1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Samsung SoC MIPI DSI Master driver. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd 6 * 7 * Contacts: Tomasz Figa <t.figa@samsung.com> 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/delay.h> 12 #include <linux/component.h> 13 #include <linux/gpio/consumer.h> 14 #include <linux/irq.h> 15 #include <linux/of_device.h> 16 #include <linux/of_graph.h> 17 #include <linux/phy/phy.h> 18 #include <linux/regulator/consumer.h> 19 20 #include <asm/unaligned.h> 21 22 #include <video/mipi_display.h> 23 #include <video/videomode.h> 24 25 #include <drm/drm_atomic_helper.h> 26 #include <drm/drm_bridge.h> 27 #include <drm/drm_fb_helper.h> 28 #include <drm/drm_mipi_dsi.h> 29 #include <drm/drm_panel.h> 30 #include <drm/drm_print.h> 31 #include <drm/drm_probe_helper.h> 32 #include <drm/drm_simple_kms_helper.h> 33 34 #include "exynos_drm_crtc.h" 35 #include "exynos_drm_drv.h" 36 37 /* returns true iff both arguments logically differs */ 38 #define NEQV(a, b) (!(a) ^ !(b)) 39 40 /* DSIM_STATUS */ 41 #define DSIM_STOP_STATE_DAT(x) (((x) & 0xf) << 0) 42 #define DSIM_STOP_STATE_CLK (1 << 8) 43 #define DSIM_TX_READY_HS_CLK (1 << 10) 44 #define DSIM_PLL_STABLE (1 << 31) 45 46 /* DSIM_SWRST */ 47 #define DSIM_FUNCRST (1 << 16) 48 #define DSIM_SWRST (1 << 0) 49 50 /* DSIM_TIMEOUT */ 51 #define DSIM_LPDR_TIMEOUT(x) ((x) << 0) 52 #define DSIM_BTA_TIMEOUT(x) ((x) << 16) 53 54 /* DSIM_CLKCTRL */ 55 #define DSIM_ESC_PRESCALER(x) (((x) & 0xffff) << 0) 56 #define DSIM_ESC_PRESCALER_MASK (0xffff << 0) 57 #define DSIM_LANE_ESC_CLK_EN_CLK (1 << 19) 58 #define DSIM_LANE_ESC_CLK_EN_DATA(x) (((x) & 0xf) << 20) 59 #define DSIM_LANE_ESC_CLK_EN_DATA_MASK (0xf << 20) 60 #define DSIM_BYTE_CLKEN (1 << 24) 61 #define DSIM_BYTE_CLK_SRC(x) (((x) & 0x3) << 25) 62 #define DSIM_BYTE_CLK_SRC_MASK (0x3 << 25) 63 #define DSIM_PLL_BYPASS (1 << 27) 64 #define DSIM_ESC_CLKEN (1 << 28) 65 #define DSIM_TX_REQUEST_HSCLK (1 << 31) 66 67 /* DSIM_CONFIG */ 68 #define DSIM_LANE_EN_CLK (1 << 0) 69 #define DSIM_LANE_EN(x) (((x) & 0xf) << 1) 70 #define DSIM_NUM_OF_DATA_LANE(x) (((x) & 0x3) << 5) 71 #define DSIM_SUB_PIX_FORMAT(x) (((x) & 0x7) << 8) 72 #define DSIM_MAIN_PIX_FORMAT_MASK (0x7 << 12) 73 #define DSIM_MAIN_PIX_FORMAT_RGB888 (0x7 << 12) 74 #define DSIM_MAIN_PIX_FORMAT_RGB666 (0x6 << 12) 75 #define DSIM_MAIN_PIX_FORMAT_RGB666_P (0x5 << 12) 76 #define DSIM_MAIN_PIX_FORMAT_RGB565 (0x4 << 12) 77 #define DSIM_SUB_VC (((x) & 0x3) << 16) 78 #define DSIM_MAIN_VC (((x) & 0x3) << 18) 79 #define DSIM_HSA_MODE (1 << 20) 80 #define DSIM_HBP_MODE (1 << 21) 81 #define DSIM_HFP_MODE (1 << 22) 82 #define DSIM_HSE_MODE (1 << 23) 83 #define DSIM_AUTO_MODE (1 << 24) 84 #define DSIM_VIDEO_MODE (1 << 25) 85 #define DSIM_BURST_MODE (1 << 26) 86 #define DSIM_SYNC_INFORM (1 << 27) 87 #define DSIM_EOT_DISABLE (1 << 28) 88 #define DSIM_MFLUSH_VS (1 << 29) 89 /* This flag is valid only for exynos3250/3472/5260/5430 */ 90 #define DSIM_CLKLANE_STOP (1 << 30) 91 92 /* DSIM_ESCMODE */ 93 #define DSIM_TX_TRIGGER_RST (1 << 4) 94 #define DSIM_TX_LPDT_LP (1 << 6) 95 #define DSIM_CMD_LPDT_LP (1 << 7) 96 #define DSIM_FORCE_BTA (1 << 16) 97 #define DSIM_FORCE_STOP_STATE (1 << 20) 98 #define DSIM_STOP_STATE_CNT(x) (((x) & 0x7ff) << 21) 99 #define DSIM_STOP_STATE_CNT_MASK (0x7ff << 21) 100 101 /* DSIM_MDRESOL */ 102 #define DSIM_MAIN_STAND_BY (1 << 31) 103 #define DSIM_MAIN_VRESOL(x, num_bits) (((x) & ((1 << (num_bits)) - 1)) << 16) 104 #define DSIM_MAIN_HRESOL(x, num_bits) (((x) & ((1 << (num_bits)) - 1)) << 0) 105 106 /* DSIM_MVPORCH */ 107 #define DSIM_CMD_ALLOW(x) ((x) << 28) 108 #define DSIM_STABLE_VFP(x) ((x) << 16) 109 #define DSIM_MAIN_VBP(x) ((x) << 0) 110 #define DSIM_CMD_ALLOW_MASK (0xf << 28) 111 #define DSIM_STABLE_VFP_MASK (0x7ff << 16) 112 #define DSIM_MAIN_VBP_MASK (0x7ff << 0) 113 114 /* DSIM_MHPORCH */ 115 #define DSIM_MAIN_HFP(x) ((x) << 16) 116 #define DSIM_MAIN_HBP(x) ((x) << 0) 117 #define DSIM_MAIN_HFP_MASK ((0xffff) << 16) 118 #define DSIM_MAIN_HBP_MASK ((0xffff) << 0) 119 120 /* DSIM_MSYNC */ 121 #define DSIM_MAIN_VSA(x) ((x) << 22) 122 #define DSIM_MAIN_HSA(x) ((x) << 0) 123 #define DSIM_MAIN_VSA_MASK ((0x3ff) << 22) 124 #define DSIM_MAIN_HSA_MASK ((0xffff) << 0) 125 126 /* DSIM_SDRESOL */ 127 #define DSIM_SUB_STANDY(x) ((x) << 31) 128 #define DSIM_SUB_VRESOL(x) ((x) << 16) 129 #define DSIM_SUB_HRESOL(x) ((x) << 0) 130 #define DSIM_SUB_STANDY_MASK ((0x1) << 31) 131 #define DSIM_SUB_VRESOL_MASK ((0x7ff) << 16) 132 #define DSIM_SUB_HRESOL_MASK ((0x7ff) << 0) 133 134 /* DSIM_INTSRC */ 135 #define DSIM_INT_PLL_STABLE (1 << 31) 136 #define DSIM_INT_SW_RST_RELEASE (1 << 30) 137 #define DSIM_INT_SFR_FIFO_EMPTY (1 << 29) 138 #define DSIM_INT_SFR_HDR_FIFO_EMPTY (1 << 28) 139 #define DSIM_INT_BTA (1 << 25) 140 #define DSIM_INT_FRAME_DONE (1 << 24) 141 #define DSIM_INT_RX_TIMEOUT (1 << 21) 142 #define DSIM_INT_BTA_TIMEOUT (1 << 20) 143 #define DSIM_INT_RX_DONE (1 << 18) 144 #define DSIM_INT_RX_TE (1 << 17) 145 #define DSIM_INT_RX_ACK (1 << 16) 146 #define DSIM_INT_RX_ECC_ERR (1 << 15) 147 #define DSIM_INT_RX_CRC_ERR (1 << 14) 148 149 /* DSIM_FIFOCTRL */ 150 #define DSIM_RX_DATA_FULL (1 << 25) 151 #define DSIM_RX_DATA_EMPTY (1 << 24) 152 #define DSIM_SFR_HEADER_FULL (1 << 23) 153 #define DSIM_SFR_HEADER_EMPTY (1 << 22) 154 #define DSIM_SFR_PAYLOAD_FULL (1 << 21) 155 #define DSIM_SFR_PAYLOAD_EMPTY (1 << 20) 156 #define DSIM_I80_HEADER_FULL (1 << 19) 157 #define DSIM_I80_HEADER_EMPTY (1 << 18) 158 #define DSIM_I80_PAYLOAD_FULL (1 << 17) 159 #define DSIM_I80_PAYLOAD_EMPTY (1 << 16) 160 #define DSIM_SD_HEADER_FULL (1 << 15) 161 #define DSIM_SD_HEADER_EMPTY (1 << 14) 162 #define DSIM_SD_PAYLOAD_FULL (1 << 13) 163 #define DSIM_SD_PAYLOAD_EMPTY (1 << 12) 164 #define DSIM_MD_HEADER_FULL (1 << 11) 165 #define DSIM_MD_HEADER_EMPTY (1 << 10) 166 #define DSIM_MD_PAYLOAD_FULL (1 << 9) 167 #define DSIM_MD_PAYLOAD_EMPTY (1 << 8) 168 #define DSIM_RX_FIFO (1 << 4) 169 #define DSIM_SFR_FIFO (1 << 3) 170 #define DSIM_I80_FIFO (1 << 2) 171 #define DSIM_SD_FIFO (1 << 1) 172 #define DSIM_MD_FIFO (1 << 0) 173 174 /* DSIM_PHYACCHR */ 175 #define DSIM_AFC_EN (1 << 14) 176 #define DSIM_AFC_CTL(x) (((x) & 0x7) << 5) 177 178 /* DSIM_PLLCTRL */ 179 #define DSIM_FREQ_BAND(x) ((x) << 24) 180 #define DSIM_PLL_EN (1 << 23) 181 #define DSIM_PLL_P(x) ((x) << 13) 182 #define DSIM_PLL_M(x) ((x) << 4) 183 #define DSIM_PLL_S(x) ((x) << 1) 184 185 /* DSIM_PHYCTRL */ 186 #define DSIM_PHYCTRL_ULPS_EXIT(x) (((x) & 0x1ff) << 0) 187 #define DSIM_PHYCTRL_B_DPHYCTL_VREG_LP (1 << 30) 188 #define DSIM_PHYCTRL_B_DPHYCTL_SLEW_UP (1 << 14) 189 190 /* DSIM_PHYTIMING */ 191 #define DSIM_PHYTIMING_LPX(x) ((x) << 8) 192 #define DSIM_PHYTIMING_HS_EXIT(x) ((x) << 0) 193 194 /* DSIM_PHYTIMING1 */ 195 #define DSIM_PHYTIMING1_CLK_PREPARE(x) ((x) << 24) 196 #define DSIM_PHYTIMING1_CLK_ZERO(x) ((x) << 16) 197 #define DSIM_PHYTIMING1_CLK_POST(x) ((x) << 8) 198 #define DSIM_PHYTIMING1_CLK_TRAIL(x) ((x) << 0) 199 200 /* DSIM_PHYTIMING2 */ 201 #define DSIM_PHYTIMING2_HS_PREPARE(x) ((x) << 16) 202 #define DSIM_PHYTIMING2_HS_ZERO(x) ((x) << 8) 203 #define DSIM_PHYTIMING2_HS_TRAIL(x) ((x) << 0) 204 205 #define DSI_MAX_BUS_WIDTH 4 206 #define DSI_NUM_VIRTUAL_CHANNELS 4 207 #define DSI_TX_FIFO_SIZE 2048 208 #define DSI_RX_FIFO_SIZE 256 209 #define DSI_XFER_TIMEOUT_MS 100 210 #define DSI_RX_FIFO_EMPTY 0x30800002 211 212 #define OLD_SCLK_MIPI_CLK_NAME "pll_clk" 213 214 static const char *const clk_names[5] = { "bus_clk", "sclk_mipi", 215 "phyclk_mipidphy0_bitclkdiv8", "phyclk_mipidphy0_rxclkesc0", 216 "sclk_rgb_vclk_to_dsim0" }; 217 218 enum exynos_dsi_transfer_type { 219 EXYNOS_DSI_TX, 220 EXYNOS_DSI_RX, 221 }; 222 223 struct exynos_dsi_transfer { 224 struct list_head list; 225 struct completion completed; 226 int result; 227 struct mipi_dsi_packet packet; 228 u16 flags; 229 u16 tx_done; 230 231 u8 *rx_payload; 232 u16 rx_len; 233 u16 rx_done; 234 }; 235 236 #define DSIM_STATE_ENABLED BIT(0) 237 #define DSIM_STATE_INITIALIZED BIT(1) 238 #define DSIM_STATE_CMD_LPM BIT(2) 239 #define DSIM_STATE_VIDOUT_AVAILABLE BIT(3) 240 241 struct exynos_dsi_driver_data { 242 const unsigned int *reg_ofs; 243 unsigned int plltmr_reg; 244 unsigned int has_freqband:1; 245 unsigned int has_clklane_stop:1; 246 unsigned int num_clks; 247 unsigned int max_freq; 248 unsigned int wait_for_reset; 249 unsigned int num_bits_resol; 250 const unsigned int *reg_values; 251 }; 252 253 struct exynos_dsi { 254 struct drm_encoder encoder; 255 struct mipi_dsi_host dsi_host; 256 struct drm_connector connector; 257 struct drm_panel *panel; 258 struct list_head bridge_chain; 259 struct drm_bridge *out_bridge; 260 struct device *dev; 261 struct drm_display_mode mode; 262 263 void __iomem *reg_base; 264 struct phy *phy; 265 struct clk **clks; 266 struct regulator_bulk_data supplies[2]; 267 int irq; 268 struct gpio_desc *te_gpio; 269 270 u32 pll_clk_rate; 271 u32 burst_clk_rate; 272 u32 esc_clk_rate; 273 u32 lanes; 274 u32 mode_flags; 275 u32 format; 276 277 int state; 278 struct drm_property *brightness; 279 struct completion completed; 280 281 spinlock_t transfer_lock; /* protects transfer_list */ 282 struct list_head transfer_list; 283 284 const struct exynos_dsi_driver_data *driver_data; 285 }; 286 287 #define host_to_dsi(host) container_of(host, struct exynos_dsi, dsi_host) 288 #define connector_to_dsi(c) container_of(c, struct exynos_dsi, connector) 289 290 static inline struct exynos_dsi *encoder_to_dsi(struct drm_encoder *e) 291 { 292 return container_of(e, struct exynos_dsi, encoder); 293 } 294 295 enum reg_idx { 296 DSIM_STATUS_REG, /* Status register */ 297 DSIM_SWRST_REG, /* Software reset register */ 298 DSIM_CLKCTRL_REG, /* Clock control register */ 299 DSIM_TIMEOUT_REG, /* Time out register */ 300 DSIM_CONFIG_REG, /* Configuration register */ 301 DSIM_ESCMODE_REG, /* Escape mode register */ 302 DSIM_MDRESOL_REG, 303 DSIM_MVPORCH_REG, /* Main display Vporch register */ 304 DSIM_MHPORCH_REG, /* Main display Hporch register */ 305 DSIM_MSYNC_REG, /* Main display sync area register */ 306 DSIM_INTSRC_REG, /* Interrupt source register */ 307 DSIM_INTMSK_REG, /* Interrupt mask register */ 308 DSIM_PKTHDR_REG, /* Packet Header FIFO register */ 309 DSIM_PAYLOAD_REG, /* Payload FIFO register */ 310 DSIM_RXFIFO_REG, /* Read FIFO register */ 311 DSIM_FIFOCTRL_REG, /* FIFO status and control register */ 312 DSIM_PLLCTRL_REG, /* PLL control register */ 313 DSIM_PHYCTRL_REG, 314 DSIM_PHYTIMING_REG, 315 DSIM_PHYTIMING1_REG, 316 DSIM_PHYTIMING2_REG, 317 NUM_REGS 318 }; 319 320 static inline void exynos_dsi_write(struct exynos_dsi *dsi, enum reg_idx idx, 321 u32 val) 322 { 323 324 writel(val, dsi->reg_base + dsi->driver_data->reg_ofs[idx]); 325 } 326 327 static inline u32 exynos_dsi_read(struct exynos_dsi *dsi, enum reg_idx idx) 328 { 329 return readl(dsi->reg_base + dsi->driver_data->reg_ofs[idx]); 330 } 331 332 static const unsigned int exynos_reg_ofs[] = { 333 [DSIM_STATUS_REG] = 0x00, 334 [DSIM_SWRST_REG] = 0x04, 335 [DSIM_CLKCTRL_REG] = 0x08, 336 [DSIM_TIMEOUT_REG] = 0x0c, 337 [DSIM_CONFIG_REG] = 0x10, 338 [DSIM_ESCMODE_REG] = 0x14, 339 [DSIM_MDRESOL_REG] = 0x18, 340 [DSIM_MVPORCH_REG] = 0x1c, 341 [DSIM_MHPORCH_REG] = 0x20, 342 [DSIM_MSYNC_REG] = 0x24, 343 [DSIM_INTSRC_REG] = 0x2c, 344 [DSIM_INTMSK_REG] = 0x30, 345 [DSIM_PKTHDR_REG] = 0x34, 346 [DSIM_PAYLOAD_REG] = 0x38, 347 [DSIM_RXFIFO_REG] = 0x3c, 348 [DSIM_FIFOCTRL_REG] = 0x44, 349 [DSIM_PLLCTRL_REG] = 0x4c, 350 [DSIM_PHYCTRL_REG] = 0x5c, 351 [DSIM_PHYTIMING_REG] = 0x64, 352 [DSIM_PHYTIMING1_REG] = 0x68, 353 [DSIM_PHYTIMING2_REG] = 0x6c, 354 }; 355 356 static const unsigned int exynos5433_reg_ofs[] = { 357 [DSIM_STATUS_REG] = 0x04, 358 [DSIM_SWRST_REG] = 0x0C, 359 [DSIM_CLKCTRL_REG] = 0x10, 360 [DSIM_TIMEOUT_REG] = 0x14, 361 [DSIM_CONFIG_REG] = 0x18, 362 [DSIM_ESCMODE_REG] = 0x1C, 363 [DSIM_MDRESOL_REG] = 0x20, 364 [DSIM_MVPORCH_REG] = 0x24, 365 [DSIM_MHPORCH_REG] = 0x28, 366 [DSIM_MSYNC_REG] = 0x2C, 367 [DSIM_INTSRC_REG] = 0x34, 368 [DSIM_INTMSK_REG] = 0x38, 369 [DSIM_PKTHDR_REG] = 0x3C, 370 [DSIM_PAYLOAD_REG] = 0x40, 371 [DSIM_RXFIFO_REG] = 0x44, 372 [DSIM_FIFOCTRL_REG] = 0x4C, 373 [DSIM_PLLCTRL_REG] = 0x94, 374 [DSIM_PHYCTRL_REG] = 0xA4, 375 [DSIM_PHYTIMING_REG] = 0xB4, 376 [DSIM_PHYTIMING1_REG] = 0xB8, 377 [DSIM_PHYTIMING2_REG] = 0xBC, 378 }; 379 380 enum reg_value_idx { 381 RESET_TYPE, 382 PLL_TIMER, 383 STOP_STATE_CNT, 384 PHYCTRL_ULPS_EXIT, 385 PHYCTRL_VREG_LP, 386 PHYCTRL_SLEW_UP, 387 PHYTIMING_LPX, 388 PHYTIMING_HS_EXIT, 389 PHYTIMING_CLK_PREPARE, 390 PHYTIMING_CLK_ZERO, 391 PHYTIMING_CLK_POST, 392 PHYTIMING_CLK_TRAIL, 393 PHYTIMING_HS_PREPARE, 394 PHYTIMING_HS_ZERO, 395 PHYTIMING_HS_TRAIL 396 }; 397 398 static const unsigned int reg_values[] = { 399 [RESET_TYPE] = DSIM_SWRST, 400 [PLL_TIMER] = 500, 401 [STOP_STATE_CNT] = 0xf, 402 [PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0x0af), 403 [PHYCTRL_VREG_LP] = 0, 404 [PHYCTRL_SLEW_UP] = 0, 405 [PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x06), 406 [PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0b), 407 [PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x07), 408 [PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x27), 409 [PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0d), 410 [PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x08), 411 [PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x09), 412 [PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x0d), 413 [PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0b), 414 }; 415 416 static const unsigned int exynos5422_reg_values[] = { 417 [RESET_TYPE] = DSIM_SWRST, 418 [PLL_TIMER] = 500, 419 [STOP_STATE_CNT] = 0xf, 420 [PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0xaf), 421 [PHYCTRL_VREG_LP] = 0, 422 [PHYCTRL_SLEW_UP] = 0, 423 [PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x08), 424 [PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0d), 425 [PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x09), 426 [PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x30), 427 [PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0e), 428 [PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x0a), 429 [PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x0c), 430 [PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x11), 431 [PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0d), 432 }; 433 434 static const unsigned int exynos5433_reg_values[] = { 435 [RESET_TYPE] = DSIM_FUNCRST, 436 [PLL_TIMER] = 22200, 437 [STOP_STATE_CNT] = 0xa, 438 [PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0x190), 439 [PHYCTRL_VREG_LP] = DSIM_PHYCTRL_B_DPHYCTL_VREG_LP, 440 [PHYCTRL_SLEW_UP] = DSIM_PHYCTRL_B_DPHYCTL_SLEW_UP, 441 [PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x07), 442 [PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0c), 443 [PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x09), 444 [PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x2d), 445 [PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0e), 446 [PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x09), 447 [PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x0b), 448 [PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x10), 449 [PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0c), 450 }; 451 452 static const struct exynos_dsi_driver_data exynos3_dsi_driver_data = { 453 .reg_ofs = exynos_reg_ofs, 454 .plltmr_reg = 0x50, 455 .has_freqband = 1, 456 .has_clklane_stop = 1, 457 .num_clks = 2, 458 .max_freq = 1000, 459 .wait_for_reset = 1, 460 .num_bits_resol = 11, 461 .reg_values = reg_values, 462 }; 463 464 static const struct exynos_dsi_driver_data exynos4_dsi_driver_data = { 465 .reg_ofs = exynos_reg_ofs, 466 .plltmr_reg = 0x50, 467 .has_freqband = 1, 468 .has_clklane_stop = 1, 469 .num_clks = 2, 470 .max_freq = 1000, 471 .wait_for_reset = 1, 472 .num_bits_resol = 11, 473 .reg_values = reg_values, 474 }; 475 476 static const struct exynos_dsi_driver_data exynos5_dsi_driver_data = { 477 .reg_ofs = exynos_reg_ofs, 478 .plltmr_reg = 0x58, 479 .num_clks = 2, 480 .max_freq = 1000, 481 .wait_for_reset = 1, 482 .num_bits_resol = 11, 483 .reg_values = reg_values, 484 }; 485 486 static const struct exynos_dsi_driver_data exynos5433_dsi_driver_data = { 487 .reg_ofs = exynos5433_reg_ofs, 488 .plltmr_reg = 0xa0, 489 .has_clklane_stop = 1, 490 .num_clks = 5, 491 .max_freq = 1500, 492 .wait_for_reset = 0, 493 .num_bits_resol = 12, 494 .reg_values = exynos5433_reg_values, 495 }; 496 497 static const struct exynos_dsi_driver_data exynos5422_dsi_driver_data = { 498 .reg_ofs = exynos5433_reg_ofs, 499 .plltmr_reg = 0xa0, 500 .has_clklane_stop = 1, 501 .num_clks = 2, 502 .max_freq = 1500, 503 .wait_for_reset = 1, 504 .num_bits_resol = 12, 505 .reg_values = exynos5422_reg_values, 506 }; 507 508 static const struct of_device_id exynos_dsi_of_match[] = { 509 { .compatible = "samsung,exynos3250-mipi-dsi", 510 .data = &exynos3_dsi_driver_data }, 511 { .compatible = "samsung,exynos4210-mipi-dsi", 512 .data = &exynos4_dsi_driver_data }, 513 { .compatible = "samsung,exynos5410-mipi-dsi", 514 .data = &exynos5_dsi_driver_data }, 515 { .compatible = "samsung,exynos5422-mipi-dsi", 516 .data = &exynos5422_dsi_driver_data }, 517 { .compatible = "samsung,exynos5433-mipi-dsi", 518 .data = &exynos5433_dsi_driver_data }, 519 { } 520 }; 521 522 static void exynos_dsi_wait_for_reset(struct exynos_dsi *dsi) 523 { 524 if (wait_for_completion_timeout(&dsi->completed, msecs_to_jiffies(300))) 525 return; 526 527 dev_err(dsi->dev, "timeout waiting for reset\n"); 528 } 529 530 static void exynos_dsi_reset(struct exynos_dsi *dsi) 531 { 532 u32 reset_val = dsi->driver_data->reg_values[RESET_TYPE]; 533 534 reinit_completion(&dsi->completed); 535 exynos_dsi_write(dsi, DSIM_SWRST_REG, reset_val); 536 } 537 538 #ifndef MHZ 539 #define MHZ (1000*1000) 540 #endif 541 542 static unsigned long exynos_dsi_pll_find_pms(struct exynos_dsi *dsi, 543 unsigned long fin, unsigned long fout, u8 *p, u16 *m, u8 *s) 544 { 545 const struct exynos_dsi_driver_data *driver_data = dsi->driver_data; 546 unsigned long best_freq = 0; 547 u32 min_delta = 0xffffffff; 548 u8 p_min, p_max; 549 u8 _p, best_p; 550 u16 _m, best_m; 551 u8 _s, best_s; 552 553 p_min = DIV_ROUND_UP(fin, (12 * MHZ)); 554 p_max = fin / (6 * MHZ); 555 556 for (_p = p_min; _p <= p_max; ++_p) { 557 for (_s = 0; _s <= 5; ++_s) { 558 u64 tmp; 559 u32 delta; 560 561 tmp = (u64)fout * (_p << _s); 562 do_div(tmp, fin); 563 _m = tmp; 564 if (_m < 41 || _m > 125) 565 continue; 566 567 tmp = (u64)_m * fin; 568 do_div(tmp, _p); 569 if (tmp < 500 * MHZ || 570 tmp > driver_data->max_freq * MHZ) 571 continue; 572 573 tmp = (u64)_m * fin; 574 do_div(tmp, _p << _s); 575 576 delta = abs(fout - tmp); 577 if (delta < min_delta) { 578 best_p = _p; 579 best_m = _m; 580 best_s = _s; 581 min_delta = delta; 582 best_freq = tmp; 583 } 584 } 585 } 586 587 if (best_freq) { 588 *p = best_p; 589 *m = best_m; 590 *s = best_s; 591 } 592 593 return best_freq; 594 } 595 596 static unsigned long exynos_dsi_set_pll(struct exynos_dsi *dsi, 597 unsigned long freq) 598 { 599 const struct exynos_dsi_driver_data *driver_data = dsi->driver_data; 600 unsigned long fin, fout; 601 int timeout; 602 u8 p, s; 603 u16 m; 604 u32 reg; 605 606 fin = dsi->pll_clk_rate; 607 fout = exynos_dsi_pll_find_pms(dsi, fin, freq, &p, &m, &s); 608 if (!fout) { 609 dev_err(dsi->dev, 610 "failed to find PLL PMS for requested frequency\n"); 611 return 0; 612 } 613 dev_dbg(dsi->dev, "PLL freq %lu, (p %d, m %d, s %d)\n", fout, p, m, s); 614 615 writel(driver_data->reg_values[PLL_TIMER], 616 dsi->reg_base + driver_data->plltmr_reg); 617 618 reg = DSIM_PLL_EN | DSIM_PLL_P(p) | DSIM_PLL_M(m) | DSIM_PLL_S(s); 619 620 if (driver_data->has_freqband) { 621 static const unsigned long freq_bands[] = { 622 100 * MHZ, 120 * MHZ, 160 * MHZ, 200 * MHZ, 623 270 * MHZ, 320 * MHZ, 390 * MHZ, 450 * MHZ, 624 510 * MHZ, 560 * MHZ, 640 * MHZ, 690 * MHZ, 625 770 * MHZ, 870 * MHZ, 950 * MHZ, 626 }; 627 int band; 628 629 for (band = 0; band < ARRAY_SIZE(freq_bands); ++band) 630 if (fout < freq_bands[band]) 631 break; 632 633 dev_dbg(dsi->dev, "band %d\n", band); 634 635 reg |= DSIM_FREQ_BAND(band); 636 } 637 638 exynos_dsi_write(dsi, DSIM_PLLCTRL_REG, reg); 639 640 timeout = 1000; 641 do { 642 if (timeout-- == 0) { 643 dev_err(dsi->dev, "PLL failed to stabilize\n"); 644 return 0; 645 } 646 reg = exynos_dsi_read(dsi, DSIM_STATUS_REG); 647 } while ((reg & DSIM_PLL_STABLE) == 0); 648 649 return fout; 650 } 651 652 static int exynos_dsi_enable_clock(struct exynos_dsi *dsi) 653 { 654 unsigned long hs_clk, byte_clk, esc_clk; 655 unsigned long esc_div; 656 u32 reg; 657 658 hs_clk = exynos_dsi_set_pll(dsi, dsi->burst_clk_rate); 659 if (!hs_clk) { 660 dev_err(dsi->dev, "failed to configure DSI PLL\n"); 661 return -EFAULT; 662 } 663 664 byte_clk = hs_clk / 8; 665 esc_div = DIV_ROUND_UP(byte_clk, dsi->esc_clk_rate); 666 esc_clk = byte_clk / esc_div; 667 668 if (esc_clk > 20 * MHZ) { 669 ++esc_div; 670 esc_clk = byte_clk / esc_div; 671 } 672 673 dev_dbg(dsi->dev, "hs_clk = %lu, byte_clk = %lu, esc_clk = %lu\n", 674 hs_clk, byte_clk, esc_clk); 675 676 reg = exynos_dsi_read(dsi, DSIM_CLKCTRL_REG); 677 reg &= ~(DSIM_ESC_PRESCALER_MASK | DSIM_LANE_ESC_CLK_EN_CLK 678 | DSIM_LANE_ESC_CLK_EN_DATA_MASK | DSIM_PLL_BYPASS 679 | DSIM_BYTE_CLK_SRC_MASK); 680 reg |= DSIM_ESC_CLKEN | DSIM_BYTE_CLKEN 681 | DSIM_ESC_PRESCALER(esc_div) 682 | DSIM_LANE_ESC_CLK_EN_CLK 683 | DSIM_LANE_ESC_CLK_EN_DATA(BIT(dsi->lanes) - 1) 684 | DSIM_BYTE_CLK_SRC(0) 685 | DSIM_TX_REQUEST_HSCLK; 686 exynos_dsi_write(dsi, DSIM_CLKCTRL_REG, reg); 687 688 return 0; 689 } 690 691 static void exynos_dsi_set_phy_ctrl(struct exynos_dsi *dsi) 692 { 693 const struct exynos_dsi_driver_data *driver_data = dsi->driver_data; 694 const unsigned int *reg_values = driver_data->reg_values; 695 u32 reg; 696 697 if (driver_data->has_freqband) 698 return; 699 700 /* B D-PHY: D-PHY Master & Slave Analog Block control */ 701 reg = reg_values[PHYCTRL_ULPS_EXIT] | reg_values[PHYCTRL_VREG_LP] | 702 reg_values[PHYCTRL_SLEW_UP]; 703 exynos_dsi_write(dsi, DSIM_PHYCTRL_REG, reg); 704 705 /* 706 * T LPX: Transmitted length of any Low-Power state period 707 * T HS-EXIT: Time that the transmitter drives LP-11 following a HS 708 * burst 709 */ 710 reg = reg_values[PHYTIMING_LPX] | reg_values[PHYTIMING_HS_EXIT]; 711 exynos_dsi_write(dsi, DSIM_PHYTIMING_REG, reg); 712 713 /* 714 * T CLK-PREPARE: Time that the transmitter drives the Clock Lane LP-00 715 * Line state immediately before the HS-0 Line state starting the 716 * HS transmission 717 * T CLK-ZERO: Time that the transmitter drives the HS-0 state prior to 718 * transmitting the Clock. 719 * T CLK_POST: Time that the transmitter continues to send HS clock 720 * after the last associated Data Lane has transitioned to LP Mode 721 * Interval is defined as the period from the end of T HS-TRAIL to 722 * the beginning of T CLK-TRAIL 723 * T CLK-TRAIL: Time that the transmitter drives the HS-0 state after 724 * the last payload clock bit of a HS transmission burst 725 */ 726 reg = reg_values[PHYTIMING_CLK_PREPARE] | 727 reg_values[PHYTIMING_CLK_ZERO] | 728 reg_values[PHYTIMING_CLK_POST] | 729 reg_values[PHYTIMING_CLK_TRAIL]; 730 731 exynos_dsi_write(dsi, DSIM_PHYTIMING1_REG, reg); 732 733 /* 734 * T HS-PREPARE: Time that the transmitter drives the Data Lane LP-00 735 * Line state immediately before the HS-0 Line state starting the 736 * HS transmission 737 * T HS-ZERO: Time that the transmitter drives the HS-0 state prior to 738 * transmitting the Sync sequence. 739 * T HS-TRAIL: Time that the transmitter drives the flipped differential 740 * state after last payload data bit of a HS transmission burst 741 */ 742 reg = reg_values[PHYTIMING_HS_PREPARE] | reg_values[PHYTIMING_HS_ZERO] | 743 reg_values[PHYTIMING_HS_TRAIL]; 744 exynos_dsi_write(dsi, DSIM_PHYTIMING2_REG, reg); 745 } 746 747 static void exynos_dsi_disable_clock(struct exynos_dsi *dsi) 748 { 749 u32 reg; 750 751 reg = exynos_dsi_read(dsi, DSIM_CLKCTRL_REG); 752 reg &= ~(DSIM_LANE_ESC_CLK_EN_CLK | DSIM_LANE_ESC_CLK_EN_DATA_MASK 753 | DSIM_ESC_CLKEN | DSIM_BYTE_CLKEN); 754 exynos_dsi_write(dsi, DSIM_CLKCTRL_REG, reg); 755 756 reg = exynos_dsi_read(dsi, DSIM_PLLCTRL_REG); 757 reg &= ~DSIM_PLL_EN; 758 exynos_dsi_write(dsi, DSIM_PLLCTRL_REG, reg); 759 } 760 761 static void exynos_dsi_enable_lane(struct exynos_dsi *dsi, u32 lane) 762 { 763 u32 reg = exynos_dsi_read(dsi, DSIM_CONFIG_REG); 764 reg |= (DSIM_NUM_OF_DATA_LANE(dsi->lanes - 1) | DSIM_LANE_EN_CLK | 765 DSIM_LANE_EN(lane)); 766 exynos_dsi_write(dsi, DSIM_CONFIG_REG, reg); 767 } 768 769 static int exynos_dsi_init_link(struct exynos_dsi *dsi) 770 { 771 const struct exynos_dsi_driver_data *driver_data = dsi->driver_data; 772 int timeout; 773 u32 reg; 774 u32 lanes_mask; 775 776 /* Initialize FIFO pointers */ 777 reg = exynos_dsi_read(dsi, DSIM_FIFOCTRL_REG); 778 reg &= ~0x1f; 779 exynos_dsi_write(dsi, DSIM_FIFOCTRL_REG, reg); 780 781 usleep_range(9000, 11000); 782 783 reg |= 0x1f; 784 exynos_dsi_write(dsi, DSIM_FIFOCTRL_REG, reg); 785 usleep_range(9000, 11000); 786 787 /* DSI configuration */ 788 reg = 0; 789 790 /* 791 * The first bit of mode_flags specifies display configuration. 792 * If this bit is set[= MIPI_DSI_MODE_VIDEO], dsi will support video 793 * mode, otherwise it will support command mode. 794 */ 795 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 796 reg |= DSIM_VIDEO_MODE; 797 798 /* 799 * The user manual describes that following bits are ignored in 800 * command mode. 801 */ 802 if (!(dsi->mode_flags & MIPI_DSI_MODE_VSYNC_FLUSH)) 803 reg |= DSIM_MFLUSH_VS; 804 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) 805 reg |= DSIM_SYNC_INFORM; 806 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST) 807 reg |= DSIM_BURST_MODE; 808 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_AUTO_VERT) 809 reg |= DSIM_AUTO_MODE; 810 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HSE) 811 reg |= DSIM_HSE_MODE; 812 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HFP)) 813 reg |= DSIM_HFP_MODE; 814 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HBP)) 815 reg |= DSIM_HBP_MODE; 816 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HSA)) 817 reg |= DSIM_HSA_MODE; 818 } 819 820 if (!(dsi->mode_flags & MIPI_DSI_MODE_NO_EOT_PACKET)) 821 reg |= DSIM_EOT_DISABLE; 822 823 switch (dsi->format) { 824 case MIPI_DSI_FMT_RGB888: 825 reg |= DSIM_MAIN_PIX_FORMAT_RGB888; 826 break; 827 case MIPI_DSI_FMT_RGB666: 828 reg |= DSIM_MAIN_PIX_FORMAT_RGB666; 829 break; 830 case MIPI_DSI_FMT_RGB666_PACKED: 831 reg |= DSIM_MAIN_PIX_FORMAT_RGB666_P; 832 break; 833 case MIPI_DSI_FMT_RGB565: 834 reg |= DSIM_MAIN_PIX_FORMAT_RGB565; 835 break; 836 default: 837 dev_err(dsi->dev, "invalid pixel format\n"); 838 return -EINVAL; 839 } 840 841 /* 842 * Use non-continuous clock mode if the periparal wants and 843 * host controller supports 844 * 845 * In non-continous clock mode, host controller will turn off 846 * the HS clock between high-speed transmissions to reduce 847 * power consumption. 848 */ 849 if (driver_data->has_clklane_stop && 850 dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) { 851 reg |= DSIM_CLKLANE_STOP; 852 } 853 exynos_dsi_write(dsi, DSIM_CONFIG_REG, reg); 854 855 lanes_mask = BIT(dsi->lanes) - 1; 856 exynos_dsi_enable_lane(dsi, lanes_mask); 857 858 /* Check clock and data lane state are stop state */ 859 timeout = 100; 860 do { 861 if (timeout-- == 0) { 862 dev_err(dsi->dev, "waiting for bus lanes timed out\n"); 863 return -EFAULT; 864 } 865 866 reg = exynos_dsi_read(dsi, DSIM_STATUS_REG); 867 if ((reg & DSIM_STOP_STATE_DAT(lanes_mask)) 868 != DSIM_STOP_STATE_DAT(lanes_mask)) 869 continue; 870 } while (!(reg & (DSIM_STOP_STATE_CLK | DSIM_TX_READY_HS_CLK))); 871 872 reg = exynos_dsi_read(dsi, DSIM_ESCMODE_REG); 873 reg &= ~DSIM_STOP_STATE_CNT_MASK; 874 reg |= DSIM_STOP_STATE_CNT(driver_data->reg_values[STOP_STATE_CNT]); 875 exynos_dsi_write(dsi, DSIM_ESCMODE_REG, reg); 876 877 reg = DSIM_BTA_TIMEOUT(0xff) | DSIM_LPDR_TIMEOUT(0xffff); 878 exynos_dsi_write(dsi, DSIM_TIMEOUT_REG, reg); 879 880 return 0; 881 } 882 883 static void exynos_dsi_set_display_mode(struct exynos_dsi *dsi) 884 { 885 struct drm_display_mode *m = &dsi->mode; 886 unsigned int num_bits_resol = dsi->driver_data->num_bits_resol; 887 u32 reg; 888 889 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 890 reg = DSIM_CMD_ALLOW(0xf) 891 | DSIM_STABLE_VFP(m->vsync_start - m->vdisplay) 892 | DSIM_MAIN_VBP(m->vtotal - m->vsync_end); 893 exynos_dsi_write(dsi, DSIM_MVPORCH_REG, reg); 894 895 reg = DSIM_MAIN_HFP(m->hsync_start - m->hdisplay) 896 | DSIM_MAIN_HBP(m->htotal - m->hsync_end); 897 exynos_dsi_write(dsi, DSIM_MHPORCH_REG, reg); 898 899 reg = DSIM_MAIN_VSA(m->vsync_end - m->vsync_start) 900 | DSIM_MAIN_HSA(m->hsync_end - m->hsync_start); 901 exynos_dsi_write(dsi, DSIM_MSYNC_REG, reg); 902 } 903 reg = DSIM_MAIN_HRESOL(m->hdisplay, num_bits_resol) | 904 DSIM_MAIN_VRESOL(m->vdisplay, num_bits_resol); 905 906 exynos_dsi_write(dsi, DSIM_MDRESOL_REG, reg); 907 908 dev_dbg(dsi->dev, "LCD size = %dx%d\n", m->hdisplay, m->vdisplay); 909 } 910 911 static void exynos_dsi_set_display_enable(struct exynos_dsi *dsi, bool enable) 912 { 913 u32 reg; 914 915 reg = exynos_dsi_read(dsi, DSIM_MDRESOL_REG); 916 if (enable) 917 reg |= DSIM_MAIN_STAND_BY; 918 else 919 reg &= ~DSIM_MAIN_STAND_BY; 920 exynos_dsi_write(dsi, DSIM_MDRESOL_REG, reg); 921 } 922 923 static int exynos_dsi_wait_for_hdr_fifo(struct exynos_dsi *dsi) 924 { 925 int timeout = 2000; 926 927 do { 928 u32 reg = exynos_dsi_read(dsi, DSIM_FIFOCTRL_REG); 929 930 if (!(reg & DSIM_SFR_HEADER_FULL)) 931 return 0; 932 933 if (!cond_resched()) 934 usleep_range(950, 1050); 935 } while (--timeout); 936 937 return -ETIMEDOUT; 938 } 939 940 static void exynos_dsi_set_cmd_lpm(struct exynos_dsi *dsi, bool lpm) 941 { 942 u32 v = exynos_dsi_read(dsi, DSIM_ESCMODE_REG); 943 944 if (lpm) 945 v |= DSIM_CMD_LPDT_LP; 946 else 947 v &= ~DSIM_CMD_LPDT_LP; 948 949 exynos_dsi_write(dsi, DSIM_ESCMODE_REG, v); 950 } 951 952 static void exynos_dsi_force_bta(struct exynos_dsi *dsi) 953 { 954 u32 v = exynos_dsi_read(dsi, DSIM_ESCMODE_REG); 955 v |= DSIM_FORCE_BTA; 956 exynos_dsi_write(dsi, DSIM_ESCMODE_REG, v); 957 } 958 959 static void exynos_dsi_send_to_fifo(struct exynos_dsi *dsi, 960 struct exynos_dsi_transfer *xfer) 961 { 962 struct device *dev = dsi->dev; 963 struct mipi_dsi_packet *pkt = &xfer->packet; 964 const u8 *payload = pkt->payload + xfer->tx_done; 965 u16 length = pkt->payload_length - xfer->tx_done; 966 bool first = !xfer->tx_done; 967 u32 reg; 968 969 dev_dbg(dev, "< xfer %pK: tx len %u, done %u, rx len %u, done %u\n", 970 xfer, length, xfer->tx_done, xfer->rx_len, xfer->rx_done); 971 972 if (length > DSI_TX_FIFO_SIZE) 973 length = DSI_TX_FIFO_SIZE; 974 975 xfer->tx_done += length; 976 977 /* Send payload */ 978 while (length >= 4) { 979 reg = get_unaligned_le32(payload); 980 exynos_dsi_write(dsi, DSIM_PAYLOAD_REG, reg); 981 payload += 4; 982 length -= 4; 983 } 984 985 reg = 0; 986 switch (length) { 987 case 3: 988 reg |= payload[2] << 16; 989 fallthrough; 990 case 2: 991 reg |= payload[1] << 8; 992 fallthrough; 993 case 1: 994 reg |= payload[0]; 995 exynos_dsi_write(dsi, DSIM_PAYLOAD_REG, reg); 996 break; 997 } 998 999 /* Send packet header */ 1000 if (!first) 1001 return; 1002 1003 reg = get_unaligned_le32(pkt->header); 1004 if (exynos_dsi_wait_for_hdr_fifo(dsi)) { 1005 dev_err(dev, "waiting for header FIFO timed out\n"); 1006 return; 1007 } 1008 1009 if (NEQV(xfer->flags & MIPI_DSI_MSG_USE_LPM, 1010 dsi->state & DSIM_STATE_CMD_LPM)) { 1011 exynos_dsi_set_cmd_lpm(dsi, xfer->flags & MIPI_DSI_MSG_USE_LPM); 1012 dsi->state ^= DSIM_STATE_CMD_LPM; 1013 } 1014 1015 exynos_dsi_write(dsi, DSIM_PKTHDR_REG, reg); 1016 1017 if (xfer->flags & MIPI_DSI_MSG_REQ_ACK) 1018 exynos_dsi_force_bta(dsi); 1019 } 1020 1021 static void exynos_dsi_read_from_fifo(struct exynos_dsi *dsi, 1022 struct exynos_dsi_transfer *xfer) 1023 { 1024 u8 *payload = xfer->rx_payload + xfer->rx_done; 1025 bool first = !xfer->rx_done; 1026 struct device *dev = dsi->dev; 1027 u16 length; 1028 u32 reg; 1029 1030 if (first) { 1031 reg = exynos_dsi_read(dsi, DSIM_RXFIFO_REG); 1032 1033 switch (reg & 0x3f) { 1034 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE: 1035 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE: 1036 if (xfer->rx_len >= 2) { 1037 payload[1] = reg >> 16; 1038 ++xfer->rx_done; 1039 } 1040 fallthrough; 1041 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE: 1042 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE: 1043 payload[0] = reg >> 8; 1044 ++xfer->rx_done; 1045 xfer->rx_len = xfer->rx_done; 1046 xfer->result = 0; 1047 goto clear_fifo; 1048 case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT: 1049 dev_err(dev, "DSI Error Report: 0x%04x\n", 1050 (reg >> 8) & 0xffff); 1051 xfer->result = 0; 1052 goto clear_fifo; 1053 } 1054 1055 length = (reg >> 8) & 0xffff; 1056 if (length > xfer->rx_len) { 1057 dev_err(dev, 1058 "response too long (%u > %u bytes), stripping\n", 1059 xfer->rx_len, length); 1060 length = xfer->rx_len; 1061 } else if (length < xfer->rx_len) 1062 xfer->rx_len = length; 1063 } 1064 1065 length = xfer->rx_len - xfer->rx_done; 1066 xfer->rx_done += length; 1067 1068 /* Receive payload */ 1069 while (length >= 4) { 1070 reg = exynos_dsi_read(dsi, DSIM_RXFIFO_REG); 1071 payload[0] = (reg >> 0) & 0xff; 1072 payload[1] = (reg >> 8) & 0xff; 1073 payload[2] = (reg >> 16) & 0xff; 1074 payload[3] = (reg >> 24) & 0xff; 1075 payload += 4; 1076 length -= 4; 1077 } 1078 1079 if (length) { 1080 reg = exynos_dsi_read(dsi, DSIM_RXFIFO_REG); 1081 switch (length) { 1082 case 3: 1083 payload[2] = (reg >> 16) & 0xff; 1084 fallthrough; 1085 case 2: 1086 payload[1] = (reg >> 8) & 0xff; 1087 fallthrough; 1088 case 1: 1089 payload[0] = reg & 0xff; 1090 } 1091 } 1092 1093 if (xfer->rx_done == xfer->rx_len) 1094 xfer->result = 0; 1095 1096 clear_fifo: 1097 length = DSI_RX_FIFO_SIZE / 4; 1098 do { 1099 reg = exynos_dsi_read(dsi, DSIM_RXFIFO_REG); 1100 if (reg == DSI_RX_FIFO_EMPTY) 1101 break; 1102 } while (--length); 1103 } 1104 1105 static void exynos_dsi_transfer_start(struct exynos_dsi *dsi) 1106 { 1107 unsigned long flags; 1108 struct exynos_dsi_transfer *xfer; 1109 bool start = false; 1110 1111 again: 1112 spin_lock_irqsave(&dsi->transfer_lock, flags); 1113 1114 if (list_empty(&dsi->transfer_list)) { 1115 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1116 return; 1117 } 1118 1119 xfer = list_first_entry(&dsi->transfer_list, 1120 struct exynos_dsi_transfer, list); 1121 1122 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1123 1124 if (xfer->packet.payload_length && 1125 xfer->tx_done == xfer->packet.payload_length) 1126 /* waiting for RX */ 1127 return; 1128 1129 exynos_dsi_send_to_fifo(dsi, xfer); 1130 1131 if (xfer->packet.payload_length || xfer->rx_len) 1132 return; 1133 1134 xfer->result = 0; 1135 complete(&xfer->completed); 1136 1137 spin_lock_irqsave(&dsi->transfer_lock, flags); 1138 1139 list_del_init(&xfer->list); 1140 start = !list_empty(&dsi->transfer_list); 1141 1142 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1143 1144 if (start) 1145 goto again; 1146 } 1147 1148 static bool exynos_dsi_transfer_finish(struct exynos_dsi *dsi) 1149 { 1150 struct exynos_dsi_transfer *xfer; 1151 unsigned long flags; 1152 bool start = true; 1153 1154 spin_lock_irqsave(&dsi->transfer_lock, flags); 1155 1156 if (list_empty(&dsi->transfer_list)) { 1157 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1158 return false; 1159 } 1160 1161 xfer = list_first_entry(&dsi->transfer_list, 1162 struct exynos_dsi_transfer, list); 1163 1164 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1165 1166 dev_dbg(dsi->dev, 1167 "> xfer %pK, tx_len %zu, tx_done %u, rx_len %u, rx_done %u\n", 1168 xfer, xfer->packet.payload_length, xfer->tx_done, xfer->rx_len, 1169 xfer->rx_done); 1170 1171 if (xfer->tx_done != xfer->packet.payload_length) 1172 return true; 1173 1174 if (xfer->rx_done != xfer->rx_len) 1175 exynos_dsi_read_from_fifo(dsi, xfer); 1176 1177 if (xfer->rx_done != xfer->rx_len) 1178 return true; 1179 1180 spin_lock_irqsave(&dsi->transfer_lock, flags); 1181 1182 list_del_init(&xfer->list); 1183 start = !list_empty(&dsi->transfer_list); 1184 1185 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1186 1187 if (!xfer->rx_len) 1188 xfer->result = 0; 1189 complete(&xfer->completed); 1190 1191 return start; 1192 } 1193 1194 static void exynos_dsi_remove_transfer(struct exynos_dsi *dsi, 1195 struct exynos_dsi_transfer *xfer) 1196 { 1197 unsigned long flags; 1198 bool start; 1199 1200 spin_lock_irqsave(&dsi->transfer_lock, flags); 1201 1202 if (!list_empty(&dsi->transfer_list) && 1203 xfer == list_first_entry(&dsi->transfer_list, 1204 struct exynos_dsi_transfer, list)) { 1205 list_del_init(&xfer->list); 1206 start = !list_empty(&dsi->transfer_list); 1207 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1208 if (start) 1209 exynos_dsi_transfer_start(dsi); 1210 return; 1211 } 1212 1213 list_del_init(&xfer->list); 1214 1215 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1216 } 1217 1218 static int exynos_dsi_transfer(struct exynos_dsi *dsi, 1219 struct exynos_dsi_transfer *xfer) 1220 { 1221 unsigned long flags; 1222 bool stopped; 1223 1224 xfer->tx_done = 0; 1225 xfer->rx_done = 0; 1226 xfer->result = -ETIMEDOUT; 1227 init_completion(&xfer->completed); 1228 1229 spin_lock_irqsave(&dsi->transfer_lock, flags); 1230 1231 stopped = list_empty(&dsi->transfer_list); 1232 list_add_tail(&xfer->list, &dsi->transfer_list); 1233 1234 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1235 1236 if (stopped) 1237 exynos_dsi_transfer_start(dsi); 1238 1239 wait_for_completion_timeout(&xfer->completed, 1240 msecs_to_jiffies(DSI_XFER_TIMEOUT_MS)); 1241 if (xfer->result == -ETIMEDOUT) { 1242 struct mipi_dsi_packet *pkt = &xfer->packet; 1243 exynos_dsi_remove_transfer(dsi, xfer); 1244 dev_err(dsi->dev, "xfer timed out: %*ph %*ph\n", 4, pkt->header, 1245 (int)pkt->payload_length, pkt->payload); 1246 return -ETIMEDOUT; 1247 } 1248 1249 /* Also covers hardware timeout condition */ 1250 return xfer->result; 1251 } 1252 1253 static irqreturn_t exynos_dsi_irq(int irq, void *dev_id) 1254 { 1255 struct exynos_dsi *dsi = dev_id; 1256 u32 status; 1257 1258 status = exynos_dsi_read(dsi, DSIM_INTSRC_REG); 1259 if (!status) { 1260 static unsigned long int j; 1261 if (printk_timed_ratelimit(&j, 500)) 1262 dev_warn(dsi->dev, "spurious interrupt\n"); 1263 return IRQ_HANDLED; 1264 } 1265 exynos_dsi_write(dsi, DSIM_INTSRC_REG, status); 1266 1267 if (status & DSIM_INT_SW_RST_RELEASE) { 1268 u32 mask = ~(DSIM_INT_RX_DONE | DSIM_INT_SFR_FIFO_EMPTY | 1269 DSIM_INT_SFR_HDR_FIFO_EMPTY | DSIM_INT_RX_ECC_ERR | 1270 DSIM_INT_SW_RST_RELEASE); 1271 exynos_dsi_write(dsi, DSIM_INTMSK_REG, mask); 1272 complete(&dsi->completed); 1273 return IRQ_HANDLED; 1274 } 1275 1276 if (!(status & (DSIM_INT_RX_DONE | DSIM_INT_SFR_FIFO_EMPTY | 1277 DSIM_INT_PLL_STABLE))) 1278 return IRQ_HANDLED; 1279 1280 if (exynos_dsi_transfer_finish(dsi)) 1281 exynos_dsi_transfer_start(dsi); 1282 1283 return IRQ_HANDLED; 1284 } 1285 1286 static irqreturn_t exynos_dsi_te_irq_handler(int irq, void *dev_id) 1287 { 1288 struct exynos_dsi *dsi = (struct exynos_dsi *)dev_id; 1289 struct drm_encoder *encoder = &dsi->encoder; 1290 1291 if (dsi->state & DSIM_STATE_VIDOUT_AVAILABLE) 1292 exynos_drm_crtc_te_handler(encoder->crtc); 1293 1294 return IRQ_HANDLED; 1295 } 1296 1297 static void exynos_dsi_enable_irq(struct exynos_dsi *dsi) 1298 { 1299 enable_irq(dsi->irq); 1300 1301 if (dsi->te_gpio) 1302 enable_irq(gpiod_to_irq(dsi->te_gpio)); 1303 } 1304 1305 static void exynos_dsi_disable_irq(struct exynos_dsi *dsi) 1306 { 1307 if (dsi->te_gpio) 1308 disable_irq(gpiod_to_irq(dsi->te_gpio)); 1309 1310 disable_irq(dsi->irq); 1311 } 1312 1313 static int exynos_dsi_init(struct exynos_dsi *dsi) 1314 { 1315 const struct exynos_dsi_driver_data *driver_data = dsi->driver_data; 1316 1317 exynos_dsi_reset(dsi); 1318 exynos_dsi_enable_irq(dsi); 1319 1320 if (driver_data->reg_values[RESET_TYPE] == DSIM_FUNCRST) 1321 exynos_dsi_enable_lane(dsi, BIT(dsi->lanes) - 1); 1322 1323 exynos_dsi_enable_clock(dsi); 1324 if (driver_data->wait_for_reset) 1325 exynos_dsi_wait_for_reset(dsi); 1326 exynos_dsi_set_phy_ctrl(dsi); 1327 exynos_dsi_init_link(dsi); 1328 1329 return 0; 1330 } 1331 1332 static int exynos_dsi_register_te_irq(struct exynos_dsi *dsi, 1333 struct device *panel) 1334 { 1335 int ret; 1336 int te_gpio_irq; 1337 1338 dsi->te_gpio = devm_gpiod_get_optional(dsi->dev, "te", GPIOD_IN); 1339 if (IS_ERR(dsi->te_gpio)) { 1340 dev_err(dsi->dev, "gpio request failed with %ld\n", 1341 PTR_ERR(dsi->te_gpio)); 1342 return PTR_ERR(dsi->te_gpio); 1343 } 1344 1345 te_gpio_irq = gpiod_to_irq(dsi->te_gpio); 1346 1347 ret = request_threaded_irq(te_gpio_irq, exynos_dsi_te_irq_handler, NULL, 1348 IRQF_TRIGGER_RISING | IRQF_NO_AUTOEN, "TE", dsi); 1349 if (ret) { 1350 dev_err(dsi->dev, "request interrupt failed with %d\n", ret); 1351 gpiod_put(dsi->te_gpio); 1352 return ret; 1353 } 1354 1355 return 0; 1356 } 1357 1358 static void exynos_dsi_unregister_te_irq(struct exynos_dsi *dsi) 1359 { 1360 if (dsi->te_gpio) { 1361 free_irq(gpiod_to_irq(dsi->te_gpio), dsi); 1362 gpiod_put(dsi->te_gpio); 1363 } 1364 } 1365 1366 static void exynos_dsi_enable(struct drm_encoder *encoder) 1367 { 1368 struct exynos_dsi *dsi = encoder_to_dsi(encoder); 1369 struct drm_bridge *iter; 1370 int ret; 1371 1372 if (dsi->state & DSIM_STATE_ENABLED) 1373 return; 1374 1375 ret = pm_runtime_resume_and_get(dsi->dev); 1376 if (ret < 0) { 1377 dev_err(dsi->dev, "failed to enable DSI device.\n"); 1378 return; 1379 } 1380 1381 dsi->state |= DSIM_STATE_ENABLED; 1382 1383 if (dsi->panel) { 1384 ret = drm_panel_prepare(dsi->panel); 1385 if (ret < 0) 1386 goto err_put_sync; 1387 } else { 1388 list_for_each_entry_reverse(iter, &dsi->bridge_chain, 1389 chain_node) { 1390 if (iter->funcs->pre_enable) 1391 iter->funcs->pre_enable(iter); 1392 } 1393 } 1394 1395 exynos_dsi_set_display_mode(dsi); 1396 exynos_dsi_set_display_enable(dsi, true); 1397 1398 if (dsi->panel) { 1399 ret = drm_panel_enable(dsi->panel); 1400 if (ret < 0) 1401 goto err_display_disable; 1402 } else { 1403 list_for_each_entry(iter, &dsi->bridge_chain, chain_node) { 1404 if (iter->funcs->enable) 1405 iter->funcs->enable(iter); 1406 } 1407 } 1408 1409 dsi->state |= DSIM_STATE_VIDOUT_AVAILABLE; 1410 return; 1411 1412 err_display_disable: 1413 exynos_dsi_set_display_enable(dsi, false); 1414 drm_panel_unprepare(dsi->panel); 1415 1416 err_put_sync: 1417 dsi->state &= ~DSIM_STATE_ENABLED; 1418 pm_runtime_put(dsi->dev); 1419 } 1420 1421 static void exynos_dsi_disable(struct drm_encoder *encoder) 1422 { 1423 struct exynos_dsi *dsi = encoder_to_dsi(encoder); 1424 struct drm_bridge *iter; 1425 1426 if (!(dsi->state & DSIM_STATE_ENABLED)) 1427 return; 1428 1429 dsi->state &= ~DSIM_STATE_VIDOUT_AVAILABLE; 1430 1431 drm_panel_disable(dsi->panel); 1432 1433 list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) { 1434 if (iter->funcs->disable) 1435 iter->funcs->disable(iter); 1436 } 1437 1438 exynos_dsi_set_display_enable(dsi, false); 1439 drm_panel_unprepare(dsi->panel); 1440 1441 list_for_each_entry(iter, &dsi->bridge_chain, chain_node) { 1442 if (iter->funcs->post_disable) 1443 iter->funcs->post_disable(iter); 1444 } 1445 1446 dsi->state &= ~DSIM_STATE_ENABLED; 1447 pm_runtime_put_sync(dsi->dev); 1448 } 1449 1450 static void exynos_dsi_mode_set(struct drm_encoder *encoder, 1451 struct drm_display_mode *mode, 1452 struct drm_display_mode *adjusted_mode) 1453 { 1454 struct exynos_dsi *dsi = encoder_to_dsi(encoder); 1455 1456 drm_mode_copy(&dsi->mode, adjusted_mode); 1457 } 1458 1459 static enum drm_connector_status 1460 exynos_dsi_detect(struct drm_connector *connector, bool force) 1461 { 1462 return connector->status; 1463 } 1464 1465 static void exynos_dsi_connector_destroy(struct drm_connector *connector) 1466 { 1467 drm_connector_unregister(connector); 1468 drm_connector_cleanup(connector); 1469 connector->dev = NULL; 1470 } 1471 1472 static const struct drm_connector_funcs exynos_dsi_connector_funcs = { 1473 .detect = exynos_dsi_detect, 1474 .fill_modes = drm_helper_probe_single_connector_modes, 1475 .destroy = exynos_dsi_connector_destroy, 1476 .reset = drm_atomic_helper_connector_reset, 1477 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, 1478 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 1479 }; 1480 1481 static int exynos_dsi_get_modes(struct drm_connector *connector) 1482 { 1483 struct exynos_dsi *dsi = connector_to_dsi(connector); 1484 1485 if (dsi->panel) 1486 return drm_panel_get_modes(dsi->panel, connector); 1487 1488 return 0; 1489 } 1490 1491 static const struct drm_connector_helper_funcs exynos_dsi_connector_helper_funcs = { 1492 .get_modes = exynos_dsi_get_modes, 1493 }; 1494 1495 static int exynos_dsi_create_connector(struct drm_encoder *encoder) 1496 { 1497 struct exynos_dsi *dsi = encoder_to_dsi(encoder); 1498 struct drm_connector *connector = &dsi->connector; 1499 struct drm_device *drm = encoder->dev; 1500 int ret; 1501 1502 connector->polled = DRM_CONNECTOR_POLL_HPD; 1503 1504 ret = drm_connector_init(drm, connector, &exynos_dsi_connector_funcs, 1505 DRM_MODE_CONNECTOR_DSI); 1506 if (ret) { 1507 DRM_DEV_ERROR(dsi->dev, 1508 "Failed to initialize connector with drm\n"); 1509 return ret; 1510 } 1511 1512 connector->status = connector_status_disconnected; 1513 drm_connector_helper_add(connector, &exynos_dsi_connector_helper_funcs); 1514 drm_connector_attach_encoder(connector, encoder); 1515 if (!drm->registered) 1516 return 0; 1517 1518 connector->funcs->reset(connector); 1519 drm_connector_register(connector); 1520 return 0; 1521 } 1522 1523 static const struct drm_encoder_helper_funcs exynos_dsi_encoder_helper_funcs = { 1524 .enable = exynos_dsi_enable, 1525 .disable = exynos_dsi_disable, 1526 .mode_set = exynos_dsi_mode_set, 1527 }; 1528 1529 MODULE_DEVICE_TABLE(of, exynos_dsi_of_match); 1530 1531 static int exynos_dsi_host_attach(struct mipi_dsi_host *host, 1532 struct mipi_dsi_device *device) 1533 { 1534 struct exynos_dsi *dsi = host_to_dsi(host); 1535 struct drm_encoder *encoder = &dsi->encoder; 1536 struct drm_device *drm = encoder->dev; 1537 struct drm_bridge *out_bridge; 1538 1539 out_bridge = of_drm_find_bridge(device->dev.of_node); 1540 if (out_bridge) { 1541 drm_bridge_attach(encoder, out_bridge, NULL, 0); 1542 dsi->out_bridge = out_bridge; 1543 list_splice_init(&encoder->bridge_chain, &dsi->bridge_chain); 1544 } else { 1545 int ret = exynos_dsi_create_connector(encoder); 1546 1547 if (ret) { 1548 DRM_DEV_ERROR(dsi->dev, 1549 "failed to create connector ret = %d\n", 1550 ret); 1551 drm_encoder_cleanup(encoder); 1552 return ret; 1553 } 1554 1555 dsi->panel = of_drm_find_panel(device->dev.of_node); 1556 if (IS_ERR(dsi->panel)) 1557 dsi->panel = NULL; 1558 else 1559 dsi->connector.status = connector_status_connected; 1560 } 1561 1562 /* 1563 * This is a temporary solution and should be made by more generic way. 1564 * 1565 * If attached panel device is for command mode one, dsi should register 1566 * TE interrupt handler. 1567 */ 1568 if (!(device->mode_flags & MIPI_DSI_MODE_VIDEO)) { 1569 int ret = exynos_dsi_register_te_irq(dsi, &device->dev); 1570 if (ret) 1571 return ret; 1572 } 1573 1574 mutex_lock(&drm->mode_config.mutex); 1575 1576 dsi->lanes = device->lanes; 1577 dsi->format = device->format; 1578 dsi->mode_flags = device->mode_flags; 1579 exynos_drm_crtc_get_by_type(drm, EXYNOS_DISPLAY_TYPE_LCD)->i80_mode = 1580 !(dsi->mode_flags & MIPI_DSI_MODE_VIDEO); 1581 1582 mutex_unlock(&drm->mode_config.mutex); 1583 1584 if (drm->mode_config.poll_enabled) 1585 drm_kms_helper_hotplug_event(drm); 1586 1587 return 0; 1588 } 1589 1590 static int exynos_dsi_host_detach(struct mipi_dsi_host *host, 1591 struct mipi_dsi_device *device) 1592 { 1593 struct exynos_dsi *dsi = host_to_dsi(host); 1594 struct drm_device *drm = dsi->encoder.dev; 1595 1596 if (dsi->panel) { 1597 mutex_lock(&drm->mode_config.mutex); 1598 exynos_dsi_disable(&dsi->encoder); 1599 dsi->panel = NULL; 1600 dsi->connector.status = connector_status_disconnected; 1601 mutex_unlock(&drm->mode_config.mutex); 1602 } else { 1603 if (dsi->out_bridge->funcs->detach) 1604 dsi->out_bridge->funcs->detach(dsi->out_bridge); 1605 dsi->out_bridge = NULL; 1606 INIT_LIST_HEAD(&dsi->bridge_chain); 1607 } 1608 1609 if (drm->mode_config.poll_enabled) 1610 drm_kms_helper_hotplug_event(drm); 1611 1612 exynos_dsi_unregister_te_irq(dsi); 1613 1614 return 0; 1615 } 1616 1617 static ssize_t exynos_dsi_host_transfer(struct mipi_dsi_host *host, 1618 const struct mipi_dsi_msg *msg) 1619 { 1620 struct exynos_dsi *dsi = host_to_dsi(host); 1621 struct exynos_dsi_transfer xfer; 1622 int ret; 1623 1624 if (!(dsi->state & DSIM_STATE_ENABLED)) 1625 return -EINVAL; 1626 1627 if (!(dsi->state & DSIM_STATE_INITIALIZED)) { 1628 ret = exynos_dsi_init(dsi); 1629 if (ret) 1630 return ret; 1631 dsi->state |= DSIM_STATE_INITIALIZED; 1632 } 1633 1634 ret = mipi_dsi_create_packet(&xfer.packet, msg); 1635 if (ret < 0) 1636 return ret; 1637 1638 xfer.rx_len = msg->rx_len; 1639 xfer.rx_payload = msg->rx_buf; 1640 xfer.flags = msg->flags; 1641 1642 ret = exynos_dsi_transfer(dsi, &xfer); 1643 return (ret < 0) ? ret : xfer.rx_done; 1644 } 1645 1646 static const struct mipi_dsi_host_ops exynos_dsi_ops = { 1647 .attach = exynos_dsi_host_attach, 1648 .detach = exynos_dsi_host_detach, 1649 .transfer = exynos_dsi_host_transfer, 1650 }; 1651 1652 static int exynos_dsi_of_read_u32(const struct device_node *np, 1653 const char *propname, u32 *out_value) 1654 { 1655 int ret = of_property_read_u32(np, propname, out_value); 1656 1657 if (ret < 0) 1658 pr_err("%pOF: failed to get '%s' property\n", np, propname); 1659 1660 return ret; 1661 } 1662 1663 enum { 1664 DSI_PORT_IN, 1665 DSI_PORT_OUT 1666 }; 1667 1668 static int exynos_dsi_parse_dt(struct exynos_dsi *dsi) 1669 { 1670 struct device *dev = dsi->dev; 1671 struct device_node *node = dev->of_node; 1672 int ret; 1673 1674 ret = exynos_dsi_of_read_u32(node, "samsung,pll-clock-frequency", 1675 &dsi->pll_clk_rate); 1676 if (ret < 0) 1677 return ret; 1678 1679 ret = exynos_dsi_of_read_u32(node, "samsung,burst-clock-frequency", 1680 &dsi->burst_clk_rate); 1681 if (ret < 0) 1682 return ret; 1683 1684 ret = exynos_dsi_of_read_u32(node, "samsung,esc-clock-frequency", 1685 &dsi->esc_clk_rate); 1686 if (ret < 0) 1687 return ret; 1688 1689 return 0; 1690 } 1691 1692 static int exynos_dsi_bind(struct device *dev, struct device *master, 1693 void *data) 1694 { 1695 struct exynos_dsi *dsi = dev_get_drvdata(dev); 1696 struct drm_encoder *encoder = &dsi->encoder; 1697 struct drm_device *drm_dev = data; 1698 struct device_node *in_bridge_node; 1699 struct drm_bridge *in_bridge; 1700 int ret; 1701 1702 drm_simple_encoder_init(drm_dev, encoder, DRM_MODE_ENCODER_TMDS); 1703 1704 drm_encoder_helper_add(encoder, &exynos_dsi_encoder_helper_funcs); 1705 1706 ret = exynos_drm_set_possible_crtcs(encoder, EXYNOS_DISPLAY_TYPE_LCD); 1707 if (ret < 0) 1708 return ret; 1709 1710 in_bridge_node = of_graph_get_remote_node(dev->of_node, DSI_PORT_IN, 0); 1711 if (in_bridge_node) { 1712 in_bridge = of_drm_find_bridge(in_bridge_node); 1713 if (in_bridge) 1714 drm_bridge_attach(encoder, in_bridge, NULL, 0); 1715 of_node_put(in_bridge_node); 1716 } 1717 1718 return mipi_dsi_host_register(&dsi->dsi_host); 1719 } 1720 1721 static void exynos_dsi_unbind(struct device *dev, struct device *master, 1722 void *data) 1723 { 1724 struct exynos_dsi *dsi = dev_get_drvdata(dev); 1725 struct drm_encoder *encoder = &dsi->encoder; 1726 1727 exynos_dsi_disable(encoder); 1728 1729 mipi_dsi_host_unregister(&dsi->dsi_host); 1730 } 1731 1732 static const struct component_ops exynos_dsi_component_ops = { 1733 .bind = exynos_dsi_bind, 1734 .unbind = exynos_dsi_unbind, 1735 }; 1736 1737 static int exynos_dsi_probe(struct platform_device *pdev) 1738 { 1739 struct device *dev = &pdev->dev; 1740 struct exynos_dsi *dsi; 1741 int ret, i; 1742 1743 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); 1744 if (!dsi) 1745 return -ENOMEM; 1746 1747 init_completion(&dsi->completed); 1748 spin_lock_init(&dsi->transfer_lock); 1749 INIT_LIST_HEAD(&dsi->transfer_list); 1750 INIT_LIST_HEAD(&dsi->bridge_chain); 1751 1752 dsi->dsi_host.ops = &exynos_dsi_ops; 1753 dsi->dsi_host.dev = dev; 1754 1755 dsi->dev = dev; 1756 dsi->driver_data = of_device_get_match_data(dev); 1757 1758 dsi->supplies[0].supply = "vddcore"; 1759 dsi->supplies[1].supply = "vddio"; 1760 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(dsi->supplies), 1761 dsi->supplies); 1762 if (ret) 1763 return dev_err_probe(dev, ret, "failed to get regulators\n"); 1764 1765 dsi->clks = devm_kcalloc(dev, 1766 dsi->driver_data->num_clks, sizeof(*dsi->clks), 1767 GFP_KERNEL); 1768 if (!dsi->clks) 1769 return -ENOMEM; 1770 1771 for (i = 0; i < dsi->driver_data->num_clks; i++) { 1772 dsi->clks[i] = devm_clk_get(dev, clk_names[i]); 1773 if (IS_ERR(dsi->clks[i])) { 1774 if (strcmp(clk_names[i], "sclk_mipi") == 0) { 1775 dsi->clks[i] = devm_clk_get(dev, 1776 OLD_SCLK_MIPI_CLK_NAME); 1777 if (!IS_ERR(dsi->clks[i])) 1778 continue; 1779 } 1780 1781 dev_info(dev, "failed to get the clock: %s\n", 1782 clk_names[i]); 1783 return PTR_ERR(dsi->clks[i]); 1784 } 1785 } 1786 1787 dsi->reg_base = devm_platform_ioremap_resource(pdev, 0); 1788 if (IS_ERR(dsi->reg_base)) 1789 return PTR_ERR(dsi->reg_base); 1790 1791 dsi->phy = devm_phy_get(dev, "dsim"); 1792 if (IS_ERR(dsi->phy)) { 1793 dev_info(dev, "failed to get dsim phy\n"); 1794 return PTR_ERR(dsi->phy); 1795 } 1796 1797 dsi->irq = platform_get_irq(pdev, 0); 1798 if (dsi->irq < 0) 1799 return dsi->irq; 1800 1801 ret = devm_request_threaded_irq(dev, dsi->irq, NULL, 1802 exynos_dsi_irq, 1803 IRQF_ONESHOT | IRQF_NO_AUTOEN, 1804 dev_name(dev), dsi); 1805 if (ret) { 1806 dev_err(dev, "failed to request dsi irq\n"); 1807 return ret; 1808 } 1809 1810 ret = exynos_dsi_parse_dt(dsi); 1811 if (ret) 1812 return ret; 1813 1814 platform_set_drvdata(pdev, dsi); 1815 1816 pm_runtime_enable(dev); 1817 1818 ret = component_add(dev, &exynos_dsi_component_ops); 1819 if (ret) 1820 goto err_disable_runtime; 1821 1822 return 0; 1823 1824 err_disable_runtime: 1825 pm_runtime_disable(dev); 1826 1827 return ret; 1828 } 1829 1830 static int exynos_dsi_remove(struct platform_device *pdev) 1831 { 1832 pm_runtime_disable(&pdev->dev); 1833 1834 component_del(&pdev->dev, &exynos_dsi_component_ops); 1835 1836 return 0; 1837 } 1838 1839 static int __maybe_unused exynos_dsi_suspend(struct device *dev) 1840 { 1841 struct exynos_dsi *dsi = dev_get_drvdata(dev); 1842 const struct exynos_dsi_driver_data *driver_data = dsi->driver_data; 1843 int ret, i; 1844 1845 usleep_range(10000, 20000); 1846 1847 if (dsi->state & DSIM_STATE_INITIALIZED) { 1848 dsi->state &= ~DSIM_STATE_INITIALIZED; 1849 1850 exynos_dsi_disable_clock(dsi); 1851 1852 exynos_dsi_disable_irq(dsi); 1853 } 1854 1855 dsi->state &= ~DSIM_STATE_CMD_LPM; 1856 1857 phy_power_off(dsi->phy); 1858 1859 for (i = driver_data->num_clks - 1; i > -1; i--) 1860 clk_disable_unprepare(dsi->clks[i]); 1861 1862 ret = regulator_bulk_disable(ARRAY_SIZE(dsi->supplies), dsi->supplies); 1863 if (ret < 0) 1864 dev_err(dsi->dev, "cannot disable regulators %d\n", ret); 1865 1866 return 0; 1867 } 1868 1869 static int __maybe_unused exynos_dsi_resume(struct device *dev) 1870 { 1871 struct exynos_dsi *dsi = dev_get_drvdata(dev); 1872 const struct exynos_dsi_driver_data *driver_data = dsi->driver_data; 1873 int ret, i; 1874 1875 ret = regulator_bulk_enable(ARRAY_SIZE(dsi->supplies), dsi->supplies); 1876 if (ret < 0) { 1877 dev_err(dsi->dev, "cannot enable regulators %d\n", ret); 1878 return ret; 1879 } 1880 1881 for (i = 0; i < driver_data->num_clks; i++) { 1882 ret = clk_prepare_enable(dsi->clks[i]); 1883 if (ret < 0) 1884 goto err_clk; 1885 } 1886 1887 ret = phy_power_on(dsi->phy); 1888 if (ret < 0) { 1889 dev_err(dsi->dev, "cannot enable phy %d\n", ret); 1890 goto err_clk; 1891 } 1892 1893 return 0; 1894 1895 err_clk: 1896 while (--i > -1) 1897 clk_disable_unprepare(dsi->clks[i]); 1898 regulator_bulk_disable(ARRAY_SIZE(dsi->supplies), dsi->supplies); 1899 1900 return ret; 1901 } 1902 1903 static const struct dev_pm_ops exynos_dsi_pm_ops = { 1904 SET_RUNTIME_PM_OPS(exynos_dsi_suspend, exynos_dsi_resume, NULL) 1905 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1906 pm_runtime_force_resume) 1907 }; 1908 1909 struct platform_driver dsi_driver = { 1910 .probe = exynos_dsi_probe, 1911 .remove = exynos_dsi_remove, 1912 .driver = { 1913 .name = "exynos-dsi", 1914 .owner = THIS_MODULE, 1915 .pm = &exynos_dsi_pm_ops, 1916 .of_match_table = exynos_dsi_of_match, 1917 }, 1918 }; 1919 1920 MODULE_AUTHOR("Tomasz Figa <t.figa@samsung.com>"); 1921 MODULE_AUTHOR("Andrzej Hajda <a.hajda@samsung.com>"); 1922 MODULE_DESCRIPTION("Samsung SoC MIPI DSI Master"); 1923 MODULE_LICENSE("GPL v2"); 1924