 },
274 		{  0,   5, 127, -4 }
275 	}, {	/* 65536 < Ratio <= 74898 (~8:7) */
276 		{  8, 112,   8,  0 },
277 		{  4, 111,  14, -1 },
278 		{  1, 109,  20, -2 },
279 		{ -2, 105,  27, -2 },
280 		{ -3, 100,  34, -3 },
281 		{ -5,  93,  43, -3 },
282 		{ -5,  86,  51, -4 },
283 		{ -5,  77,  60, -4 },
284 		{ -5,  69,  69, -5 },
285 		{ -4,  60,  77, -5 },
286 		{ -4,  51,  86, -5 },
287 		{ -3,  43,  93, -5 },
288 		{ -3,  34, 100, -3 },
289 		{ -2,  27, 105, -2 },
290 		{ -2,  20, 109,  1 },
291 		{ -1,  14, 111,  4 }
292 	}, {	/* 74898 < Ratio <= 87381 (~8:6) */
293 		{ 16,  96,  16,  0 },
294 		{ 12,  97,  21, -2 },
295 		{  8,  96,  26, -2 },
296 		{  5,  93,  32, -2 },
297 		{  2,  89,  39, -2 },
298 		{  0,  84,  46, -2 },
299 		{ -1,  79,  53, -3 },
300 		{ -2,  73,  59, -2 },
301 		{ -2,  66,  66, -2 },
302 		{ -2,  59,  73, -2 },
303 		{ -3,  53,  79, -1 },
304 		{ -2,  46,  84,  0 },
305 		{ -2,  39,  89,  2 },
306 		{ -2,  32,  93,  5 },
307 		{ -2,  26,  96,  8 },
308 		{ -2,  21,  97, 12 }
309 	}, {	/* 87381 < Ratio <= 104857 (~8:5) */
310 		{ 22,  84,  22,  0 },
311 		{ 18,  85,  26, -1 },
312 		{ 14,  84,  31, -1 },
313 		{ 11,  82,  36, -1 },
314 		{  8,  79,  42, -1 },
315 		{  6,  76,  47, -1 },
316 		{  4,  72,  52,  0 },
317 		{  2,  68,  58,  0 },
318 		{  1,  63,  63,  1 },
319 		{  0,  58,  68,  2 },
320 		{  0,  52,  72,  4 },
321 		{ -1,  47,  76,  6 },
322 		{ -1,  42,  79,  8 },
323 		{ -1,  36,  82, 11 },
324 		{ -1,  31,  84, 14 },
325 		{ -1,  26,  85, 18 }
326 	}, {	/* 104857 < Ratio <= 131072 (~8:4) */
327 		{ 26,  76,  26,  0 },
328 		{ 22,  76,  30,  0 },
329 		{ 19,  75,  34,  0 },
330 		{ 16,  73,  38,  1 },
331 		{ 13,  71,  43,  1 },
332 		{ 10,  69,  47,  2 },
333 		{  8,  66,  51,  3 },
334 		{  6,  63,  55,  4 },
335 		{  5,  59,  59,  5 },
336 		{  4,  55,  63,  6 },
337 		{  3,  51,  66,  8 },
338 		{  2,  47,  69, 10 },
339 		{  1,  43,  71, 13 },
340 		{  1,  38,  73, 16 },
341 		{  0,  34,  75, 19 },
342 		{  0,  30,  76, 22 }
343 	}, {	/* 131072 < Ratio <= 174762 (~8:3) */
344 		{ 29,  70,  29,  0 },
345 		{ 26,  68,  32,  2 },
346 		{ 23,  67,  36,  2 },
347 		{ 20,  66,  39,  3 },
348 		{ 17,  65,  43,  3 },
349 		{ 15,  63,  46,  4 },
350 		{ 12,  61,  50,  5 },
351 		{ 10,  58,  53,  7 },
352 		{  8,  56,  56,  8 },
353 		{  7,  53,  58, 10 },
354 		{  5,  50,  61, 12 },
355 		{  4,  46,  63, 15 },
356 		{  3,  43,  65, 17 },
357 		{  3,  39,  66, 20 },
358 		{  2,  36,  67, 23 },
359 		{  2,  32,  68, 26 }
360 	}, {	/* 174762 < Ratio <= 262144 (~8:2) */
361 		{ 32,  64,  32,  0 },
362 		{ 28,  63,  34,  3 },
363 		{ 25,  62,  37,  4 },
364 		{ 22,  62,  40,  4 },
365 		{ 19,  61,  43,  5 },
366 		{ 17,  59,  46,  6 },
367 		{ 15,  58,  48,  7 },
368 		{ 13,  55,  51,  9 },
369 		{ 11,  53,  53, 11 },
370 		{  9,  51,  55, 13 },
371 		{  7,  48,  58, 15 },
372 		{  6,  46,  59, 17 },
373 		{  5,  43,  61, 19 },
374 		{  4,  40,  62, 22 },
375 		{  4,  37,  62, 25 },
376 		{  3,  34,  63, 28 }
377 	}
378 };
379 
380 static int gsc_sw_reset(struct gsc_context *ctx)
381 {
382 	u32 cfg;
383 	int count = GSC_RESET_TIMEOUT;
384 
385 	/* s/w reset */
386 	cfg = (GSC_SW_RESET_SRESET);
387 	gsc_write(cfg, GSC_SW_RESET);
388 
389 	/* wait s/w reset complete */
390 	while (count--) {
391 		cfg = gsc_read(GSC_SW_RESET);
392 		if (!cfg)
393 			break;
394 		usleep_range(1000, 2000);
395 	}
396 
397 	if (cfg) {
398 		DRM_DEV_ERROR(ctx->dev, "failed to reset gsc h/w.\n");
399 		return -EBUSY;
400 	}
401 
402 	/* reset sequence */
403 	cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK);
404 	cfg |= (GSC_IN_BASE_ADDR_MASK |
405 		GSC_IN_BASE_ADDR_PINGPONG(0));
406 	gsc_write(cfg, GSC_IN_BASE_ADDR_Y_MASK);
407 	gsc_write(cfg, GSC_IN_BASE_ADDR_CB_MASK);
408 	gsc_write(cfg, GSC_IN_BASE_ADDR_CR_MASK);
409 
410 	cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK);
411 	cfg |= (GSC_OUT_BASE_ADDR_MASK |
412 		GSC_OUT_BASE_ADDR_PINGPONG(0));
413 	gsc_write(cfg, GSC_OUT_BASE_ADDR_Y_MASK);
414 	gsc_write(cfg, GSC_OUT_BASE_ADDR_CB_MASK);
415 	gsc_write(cfg, GSC_OUT_BASE_ADDR_CR_MASK);
416 
417 	return 0;
418 }
419 
420 static void gsc_handle_irq(struct gsc_context *ctx, bool enable,
421 		bool overflow, bool done)
422 {
423 	u32 cfg;
424 
425 	DRM_DEV_DEBUG_KMS(ctx->dev, "enable[%d]overflow[%d]level[%d]\n",
426 			  enable, overflow, done);
427 
428 	cfg = gsc_read(GSC_IRQ);
429 	cfg |= (GSC_IRQ_OR_MASK | GSC_IRQ_FRMDONE_MASK);
430 
431 	if (enable)
432 		cfg |= GSC_IRQ_ENABLE;
433 	else
434 		cfg &= ~GSC_IRQ_ENABLE;
435 
436 	if (overflow)
437 		cfg &= ~GSC_IRQ_OR_MASK;
438 	else
439 		cfg |= GSC_IRQ_OR_MASK;
440 
441 	if (done)
442 		cfg &= ~GSC_IRQ_FRMDONE_MASK;
443 	else
444 		cfg |= GSC_IRQ_FRMDONE_MASK;
445 
446 	gsc_write(cfg, GSC_IRQ);
447 }
448 
449 
450 static void gsc_src_set_fmt(struct gsc_context *ctx, u32 fmt, bool tiled)
451 {
452 	u32 cfg;
453 
454 	DRM_DEV_DEBUG_KMS(ctx->dev, "fmt[0x%x]\n", fmt);
455 
456 	cfg = gsc_read(GSC_IN_CON);
457 	cfg &= ~(GSC_IN_RGB_TYPE_MASK | GSC_IN_YUV422_1P_ORDER_MASK |
458 		 GSC_IN_CHROMA_ORDER_MASK | GSC_IN_FORMAT_MASK |
459 		 GSC_IN_TILE_TYPE_MASK | GSC_IN_TILE_MODE |
460 		 GSC_IN_CHROM_STRIDE_SEL_MASK | GSC_IN_RB_SWAP_MASK);
461 
462 	switch (fmt) {
463 	case DRM_FORMAT_RGB565:
464 		cfg |= GSC_IN_RGB565;
465 		break;
466 	case DRM_FORMAT_XRGB8888:
467 	case DRM_FORMAT_ARGB8888:
468 		cfg |= GSC_IN_XRGB8888;
469 		break;
470 	case DRM_FORMAT_BGRX8888:
471 		cfg |= (GSC_IN_XRGB8888 | GSC_IN_RB_SWAP);
472 		break;
473 	case DRM_FORMAT_YUYV:
474 		cfg |= (GSC_IN_YUV422_1P |
475 			GSC_IN_YUV422_1P_ORDER_LSB_Y |
476 			GSC_IN_CHROMA_ORDER_CBCR);
477 		break;
478 	case DRM_FORMAT_YVYU:
479 		cfg |= (GSC_IN_YUV422_1P |
480 			GSC_IN_YUV422_1P_ORDER_LSB_Y |
481 			GSC_IN_CHROMA_ORDER_CRCB);
482 		break;
483 	case DRM_FORMAT_UYVY:
484 		cfg |= (GSC_IN_YUV422_1P |
485 			GSC_IN_YUV422_1P_OEDER_LSB_C |
486 			GSC_IN_CHROMA_ORDER_CBCR);
487 		break;
488 	case DRM_FORMAT_VYUY:
489 		cfg |= (GSC_IN_YUV422_1P |
490 			GSC_IN_YUV422_1P_OEDER_LSB_C |
491 			GSC_IN_CHROMA_ORDER_CRCB);
492 		break;
493 	case DRM_FORMAT_NV21:
494 		cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV420_2P);
495 		break;
496 	case DRM_FORMAT_NV61:
497 		cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV422_2P);
498 		break;
499 	case DRM_FORMAT_YUV422:
500 		cfg |= GSC_IN_YUV422_3P;
501 		break;
502 	case DRM_FORMAT_YUV420:
503 		cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV420_3P);
504 		break;
505 	case DRM_FORMAT_YVU420:
506 		cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV420_3P);
507 		break;
508 	case DRM_FORMAT_NV12:
509 		cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV420_2P);
510 		break;
511 	case DRM_FORMAT_NV16:
512 		cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV422_2P);
513 		break;
514 	}
515 
516 	if (tiled)
517 		cfg |= (GSC_IN_TILE_C_16x8 | GSC_IN_TILE_MODE);
518 
519 	gsc_write(cfg, GSC_IN_CON);
520 }
521 
522 static void gsc_src_set_transf(struct gsc_context *ctx, unsigned int rotation)
523 {
524 	unsigned int degree = rotation & DRM_MODE_ROTATE_MASK;
525 	u32 cfg;
526 
527 	cfg = gsc_read(GSC_IN_CON);
528 	cfg &= ~GSC_IN_ROT_MASK;
529 
530 	switch (degree) {
531 	case DRM_MODE_ROTATE_0:
532 		if (rotation & DRM_MODE_REFLECT_X)
533 			cfg |= GSC_IN_ROT_XFLIP;
534 		if (rotation & DRM_MODE_REFLECT_Y)
535 			cfg |= GSC_IN_ROT_YFLIP;
536 		break;
537 	case DRM_MODE_ROTATE_90:
538 		cfg |= GSC_IN_ROT_90;
539 		if (rotation & DRM_MODE_REFLECT_X)
540 			cfg |= GSC_IN_ROT_XFLIP;
541 		if (rotation & DRM_MODE_REFLECT_Y)
542 			cfg |= GSC_IN_ROT_YFLIP;
543 		break;
544 	case DRM_MODE_ROTATE_180:
545 		cfg |= GSC_IN_ROT_180;
546 		if (rotation & DRM_MODE_REFLECT_X)
547 			cfg &= ~GSC_IN_ROT_XFLIP;
548 		if (rotation & DRM_MODE_REFLECT_Y)
549 			cfg &= ~GSC_IN_ROT_YFLIP;
550 		break;
551 	case DRM_MODE_ROTATE_270:
552 		cfg |= GSC_IN_ROT_270;
553 		if (rotation & DRM_MODE_REFLECT_X)
554 			cfg &= ~GSC_IN_ROT_XFLIP;
555 		if (rotation & DRM_MODE_REFLECT_Y)
556 			cfg &= ~GSC_IN_ROT_YFLIP;
557 		break;
558 	}
559 
560 	gsc_write(cfg, GSC_IN_CON);
561 
562 	ctx->rotation = (cfg & GSC_IN_ROT_90) ? 1 : 0;
563 }
564 
565 static void gsc_src_set_size(struct gsc_context *ctx,
566 			     struct exynos_drm_ipp_buffer *buf)
567 {
568 	struct gsc_scaler *sc = &ctx->sc;
569 	u32 cfg;
570 
571 	/* pixel offset */
572 	cfg = (GSC_SRCIMG_OFFSET_X(buf->rect.x) |
573 		GSC_SRCIMG_OFFSET_Y(buf->rect.y));
574 	gsc_write(cfg, GSC_SRCIMG_OFFSET);
575 
576 	/* cropped size */
577 	cfg = (GSC_CROPPED_WIDTH(buf->rect.w) |
578 		GSC_CROPPED_HEIGHT(buf->rect.h));
579 	gsc_write(cfg, GSC_CROPPED_SIZE);
580 
581 	/* original size */
582 	cfg = gsc_read(GSC_SRCIMG_SIZE);
583 	cfg &= ~(GSC_SRCIMG_HEIGHT_MASK |
584 		GSC_SRCIMG_WIDTH_MASK);
585 
586 	cfg |= (GSC_SRCIMG_WIDTH(buf->buf.pitch[0] / buf->format->cpp[0]) |
587 		GSC_SRCIMG_HEIGHT(buf->buf.height));
588 
589 	gsc_write(cfg, GSC_SRCIMG_SIZE);
590 
591 	cfg = gsc_read(GSC_IN_CON);
592 	cfg &= ~GSC_IN_RGB_TYPE_MASK;
593 
594 	if (buf->rect.w >= GSC_WIDTH_ITU_709)
595 		if (sc->range)
596 			cfg |= GSC_IN_RGB_HD_WIDE;
597 		else
598 			cfg |= GSC_IN_RGB_HD_NARROW;
599 	else
600 		if (sc->range)
601 			cfg |= GSC_IN_RGB_SD_WIDE;
602 		else
603 			cfg |= GSC_IN_RGB_SD_NARROW;
604 
605 	gsc_write(cfg, GSC_IN_CON);
606 }
607 
608 static void gsc_src_set_buf_seq(struct gsc_context *ctx, u32 buf_id,
609 			       bool enqueue)
610 {
611 	bool masked = !enqueue;
612 	u32 cfg;
613 	u32 mask = 0x00000001 << buf_id;
614 
615 	/* mask register set */
616 	cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK);
617 
618 	/* sequence id */
619 	cfg &= ~mask;
620 	cfg |= masked << buf_id;
621 	gsc_write(cfg, GSC_IN_BASE_ADDR_Y_MASK);
622 	gsc_write(cfg, GSC_IN_BASE_ADDR_CB_MASK);
623 	gsc_write(cfg, GSC_IN_BASE_ADDR_CR_MASK);
624 }
625 
626 static void gsc_src_set_addr(struct gsc_context *ctx, u32 buf_id,
627 			    struct exynos_drm_ipp_buffer *buf)
628 {
629 	/* address register set */
630 	gsc_write(buf->dma_addr[0], GSC_IN_BASE_ADDR_Y(buf_id));
631 	gsc_write(buf->dma_addr[1], GSC_IN_BASE_ADDR_CB(buf_id));
632 	gsc_write(buf->dma_addr[2], GSC_IN_BASE_ADDR_CR(buf_id));
633 
634 	gsc_src_set_buf_seq(ctx, buf_id, true);
635 }
636 
637 static void gsc_dst_set_fmt(struct gsc_context *ctx, u32 fmt, bool tiled)
638 {
639 	u32 cfg;
640 
641 	DRM_DEV_DEBUG_KMS(ctx->dev, "fmt[0x%x]\n", fmt);
642 
643 	cfg = gsc_read(GSC_OUT_CON);
644 	cfg &= ~(GSC_OUT_RGB_TYPE_MASK | GSC_OUT_YUV422_1P_ORDER_MASK |
645 		 GSC_OUT_CHROMA_ORDER_MASK | GSC_OUT_FORMAT_MASK |
646 		 GSC_OUT_CHROM_STRIDE_SEL_MASK | GSC_OUT_RB_SWAP_MASK |
647 		 GSC_OUT_GLOBAL_ALPHA_MASK);
648 
649 	switch (fmt) {
650 	case DRM_FORMAT_RGB565:
651 		cfg |= GSC_OUT_RGB565;
652 		break;
653 	case DRM_FORMAT_ARGB8888:
654 	case DRM_FORMAT_XRGB8888:
655 		cfg |= (GSC_OUT_XRGB8888 | GSC_OUT_GLOBAL_ALPHA(0xff));
656 		break;
657 	case DRM_FORMAT_BGRX8888:
658 		cfg |= (GSC_OUT_XRGB8888 | GSC_OUT_RB_SWAP);
659 		break;
660 	case DRM_FORMAT_YUYV:
661 		cfg |= (GSC_OUT_YUV422_1P |
662 			GSC_OUT_YUV422_1P_ORDER_LSB_Y |
663 			GSC_OUT_CHROMA_ORDER_CBCR);
664 		break;
665 	case DRM_FORMAT_YVYU:
666 		cfg |= (GSC_OUT_YUV422_1P |
667 			GSC_OUT_YUV422_1P_ORDER_LSB_Y |
668 			GSC_OUT_CHROMA_ORDER_CRCB);
669 		break;
670 	case DRM_FORMAT_UYVY:
671 		cfg |= (GSC_OUT_YUV422_1P |
672 			GSC_OUT_YUV422_1P_OEDER_LSB_C |
673 			GSC_OUT_CHROMA_ORDER_CBCR);
674 		break;
675 	case DRM_FORMAT_VYUY:
676 		cfg |= (GSC_OUT_YUV422_1P |
677 			GSC_OUT_YUV422_1P_OEDER_LSB_C |
678 			GSC_OUT_CHROMA_ORDER_CRCB);
679 		break;
680 	case DRM_FORMAT_NV21:
681 		cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV420_2P);
682 		break;
683 	case DRM_FORMAT_NV61:
684 		cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV422_2P);
685 		break;
686 	case DRM_FORMAT_YUV422:
687 		cfg |= GSC_OUT_YUV422_3P;
688 		break;
689 	case DRM_FORMAT_YUV420:
690 		cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV420_3P);
691 		break;
692 	case DRM_FORMAT_YVU420:
693 		cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV420_3P);
694 		break;
695 	case DRM_FORMAT_NV12:
696 		cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV420_2P);
697 		break;
698 	case DRM_FORMAT_NV16:
699 		cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV422_2P);
700 		break;
701 	}
702 
703 	if (tiled)
704 		cfg |= (GSC_IN_TILE_C_16x8 | GSC_OUT_TILE_MODE);
705 
706 	gsc_write(cfg, GSC_OUT_CON);
707 }
708 
709 static int gsc_get_ratio_shift(struct gsc_context *ctx, u32 src, u32 dst,
710 			       u32 *ratio)
711 {
712 	DRM_DEV_DEBUG_KMS(ctx->dev, "src[%d]dst[%d]\n", src, dst);
713 
714 	if (src >= dst * 8) {
715 		DRM_DEV_ERROR(ctx->dev, "failed to make ratio and shift.\n");
716 		return -EINVAL;
717 	} else if (src >= dst * 4)
718 		*ratio = 4;
719 	else if (src >= dst * 2)
720 		*ratio = 2;
721 	else
722 		*ratio = 1;
723 
724 	return 0;
725 }
726 
727 static void gsc_get_prescaler_shfactor(u32 hratio, u32 vratio, u32 *shfactor)
728 {
729 	if (hratio == 4 && vratio == 4)
730 		*shfactor = 4;
731 	else if ((hratio == 4 && vratio == 2) ||
732 		 (hratio == 2 && vratio == 4))
733 		*shfactor = 3;
734 	else if ((hratio == 4 && vratio == 1) ||
735 		 (hratio == 1 && vratio == 4) ||
736 		 (hratio == 2 && vratio == 2))
737 		*shfactor = 2;
738 	else if (hratio == 1 && vratio == 1)
739 		*shfactor = 0;
740 	else
741 		*shfactor = 1;
742 }
743 
744 static int gsc_set_prescaler(struct gsc_context *ctx, struct gsc_scaler *sc,
745 			     struct drm_exynos_ipp_task_rect *src,
746 			     struct drm_exynos_ipp_task_rect *dst)
747 {
748 	u32 cfg;
749 	u32 src_w, src_h, dst_w, dst_h;
750 	int ret = 0;
751 
752 	src_w = src->w;
753 	src_h = src->h;
754 
755 	if (ctx->rotation) {
756 		dst_w = dst->h;
757 		dst_h = dst->w;
758 	} else {
759 		dst_w = dst->w;
760 		dst_h = dst->h;
761 	}
762 
763 	ret = gsc_get_ratio_shift(ctx, src_w, dst_w, &sc->pre_hratio);
764 	if (ret) {
765 		DRM_DEV_ERROR(ctx->dev, "failed to get ratio horizontal.\n");
766 		return ret;
767 	}
768 
769 	ret = gsc_get_ratio_shift(ctx, src_h, dst_h, &sc->pre_vratio);
770 	if (ret) {
771 		DRM_DEV_ERROR(ctx->dev, "failed to get ratio vertical.\n");
772 		return ret;
773 	}
774 
775 	DRM_DEV_DEBUG_KMS(ctx->dev, "pre_hratio[%d]pre_vratio[%d]\n",
776 			  sc->pre_hratio, sc->pre_vratio);
777 
778 	sc->main_hratio = (src_w << 16) / dst_w;
779 	sc->main_vratio = (src_h << 16) / dst_h;
780 
781 	DRM_DEV_DEBUG_KMS(ctx->dev, "main_hratio[%ld]main_vratio[%ld]\n",
782 			  sc->main_hratio, sc->main_vratio);
783 
784 	gsc_get_prescaler_shfactor(sc->pre_hratio, sc->pre_vratio,
785 		&sc->pre_shfactor);
786 
787 	DRM_DEV_DEBUG_KMS(ctx->dev, "pre_shfactor[%d]\n", sc->pre_shfactor);
788 
789 	cfg = (GSC_PRESC_SHFACTOR(sc->pre_shfactor) |
790 		GSC_PRESC_H_RATIO(sc->pre_hratio) |
791 		GSC_PRESC_V_RATIO(sc->pre_vratio));
792 	gsc_write(cfg, GSC_PRE_SCALE_RATIO);
793 
794 	return ret;
795 }
796 
797 static void gsc_set_h_coef(struct gsc_context *ctx, unsigned long main_hratio)
798 {
799 	int i, j, k, sc_ratio;
800 
801 	if (main_hratio <= GSC_SC_UP_MAX_RATIO)
802 		sc_ratio = 0;
803 	else if (main_hratio <= GSC_SC_DOWN_RATIO_7_8)
804 		sc_ratio = 1;
805 	else if (main_hratio <= GSC_SC_DOWN_RATIO_6_8)
806 		sc_ratio = 2;
807 	else if (main_hratio <= GSC_SC_DOWN_RATIO_5_8)
808 		sc_ratio = 3;
809 	else if (main_hratio <= GSC_SC_DOWN_RATIO_4_8)
810 		sc_ratio = 4;
811 	else if (main_hratio <= GSC_SC_DOWN_RATIO_3_8)
812 		sc_ratio = 5;
813 	else
814 		sc_ratio = 6;
815 
816 	for (i = 0; i < GSC_COEF_PHASE; i++)
817 		for (j = 0; j < GSC_COEF_H_8T; j++)
818 			for (k = 0; k < GSC_COEF_DEPTH; k++)
819 				gsc_write(h_coef_8t[sc_ratio][i][j],
820 					GSC_HCOEF(i, j, k));
821 }
822 
823 static void gsc_set_v_coef(struct gsc_context *ctx, unsigned long main_vratio)
824 {
825 	int i, j, k, sc_ratio;
826 
827 	if (main_vratio <= GSC_SC_UP_MAX_RATIO)
828 		sc_ratio = 0;
829 	else if (main_vratio <= GSC_SC_DOWN_RATIO_7_8)
830 		sc_ratio = 1;
831 	else if (main_vratio <= GSC_SC_DOWN_RATIO_6_8)
832 		sc_ratio = 2;
833 	else if (main_vratio <= GSC_SC_DOWN_RATIO_5_8)
834 		sc_ratio = 3;
835 	else if (main_vratio <= GSC_SC_DOWN_RATIO_4_8)
836 		sc_ratio = 4;
837 	else if (main_vratio <= GSC_SC_DOWN_RATIO_3_8)
838 		sc_ratio = 5;
839 	else
840 		sc_ratio = 6;
841 
842 	for (i = 0; i < GSC_COEF_PHASE; i++)
843 		for (j = 0; j < GSC_COEF_V_4T; j++)
844 			for (k = 0; k < GSC_COEF_DEPTH; k++)
845 				gsc_write(v_coef_4t[sc_ratio][i][j],
846 					GSC_VCOEF(i, j, k));
847 }
848 
849 static void gsc_set_scaler(struct gsc_context *ctx, struct gsc_scaler *sc)
850 {
851 	u32 cfg;
852 
853 	DRM_DEV_DEBUG_KMS(ctx->dev, "main_hratio[%ld]main_vratio[%ld]\n",
854 			  sc->main_hratio, sc->main_vratio);
855 
856 	gsc_set_h_coef(ctx, sc->main_hratio);
857 	cfg = GSC_MAIN_H_RATIO_VALUE(sc->main_hratio);
858 	gsc_write(cfg, GSC_MAIN_H_RATIO);
859 
860 	gsc_set_v_coef(ctx, sc->main_vratio);
861 	cfg = GSC_MAIN_V_RATIO_VALUE(sc->main_vratio);
862 	gsc_write(cfg, GSC_MAIN_V_RATIO);
863 }
864 
865 static void gsc_dst_set_size(struct gsc_context *ctx,
866 			     struct exynos_drm_ipp_buffer *buf)
867 {
868 	struct gsc_scaler *sc = &ctx->sc;
869 	u32 cfg;
870 
871 	/* pixel offset */
872 	cfg = (GSC_DSTIMG_OFFSET_X(buf->rect.x) |
873 		GSC_DSTIMG_OFFSET_Y(buf->rect.y));
874 	gsc_write(cfg, GSC_DSTIMG_OFFSET);
875 
876 	/* scaled size */
877 	if (ctx->rotation)
878 		cfg = (GSC_SCALED_WIDTH(buf->rect.h) |
879 		       GSC_SCALED_HEIGHT(buf->rect.w));
880 	else
881 		cfg = (GSC_SCALED_WIDTH(buf->rect.w) |
882 		       GSC_SCALED_HEIGHT(buf->rect.h));
883 	gsc_write(cfg, GSC_SCALED_SIZE);
884 
885 	/* original size */
886 	cfg = gsc_read(GSC_DSTIMG_SIZE);
887 	cfg &= ~(GSC_DSTIMG_HEIGHT_MASK | GSC_DSTIMG_WIDTH_MASK);
888 	cfg |= GSC_DSTIMG_WIDTH(buf->buf.pitch[0] / buf->format->cpp[0]) |
889 	       GSC_DSTIMG_HEIGHT(buf->buf.height);
890 	gsc_write(cfg, GSC_DSTIMG_SIZE);
891 
892 	cfg = gsc_read(GSC_OUT_CON);
893 	cfg &= ~GSC_OUT_RGB_TYPE_MASK;
894 
895 	if (buf->rect.w >= GSC_WIDTH_ITU_709)
896 		if (sc->range)
897 			cfg |= GSC_OUT_RGB_HD_WIDE;
898 		else
899 			cfg |= GSC_OUT_RGB_HD_NARROW;
900 	else
901 		if (sc->range)
902 			cfg |= GSC_OUT_RGB_SD_WIDE;
903 		else
904 			cfg |= GSC_OUT_RGB_SD_NARROW;
905 
906 	gsc_write(cfg, GSC_OUT_CON);
907 }
908 
909 static int gsc_dst_get_buf_seq(struct gsc_context *ctx)
910 {
911 	u32 cfg, i, buf_num = GSC_REG_SZ;
912 	u32 mask = 0x00000001;
913 
914 	cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK);
915 
916 	for (i = 0; i < GSC_REG_SZ; i++)
917 		if (cfg & (mask << i))
918 			buf_num--;
919 
920 	DRM_DEV_DEBUG_KMS(ctx->dev, "buf_num[%d]\n", buf_num);
921 
922 	return buf_num;
923 }
924 
925 static void gsc_dst_set_buf_seq(struct gsc_context *ctx, u32 buf_id,
926 				bool enqueue)
927 {
928 	bool masked = !enqueue;
929 	u32 cfg;
930 	u32 mask = 0x00000001 << buf_id;
931 
932 	/* mask register set */
933 	cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK);
934 
935 	/* sequence id */
936 	cfg &= ~mask;
937 	cfg |= masked << buf_id;
938 	gsc_write(cfg, GSC_OUT_BASE_ADDR_Y_MASK);
939 	gsc_write(cfg, GSC_OUT_BASE_ADDR_CB_MASK);
940 	gsc_write(cfg, GSC_OUT_BASE_ADDR_CR_MASK);
941 
942 	/* interrupt enable */
943 	if (enqueue && gsc_dst_get_buf_seq(ctx) >= GSC_BUF_START)
944 		gsc_handle_irq(ctx, true, false, true);
945 
946 	/* interrupt disable */
947 	if (!enqueue && gsc_dst_get_buf_seq(ctx) <= GSC_BUF_STOP)
948 		gsc_handle_irq(ctx, false, false, true);
949 }
950 
951 static void gsc_dst_set_addr(struct gsc_context *ctx,
952 			     u32 buf_id, struct exynos_drm_ipp_buffer *buf)
953 {
954 	/* address register set */
955 	gsc_write(buf->dma_addr[0], GSC_OUT_BASE_ADDR_Y(buf_id));
956 	gsc_write(buf->dma_addr[1], GSC_OUT_BASE_ADDR_CB(buf_id));
957 	gsc_write(buf->dma_addr[2], GSC_OUT_BASE_ADDR_CR(buf_id));
958 
959 	gsc_dst_set_buf_seq(ctx, buf_id, true);
960 }
961 
962 static int gsc_get_src_buf_index(struct gsc_context *ctx)
963 {
964 	u32 cfg, curr_index, i;
965 	u32 buf_id = GSC_MAX_SRC;
966 
967 	DRM_DEV_DEBUG_KMS(ctx->dev, "gsc id[%d]\n", ctx->id);
968 
969 	cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK);
970 	curr_index = GSC_IN_CURR_GET_INDEX(cfg);
971 
972 	for (i = curr_index; i < GSC_MAX_SRC; i++) {
973 		if (!((cfg >> i) & 0x1)) {
974 			buf_id = i;
975 			break;
976 		}
977 	}
978 
979 	DRM_DEV_DEBUG_KMS(ctx->dev, "cfg[0x%x]curr_index[%d]buf_id[%d]\n", cfg,
980 			  curr_index, buf_id);
981 
982 	if (buf_id == GSC_MAX_SRC) {
983 		DRM_DEV_ERROR(ctx->dev, "failed to get in buffer index.\n");
984 		return -EINVAL;
985 	}
986 
987 	gsc_src_set_buf_seq(ctx, buf_id, false);
988 
989 	return buf_id;
990 }
991 
992 static int gsc_get_dst_buf_index(struct gsc_context *ctx)
993 {
994 	u32 cfg, curr_index, i;
995 	u32 buf_id = GSC_MAX_DST;
996 
997 	DRM_DEV_DEBUG_KMS(ctx->dev, "gsc id[%d]\n", ctx->id);
998 
999 	cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK);
1000 	curr_index = GSC_OUT_CURR_GET_INDEX(cfg);
1001 
1002 	for (i = curr_index; i < GSC_MAX_DST; i++) {
1003 		if (!((cfg >> i) & 0x1)) {
1004 			buf_id = i;
1005 			break;
1006 		}
1007 	}
1008 
1009 	if (buf_id == GSC_MAX_DST) {
1010 		DRM_DEV_ERROR(ctx->dev, "failed to get out buffer index.\n");
1011 		return -EINVAL;
1012 	}
1013 
1014 	gsc_dst_set_buf_seq(ctx, buf_id, false);
1015 
1016 	DRM_DEV_DEBUG_KMS(ctx->dev, "cfg[0x%x]curr_index[%d]buf_id[%d]\n", cfg,
1017 			  curr_index, buf_id);
1018 
1019 	return buf_id;
1020 }
1021 
1022 static irqreturn_t gsc_irq_handler(int irq, void *dev_id)
1023 {
1024 	struct gsc_context *ctx = dev_id;
1025 	u32 status;
1026 	int err = 0;
1027 
1028 	DRM_DEV_DEBUG_KMS(ctx->dev, "gsc id[%d]\n", ctx->id);
1029 
1030 	status = gsc_read(GSC_IRQ);
1031 	if (status & GSC_IRQ_STATUS_OR_IRQ) {
1032 		dev_err(ctx->dev, "occurred overflow at %d, status 0x%x.\n",
1033 			ctx->id, status);
1034 		err = -EINVAL;
1035 	}
1036 
1037 	if (status & GSC_IRQ_STATUS_OR_FRM_DONE) {
1038 		int src_buf_id, dst_buf_id;
1039 
1040 		dev_dbg(ctx->dev, "occurred frame done at %d, status 0x%x.\n",
1041 			ctx->id, status);
1042 
1043 		src_buf_id = gsc_get_src_buf_index(ctx);
1044 		dst_buf_id = gsc_get_dst_buf_index(ctx);
1045 
1046 		DRM_DEV_DEBUG_KMS(ctx->dev, "buf_id_src[%d]buf_id_dst[%d]\n",
1047 				  src_buf_id, dst_buf_id);
1048 
1049 		if (src_buf_id < 0 || dst_buf_id < 0)
1050 			err = -EINVAL;
1051 	}
1052 
1053 	if (ctx->task) {
1054 		struct exynos_drm_ipp_task *task = ctx->task;
1055 
1056 		ctx->task = NULL;
1057 		pm_runtime_mark_last_busy(ctx->dev);
1058 		pm_runtime_put_autosuspend(ctx->dev);
1059 		exynos_drm_ipp_task_done(task, err);
1060 	}
1061 
1062 	return IRQ_HANDLED;
1063 }
1064 
1065 static int gsc_reset(struct gsc_context *ctx)
1066 {
1067 	struct gsc_scaler *sc = &ctx->sc;
1068 	int ret;
1069 
1070 	/* reset h/w block */
1071 	ret = gsc_sw_reset(ctx);
1072 	if (ret < 0) {
1073 		dev_err(ctx->dev, "failed to reset hardware.\n");
1074 		return ret;
1075 	}
1076 
1077 	/* scaler setting */
1078 	memset(&ctx->sc, 0x0, sizeof(ctx->sc));
1079 	sc->range = true;
1080 
1081 	return 0;
1082 }
1083 
1084 static void gsc_start(struct gsc_context *ctx)
1085 {
1086 	u32 cfg;
1087 
1088 	gsc_handle_irq(ctx, true, false, true);
1089 
1090 	/* enable one shot */
1091 	cfg = gsc_read(GSC_ENABLE);
1092 	cfg &= ~(GSC_ENABLE_ON_CLEAR_MASK |
1093 		GSC_ENABLE_CLK_GATE_MODE_MASK);
1094 	cfg |= GSC_ENABLE_ON_CLEAR_ONESHOT;
1095 	gsc_write(cfg, GSC_ENABLE);
1096 
1097 	/* src dma memory */
1098 	cfg = gsc_read(GSC_IN_CON);
1099 	cfg &= ~(GSC_IN_PATH_MASK | GSC_IN_LOCAL_SEL_MASK);
1100 	cfg |= GSC_IN_PATH_MEMORY;
1101 	gsc_write(cfg, GSC_IN_CON);
1102 
1103 	/* dst dma memory */
1104 	cfg = gsc_read(GSC_OUT_CON);
1105 	cfg |= GSC_OUT_PATH_MEMORY;
1106 	gsc_write(cfg, GSC_OUT_CON);
1107 
1108 	gsc_set_scaler(ctx, &ctx->sc);
1109 
1110 	cfg = gsc_read(GSC_ENABLE);
1111 	cfg |= GSC_ENABLE_ON;
1112 	gsc_write(cfg, GSC_ENABLE);
1113 }
1114 
1115 static int gsc_commit(struct exynos_drm_ipp *ipp,
1116 			  struct exynos_drm_ipp_task *task)
1117 {
1118 	struct gsc_context *ctx = container_of(ipp, struct gsc_context, ipp);
1119 	int ret;
1120 
1121 	pm_runtime_get_sync(ctx->dev);
1122 	ctx->task = task;
1123 
1124 	ret = gsc_reset(ctx);
1125 	if (ret) {
1126 		pm_runtime_put_autosuspend(ctx->dev);
1127 		ctx->task = NULL;
1128 		return ret;
1129 	}
1130 
1131 	gsc_src_set_fmt(ctx, task->src.buf.fourcc, task->src.buf.modifier);
1132 	gsc_src_set_transf(ctx, task->transform.rotation);
1133 	gsc_src_set_size(ctx, &task->src);
1134 	gsc_src_set_addr(ctx, 0, &task->src);
1135 	gsc_dst_set_fmt(ctx, task->dst.buf.fourcc, task->dst.buf.modifier);
1136 	gsc_dst_set_size(ctx, &task->dst);
1137 	gsc_dst_set_addr(ctx, 0, &task->dst);
1138 	gsc_set_prescaler(ctx, &ctx->sc, &task->src.rect, &task->dst.rect);
1139 	gsc_start(ctx);
1140 
1141 	return 0;
1142 }
1143 
1144 static void gsc_abort(struct exynos_drm_ipp *ipp,
1145 			  struct exynos_drm_ipp_task *task)
1146 {
1147 	struct gsc_context *ctx =
1148 			container_of(ipp, struct gsc_context, ipp);
1149 
1150 	gsc_reset(ctx);
1151 	if (ctx->task) {
1152 		struct exynos_drm_ipp_task *task = ctx->task;
1153 
1154 		ctx->task = NULL;
1155 		pm_runtime_mark_last_busy(ctx->dev);
1156 		pm_runtime_put_autosuspend(ctx->dev);
1157 		exynos_drm_ipp_task_done(task, -EIO);
1158 	}
1159 }
1160 
1161 static struct exynos_drm_ipp_funcs ipp_funcs = {
1162 	.commit = gsc_commit,
1163 	.abort = gsc_abort,
1164 };
1165 
1166 static int gsc_bind(struct device *dev, struct device *master, void *data)
1167 {
1168 	struct gsc_context *ctx = dev_get_drvdata(dev);
1169 	struct drm_device *drm_dev = data;
1170 	struct exynos_drm_ipp *ipp = &ctx->ipp;
1171 
1172 	ctx->drm_dev = drm_dev;
1173 	ctx->drm_dev = drm_dev;
1174 	exynos_drm_register_dma(drm_dev, dev, &ctx->dma_priv);
1175 
1176 	exynos_drm_ipp_register(dev, ipp, &ipp_funcs,
1177 			DRM_EXYNOS_IPP_CAP_CROP | DRM_EXYNOS_IPP_CAP_ROTATE |
1178 			DRM_EXYNOS_IPP_CAP_SCALE | DRM_EXYNOS_IPP_CAP_CONVERT,
1179 			ctx->formats, ctx->num_formats, "gsc");
1180 
1181 	dev_info(dev, "The exynos gscaler has been probed successfully\n");
1182 
1183 	return 0;
1184 }
1185 
1186 static void gsc_unbind(struct device *dev, struct device *master,
1187 			void *data)
1188 {
1189 	struct gsc_context *ctx = dev_get_drvdata(dev);
1190 	struct drm_device *drm_dev = data;
1191 	struct exynos_drm_ipp *ipp = &ctx->ipp;
1192 
1193 	exynos_drm_ipp_unregister(dev, ipp);
1194 	exynos_drm_unregister_dma(drm_dev, dev, &ctx->dma_priv);
1195 }
1196 
1197 static const struct component_ops gsc_component_ops = {
1198 	.bind	= gsc_bind,
1199 	.unbind = gsc_unbind,
1200 };
1201 
1202 static const unsigned int gsc_formats[] = {
1203 	DRM_FORMAT_ARGB8888,
1204 	DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB565, DRM_FORMAT_BGRX8888,
1205 	DRM_FORMAT_NV12, DRM_FORMAT_NV16, DRM_FORMAT_NV21, DRM_FORMAT_NV61,
1206 	DRM_FORMAT_UYVY, DRM_FORMAT_VYUY, DRM_FORMAT_YUYV, DRM_FORMAT_YVYU,
1207 	DRM_FORMAT_YUV420, DRM_FORMAT_YVU420, DRM_FORMAT_YUV422,
1208 };
1209 
1210 static const unsigned int gsc_tiled_formats[] = {
1211 	DRM_FORMAT_NV12, DRM_FORMAT_NV21,
1212 };
1213 
1214 static int gsc_probe(struct platform_device *pdev)
1215 {
1216 	struct device *dev = &pdev->dev;
1217 	struct gsc_driverdata *driver_data;
1218 	struct exynos_drm_ipp_formats *formats;
1219 	struct gsc_context *ctx;
1220 	struct resource *res;
1221 	int num_formats, ret, i, j;
1222 
1223 	ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
1224 	if (!ctx)
1225 		return -ENOMEM;
1226 
1227 	driver_data = (struct gsc_driverdata *)of_device_get_match_data(dev);
1228 	ctx->dev = dev;
1229 	ctx->num_clocks = driver_data->num_clocks;
1230 	ctx->clk_names = driver_data->clk_names;
1231 
1232 	/* construct formats/limits array */
1233 	num_formats = ARRAY_SIZE(gsc_formats) + ARRAY_SIZE(gsc_tiled_formats);
1234 	formats = devm_kcalloc(dev, num_formats, sizeof(*formats), GFP_KERNEL);
1235 	if (!formats)
1236 		return -ENOMEM;
1237 
1238 	/* linear formats */
1239 	for (i = 0; i < ARRAY_SIZE(gsc_formats); i++) {
1240 		formats[i].fourcc = gsc_formats[i];
1241 		formats[i].type = DRM_EXYNOS_IPP_FORMAT_SOURCE |
1242 				  DRM_EXYNOS_IPP_FORMAT_DESTINATION;
1243 		formats[i].limits = driver_data->limits;
1244 		formats[i].num_limits = driver_data->num_limits;
1245 	}
1246 
1247 	/* tiled formats */
1248 	for (j = i, i = 0; i < ARRAY_SIZE(gsc_tiled_formats); j++, i++) {
1249 		formats[j].fourcc = gsc_tiled_formats[i];
1250 		formats[j].modifier = DRM_FORMAT_MOD_SAMSUNG_16_16_TILE;
1251 		formats[j].type = DRM_EXYNOS_IPP_FORMAT_SOURCE |
1252 				  DRM_EXYNOS_IPP_FORMAT_DESTINATION;
1253 		formats[j].limits = driver_data->limits;
1254 		formats[j].num_limits = driver_data->num_limits;
1255 	}
1256 
1257 	ctx->formats = formats;
1258 	ctx->num_formats = num_formats;
1259 
1260 	/* clock control */
1261 	for (i = 0; i < ctx->num_clocks; i++) {
1262 		ctx->clocks[i] = devm_clk_get(dev, ctx->clk_names[i]);
1263 		if (IS_ERR(ctx->clocks[i])) {
1264 			dev_err(dev, "failed to get clock: %s\n",
1265 				ctx->clk_names[i]);
1266 			return PTR_ERR(ctx->clocks[i]);
1267 		}
1268 	}
1269 
1270 	/* resource memory */
1271 	ctx->regs_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1272 	ctx->regs = devm_ioremap_resource(dev, ctx->regs_res);
1273 	if (IS_ERR(ctx->regs))
1274 		return PTR_ERR(ctx->regs);
1275 
1276 	/* resource irq */
1277 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1278 	if (!res) {
1279 		dev_err(dev, "failed to request irq resource.\n");
1280 		return -ENOENT;
1281 	}
1282 
1283 	ctx->irq = res->start;
1284 	ret = devm_request_irq(dev, ctx->irq, gsc_irq_handler, 0,
1285 			       dev_name(dev), ctx);
1286 	if (ret < 0) {
1287 		dev_err(dev, "failed to request irq.\n");
1288 		return ret;
1289 	}
1290 
1291 	/* context initailization */
1292 	ctx->id = pdev->id;
1293 
1294 	platform_set_drvdata(pdev, ctx);
1295 
1296 	pm_runtime_use_autosuspend(dev);
1297 	pm_runtime_set_autosuspend_delay(dev, GSC_AUTOSUSPEND_DELAY);
1298 	pm_runtime_enable(dev);
1299 
1300 	ret = component_add(dev, &gsc_component_ops);
1301 	if (ret)
1302 		goto err_pm_dis;
1303 
1304 	dev_info(dev, "drm gsc registered successfully.\n");
1305 
1306 	return 0;
1307 
1308 err_pm_dis:
1309 	pm_runtime_dont_use_autosuspend(dev);
1310 	pm_runtime_disable(dev);
1311 	return ret;
1312 }
1313 
1314 static int gsc_remove(struct platform_device *pdev)
1315 {
1316 	struct device *dev = &pdev->dev;
1317 
1318 	component_del(dev, &gsc_component_ops);
1319 	pm_runtime_dont_use_autosuspend(dev);
1320 	pm_runtime_disable(dev);
1321 
1322 	return 0;
1323 }
1324 
1325 static int __maybe_unused gsc_runtime_suspend(struct device *dev)
1326 {
1327 	struct gsc_context *ctx = get_gsc_context(dev);
1328 	int i;
1329 
1330 	DRM_DEV_DEBUG_KMS(dev, "id[%d]\n", ctx->id);
1331 
1332 	for (i = ctx->num_clocks - 1; i >= 0; i--)
1333 		clk_disable_unprepare(ctx->clocks[i]);
1334 
1335 	return 0;
1336 }
1337 
1338 static int __maybe_unused gsc_runtime_resume(struct device *dev)
1339 {
1340 	struct gsc_context *ctx = get_gsc_context(dev);
1341 	int i, ret;
1342 
1343 	DRM_DEV_DEBUG_KMS(dev, "id[%d]\n", ctx->id);
1344 
1345 	for (i = 0; i < ctx->num_clocks; i++) {
1346 		ret = clk_prepare_enable(ctx->clocks[i]);
1347 		if (ret) {
1348 			while (--i > 0)
1349 				clk_disable_unprepare(ctx->clocks[i]);
1350 			return ret;
1351 		}
1352 	}
1353 	return 0;
1354 }
1355 
1356 static const struct dev_pm_ops gsc_pm_ops = {
1357 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1358 				pm_runtime_force_resume)
1359 	SET_RUNTIME_PM_OPS(gsc_runtime_suspend, gsc_runtime_resume, NULL)
1360 };
1361 
1362 static const struct drm_exynos_ipp_limit gsc_5250_limits[] = {
1363 	{ IPP_SIZE_LIMIT(BUFFER, .h = { 32, 4800, 8 }, .v = { 16, 3344, 8 }) },
1364 	{ IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 2 }, .v = { 8, 3344, 2 }) },
1365 	{ IPP_SIZE_LIMIT(ROTATED, .h = { 32, 2048 }, .v = { 16, 2048 }) },
1366 	{ IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 },
1367 			  .v = { (1 << 16) / 16, (1 << 16) * 8 }) },
1368 };
1369 
1370 static const struct drm_exynos_ipp_limit gsc_5420_limits[] = {
1371 	{ IPP_SIZE_LIMIT(BUFFER, .h = { 32, 4800, 8 }, .v = { 16, 3344, 8 }) },
1372 	{ IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 2 }, .v = { 8, 3344, 2 }) },
1373 	{ IPP_SIZE_LIMIT(ROTATED, .h = { 16, 2016 }, .v = { 8, 2016 }) },
1374 	{ IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 },
1375 			  .v = { (1 << 16) / 16, (1 << 16) * 8 }) },
1376 };
1377 
1378 static const struct drm_exynos_ipp_limit gsc_5433_limits[] = {
1379 	{ IPP_SIZE_LIMIT(BUFFER, .h = { 32, 8191, 16 }, .v = { 16, 8191, 2 }) },
1380 	{ IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 1 }, .v = { 8, 3344, 1 }) },
1381 	{ IPP_SIZE_LIMIT(ROTATED, .h = { 32, 2047 }, .v = { 8, 8191 }) },
1382 	{ IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 },
1383 			  .v = { (1 << 16) / 16, (1 << 16) * 8 }) },
1384 };
1385 
1386 static struct gsc_driverdata gsc_exynos5250_drvdata = {
1387 	.clk_names = {"gscl"},
1388 	.num_clocks = 1,
1389 	.limits = gsc_5250_limits,
1390 	.num_limits = ARRAY_SIZE(gsc_5250_limits),
1391 };
1392 
1393 static struct gsc_driverdata gsc_exynos5420_drvdata = {
1394 	.clk_names = {"gscl"},
1395 	.num_clocks = 1,
1396 	.limits = gsc_5420_limits,
1397 	.num_limits = ARRAY_SIZE(gsc_5420_limits),
1398 };
1399 
1400 static struct gsc_driverdata gsc_exynos5433_drvdata = {
1401 	.clk_names = {"pclk", "aclk", "aclk_xiu", "aclk_gsclbend"},
1402 	.num_clocks = 4,
1403 	.limits = gsc_5433_limits,
1404 	.num_limits = ARRAY_SIZE(gsc_5433_limits),
1405 };
1406 
1407 static const struct of_device_id exynos_drm_gsc_of_match[] = {
1408 	{
1409 		.compatible = "samsung,exynos5-gsc",
1410 		.data = &gsc_exynos5250_drvdata,
1411 	}, {
1412 		.compatible = "samsung,exynos5250-gsc",
1413 		.data = &gsc_exynos5250_drvdata,
1414 	}, {
1415 		.compatible = "samsung,exynos5420-gsc",
1416 		.data = &gsc_exynos5420_drvdata,
1417 	}, {
1418 		.compatible = "samsung,exynos5433-gsc",
1419 		.data = &gsc_exynos5433_drvdata,
1420 	}, {
1421 	},
1422 };
1423 MODULE_DEVICE_TABLE(of, exynos_drm_gsc_of_match);
1424 
1425 struct platform_driver gsc_driver = {
1426 	.probe		= gsc_probe,
1427 	.remove		= gsc_remove,
1428 	.driver		= {
1429 		.name	= "exynos-drm-gsc",
1430 		.owner	= THIS_MODULE,
1431 		.pm	= &gsc_pm_ops,
1432 		.of_match_table = of_match_ptr(exynos_drm_gsc_of_match),
1433 	},
1434 };
1435