1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Samsung SoC MIPI DSI Master driver. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd 6 * 7 * Contacts: Tomasz Figa <t.figa@samsung.com> 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/delay.h> 12 #include <linux/component.h> 13 #include <linux/gpio/consumer.h> 14 #include <linux/irq.h> 15 #include <linux/of_device.h> 16 #include <linux/of_graph.h> 17 #include <linux/phy/phy.h> 18 #include <linux/regulator/consumer.h> 19 20 #include <asm/unaligned.h> 21 22 #include <video/mipi_display.h> 23 #include <video/videomode.h> 24 25 #include <drm/drm_atomic_helper.h> 26 #include <drm/drm_bridge.h> 27 #include <drm/drm_mipi_dsi.h> 28 #include <drm/drm_panel.h> 29 #include <drm/drm_print.h> 30 #include <drm/drm_probe_helper.h> 31 #include <drm/drm_simple_kms_helper.h> 32 33 #include "exynos_drm_crtc.h" 34 #include "exynos_drm_drv.h" 35 36 /* returns true iff both arguments logically differs */ 37 #define NEQV(a, b) (!(a) ^ !(b)) 38 39 /* DSIM_STATUS */ 40 #define DSIM_STOP_STATE_DAT(x) (((x) & 0xf) << 0) 41 #define DSIM_STOP_STATE_CLK (1 << 8) 42 #define DSIM_TX_READY_HS_CLK (1 << 10) 43 #define DSIM_PLL_STABLE (1 << 31) 44 45 /* DSIM_SWRST */ 46 #define DSIM_FUNCRST (1 << 16) 47 #define DSIM_SWRST (1 << 0) 48 49 /* DSIM_TIMEOUT */ 50 #define DSIM_LPDR_TIMEOUT(x) ((x) << 0) 51 #define DSIM_BTA_TIMEOUT(x) ((x) << 16) 52 53 /* DSIM_CLKCTRL */ 54 #define DSIM_ESC_PRESCALER(x) (((x) & 0xffff) << 0) 55 #define DSIM_ESC_PRESCALER_MASK (0xffff << 0) 56 #define DSIM_LANE_ESC_CLK_EN_CLK (1 << 19) 57 #define DSIM_LANE_ESC_CLK_EN_DATA(x) (((x) & 0xf) << 20) 58 #define DSIM_LANE_ESC_CLK_EN_DATA_MASK (0xf << 20) 59 #define DSIM_BYTE_CLKEN (1 << 24) 60 #define DSIM_BYTE_CLK_SRC(x) (((x) & 0x3) << 25) 61 #define DSIM_BYTE_CLK_SRC_MASK (0x3 << 25) 62 #define DSIM_PLL_BYPASS (1 << 27) 63 #define DSIM_ESC_CLKEN (1 << 28) 64 #define DSIM_TX_REQUEST_HSCLK (1 << 31) 65 66 /* DSIM_CONFIG */ 67 #define DSIM_LANE_EN_CLK (1 << 0) 68 #define DSIM_LANE_EN(x) (((x) & 0xf) << 1) 69 #define DSIM_NUM_OF_DATA_LANE(x) (((x) & 0x3) << 5) 70 #define DSIM_SUB_PIX_FORMAT(x) (((x) & 0x7) << 8) 71 #define DSIM_MAIN_PIX_FORMAT_MASK (0x7 << 12) 72 #define DSIM_MAIN_PIX_FORMAT_RGB888 (0x7 << 12) 73 #define DSIM_MAIN_PIX_FORMAT_RGB666 (0x6 << 12) 74 #define DSIM_MAIN_PIX_FORMAT_RGB666_P (0x5 << 12) 75 #define DSIM_MAIN_PIX_FORMAT_RGB565 (0x4 << 12) 76 #define DSIM_SUB_VC (((x) & 0x3) << 16) 77 #define DSIM_MAIN_VC (((x) & 0x3) << 18) 78 #define DSIM_HSA_DISABLE_MODE (1 << 20) 79 #define DSIM_HBP_DISABLE_MODE (1 << 21) 80 #define DSIM_HFP_DISABLE_MODE (1 << 22) 81 /* 82 * The i.MX 8M Mini Applications Processor Reference Manual, 83 * Rev. 3, 11/2020 Page 4091 84 * The i.MX 8M Nano Applications Processor Reference Manual, 85 * Rev. 2, 07/2022 Page 3058 86 * The i.MX 8M Plus Applications Processor Reference Manual, 87 * Rev. 1, 06/2021 Page 5436 88 * named this bit as 'HseDisableMode' but the bit definition 89 * is quite opposite like 90 * 0 = Disables transfer 91 * 1 = Enables transfer 92 * which clearly states that HSE is not a disable bit. 93 * 94 * This bit is named as per the manual even though it is not 95 * a disable bit however the driver logic for handling HSE 96 * is based on the MIPI_DSI_MODE_VIDEO_HSE flag itself. 97 */ 98 #define DSIM_HSE_DISABLE_MODE (1 << 23) 99 #define DSIM_AUTO_MODE (1 << 24) 100 #define DSIM_VIDEO_MODE (1 << 25) 101 #define DSIM_BURST_MODE (1 << 26) 102 #define DSIM_SYNC_INFORM (1 << 27) 103 #define DSIM_EOT_DISABLE (1 << 28) 104 #define DSIM_MFLUSH_VS (1 << 29) 105 /* This flag is valid only for exynos3250/3472/5260/5430 */ 106 #define DSIM_CLKLANE_STOP (1 << 30) 107 108 /* DSIM_ESCMODE */ 109 #define DSIM_TX_TRIGGER_RST (1 << 4) 110 #define DSIM_TX_LPDT_LP (1 << 6) 111 #define DSIM_CMD_LPDT_LP (1 << 7) 112 #define DSIM_FORCE_BTA (1 << 16) 113 #define DSIM_FORCE_STOP_STATE (1 << 20) 114 #define DSIM_STOP_STATE_CNT(x) (((x) & 0x7ff) << 21) 115 #define DSIM_STOP_STATE_CNT_MASK (0x7ff << 21) 116 117 /* DSIM_MDRESOL */ 118 #define DSIM_MAIN_STAND_BY (1 << 31) 119 #define DSIM_MAIN_VRESOL(x, num_bits) (((x) & ((1 << (num_bits)) - 1)) << 16) 120 #define DSIM_MAIN_HRESOL(x, num_bits) (((x) & ((1 << (num_bits)) - 1)) << 0) 121 122 /* DSIM_MVPORCH */ 123 #define DSIM_CMD_ALLOW(x) ((x) << 28) 124 #define DSIM_STABLE_VFP(x) ((x) << 16) 125 #define DSIM_MAIN_VBP(x) ((x) << 0) 126 #define DSIM_CMD_ALLOW_MASK (0xf << 28) 127 #define DSIM_STABLE_VFP_MASK (0x7ff << 16) 128 #define DSIM_MAIN_VBP_MASK (0x7ff << 0) 129 130 /* DSIM_MHPORCH */ 131 #define DSIM_MAIN_HFP(x) ((x) << 16) 132 #define DSIM_MAIN_HBP(x) ((x) << 0) 133 #define DSIM_MAIN_HFP_MASK ((0xffff) << 16) 134 #define DSIM_MAIN_HBP_MASK ((0xffff) << 0) 135 136 /* DSIM_MSYNC */ 137 #define DSIM_MAIN_VSA(x) ((x) << 22) 138 #define DSIM_MAIN_HSA(x) ((x) << 0) 139 #define DSIM_MAIN_VSA_MASK ((0x3ff) << 22) 140 #define DSIM_MAIN_HSA_MASK ((0xffff) << 0) 141 142 /* DSIM_SDRESOL */ 143 #define DSIM_SUB_STANDY(x) ((x) << 31) 144 #define DSIM_SUB_VRESOL(x) ((x) << 16) 145 #define DSIM_SUB_HRESOL(x) ((x) << 0) 146 #define DSIM_SUB_STANDY_MASK ((0x1) << 31) 147 #define DSIM_SUB_VRESOL_MASK ((0x7ff) << 16) 148 #define DSIM_SUB_HRESOL_MASK ((0x7ff) << 0) 149 150 /* DSIM_INTSRC */ 151 #define DSIM_INT_PLL_STABLE (1 << 31) 152 #define DSIM_INT_SW_RST_RELEASE (1 << 30) 153 #define DSIM_INT_SFR_FIFO_EMPTY (1 << 29) 154 #define DSIM_INT_SFR_HDR_FIFO_EMPTY (1 << 28) 155 #define DSIM_INT_BTA (1 << 25) 156 #define DSIM_INT_FRAME_DONE (1 << 24) 157 #define DSIM_INT_RX_TIMEOUT (1 << 21) 158 #define DSIM_INT_BTA_TIMEOUT (1 << 20) 159 #define DSIM_INT_RX_DONE (1 << 18) 160 #define DSIM_INT_RX_TE (1 << 17) 161 #define DSIM_INT_RX_ACK (1 << 16) 162 #define DSIM_INT_RX_ECC_ERR (1 << 15) 163 #define DSIM_INT_RX_CRC_ERR (1 << 14) 164 165 /* DSIM_FIFOCTRL */ 166 #define DSIM_RX_DATA_FULL (1 << 25) 167 #define DSIM_RX_DATA_EMPTY (1 << 24) 168 #define DSIM_SFR_HEADER_FULL (1 << 23) 169 #define DSIM_SFR_HEADER_EMPTY (1 << 22) 170 #define DSIM_SFR_PAYLOAD_FULL (1 << 21) 171 #define DSIM_SFR_PAYLOAD_EMPTY (1 << 20) 172 #define DSIM_I80_HEADER_FULL (1 << 19) 173 #define DSIM_I80_HEADER_EMPTY (1 << 18) 174 #define DSIM_I80_PAYLOAD_FULL (1 << 17) 175 #define DSIM_I80_PAYLOAD_EMPTY (1 << 16) 176 #define DSIM_SD_HEADER_FULL (1 << 15) 177 #define DSIM_SD_HEADER_EMPTY (1 << 14) 178 #define DSIM_SD_PAYLOAD_FULL (1 << 13) 179 #define DSIM_SD_PAYLOAD_EMPTY (1 << 12) 180 #define DSIM_MD_HEADER_FULL (1 << 11) 181 #define DSIM_MD_HEADER_EMPTY (1 << 10) 182 #define DSIM_MD_PAYLOAD_FULL (1 << 9) 183 #define DSIM_MD_PAYLOAD_EMPTY (1 << 8) 184 #define DSIM_RX_FIFO (1 << 4) 185 #define DSIM_SFR_FIFO (1 << 3) 186 #define DSIM_I80_FIFO (1 << 2) 187 #define DSIM_SD_FIFO (1 << 1) 188 #define DSIM_MD_FIFO (1 << 0) 189 190 /* DSIM_PHYACCHR */ 191 #define DSIM_AFC_EN (1 << 14) 192 #define DSIM_AFC_CTL(x) (((x) & 0x7) << 5) 193 194 /* DSIM_PLLCTRL */ 195 #define DSIM_FREQ_BAND(x) ((x) << 24) 196 #define DSIM_PLL_EN (1 << 23) 197 #define DSIM_PLL_P(x) ((x) << 13) 198 #define DSIM_PLL_M(x) ((x) << 4) 199 #define DSIM_PLL_S(x) ((x) << 1) 200 201 /* DSIM_PHYCTRL */ 202 #define DSIM_PHYCTRL_ULPS_EXIT(x) (((x) & 0x1ff) << 0) 203 #define DSIM_PHYCTRL_B_DPHYCTL_VREG_LP (1 << 30) 204 #define DSIM_PHYCTRL_B_DPHYCTL_SLEW_UP (1 << 14) 205 206 /* DSIM_PHYTIMING */ 207 #define DSIM_PHYTIMING_LPX(x) ((x) << 8) 208 #define DSIM_PHYTIMING_HS_EXIT(x) ((x) << 0) 209 210 /* DSIM_PHYTIMING1 */ 211 #define DSIM_PHYTIMING1_CLK_PREPARE(x) ((x) << 24) 212 #define DSIM_PHYTIMING1_CLK_ZERO(x) ((x) << 16) 213 #define DSIM_PHYTIMING1_CLK_POST(x) ((x) << 8) 214 #define DSIM_PHYTIMING1_CLK_TRAIL(x) ((x) << 0) 215 216 /* DSIM_PHYTIMING2 */ 217 #define DSIM_PHYTIMING2_HS_PREPARE(x) ((x) << 16) 218 #define DSIM_PHYTIMING2_HS_ZERO(x) ((x) << 8) 219 #define DSIM_PHYTIMING2_HS_TRAIL(x) ((x) << 0) 220 221 #define DSI_MAX_BUS_WIDTH 4 222 #define DSI_NUM_VIRTUAL_CHANNELS 4 223 #define DSI_TX_FIFO_SIZE 2048 224 #define DSI_RX_FIFO_SIZE 256 225 #define DSI_XFER_TIMEOUT_MS 100 226 #define DSI_RX_FIFO_EMPTY 0x30800002 227 228 #define OLD_SCLK_MIPI_CLK_NAME "pll_clk" 229 230 static const char *const clk_names[5] = { "bus_clk", "sclk_mipi", 231 "phyclk_mipidphy0_bitclkdiv8", "phyclk_mipidphy0_rxclkesc0", 232 "sclk_rgb_vclk_to_dsim0" }; 233 234 enum exynos_dsi_transfer_type { 235 EXYNOS_DSI_TX, 236 EXYNOS_DSI_RX, 237 }; 238 239 struct exynos_dsi_transfer { 240 struct list_head list; 241 struct completion completed; 242 int result; 243 struct mipi_dsi_packet packet; 244 u16 flags; 245 u16 tx_done; 246 247 u8 *rx_payload; 248 u16 rx_len; 249 u16 rx_done; 250 }; 251 252 #define DSIM_STATE_ENABLED BIT(0) 253 #define DSIM_STATE_INITIALIZED BIT(1) 254 #define DSIM_STATE_CMD_LPM BIT(2) 255 #define DSIM_STATE_VIDOUT_AVAILABLE BIT(3) 256 257 struct exynos_dsi_driver_data { 258 const unsigned int *reg_ofs; 259 unsigned int plltmr_reg; 260 unsigned int has_freqband:1; 261 unsigned int has_clklane_stop:1; 262 unsigned int num_clks; 263 unsigned int max_freq; 264 unsigned int wait_for_reset; 265 unsigned int num_bits_resol; 266 const unsigned int *reg_values; 267 }; 268 269 struct exynos_dsi { 270 struct drm_encoder encoder; 271 struct mipi_dsi_host dsi_host; 272 struct drm_bridge bridge; 273 struct drm_bridge *out_bridge; 274 struct device *dev; 275 struct drm_display_mode mode; 276 277 void __iomem *reg_base; 278 struct phy *phy; 279 struct clk **clks; 280 struct regulator_bulk_data supplies[2]; 281 int irq; 282 struct gpio_desc *te_gpio; 283 284 u32 pll_clk_rate; 285 u32 burst_clk_rate; 286 u32 esc_clk_rate; 287 u32 lanes; 288 u32 mode_flags; 289 u32 format; 290 291 int state; 292 struct drm_property *brightness; 293 struct completion completed; 294 295 spinlock_t transfer_lock; /* protects transfer_list */ 296 struct list_head transfer_list; 297 298 const struct exynos_dsi_driver_data *driver_data; 299 }; 300 301 #define host_to_dsi(host) container_of(host, struct exynos_dsi, dsi_host) 302 303 static inline struct exynos_dsi *bridge_to_dsi(struct drm_bridge *b) 304 { 305 return container_of(b, struct exynos_dsi, bridge); 306 } 307 308 enum reg_idx { 309 DSIM_STATUS_REG, /* Status register */ 310 DSIM_SWRST_REG, /* Software reset register */ 311 DSIM_CLKCTRL_REG, /* Clock control register */ 312 DSIM_TIMEOUT_REG, /* Time out register */ 313 DSIM_CONFIG_REG, /* Configuration register */ 314 DSIM_ESCMODE_REG, /* Escape mode register */ 315 DSIM_MDRESOL_REG, 316 DSIM_MVPORCH_REG, /* Main display Vporch register */ 317 DSIM_MHPORCH_REG, /* Main display Hporch register */ 318 DSIM_MSYNC_REG, /* Main display sync area register */ 319 DSIM_INTSRC_REG, /* Interrupt source register */ 320 DSIM_INTMSK_REG, /* Interrupt mask register */ 321 DSIM_PKTHDR_REG, /* Packet Header FIFO register */ 322 DSIM_PAYLOAD_REG, /* Payload FIFO register */ 323 DSIM_RXFIFO_REG, /* Read FIFO register */ 324 DSIM_FIFOCTRL_REG, /* FIFO status and control register */ 325 DSIM_PLLCTRL_REG, /* PLL control register */ 326 DSIM_PHYCTRL_REG, 327 DSIM_PHYTIMING_REG, 328 DSIM_PHYTIMING1_REG, 329 DSIM_PHYTIMING2_REG, 330 NUM_REGS 331 }; 332 333 static inline void exynos_dsi_write(struct exynos_dsi *dsi, enum reg_idx idx, 334 u32 val) 335 { 336 337 writel(val, dsi->reg_base + dsi->driver_data->reg_ofs[idx]); 338 } 339 340 static inline u32 exynos_dsi_read(struct exynos_dsi *dsi, enum reg_idx idx) 341 { 342 return readl(dsi->reg_base + dsi->driver_data->reg_ofs[idx]); 343 } 344 345 static const unsigned int exynos_reg_ofs[] = { 346 [DSIM_STATUS_REG] = 0x00, 347 [DSIM_SWRST_REG] = 0x04, 348 [DSIM_CLKCTRL_REG] = 0x08, 349 [DSIM_TIMEOUT_REG] = 0x0c, 350 [DSIM_CONFIG_REG] = 0x10, 351 [DSIM_ESCMODE_REG] = 0x14, 352 [DSIM_MDRESOL_REG] = 0x18, 353 [DSIM_MVPORCH_REG] = 0x1c, 354 [DSIM_MHPORCH_REG] = 0x20, 355 [DSIM_MSYNC_REG] = 0x24, 356 [DSIM_INTSRC_REG] = 0x2c, 357 [DSIM_INTMSK_REG] = 0x30, 358 [DSIM_PKTHDR_REG] = 0x34, 359 [DSIM_PAYLOAD_REG] = 0x38, 360 [DSIM_RXFIFO_REG] = 0x3c, 361 [DSIM_FIFOCTRL_REG] = 0x44, 362 [DSIM_PLLCTRL_REG] = 0x4c, 363 [DSIM_PHYCTRL_REG] = 0x5c, 364 [DSIM_PHYTIMING_REG] = 0x64, 365 [DSIM_PHYTIMING1_REG] = 0x68, 366 [DSIM_PHYTIMING2_REG] = 0x6c, 367 }; 368 369 static const unsigned int exynos5433_reg_ofs[] = { 370 [DSIM_STATUS_REG] = 0x04, 371 [DSIM_SWRST_REG] = 0x0C, 372 [DSIM_CLKCTRL_REG] = 0x10, 373 [DSIM_TIMEOUT_REG] = 0x14, 374 [DSIM_CONFIG_REG] = 0x18, 375 [DSIM_ESCMODE_REG] = 0x1C, 376 [DSIM_MDRESOL_REG] = 0x20, 377 [DSIM_MVPORCH_REG] = 0x24, 378 [DSIM_MHPORCH_REG] = 0x28, 379 [DSIM_MSYNC_REG] = 0x2C, 380 [DSIM_INTSRC_REG] = 0x34, 381 [DSIM_INTMSK_REG] = 0x38, 382 [DSIM_PKTHDR_REG] = 0x3C, 383 [DSIM_PAYLOAD_REG] = 0x40, 384 [DSIM_RXFIFO_REG] = 0x44, 385 [DSIM_FIFOCTRL_REG] = 0x4C, 386 [DSIM_PLLCTRL_REG] = 0x94, 387 [DSIM_PHYCTRL_REG] = 0xA4, 388 [DSIM_PHYTIMING_REG] = 0xB4, 389 [DSIM_PHYTIMING1_REG] = 0xB8, 390 [DSIM_PHYTIMING2_REG] = 0xBC, 391 }; 392 393 enum reg_value_idx { 394 RESET_TYPE, 395 PLL_TIMER, 396 STOP_STATE_CNT, 397 PHYCTRL_ULPS_EXIT, 398 PHYCTRL_VREG_LP, 399 PHYCTRL_SLEW_UP, 400 PHYTIMING_LPX, 401 PHYTIMING_HS_EXIT, 402 PHYTIMING_CLK_PREPARE, 403 PHYTIMING_CLK_ZERO, 404 PHYTIMING_CLK_POST, 405 PHYTIMING_CLK_TRAIL, 406 PHYTIMING_HS_PREPARE, 407 PHYTIMING_HS_ZERO, 408 PHYTIMING_HS_TRAIL 409 }; 410 411 static const unsigned int reg_values[] = { 412 [RESET_TYPE] = DSIM_SWRST, 413 [PLL_TIMER] = 500, 414 [STOP_STATE_CNT] = 0xf, 415 [PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0x0af), 416 [PHYCTRL_VREG_LP] = 0, 417 [PHYCTRL_SLEW_UP] = 0, 418 [PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x06), 419 [PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0b), 420 [PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x07), 421 [PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x27), 422 [PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0d), 423 [PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x08), 424 [PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x09), 425 [PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x0d), 426 [PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0b), 427 }; 428 429 static const unsigned int exynos5422_reg_values[] = { 430 [RESET_TYPE] = DSIM_SWRST, 431 [PLL_TIMER] = 500, 432 [STOP_STATE_CNT] = 0xf, 433 [PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0xaf), 434 [PHYCTRL_VREG_LP] = 0, 435 [PHYCTRL_SLEW_UP] = 0, 436 [PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x08), 437 [PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0d), 438 [PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x09), 439 [PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x30), 440 [PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0e), 441 [PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x0a), 442 [PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x0c), 443 [PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x11), 444 [PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0d), 445 }; 446 447 static const unsigned int exynos5433_reg_values[] = { 448 [RESET_TYPE] = DSIM_FUNCRST, 449 [PLL_TIMER] = 22200, 450 [STOP_STATE_CNT] = 0xa, 451 [PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0x190), 452 [PHYCTRL_VREG_LP] = DSIM_PHYCTRL_B_DPHYCTL_VREG_LP, 453 [PHYCTRL_SLEW_UP] = DSIM_PHYCTRL_B_DPHYCTL_SLEW_UP, 454 [PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x07), 455 [PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0c), 456 [PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x09), 457 [PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x2d), 458 [PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0e), 459 [PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x09), 460 [PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x0b), 461 [PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x10), 462 [PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0c), 463 }; 464 465 static const struct exynos_dsi_driver_data exynos3_dsi_driver_data = { 466 .reg_ofs = exynos_reg_ofs, 467 .plltmr_reg = 0x50, 468 .has_freqband = 1, 469 .has_clklane_stop = 1, 470 .num_clks = 2, 471 .max_freq = 1000, 472 .wait_for_reset = 1, 473 .num_bits_resol = 11, 474 .reg_values = reg_values, 475 }; 476 477 static const struct exynos_dsi_driver_data exynos4_dsi_driver_data = { 478 .reg_ofs = exynos_reg_ofs, 479 .plltmr_reg = 0x50, 480 .has_freqband = 1, 481 .has_clklane_stop = 1, 482 .num_clks = 2, 483 .max_freq = 1000, 484 .wait_for_reset = 1, 485 .num_bits_resol = 11, 486 .reg_values = reg_values, 487 }; 488 489 static const struct exynos_dsi_driver_data exynos5_dsi_driver_data = { 490 .reg_ofs = exynos_reg_ofs, 491 .plltmr_reg = 0x58, 492 .num_clks = 2, 493 .max_freq = 1000, 494 .wait_for_reset = 1, 495 .num_bits_resol = 11, 496 .reg_values = reg_values, 497 }; 498 499 static const struct exynos_dsi_driver_data exynos5433_dsi_driver_data = { 500 .reg_ofs = exynos5433_reg_ofs, 501 .plltmr_reg = 0xa0, 502 .has_clklane_stop = 1, 503 .num_clks = 5, 504 .max_freq = 1500, 505 .wait_for_reset = 0, 506 .num_bits_resol = 12, 507 .reg_values = exynos5433_reg_values, 508 }; 509 510 static const struct exynos_dsi_driver_data exynos5422_dsi_driver_data = { 511 .reg_ofs = exynos5433_reg_ofs, 512 .plltmr_reg = 0xa0, 513 .has_clklane_stop = 1, 514 .num_clks = 2, 515 .max_freq = 1500, 516 .wait_for_reset = 1, 517 .num_bits_resol = 12, 518 .reg_values = exynos5422_reg_values, 519 }; 520 521 static const struct of_device_id exynos_dsi_of_match[] = { 522 { .compatible = "samsung,exynos3250-mipi-dsi", 523 .data = &exynos3_dsi_driver_data }, 524 { .compatible = "samsung,exynos4210-mipi-dsi", 525 .data = &exynos4_dsi_driver_data }, 526 { .compatible = "samsung,exynos5410-mipi-dsi", 527 .data = &exynos5_dsi_driver_data }, 528 { .compatible = "samsung,exynos5422-mipi-dsi", 529 .data = &exynos5422_dsi_driver_data }, 530 { .compatible = "samsung,exynos5433-mipi-dsi", 531 .data = &exynos5433_dsi_driver_data }, 532 { } 533 }; 534 535 static void exynos_dsi_wait_for_reset(struct exynos_dsi *dsi) 536 { 537 if (wait_for_completion_timeout(&dsi->completed, msecs_to_jiffies(300))) 538 return; 539 540 dev_err(dsi->dev, "timeout waiting for reset\n"); 541 } 542 543 static void exynos_dsi_reset(struct exynos_dsi *dsi) 544 { 545 u32 reset_val = dsi->driver_data->reg_values[RESET_TYPE]; 546 547 reinit_completion(&dsi->completed); 548 exynos_dsi_write(dsi, DSIM_SWRST_REG, reset_val); 549 } 550 551 #ifndef MHZ 552 #define MHZ (1000*1000) 553 #endif 554 555 static unsigned long exynos_dsi_pll_find_pms(struct exynos_dsi *dsi, 556 unsigned long fin, unsigned long fout, u8 *p, u16 *m, u8 *s) 557 { 558 const struct exynos_dsi_driver_data *driver_data = dsi->driver_data; 559 unsigned long best_freq = 0; 560 u32 min_delta = 0xffffffff; 561 u8 p_min, p_max; 562 u8 _p, best_p; 563 u16 _m, best_m; 564 u8 _s, best_s; 565 566 p_min = DIV_ROUND_UP(fin, (12 * MHZ)); 567 p_max = fin / (6 * MHZ); 568 569 for (_p = p_min; _p <= p_max; ++_p) { 570 for (_s = 0; _s <= 5; ++_s) { 571 u64 tmp; 572 u32 delta; 573 574 tmp = (u64)fout * (_p << _s); 575 do_div(tmp, fin); 576 _m = tmp; 577 if (_m < 41 || _m > 125) 578 continue; 579 580 tmp = (u64)_m * fin; 581 do_div(tmp, _p); 582 if (tmp < 500 * MHZ || 583 tmp > driver_data->max_freq * MHZ) 584 continue; 585 586 tmp = (u64)_m * fin; 587 do_div(tmp, _p << _s); 588 589 delta = abs(fout - tmp); 590 if (delta < min_delta) { 591 best_p = _p; 592 best_m = _m; 593 best_s = _s; 594 min_delta = delta; 595 best_freq = tmp; 596 } 597 } 598 } 599 600 if (best_freq) { 601 *p = best_p; 602 *m = best_m; 603 *s = best_s; 604 } 605 606 return best_freq; 607 } 608 609 static unsigned long exynos_dsi_set_pll(struct exynos_dsi *dsi, 610 unsigned long freq) 611 { 612 const struct exynos_dsi_driver_data *driver_data = dsi->driver_data; 613 unsigned long fin, fout; 614 int timeout; 615 u8 p, s; 616 u16 m; 617 u32 reg; 618 619 fin = dsi->pll_clk_rate; 620 fout = exynos_dsi_pll_find_pms(dsi, fin, freq, &p, &m, &s); 621 if (!fout) { 622 dev_err(dsi->dev, 623 "failed to find PLL PMS for requested frequency\n"); 624 return 0; 625 } 626 dev_dbg(dsi->dev, "PLL freq %lu, (p %d, m %d, s %d)\n", fout, p, m, s); 627 628 writel(driver_data->reg_values[PLL_TIMER], 629 dsi->reg_base + driver_data->plltmr_reg); 630 631 reg = DSIM_PLL_EN | DSIM_PLL_P(p) | DSIM_PLL_M(m) | DSIM_PLL_S(s); 632 633 if (driver_data->has_freqband) { 634 static const unsigned long freq_bands[] = { 635 100 * MHZ, 120 * MHZ, 160 * MHZ, 200 * MHZ, 636 270 * MHZ, 320 * MHZ, 390 * MHZ, 450 * MHZ, 637 510 * MHZ, 560 * MHZ, 640 * MHZ, 690 * MHZ, 638 770 * MHZ, 870 * MHZ, 950 * MHZ, 639 }; 640 int band; 641 642 for (band = 0; band < ARRAY_SIZE(freq_bands); ++band) 643 if (fout < freq_bands[band]) 644 break; 645 646 dev_dbg(dsi->dev, "band %d\n", band); 647 648 reg |= DSIM_FREQ_BAND(band); 649 } 650 651 exynos_dsi_write(dsi, DSIM_PLLCTRL_REG, reg); 652 653 timeout = 1000; 654 do { 655 if (timeout-- == 0) { 656 dev_err(dsi->dev, "PLL failed to stabilize\n"); 657 return 0; 658 } 659 reg = exynos_dsi_read(dsi, DSIM_STATUS_REG); 660 } while ((reg & DSIM_PLL_STABLE) == 0); 661 662 return fout; 663 } 664 665 static int exynos_dsi_enable_clock(struct exynos_dsi *dsi) 666 { 667 unsigned long hs_clk, byte_clk, esc_clk; 668 unsigned long esc_div; 669 u32 reg; 670 671 hs_clk = exynos_dsi_set_pll(dsi, dsi->burst_clk_rate); 672 if (!hs_clk) { 673 dev_err(dsi->dev, "failed to configure DSI PLL\n"); 674 return -EFAULT; 675 } 676 677 byte_clk = hs_clk / 8; 678 esc_div = DIV_ROUND_UP(byte_clk, dsi->esc_clk_rate); 679 esc_clk = byte_clk / esc_div; 680 681 if (esc_clk > 20 * MHZ) { 682 ++esc_div; 683 esc_clk = byte_clk / esc_div; 684 } 685 686 dev_dbg(dsi->dev, "hs_clk = %lu, byte_clk = %lu, esc_clk = %lu\n", 687 hs_clk, byte_clk, esc_clk); 688 689 reg = exynos_dsi_read(dsi, DSIM_CLKCTRL_REG); 690 reg &= ~(DSIM_ESC_PRESCALER_MASK | DSIM_LANE_ESC_CLK_EN_CLK 691 | DSIM_LANE_ESC_CLK_EN_DATA_MASK | DSIM_PLL_BYPASS 692 | DSIM_BYTE_CLK_SRC_MASK); 693 reg |= DSIM_ESC_CLKEN | DSIM_BYTE_CLKEN 694 | DSIM_ESC_PRESCALER(esc_div) 695 | DSIM_LANE_ESC_CLK_EN_CLK 696 | DSIM_LANE_ESC_CLK_EN_DATA(BIT(dsi->lanes) - 1) 697 | DSIM_BYTE_CLK_SRC(0) 698 | DSIM_TX_REQUEST_HSCLK; 699 exynos_dsi_write(dsi, DSIM_CLKCTRL_REG, reg); 700 701 return 0; 702 } 703 704 static void exynos_dsi_set_phy_ctrl(struct exynos_dsi *dsi) 705 { 706 const struct exynos_dsi_driver_data *driver_data = dsi->driver_data; 707 const unsigned int *reg_values = driver_data->reg_values; 708 u32 reg; 709 710 if (driver_data->has_freqband) 711 return; 712 713 /* B D-PHY: D-PHY Master & Slave Analog Block control */ 714 reg = reg_values[PHYCTRL_ULPS_EXIT] | reg_values[PHYCTRL_VREG_LP] | 715 reg_values[PHYCTRL_SLEW_UP]; 716 exynos_dsi_write(dsi, DSIM_PHYCTRL_REG, reg); 717 718 /* 719 * T LPX: Transmitted length of any Low-Power state period 720 * T HS-EXIT: Time that the transmitter drives LP-11 following a HS 721 * burst 722 */ 723 reg = reg_values[PHYTIMING_LPX] | reg_values[PHYTIMING_HS_EXIT]; 724 exynos_dsi_write(dsi, DSIM_PHYTIMING_REG, reg); 725 726 /* 727 * T CLK-PREPARE: Time that the transmitter drives the Clock Lane LP-00 728 * Line state immediately before the HS-0 Line state starting the 729 * HS transmission 730 * T CLK-ZERO: Time that the transmitter drives the HS-0 state prior to 731 * transmitting the Clock. 732 * T CLK_POST: Time that the transmitter continues to send HS clock 733 * after the last associated Data Lane has transitioned to LP Mode 734 * Interval is defined as the period from the end of T HS-TRAIL to 735 * the beginning of T CLK-TRAIL 736 * T CLK-TRAIL: Time that the transmitter drives the HS-0 state after 737 * the last payload clock bit of a HS transmission burst 738 */ 739 reg = reg_values[PHYTIMING_CLK_PREPARE] | 740 reg_values[PHYTIMING_CLK_ZERO] | 741 reg_values[PHYTIMING_CLK_POST] | 742 reg_values[PHYTIMING_CLK_TRAIL]; 743 744 exynos_dsi_write(dsi, DSIM_PHYTIMING1_REG, reg); 745 746 /* 747 * T HS-PREPARE: Time that the transmitter drives the Data Lane LP-00 748 * Line state immediately before the HS-0 Line state starting the 749 * HS transmission 750 * T HS-ZERO: Time that the transmitter drives the HS-0 state prior to 751 * transmitting the Sync sequence. 752 * T HS-TRAIL: Time that the transmitter drives the flipped differential 753 * state after last payload data bit of a HS transmission burst 754 */ 755 reg = reg_values[PHYTIMING_HS_PREPARE] | reg_values[PHYTIMING_HS_ZERO] | 756 reg_values[PHYTIMING_HS_TRAIL]; 757 exynos_dsi_write(dsi, DSIM_PHYTIMING2_REG, reg); 758 } 759 760 static void exynos_dsi_disable_clock(struct exynos_dsi *dsi) 761 { 762 u32 reg; 763 764 reg = exynos_dsi_read(dsi, DSIM_CLKCTRL_REG); 765 reg &= ~(DSIM_LANE_ESC_CLK_EN_CLK | DSIM_LANE_ESC_CLK_EN_DATA_MASK 766 | DSIM_ESC_CLKEN | DSIM_BYTE_CLKEN); 767 exynos_dsi_write(dsi, DSIM_CLKCTRL_REG, reg); 768 769 reg = exynos_dsi_read(dsi, DSIM_PLLCTRL_REG); 770 reg &= ~DSIM_PLL_EN; 771 exynos_dsi_write(dsi, DSIM_PLLCTRL_REG, reg); 772 } 773 774 static void exynos_dsi_enable_lane(struct exynos_dsi *dsi, u32 lane) 775 { 776 u32 reg = exynos_dsi_read(dsi, DSIM_CONFIG_REG); 777 reg |= (DSIM_NUM_OF_DATA_LANE(dsi->lanes - 1) | DSIM_LANE_EN_CLK | 778 DSIM_LANE_EN(lane)); 779 exynos_dsi_write(dsi, DSIM_CONFIG_REG, reg); 780 } 781 782 static int exynos_dsi_init_link(struct exynos_dsi *dsi) 783 { 784 const struct exynos_dsi_driver_data *driver_data = dsi->driver_data; 785 int timeout; 786 u32 reg; 787 u32 lanes_mask; 788 789 /* Initialize FIFO pointers */ 790 reg = exynos_dsi_read(dsi, DSIM_FIFOCTRL_REG); 791 reg &= ~0x1f; 792 exynos_dsi_write(dsi, DSIM_FIFOCTRL_REG, reg); 793 794 usleep_range(9000, 11000); 795 796 reg |= 0x1f; 797 exynos_dsi_write(dsi, DSIM_FIFOCTRL_REG, reg); 798 usleep_range(9000, 11000); 799 800 /* DSI configuration */ 801 reg = 0; 802 803 /* 804 * The first bit of mode_flags specifies display configuration. 805 * If this bit is set[= MIPI_DSI_MODE_VIDEO], dsi will support video 806 * mode, otherwise it will support command mode. 807 */ 808 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 809 reg |= DSIM_VIDEO_MODE; 810 811 /* 812 * The user manual describes that following bits are ignored in 813 * command mode. 814 */ 815 if (!(dsi->mode_flags & MIPI_DSI_MODE_VSYNC_FLUSH)) 816 reg |= DSIM_MFLUSH_VS; 817 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) 818 reg |= DSIM_SYNC_INFORM; 819 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST) 820 reg |= DSIM_BURST_MODE; 821 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_AUTO_VERT) 822 reg |= DSIM_AUTO_MODE; 823 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HSE) 824 reg |= DSIM_HSE_DISABLE_MODE; 825 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HFP) 826 reg |= DSIM_HFP_DISABLE_MODE; 827 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HBP) 828 reg |= DSIM_HBP_DISABLE_MODE; 829 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HSA) 830 reg |= DSIM_HSA_DISABLE_MODE; 831 } 832 833 if (dsi->mode_flags & MIPI_DSI_MODE_NO_EOT_PACKET) 834 reg |= DSIM_EOT_DISABLE; 835 836 switch (dsi->format) { 837 case MIPI_DSI_FMT_RGB888: 838 reg |= DSIM_MAIN_PIX_FORMAT_RGB888; 839 break; 840 case MIPI_DSI_FMT_RGB666: 841 reg |= DSIM_MAIN_PIX_FORMAT_RGB666; 842 break; 843 case MIPI_DSI_FMT_RGB666_PACKED: 844 reg |= DSIM_MAIN_PIX_FORMAT_RGB666_P; 845 break; 846 case MIPI_DSI_FMT_RGB565: 847 reg |= DSIM_MAIN_PIX_FORMAT_RGB565; 848 break; 849 default: 850 dev_err(dsi->dev, "invalid pixel format\n"); 851 return -EINVAL; 852 } 853 854 /* 855 * Use non-continuous clock mode if the periparal wants and 856 * host controller supports 857 * 858 * In non-continous clock mode, host controller will turn off 859 * the HS clock between high-speed transmissions to reduce 860 * power consumption. 861 */ 862 if (driver_data->has_clklane_stop && 863 dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) { 864 reg |= DSIM_CLKLANE_STOP; 865 } 866 exynos_dsi_write(dsi, DSIM_CONFIG_REG, reg); 867 868 lanes_mask = BIT(dsi->lanes) - 1; 869 exynos_dsi_enable_lane(dsi, lanes_mask); 870 871 /* Check clock and data lane state are stop state */ 872 timeout = 100; 873 do { 874 if (timeout-- == 0) { 875 dev_err(dsi->dev, "waiting for bus lanes timed out\n"); 876 return -EFAULT; 877 } 878 879 reg = exynos_dsi_read(dsi, DSIM_STATUS_REG); 880 if ((reg & DSIM_STOP_STATE_DAT(lanes_mask)) 881 != DSIM_STOP_STATE_DAT(lanes_mask)) 882 continue; 883 } while (!(reg & (DSIM_STOP_STATE_CLK | DSIM_TX_READY_HS_CLK))); 884 885 reg = exynos_dsi_read(dsi, DSIM_ESCMODE_REG); 886 reg &= ~DSIM_STOP_STATE_CNT_MASK; 887 reg |= DSIM_STOP_STATE_CNT(driver_data->reg_values[STOP_STATE_CNT]); 888 exynos_dsi_write(dsi, DSIM_ESCMODE_REG, reg); 889 890 reg = DSIM_BTA_TIMEOUT(0xff) | DSIM_LPDR_TIMEOUT(0xffff); 891 exynos_dsi_write(dsi, DSIM_TIMEOUT_REG, reg); 892 893 return 0; 894 } 895 896 static void exynos_dsi_set_display_mode(struct exynos_dsi *dsi) 897 { 898 struct drm_display_mode *m = &dsi->mode; 899 unsigned int num_bits_resol = dsi->driver_data->num_bits_resol; 900 u32 reg; 901 902 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 903 reg = DSIM_CMD_ALLOW(0xf) 904 | DSIM_STABLE_VFP(m->vsync_start - m->vdisplay) 905 | DSIM_MAIN_VBP(m->vtotal - m->vsync_end); 906 exynos_dsi_write(dsi, DSIM_MVPORCH_REG, reg); 907 908 reg = DSIM_MAIN_HFP(m->hsync_start - m->hdisplay) 909 | DSIM_MAIN_HBP(m->htotal - m->hsync_end); 910 exynos_dsi_write(dsi, DSIM_MHPORCH_REG, reg); 911 912 reg = DSIM_MAIN_VSA(m->vsync_end - m->vsync_start) 913 | DSIM_MAIN_HSA(m->hsync_end - m->hsync_start); 914 exynos_dsi_write(dsi, DSIM_MSYNC_REG, reg); 915 } 916 reg = DSIM_MAIN_HRESOL(m->hdisplay, num_bits_resol) | 917 DSIM_MAIN_VRESOL(m->vdisplay, num_bits_resol); 918 919 exynos_dsi_write(dsi, DSIM_MDRESOL_REG, reg); 920 921 dev_dbg(dsi->dev, "LCD size = %dx%d\n", m->hdisplay, m->vdisplay); 922 } 923 924 static void exynos_dsi_set_display_enable(struct exynos_dsi *dsi, bool enable) 925 { 926 u32 reg; 927 928 reg = exynos_dsi_read(dsi, DSIM_MDRESOL_REG); 929 if (enable) 930 reg |= DSIM_MAIN_STAND_BY; 931 else 932 reg &= ~DSIM_MAIN_STAND_BY; 933 exynos_dsi_write(dsi, DSIM_MDRESOL_REG, reg); 934 } 935 936 static int exynos_dsi_wait_for_hdr_fifo(struct exynos_dsi *dsi) 937 { 938 int timeout = 2000; 939 940 do { 941 u32 reg = exynos_dsi_read(dsi, DSIM_FIFOCTRL_REG); 942 943 if (!(reg & DSIM_SFR_HEADER_FULL)) 944 return 0; 945 946 if (!cond_resched()) 947 usleep_range(950, 1050); 948 } while (--timeout); 949 950 return -ETIMEDOUT; 951 } 952 953 static void exynos_dsi_set_cmd_lpm(struct exynos_dsi *dsi, bool lpm) 954 { 955 u32 v = exynos_dsi_read(dsi, DSIM_ESCMODE_REG); 956 957 if (lpm) 958 v |= DSIM_CMD_LPDT_LP; 959 else 960 v &= ~DSIM_CMD_LPDT_LP; 961 962 exynos_dsi_write(dsi, DSIM_ESCMODE_REG, v); 963 } 964 965 static void exynos_dsi_force_bta(struct exynos_dsi *dsi) 966 { 967 u32 v = exynos_dsi_read(dsi, DSIM_ESCMODE_REG); 968 v |= DSIM_FORCE_BTA; 969 exynos_dsi_write(dsi, DSIM_ESCMODE_REG, v); 970 } 971 972 static void exynos_dsi_send_to_fifo(struct exynos_dsi *dsi, 973 struct exynos_dsi_transfer *xfer) 974 { 975 struct device *dev = dsi->dev; 976 struct mipi_dsi_packet *pkt = &xfer->packet; 977 const u8 *payload = pkt->payload + xfer->tx_done; 978 u16 length = pkt->payload_length - xfer->tx_done; 979 bool first = !xfer->tx_done; 980 u32 reg; 981 982 dev_dbg(dev, "< xfer %pK: tx len %u, done %u, rx len %u, done %u\n", 983 xfer, length, xfer->tx_done, xfer->rx_len, xfer->rx_done); 984 985 if (length > DSI_TX_FIFO_SIZE) 986 length = DSI_TX_FIFO_SIZE; 987 988 xfer->tx_done += length; 989 990 /* Send payload */ 991 while (length >= 4) { 992 reg = get_unaligned_le32(payload); 993 exynos_dsi_write(dsi, DSIM_PAYLOAD_REG, reg); 994 payload += 4; 995 length -= 4; 996 } 997 998 reg = 0; 999 switch (length) { 1000 case 3: 1001 reg |= payload[2] << 16; 1002 fallthrough; 1003 case 2: 1004 reg |= payload[1] << 8; 1005 fallthrough; 1006 case 1: 1007 reg |= payload[0]; 1008 exynos_dsi_write(dsi, DSIM_PAYLOAD_REG, reg); 1009 break; 1010 } 1011 1012 /* Send packet header */ 1013 if (!first) 1014 return; 1015 1016 reg = get_unaligned_le32(pkt->header); 1017 if (exynos_dsi_wait_for_hdr_fifo(dsi)) { 1018 dev_err(dev, "waiting for header FIFO timed out\n"); 1019 return; 1020 } 1021 1022 if (NEQV(xfer->flags & MIPI_DSI_MSG_USE_LPM, 1023 dsi->state & DSIM_STATE_CMD_LPM)) { 1024 exynos_dsi_set_cmd_lpm(dsi, xfer->flags & MIPI_DSI_MSG_USE_LPM); 1025 dsi->state ^= DSIM_STATE_CMD_LPM; 1026 } 1027 1028 exynos_dsi_write(dsi, DSIM_PKTHDR_REG, reg); 1029 1030 if (xfer->flags & MIPI_DSI_MSG_REQ_ACK) 1031 exynos_dsi_force_bta(dsi); 1032 } 1033 1034 static void exynos_dsi_read_from_fifo(struct exynos_dsi *dsi, 1035 struct exynos_dsi_transfer *xfer) 1036 { 1037 u8 *payload = xfer->rx_payload + xfer->rx_done; 1038 bool first = !xfer->rx_done; 1039 struct device *dev = dsi->dev; 1040 u16 length; 1041 u32 reg; 1042 1043 if (first) { 1044 reg = exynos_dsi_read(dsi, DSIM_RXFIFO_REG); 1045 1046 switch (reg & 0x3f) { 1047 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE: 1048 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE: 1049 if (xfer->rx_len >= 2) { 1050 payload[1] = reg >> 16; 1051 ++xfer->rx_done; 1052 } 1053 fallthrough; 1054 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE: 1055 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE: 1056 payload[0] = reg >> 8; 1057 ++xfer->rx_done; 1058 xfer->rx_len = xfer->rx_done; 1059 xfer->result = 0; 1060 goto clear_fifo; 1061 case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT: 1062 dev_err(dev, "DSI Error Report: 0x%04x\n", 1063 (reg >> 8) & 0xffff); 1064 xfer->result = 0; 1065 goto clear_fifo; 1066 } 1067 1068 length = (reg >> 8) & 0xffff; 1069 if (length > xfer->rx_len) { 1070 dev_err(dev, 1071 "response too long (%u > %u bytes), stripping\n", 1072 xfer->rx_len, length); 1073 length = xfer->rx_len; 1074 } else if (length < xfer->rx_len) 1075 xfer->rx_len = length; 1076 } 1077 1078 length = xfer->rx_len - xfer->rx_done; 1079 xfer->rx_done += length; 1080 1081 /* Receive payload */ 1082 while (length >= 4) { 1083 reg = exynos_dsi_read(dsi, DSIM_RXFIFO_REG); 1084 payload[0] = (reg >> 0) & 0xff; 1085 payload[1] = (reg >> 8) & 0xff; 1086 payload[2] = (reg >> 16) & 0xff; 1087 payload[3] = (reg >> 24) & 0xff; 1088 payload += 4; 1089 length -= 4; 1090 } 1091 1092 if (length) { 1093 reg = exynos_dsi_read(dsi, DSIM_RXFIFO_REG); 1094 switch (length) { 1095 case 3: 1096 payload[2] = (reg >> 16) & 0xff; 1097 fallthrough; 1098 case 2: 1099 payload[1] = (reg >> 8) & 0xff; 1100 fallthrough; 1101 case 1: 1102 payload[0] = reg & 0xff; 1103 } 1104 } 1105 1106 if (xfer->rx_done == xfer->rx_len) 1107 xfer->result = 0; 1108 1109 clear_fifo: 1110 length = DSI_RX_FIFO_SIZE / 4; 1111 do { 1112 reg = exynos_dsi_read(dsi, DSIM_RXFIFO_REG); 1113 if (reg == DSI_RX_FIFO_EMPTY) 1114 break; 1115 } while (--length); 1116 } 1117 1118 static void exynos_dsi_transfer_start(struct exynos_dsi *dsi) 1119 { 1120 unsigned long flags; 1121 struct exynos_dsi_transfer *xfer; 1122 bool start = false; 1123 1124 again: 1125 spin_lock_irqsave(&dsi->transfer_lock, flags); 1126 1127 if (list_empty(&dsi->transfer_list)) { 1128 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1129 return; 1130 } 1131 1132 xfer = list_first_entry(&dsi->transfer_list, 1133 struct exynos_dsi_transfer, list); 1134 1135 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1136 1137 if (xfer->packet.payload_length && 1138 xfer->tx_done == xfer->packet.payload_length) 1139 /* waiting for RX */ 1140 return; 1141 1142 exynos_dsi_send_to_fifo(dsi, xfer); 1143 1144 if (xfer->packet.payload_length || xfer->rx_len) 1145 return; 1146 1147 xfer->result = 0; 1148 complete(&xfer->completed); 1149 1150 spin_lock_irqsave(&dsi->transfer_lock, flags); 1151 1152 list_del_init(&xfer->list); 1153 start = !list_empty(&dsi->transfer_list); 1154 1155 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1156 1157 if (start) 1158 goto again; 1159 } 1160 1161 static bool exynos_dsi_transfer_finish(struct exynos_dsi *dsi) 1162 { 1163 struct exynos_dsi_transfer *xfer; 1164 unsigned long flags; 1165 bool start = true; 1166 1167 spin_lock_irqsave(&dsi->transfer_lock, flags); 1168 1169 if (list_empty(&dsi->transfer_list)) { 1170 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1171 return false; 1172 } 1173 1174 xfer = list_first_entry(&dsi->transfer_list, 1175 struct exynos_dsi_transfer, list); 1176 1177 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1178 1179 dev_dbg(dsi->dev, 1180 "> xfer %pK, tx_len %zu, tx_done %u, rx_len %u, rx_done %u\n", 1181 xfer, xfer->packet.payload_length, xfer->tx_done, xfer->rx_len, 1182 xfer->rx_done); 1183 1184 if (xfer->tx_done != xfer->packet.payload_length) 1185 return true; 1186 1187 if (xfer->rx_done != xfer->rx_len) 1188 exynos_dsi_read_from_fifo(dsi, xfer); 1189 1190 if (xfer->rx_done != xfer->rx_len) 1191 return true; 1192 1193 spin_lock_irqsave(&dsi->transfer_lock, flags); 1194 1195 list_del_init(&xfer->list); 1196 start = !list_empty(&dsi->transfer_list); 1197 1198 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1199 1200 if (!xfer->rx_len) 1201 xfer->result = 0; 1202 complete(&xfer->completed); 1203 1204 return start; 1205 } 1206 1207 static void exynos_dsi_remove_transfer(struct exynos_dsi *dsi, 1208 struct exynos_dsi_transfer *xfer) 1209 { 1210 unsigned long flags; 1211 bool start; 1212 1213 spin_lock_irqsave(&dsi->transfer_lock, flags); 1214 1215 if (!list_empty(&dsi->transfer_list) && 1216 xfer == list_first_entry(&dsi->transfer_list, 1217 struct exynos_dsi_transfer, list)) { 1218 list_del_init(&xfer->list); 1219 start = !list_empty(&dsi->transfer_list); 1220 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1221 if (start) 1222 exynos_dsi_transfer_start(dsi); 1223 return; 1224 } 1225 1226 list_del_init(&xfer->list); 1227 1228 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1229 } 1230 1231 static int exynos_dsi_transfer(struct exynos_dsi *dsi, 1232 struct exynos_dsi_transfer *xfer) 1233 { 1234 unsigned long flags; 1235 bool stopped; 1236 1237 xfer->tx_done = 0; 1238 xfer->rx_done = 0; 1239 xfer->result = -ETIMEDOUT; 1240 init_completion(&xfer->completed); 1241 1242 spin_lock_irqsave(&dsi->transfer_lock, flags); 1243 1244 stopped = list_empty(&dsi->transfer_list); 1245 list_add_tail(&xfer->list, &dsi->transfer_list); 1246 1247 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1248 1249 if (stopped) 1250 exynos_dsi_transfer_start(dsi); 1251 1252 wait_for_completion_timeout(&xfer->completed, 1253 msecs_to_jiffies(DSI_XFER_TIMEOUT_MS)); 1254 if (xfer->result == -ETIMEDOUT) { 1255 struct mipi_dsi_packet *pkt = &xfer->packet; 1256 exynos_dsi_remove_transfer(dsi, xfer); 1257 dev_err(dsi->dev, "xfer timed out: %*ph %*ph\n", 4, pkt->header, 1258 (int)pkt->payload_length, pkt->payload); 1259 return -ETIMEDOUT; 1260 } 1261 1262 /* Also covers hardware timeout condition */ 1263 return xfer->result; 1264 } 1265 1266 static irqreturn_t exynos_dsi_irq(int irq, void *dev_id) 1267 { 1268 struct exynos_dsi *dsi = dev_id; 1269 u32 status; 1270 1271 status = exynos_dsi_read(dsi, DSIM_INTSRC_REG); 1272 if (!status) { 1273 static unsigned long int j; 1274 if (printk_timed_ratelimit(&j, 500)) 1275 dev_warn(dsi->dev, "spurious interrupt\n"); 1276 return IRQ_HANDLED; 1277 } 1278 exynos_dsi_write(dsi, DSIM_INTSRC_REG, status); 1279 1280 if (status & DSIM_INT_SW_RST_RELEASE) { 1281 u32 mask = ~(DSIM_INT_RX_DONE | DSIM_INT_SFR_FIFO_EMPTY | 1282 DSIM_INT_SFR_HDR_FIFO_EMPTY | DSIM_INT_RX_ECC_ERR | 1283 DSIM_INT_SW_RST_RELEASE); 1284 exynos_dsi_write(dsi, DSIM_INTMSK_REG, mask); 1285 complete(&dsi->completed); 1286 return IRQ_HANDLED; 1287 } 1288 1289 if (!(status & (DSIM_INT_RX_DONE | DSIM_INT_SFR_FIFO_EMPTY | 1290 DSIM_INT_PLL_STABLE))) 1291 return IRQ_HANDLED; 1292 1293 if (exynos_dsi_transfer_finish(dsi)) 1294 exynos_dsi_transfer_start(dsi); 1295 1296 return IRQ_HANDLED; 1297 } 1298 1299 static irqreturn_t exynos_dsi_te_irq_handler(int irq, void *dev_id) 1300 { 1301 struct exynos_dsi *dsi = (struct exynos_dsi *)dev_id; 1302 struct drm_encoder *encoder = &dsi->encoder; 1303 1304 if (dsi->state & DSIM_STATE_VIDOUT_AVAILABLE) 1305 exynos_drm_crtc_te_handler(encoder->crtc); 1306 1307 return IRQ_HANDLED; 1308 } 1309 1310 static void exynos_dsi_enable_irq(struct exynos_dsi *dsi) 1311 { 1312 enable_irq(dsi->irq); 1313 1314 if (dsi->te_gpio) 1315 enable_irq(gpiod_to_irq(dsi->te_gpio)); 1316 } 1317 1318 static void exynos_dsi_disable_irq(struct exynos_dsi *dsi) 1319 { 1320 if (dsi->te_gpio) 1321 disable_irq(gpiod_to_irq(dsi->te_gpio)); 1322 1323 disable_irq(dsi->irq); 1324 } 1325 1326 static int exynos_dsi_init(struct exynos_dsi *dsi) 1327 { 1328 const struct exynos_dsi_driver_data *driver_data = dsi->driver_data; 1329 1330 exynos_dsi_reset(dsi); 1331 exynos_dsi_enable_irq(dsi); 1332 1333 if (driver_data->reg_values[RESET_TYPE] == DSIM_FUNCRST) 1334 exynos_dsi_enable_lane(dsi, BIT(dsi->lanes) - 1); 1335 1336 exynos_dsi_enable_clock(dsi); 1337 if (driver_data->wait_for_reset) 1338 exynos_dsi_wait_for_reset(dsi); 1339 exynos_dsi_set_phy_ctrl(dsi); 1340 exynos_dsi_init_link(dsi); 1341 1342 return 0; 1343 } 1344 1345 static int exynos_dsi_register_te_irq(struct exynos_dsi *dsi, 1346 struct device *panel) 1347 { 1348 int ret; 1349 int te_gpio_irq; 1350 1351 dsi->te_gpio = gpiod_get_optional(panel, "te", GPIOD_IN); 1352 if (!dsi->te_gpio) { 1353 return 0; 1354 } else if (IS_ERR(dsi->te_gpio)) { 1355 dev_err(dsi->dev, "gpio request failed with %ld\n", 1356 PTR_ERR(dsi->te_gpio)); 1357 return PTR_ERR(dsi->te_gpio); 1358 } 1359 1360 te_gpio_irq = gpiod_to_irq(dsi->te_gpio); 1361 1362 ret = request_threaded_irq(te_gpio_irq, exynos_dsi_te_irq_handler, NULL, 1363 IRQF_TRIGGER_RISING | IRQF_NO_AUTOEN, "TE", dsi); 1364 if (ret) { 1365 dev_err(dsi->dev, "request interrupt failed with %d\n", ret); 1366 gpiod_put(dsi->te_gpio); 1367 return ret; 1368 } 1369 1370 return 0; 1371 } 1372 1373 static void exynos_dsi_unregister_te_irq(struct exynos_dsi *dsi) 1374 { 1375 if (dsi->te_gpio) { 1376 free_irq(gpiod_to_irq(dsi->te_gpio), dsi); 1377 gpiod_put(dsi->te_gpio); 1378 } 1379 } 1380 1381 static void exynos_dsi_atomic_pre_enable(struct drm_bridge *bridge, 1382 struct drm_bridge_state *old_bridge_state) 1383 { 1384 struct exynos_dsi *dsi = bridge_to_dsi(bridge); 1385 int ret; 1386 1387 if (dsi->state & DSIM_STATE_ENABLED) 1388 return; 1389 1390 ret = pm_runtime_resume_and_get(dsi->dev); 1391 if (ret < 0) { 1392 dev_err(dsi->dev, "failed to enable DSI device.\n"); 1393 return; 1394 } 1395 1396 dsi->state |= DSIM_STATE_ENABLED; 1397 } 1398 1399 static void exynos_dsi_atomic_enable(struct drm_bridge *bridge, 1400 struct drm_bridge_state *old_bridge_state) 1401 { 1402 struct exynos_dsi *dsi = bridge_to_dsi(bridge); 1403 1404 exynos_dsi_set_display_mode(dsi); 1405 exynos_dsi_set_display_enable(dsi, true); 1406 1407 dsi->state |= DSIM_STATE_VIDOUT_AVAILABLE; 1408 1409 return; 1410 } 1411 1412 static void exynos_dsi_atomic_disable(struct drm_bridge *bridge, 1413 struct drm_bridge_state *old_bridge_state) 1414 { 1415 struct exynos_dsi *dsi = bridge_to_dsi(bridge); 1416 1417 if (!(dsi->state & DSIM_STATE_ENABLED)) 1418 return; 1419 1420 dsi->state &= ~DSIM_STATE_VIDOUT_AVAILABLE; 1421 } 1422 1423 static void exynos_dsi_atomic_post_disable(struct drm_bridge *bridge, 1424 struct drm_bridge_state *old_bridge_state) 1425 { 1426 struct exynos_dsi *dsi = bridge_to_dsi(bridge); 1427 1428 exynos_dsi_set_display_enable(dsi, false); 1429 1430 dsi->state &= ~DSIM_STATE_ENABLED; 1431 pm_runtime_put_sync(dsi->dev); 1432 } 1433 1434 static void exynos_dsi_mode_set(struct drm_bridge *bridge, 1435 const struct drm_display_mode *mode, 1436 const struct drm_display_mode *adjusted_mode) 1437 { 1438 struct exynos_dsi *dsi = bridge_to_dsi(bridge); 1439 1440 drm_mode_copy(&dsi->mode, adjusted_mode); 1441 } 1442 1443 static int exynos_dsi_attach(struct drm_bridge *bridge, 1444 enum drm_bridge_attach_flags flags) 1445 { 1446 struct exynos_dsi *dsi = bridge_to_dsi(bridge); 1447 1448 return drm_bridge_attach(bridge->encoder, dsi->out_bridge, bridge, 1449 flags); 1450 } 1451 1452 static const struct drm_bridge_funcs exynos_dsi_bridge_funcs = { 1453 .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state, 1454 .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state, 1455 .atomic_reset = drm_atomic_helper_bridge_reset, 1456 .atomic_pre_enable = exynos_dsi_atomic_pre_enable, 1457 .atomic_enable = exynos_dsi_atomic_enable, 1458 .atomic_disable = exynos_dsi_atomic_disable, 1459 .atomic_post_disable = exynos_dsi_atomic_post_disable, 1460 .mode_set = exynos_dsi_mode_set, 1461 .attach = exynos_dsi_attach, 1462 }; 1463 1464 MODULE_DEVICE_TABLE(of, exynos_dsi_of_match); 1465 1466 static int exynos_dsi_host_attach(struct mipi_dsi_host *host, 1467 struct mipi_dsi_device *device) 1468 { 1469 struct exynos_dsi *dsi = host_to_dsi(host); 1470 struct device *dev = dsi->dev; 1471 struct drm_encoder *encoder = &dsi->encoder; 1472 struct drm_device *drm = encoder->dev; 1473 struct drm_panel *panel; 1474 int ret; 1475 1476 panel = of_drm_find_panel(device->dev.of_node); 1477 if (!IS_ERR(panel)) { 1478 dsi->out_bridge = devm_drm_panel_bridge_add(dev, panel); 1479 } else { 1480 dsi->out_bridge = of_drm_find_bridge(device->dev.of_node); 1481 if (!dsi->out_bridge) 1482 dsi->out_bridge = ERR_PTR(-EINVAL); 1483 } 1484 1485 if (IS_ERR(dsi->out_bridge)) { 1486 ret = PTR_ERR(dsi->out_bridge); 1487 DRM_DEV_ERROR(dev, "failed to find the bridge: %d\n", ret); 1488 return ret; 1489 } 1490 1491 DRM_DEV_INFO(dev, "Attached %s device\n", device->name); 1492 1493 drm_bridge_add(&dsi->bridge); 1494 1495 drm_bridge_attach(encoder, &dsi->bridge, 1496 list_first_entry_or_null(&encoder->bridge_chain, 1497 struct drm_bridge, 1498 chain_node), 0); 1499 1500 /* 1501 * This is a temporary solution and should be made by more generic way. 1502 * 1503 * If attached panel device is for command mode one, dsi should register 1504 * TE interrupt handler. 1505 */ 1506 if (!(device->mode_flags & MIPI_DSI_MODE_VIDEO)) { 1507 ret = exynos_dsi_register_te_irq(dsi, &device->dev); 1508 if (ret) 1509 return ret; 1510 } 1511 1512 mutex_lock(&drm->mode_config.mutex); 1513 1514 dsi->lanes = device->lanes; 1515 dsi->format = device->format; 1516 dsi->mode_flags = device->mode_flags; 1517 exynos_drm_crtc_get_by_type(drm, EXYNOS_DISPLAY_TYPE_LCD)->i80_mode = 1518 !(dsi->mode_flags & MIPI_DSI_MODE_VIDEO); 1519 1520 mutex_unlock(&drm->mode_config.mutex); 1521 1522 if (drm->mode_config.poll_enabled) 1523 drm_kms_helper_hotplug_event(drm); 1524 1525 return 0; 1526 } 1527 1528 static int exynos_dsi_host_detach(struct mipi_dsi_host *host, 1529 struct mipi_dsi_device *device) 1530 { 1531 struct exynos_dsi *dsi = host_to_dsi(host); 1532 struct drm_device *drm = dsi->encoder.dev; 1533 1534 if (dsi->out_bridge->funcs->detach) 1535 dsi->out_bridge->funcs->detach(dsi->out_bridge); 1536 dsi->out_bridge = NULL; 1537 1538 if (drm->mode_config.poll_enabled) 1539 drm_kms_helper_hotplug_event(drm); 1540 1541 exynos_dsi_unregister_te_irq(dsi); 1542 1543 drm_bridge_remove(&dsi->bridge); 1544 1545 return 0; 1546 } 1547 1548 static ssize_t exynos_dsi_host_transfer(struct mipi_dsi_host *host, 1549 const struct mipi_dsi_msg *msg) 1550 { 1551 struct exynos_dsi *dsi = host_to_dsi(host); 1552 struct exynos_dsi_transfer xfer; 1553 int ret; 1554 1555 if (!(dsi->state & DSIM_STATE_ENABLED)) 1556 return -EINVAL; 1557 1558 if (!(dsi->state & DSIM_STATE_INITIALIZED)) { 1559 ret = exynos_dsi_init(dsi); 1560 if (ret) 1561 return ret; 1562 dsi->state |= DSIM_STATE_INITIALIZED; 1563 } 1564 1565 ret = mipi_dsi_create_packet(&xfer.packet, msg); 1566 if (ret < 0) 1567 return ret; 1568 1569 xfer.rx_len = msg->rx_len; 1570 xfer.rx_payload = msg->rx_buf; 1571 xfer.flags = msg->flags; 1572 1573 ret = exynos_dsi_transfer(dsi, &xfer); 1574 return (ret < 0) ? ret : xfer.rx_done; 1575 } 1576 1577 static const struct mipi_dsi_host_ops exynos_dsi_ops = { 1578 .attach = exynos_dsi_host_attach, 1579 .detach = exynos_dsi_host_detach, 1580 .transfer = exynos_dsi_host_transfer, 1581 }; 1582 1583 static int exynos_dsi_of_read_u32(const struct device_node *np, 1584 const char *propname, u32 *out_value) 1585 { 1586 int ret = of_property_read_u32(np, propname, out_value); 1587 1588 if (ret < 0) 1589 pr_err("%pOF: failed to get '%s' property\n", np, propname); 1590 1591 return ret; 1592 } 1593 1594 static int exynos_dsi_parse_dt(struct exynos_dsi *dsi) 1595 { 1596 struct device *dev = dsi->dev; 1597 struct device_node *node = dev->of_node; 1598 int ret; 1599 1600 ret = exynos_dsi_of_read_u32(node, "samsung,pll-clock-frequency", 1601 &dsi->pll_clk_rate); 1602 if (ret < 0) 1603 return ret; 1604 1605 ret = exynos_dsi_of_read_u32(node, "samsung,burst-clock-frequency", 1606 &dsi->burst_clk_rate); 1607 if (ret < 0) 1608 return ret; 1609 1610 ret = exynos_dsi_of_read_u32(node, "samsung,esc-clock-frequency", 1611 &dsi->esc_clk_rate); 1612 if (ret < 0) 1613 return ret; 1614 1615 return 0; 1616 } 1617 1618 static int exynos_dsi_bind(struct device *dev, struct device *master, 1619 void *data) 1620 { 1621 struct exynos_dsi *dsi = dev_get_drvdata(dev); 1622 struct drm_encoder *encoder = &dsi->encoder; 1623 struct drm_device *drm_dev = data; 1624 int ret; 1625 1626 drm_simple_encoder_init(drm_dev, encoder, DRM_MODE_ENCODER_TMDS); 1627 1628 ret = exynos_drm_set_possible_crtcs(encoder, EXYNOS_DISPLAY_TYPE_LCD); 1629 if (ret < 0) 1630 return ret; 1631 1632 return mipi_dsi_host_register(&dsi->dsi_host); 1633 } 1634 1635 static void exynos_dsi_unbind(struct device *dev, struct device *master, 1636 void *data) 1637 { 1638 struct exynos_dsi *dsi = dev_get_drvdata(dev); 1639 1640 exynos_dsi_atomic_disable(&dsi->bridge, NULL); 1641 1642 mipi_dsi_host_unregister(&dsi->dsi_host); 1643 } 1644 1645 static const struct component_ops exynos_dsi_component_ops = { 1646 .bind = exynos_dsi_bind, 1647 .unbind = exynos_dsi_unbind, 1648 }; 1649 1650 static int exynos_dsi_probe(struct platform_device *pdev) 1651 { 1652 struct device *dev = &pdev->dev; 1653 struct exynos_dsi *dsi; 1654 int ret, i; 1655 1656 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); 1657 if (!dsi) 1658 return -ENOMEM; 1659 1660 init_completion(&dsi->completed); 1661 spin_lock_init(&dsi->transfer_lock); 1662 INIT_LIST_HEAD(&dsi->transfer_list); 1663 1664 dsi->dsi_host.ops = &exynos_dsi_ops; 1665 dsi->dsi_host.dev = dev; 1666 1667 dsi->dev = dev; 1668 dsi->driver_data = of_device_get_match_data(dev); 1669 1670 dsi->supplies[0].supply = "vddcore"; 1671 dsi->supplies[1].supply = "vddio"; 1672 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(dsi->supplies), 1673 dsi->supplies); 1674 if (ret) 1675 return dev_err_probe(dev, ret, "failed to get regulators\n"); 1676 1677 dsi->clks = devm_kcalloc(dev, 1678 dsi->driver_data->num_clks, sizeof(*dsi->clks), 1679 GFP_KERNEL); 1680 if (!dsi->clks) 1681 return -ENOMEM; 1682 1683 for (i = 0; i < dsi->driver_data->num_clks; i++) { 1684 dsi->clks[i] = devm_clk_get(dev, clk_names[i]); 1685 if (IS_ERR(dsi->clks[i])) { 1686 if (strcmp(clk_names[i], "sclk_mipi") == 0) { 1687 dsi->clks[i] = devm_clk_get(dev, 1688 OLD_SCLK_MIPI_CLK_NAME); 1689 if (!IS_ERR(dsi->clks[i])) 1690 continue; 1691 } 1692 1693 dev_info(dev, "failed to get the clock: %s\n", 1694 clk_names[i]); 1695 return PTR_ERR(dsi->clks[i]); 1696 } 1697 } 1698 1699 dsi->reg_base = devm_platform_ioremap_resource(pdev, 0); 1700 if (IS_ERR(dsi->reg_base)) 1701 return PTR_ERR(dsi->reg_base); 1702 1703 dsi->phy = devm_phy_get(dev, "dsim"); 1704 if (IS_ERR(dsi->phy)) { 1705 dev_info(dev, "failed to get dsim phy\n"); 1706 return PTR_ERR(dsi->phy); 1707 } 1708 1709 dsi->irq = platform_get_irq(pdev, 0); 1710 if (dsi->irq < 0) 1711 return dsi->irq; 1712 1713 ret = devm_request_threaded_irq(dev, dsi->irq, NULL, 1714 exynos_dsi_irq, 1715 IRQF_ONESHOT | IRQF_NO_AUTOEN, 1716 dev_name(dev), dsi); 1717 if (ret) { 1718 dev_err(dev, "failed to request dsi irq\n"); 1719 return ret; 1720 } 1721 1722 ret = exynos_dsi_parse_dt(dsi); 1723 if (ret) 1724 return ret; 1725 1726 platform_set_drvdata(pdev, dsi); 1727 1728 pm_runtime_enable(dev); 1729 1730 dsi->bridge.funcs = &exynos_dsi_bridge_funcs; 1731 dsi->bridge.of_node = dev->of_node; 1732 dsi->bridge.type = DRM_MODE_CONNECTOR_DSI; 1733 dsi->bridge.pre_enable_prev_first = true; 1734 1735 ret = component_add(dev, &exynos_dsi_component_ops); 1736 if (ret) 1737 goto err_disable_runtime; 1738 1739 return 0; 1740 1741 err_disable_runtime: 1742 pm_runtime_disable(dev); 1743 1744 return ret; 1745 } 1746 1747 static int exynos_dsi_remove(struct platform_device *pdev) 1748 { 1749 pm_runtime_disable(&pdev->dev); 1750 1751 component_del(&pdev->dev, &exynos_dsi_component_ops); 1752 1753 return 0; 1754 } 1755 1756 static int __maybe_unused exynos_dsi_suspend(struct device *dev) 1757 { 1758 struct exynos_dsi *dsi = dev_get_drvdata(dev); 1759 const struct exynos_dsi_driver_data *driver_data = dsi->driver_data; 1760 int ret, i; 1761 1762 usleep_range(10000, 20000); 1763 1764 if (dsi->state & DSIM_STATE_INITIALIZED) { 1765 dsi->state &= ~DSIM_STATE_INITIALIZED; 1766 1767 exynos_dsi_disable_clock(dsi); 1768 1769 exynos_dsi_disable_irq(dsi); 1770 } 1771 1772 dsi->state &= ~DSIM_STATE_CMD_LPM; 1773 1774 phy_power_off(dsi->phy); 1775 1776 for (i = driver_data->num_clks - 1; i > -1; i--) 1777 clk_disable_unprepare(dsi->clks[i]); 1778 1779 ret = regulator_bulk_disable(ARRAY_SIZE(dsi->supplies), dsi->supplies); 1780 if (ret < 0) 1781 dev_err(dsi->dev, "cannot disable regulators %d\n", ret); 1782 1783 return 0; 1784 } 1785 1786 static int __maybe_unused exynos_dsi_resume(struct device *dev) 1787 { 1788 struct exynos_dsi *dsi = dev_get_drvdata(dev); 1789 const struct exynos_dsi_driver_data *driver_data = dsi->driver_data; 1790 int ret, i; 1791 1792 ret = regulator_bulk_enable(ARRAY_SIZE(dsi->supplies), dsi->supplies); 1793 if (ret < 0) { 1794 dev_err(dsi->dev, "cannot enable regulators %d\n", ret); 1795 return ret; 1796 } 1797 1798 for (i = 0; i < driver_data->num_clks; i++) { 1799 ret = clk_prepare_enable(dsi->clks[i]); 1800 if (ret < 0) 1801 goto err_clk; 1802 } 1803 1804 ret = phy_power_on(dsi->phy); 1805 if (ret < 0) { 1806 dev_err(dsi->dev, "cannot enable phy %d\n", ret); 1807 goto err_clk; 1808 } 1809 1810 return 0; 1811 1812 err_clk: 1813 while (--i > -1) 1814 clk_disable_unprepare(dsi->clks[i]); 1815 regulator_bulk_disable(ARRAY_SIZE(dsi->supplies), dsi->supplies); 1816 1817 return ret; 1818 } 1819 1820 static const struct dev_pm_ops exynos_dsi_pm_ops = { 1821 SET_RUNTIME_PM_OPS(exynos_dsi_suspend, exynos_dsi_resume, NULL) 1822 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1823 pm_runtime_force_resume) 1824 }; 1825 1826 struct platform_driver dsi_driver = { 1827 .probe = exynos_dsi_probe, 1828 .remove = exynos_dsi_remove, 1829 .driver = { 1830 .name = "exynos-dsi", 1831 .owner = THIS_MODULE, 1832 .pm = &exynos_dsi_pm_ops, 1833 .of_match_table = exynos_dsi_of_match, 1834 }, 1835 }; 1836 1837 MODULE_AUTHOR("Tomasz Figa <t.figa@samsung.com>"); 1838 MODULE_AUTHOR("Andrzej Hajda <a.hajda@samsung.com>"); 1839 MODULE_DESCRIPTION("Samsung SoC MIPI DSI Master"); 1840 MODULE_LICENSE("GPL v2"); 1841