1 /*
2  * Samsung SoC MIPI DSI Master driver.
3  *
4  * Copyright (c) 2014 Samsung Electronics Co., Ltd
5  *
6  * Contacts: Tomasz Figa <t.figa@samsung.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12 
13 #include <drm/drmP.h>
14 #include <drm/drm_crtc_helper.h>
15 #include <drm/drm_mipi_dsi.h>
16 #include <drm/drm_panel.h>
17 #include <drm/drm_atomic_helper.h>
18 
19 #include <linux/clk.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/irq.h>
22 #include <linux/of_device.h>
23 #include <linux/of_gpio.h>
24 #include <linux/of_graph.h>
25 #include <linux/phy/phy.h>
26 #include <linux/regulator/consumer.h>
27 #include <linux/component.h>
28 
29 #include <video/mipi_display.h>
30 #include <video/videomode.h>
31 
32 #include "exynos_drm_crtc.h"
33 #include "exynos_drm_drv.h"
34 
35 /* returns true iff both arguments logically differs */
36 #define NEQV(a, b) (!(a) ^ !(b))
37 
38 /* DSIM_STATUS */
39 #define DSIM_STOP_STATE_DAT(x)		(((x) & 0xf) << 0)
40 #define DSIM_STOP_STATE_CLK		(1 << 8)
41 #define DSIM_TX_READY_HS_CLK		(1 << 10)
42 #define DSIM_PLL_STABLE			(1 << 31)
43 
44 /* DSIM_SWRST */
45 #define DSIM_FUNCRST			(1 << 16)
46 #define DSIM_SWRST			(1 << 0)
47 
48 /* DSIM_TIMEOUT */
49 #define DSIM_LPDR_TIMEOUT(x)		((x) << 0)
50 #define DSIM_BTA_TIMEOUT(x)		((x) << 16)
51 
52 /* DSIM_CLKCTRL */
53 #define DSIM_ESC_PRESCALER(x)		(((x) & 0xffff) << 0)
54 #define DSIM_ESC_PRESCALER_MASK		(0xffff << 0)
55 #define DSIM_LANE_ESC_CLK_EN_CLK	(1 << 19)
56 #define DSIM_LANE_ESC_CLK_EN_DATA(x)	(((x) & 0xf) << 20)
57 #define DSIM_LANE_ESC_CLK_EN_DATA_MASK	(0xf << 20)
58 #define DSIM_BYTE_CLKEN			(1 << 24)
59 #define DSIM_BYTE_CLK_SRC(x)		(((x) & 0x3) << 25)
60 #define DSIM_BYTE_CLK_SRC_MASK		(0x3 << 25)
61 #define DSIM_PLL_BYPASS			(1 << 27)
62 #define DSIM_ESC_CLKEN			(1 << 28)
63 #define DSIM_TX_REQUEST_HSCLK		(1 << 31)
64 
65 /* DSIM_CONFIG */
66 #define DSIM_LANE_EN_CLK		(1 << 0)
67 #define DSIM_LANE_EN(x)			(((x) & 0xf) << 1)
68 #define DSIM_NUM_OF_DATA_LANE(x)	(((x) & 0x3) << 5)
69 #define DSIM_SUB_PIX_FORMAT(x)		(((x) & 0x7) << 8)
70 #define DSIM_MAIN_PIX_FORMAT_MASK	(0x7 << 12)
71 #define DSIM_MAIN_PIX_FORMAT_RGB888	(0x7 << 12)
72 #define DSIM_MAIN_PIX_FORMAT_RGB666	(0x6 << 12)
73 #define DSIM_MAIN_PIX_FORMAT_RGB666_P	(0x5 << 12)
74 #define DSIM_MAIN_PIX_FORMAT_RGB565	(0x4 << 12)
75 #define DSIM_SUB_VC			(((x) & 0x3) << 16)
76 #define DSIM_MAIN_VC			(((x) & 0x3) << 18)
77 #define DSIM_HSA_MODE			(1 << 20)
78 #define DSIM_HBP_MODE			(1 << 21)
79 #define DSIM_HFP_MODE			(1 << 22)
80 #define DSIM_HSE_MODE			(1 << 23)
81 #define DSIM_AUTO_MODE			(1 << 24)
82 #define DSIM_VIDEO_MODE			(1 << 25)
83 #define DSIM_BURST_MODE			(1 << 26)
84 #define DSIM_SYNC_INFORM		(1 << 27)
85 #define DSIM_EOT_DISABLE		(1 << 28)
86 #define DSIM_MFLUSH_VS			(1 << 29)
87 /* This flag is valid only for exynos3250/3472/4415/5260/5430 */
88 #define DSIM_CLKLANE_STOP		(1 << 30)
89 
90 /* DSIM_ESCMODE */
91 #define DSIM_TX_TRIGGER_RST		(1 << 4)
92 #define DSIM_TX_LPDT_LP			(1 << 6)
93 #define DSIM_CMD_LPDT_LP		(1 << 7)
94 #define DSIM_FORCE_BTA			(1 << 16)
95 #define DSIM_FORCE_STOP_STATE		(1 << 20)
96 #define DSIM_STOP_STATE_CNT(x)		(((x) & 0x7ff) << 21)
97 #define DSIM_STOP_STATE_CNT_MASK	(0x7ff << 21)
98 
99 /* DSIM_MDRESOL */
100 #define DSIM_MAIN_STAND_BY		(1 << 31)
101 #define DSIM_MAIN_VRESOL(x, num_bits)	(((x) & ((1 << (num_bits)) - 1)) << 16)
102 #define DSIM_MAIN_HRESOL(x, num_bits)	(((x) & ((1 << (num_bits)) - 1)) << 0)
103 
104 /* DSIM_MVPORCH */
105 #define DSIM_CMD_ALLOW(x)		((x) << 28)
106 #define DSIM_STABLE_VFP(x)		((x) << 16)
107 #define DSIM_MAIN_VBP(x)		((x) << 0)
108 #define DSIM_CMD_ALLOW_MASK		(0xf << 28)
109 #define DSIM_STABLE_VFP_MASK		(0x7ff << 16)
110 #define DSIM_MAIN_VBP_MASK		(0x7ff << 0)
111 
112 /* DSIM_MHPORCH */
113 #define DSIM_MAIN_HFP(x)		((x) << 16)
114 #define DSIM_MAIN_HBP(x)		((x) << 0)
115 #define DSIM_MAIN_HFP_MASK		((0xffff) << 16)
116 #define DSIM_MAIN_HBP_MASK		((0xffff) << 0)
117 
118 /* DSIM_MSYNC */
119 #define DSIM_MAIN_VSA(x)		((x) << 22)
120 #define DSIM_MAIN_HSA(x)		((x) << 0)
121 #define DSIM_MAIN_VSA_MASK		((0x3ff) << 22)
122 #define DSIM_MAIN_HSA_MASK		((0xffff) << 0)
123 
124 /* DSIM_SDRESOL */
125 #define DSIM_SUB_STANDY(x)		((x) << 31)
126 #define DSIM_SUB_VRESOL(x)		((x) << 16)
127 #define DSIM_SUB_HRESOL(x)		((x) << 0)
128 #define DSIM_SUB_STANDY_MASK		((0x1) << 31)
129 #define DSIM_SUB_VRESOL_MASK		((0x7ff) << 16)
130 #define DSIM_SUB_HRESOL_MASK		((0x7ff) << 0)
131 
132 /* DSIM_INTSRC */
133 #define DSIM_INT_PLL_STABLE		(1 << 31)
134 #define DSIM_INT_SW_RST_RELEASE		(1 << 30)
135 #define DSIM_INT_SFR_FIFO_EMPTY		(1 << 29)
136 #define DSIM_INT_SFR_HDR_FIFO_EMPTY	(1 << 28)
137 #define DSIM_INT_BTA			(1 << 25)
138 #define DSIM_INT_FRAME_DONE		(1 << 24)
139 #define DSIM_INT_RX_TIMEOUT		(1 << 21)
140 #define DSIM_INT_BTA_TIMEOUT		(1 << 20)
141 #define DSIM_INT_RX_DONE		(1 << 18)
142 #define DSIM_INT_RX_TE			(1 << 17)
143 #define DSIM_INT_RX_ACK			(1 << 16)
144 #define DSIM_INT_RX_ECC_ERR		(1 << 15)
145 #define DSIM_INT_RX_CRC_ERR		(1 << 14)
146 
147 /* DSIM_FIFOCTRL */
148 #define DSIM_RX_DATA_FULL		(1 << 25)
149 #define DSIM_RX_DATA_EMPTY		(1 << 24)
150 #define DSIM_SFR_HEADER_FULL		(1 << 23)
151 #define DSIM_SFR_HEADER_EMPTY		(1 << 22)
152 #define DSIM_SFR_PAYLOAD_FULL		(1 << 21)
153 #define DSIM_SFR_PAYLOAD_EMPTY		(1 << 20)
154 #define DSIM_I80_HEADER_FULL		(1 << 19)
155 #define DSIM_I80_HEADER_EMPTY		(1 << 18)
156 #define DSIM_I80_PAYLOAD_FULL		(1 << 17)
157 #define DSIM_I80_PAYLOAD_EMPTY		(1 << 16)
158 #define DSIM_SD_HEADER_FULL		(1 << 15)
159 #define DSIM_SD_HEADER_EMPTY		(1 << 14)
160 #define DSIM_SD_PAYLOAD_FULL		(1 << 13)
161 #define DSIM_SD_PAYLOAD_EMPTY		(1 << 12)
162 #define DSIM_MD_HEADER_FULL		(1 << 11)
163 #define DSIM_MD_HEADER_EMPTY		(1 << 10)
164 #define DSIM_MD_PAYLOAD_FULL		(1 << 9)
165 #define DSIM_MD_PAYLOAD_EMPTY		(1 << 8)
166 #define DSIM_RX_FIFO			(1 << 4)
167 #define DSIM_SFR_FIFO			(1 << 3)
168 #define DSIM_I80_FIFO			(1 << 2)
169 #define DSIM_SD_FIFO			(1 << 1)
170 #define DSIM_MD_FIFO			(1 << 0)
171 
172 /* DSIM_PHYACCHR */
173 #define DSIM_AFC_EN			(1 << 14)
174 #define DSIM_AFC_CTL(x)			(((x) & 0x7) << 5)
175 
176 /* DSIM_PLLCTRL */
177 #define DSIM_FREQ_BAND(x)		((x) << 24)
178 #define DSIM_PLL_EN			(1 << 23)
179 #define DSIM_PLL_P(x)			((x) << 13)
180 #define DSIM_PLL_M(x)			((x) << 4)
181 #define DSIM_PLL_S(x)			((x) << 1)
182 
183 /* DSIM_PHYCTRL */
184 #define DSIM_PHYCTRL_ULPS_EXIT(x)	(((x) & 0x1ff) << 0)
185 #define DSIM_PHYCTRL_B_DPHYCTL_VREG_LP	(1 << 30)
186 #define DSIM_PHYCTRL_B_DPHYCTL_SLEW_UP	(1 << 14)
187 
188 /* DSIM_PHYTIMING */
189 #define DSIM_PHYTIMING_LPX(x)		((x) << 8)
190 #define DSIM_PHYTIMING_HS_EXIT(x)	((x) << 0)
191 
192 /* DSIM_PHYTIMING1 */
193 #define DSIM_PHYTIMING1_CLK_PREPARE(x)	((x) << 24)
194 #define DSIM_PHYTIMING1_CLK_ZERO(x)	((x) << 16)
195 #define DSIM_PHYTIMING1_CLK_POST(x)	((x) << 8)
196 #define DSIM_PHYTIMING1_CLK_TRAIL(x)	((x) << 0)
197 
198 /* DSIM_PHYTIMING2 */
199 #define DSIM_PHYTIMING2_HS_PREPARE(x)	((x) << 16)
200 #define DSIM_PHYTIMING2_HS_ZERO(x)	((x) << 8)
201 #define DSIM_PHYTIMING2_HS_TRAIL(x)	((x) << 0)
202 
203 #define DSI_MAX_BUS_WIDTH		4
204 #define DSI_NUM_VIRTUAL_CHANNELS	4
205 #define DSI_TX_FIFO_SIZE		2048
206 #define DSI_RX_FIFO_SIZE		256
207 #define DSI_XFER_TIMEOUT_MS		100
208 #define DSI_RX_FIFO_EMPTY		0x30800002
209 
210 #define OLD_SCLK_MIPI_CLK_NAME "pll_clk"
211 
212 #define REG_ADDR(dsi, reg_idx)		((dsi)->reg_base + \
213 					dsi->driver_data->reg_ofs[(reg_idx)])
214 #define DSI_WRITE(dsi, reg_idx, val)	writel((val), \
215 					REG_ADDR((dsi), (reg_idx)))
216 #define DSI_READ(dsi, reg_idx)		readl(REG_ADDR((dsi), (reg_idx)))
217 
218 static char *clk_names[5] = { "bus_clk", "sclk_mipi",
219 	"phyclk_mipidphy0_bitclkdiv8", "phyclk_mipidphy0_rxclkesc0",
220 	"sclk_rgb_vclk_to_dsim0" };
221 
222 enum exynos_dsi_transfer_type {
223 	EXYNOS_DSI_TX,
224 	EXYNOS_DSI_RX,
225 };
226 
227 struct exynos_dsi_transfer {
228 	struct list_head list;
229 	struct completion completed;
230 	int result;
231 	u8 data_id;
232 	u8 data[2];
233 	u16 flags;
234 
235 	const u8 *tx_payload;
236 	u16 tx_len;
237 	u16 tx_done;
238 
239 	u8 *rx_payload;
240 	u16 rx_len;
241 	u16 rx_done;
242 };
243 
244 #define DSIM_STATE_ENABLED		BIT(0)
245 #define DSIM_STATE_INITIALIZED		BIT(1)
246 #define DSIM_STATE_CMD_LPM		BIT(2)
247 #define DSIM_STATE_VIDOUT_AVAILABLE	BIT(3)
248 
249 struct exynos_dsi_driver_data {
250 	unsigned int *reg_ofs;
251 	unsigned int plltmr_reg;
252 	unsigned int has_freqband:1;
253 	unsigned int has_clklane_stop:1;
254 	unsigned int num_clks;
255 	unsigned int max_freq;
256 	unsigned int wait_for_reset;
257 	unsigned int num_bits_resol;
258 	unsigned int *reg_values;
259 };
260 
261 struct exynos_dsi {
262 	struct drm_encoder encoder;
263 	struct mipi_dsi_host dsi_host;
264 	struct drm_connector connector;
265 	struct device_node *panel_node;
266 	struct drm_panel *panel;
267 	struct device *dev;
268 
269 	void __iomem *reg_base;
270 	struct phy *phy;
271 	struct clk **clks;
272 	struct regulator_bulk_data supplies[2];
273 	int irq;
274 	int te_gpio;
275 
276 	u32 pll_clk_rate;
277 	u32 burst_clk_rate;
278 	u32 esc_clk_rate;
279 	u32 lanes;
280 	u32 mode_flags;
281 	u32 format;
282 	struct videomode vm;
283 
284 	int state;
285 	struct drm_property *brightness;
286 	struct completion completed;
287 
288 	spinlock_t transfer_lock; /* protects transfer_list */
289 	struct list_head transfer_list;
290 
291 	struct exynos_dsi_driver_data *driver_data;
292 	struct device_node *bridge_node;
293 };
294 
295 #define host_to_dsi(host) container_of(host, struct exynos_dsi, dsi_host)
296 #define connector_to_dsi(c) container_of(c, struct exynos_dsi, connector)
297 
298 static inline struct exynos_dsi *encoder_to_dsi(struct drm_encoder *e)
299 {
300 	return container_of(e, struct exynos_dsi, encoder);
301 }
302 
303 enum reg_idx {
304 	DSIM_STATUS_REG,	/* Status register */
305 	DSIM_SWRST_REG,		/* Software reset register */
306 	DSIM_CLKCTRL_REG,	/* Clock control register */
307 	DSIM_TIMEOUT_REG,	/* Time out register */
308 	DSIM_CONFIG_REG,	/* Configuration register */
309 	DSIM_ESCMODE_REG,	/* Escape mode register */
310 	DSIM_MDRESOL_REG,
311 	DSIM_MVPORCH_REG,	/* Main display Vporch register */
312 	DSIM_MHPORCH_REG,	/* Main display Hporch register */
313 	DSIM_MSYNC_REG,		/* Main display sync area register */
314 	DSIM_INTSRC_REG,	/* Interrupt source register */
315 	DSIM_INTMSK_REG,	/* Interrupt mask register */
316 	DSIM_PKTHDR_REG,	/* Packet Header FIFO register */
317 	DSIM_PAYLOAD_REG,	/* Payload FIFO register */
318 	DSIM_RXFIFO_REG,	/* Read FIFO register */
319 	DSIM_FIFOCTRL_REG,	/* FIFO status and control register */
320 	DSIM_PLLCTRL_REG,	/* PLL control register */
321 	DSIM_PHYCTRL_REG,
322 	DSIM_PHYTIMING_REG,
323 	DSIM_PHYTIMING1_REG,
324 	DSIM_PHYTIMING2_REG,
325 	NUM_REGS
326 };
327 static unsigned int exynos_reg_ofs[] = {
328 	[DSIM_STATUS_REG] =  0x00,
329 	[DSIM_SWRST_REG] =  0x04,
330 	[DSIM_CLKCTRL_REG] =  0x08,
331 	[DSIM_TIMEOUT_REG] =  0x0c,
332 	[DSIM_CONFIG_REG] =  0x10,
333 	[DSIM_ESCMODE_REG] =  0x14,
334 	[DSIM_MDRESOL_REG] =  0x18,
335 	[DSIM_MVPORCH_REG] =  0x1c,
336 	[DSIM_MHPORCH_REG] =  0x20,
337 	[DSIM_MSYNC_REG] =  0x24,
338 	[DSIM_INTSRC_REG] =  0x2c,
339 	[DSIM_INTMSK_REG] =  0x30,
340 	[DSIM_PKTHDR_REG] =  0x34,
341 	[DSIM_PAYLOAD_REG] =  0x38,
342 	[DSIM_RXFIFO_REG] =  0x3c,
343 	[DSIM_FIFOCTRL_REG] =  0x44,
344 	[DSIM_PLLCTRL_REG] =  0x4c,
345 	[DSIM_PHYCTRL_REG] =  0x5c,
346 	[DSIM_PHYTIMING_REG] =  0x64,
347 	[DSIM_PHYTIMING1_REG] =  0x68,
348 	[DSIM_PHYTIMING2_REG] =  0x6c,
349 };
350 
351 static unsigned int exynos5433_reg_ofs[] = {
352 	[DSIM_STATUS_REG] = 0x04,
353 	[DSIM_SWRST_REG] = 0x0C,
354 	[DSIM_CLKCTRL_REG] = 0x10,
355 	[DSIM_TIMEOUT_REG] = 0x14,
356 	[DSIM_CONFIG_REG] = 0x18,
357 	[DSIM_ESCMODE_REG] = 0x1C,
358 	[DSIM_MDRESOL_REG] = 0x20,
359 	[DSIM_MVPORCH_REG] = 0x24,
360 	[DSIM_MHPORCH_REG] = 0x28,
361 	[DSIM_MSYNC_REG] = 0x2C,
362 	[DSIM_INTSRC_REG] = 0x34,
363 	[DSIM_INTMSK_REG] = 0x38,
364 	[DSIM_PKTHDR_REG] = 0x3C,
365 	[DSIM_PAYLOAD_REG] = 0x40,
366 	[DSIM_RXFIFO_REG] = 0x44,
367 	[DSIM_FIFOCTRL_REG] = 0x4C,
368 	[DSIM_PLLCTRL_REG] = 0x94,
369 	[DSIM_PHYCTRL_REG] = 0xA4,
370 	[DSIM_PHYTIMING_REG] = 0xB4,
371 	[DSIM_PHYTIMING1_REG] = 0xB8,
372 	[DSIM_PHYTIMING2_REG] = 0xBC,
373 };
374 
375 enum reg_value_idx {
376 	RESET_TYPE,
377 	PLL_TIMER,
378 	STOP_STATE_CNT,
379 	PHYCTRL_ULPS_EXIT,
380 	PHYCTRL_VREG_LP,
381 	PHYCTRL_SLEW_UP,
382 	PHYTIMING_LPX,
383 	PHYTIMING_HS_EXIT,
384 	PHYTIMING_CLK_PREPARE,
385 	PHYTIMING_CLK_ZERO,
386 	PHYTIMING_CLK_POST,
387 	PHYTIMING_CLK_TRAIL,
388 	PHYTIMING_HS_PREPARE,
389 	PHYTIMING_HS_ZERO,
390 	PHYTIMING_HS_TRAIL
391 };
392 
393 static unsigned int reg_values[] = {
394 	[RESET_TYPE] = DSIM_SWRST,
395 	[PLL_TIMER] = 500,
396 	[STOP_STATE_CNT] = 0xf,
397 	[PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0x0af),
398 	[PHYCTRL_VREG_LP] = 0,
399 	[PHYCTRL_SLEW_UP] = 0,
400 	[PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x06),
401 	[PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0b),
402 	[PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x07),
403 	[PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x27),
404 	[PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0d),
405 	[PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x08),
406 	[PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x09),
407 	[PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x0d),
408 	[PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0b),
409 };
410 
411 static unsigned int exynos5433_reg_values[] = {
412 	[RESET_TYPE] = DSIM_FUNCRST,
413 	[PLL_TIMER] = 22200,
414 	[STOP_STATE_CNT] = 0xa,
415 	[PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0x190),
416 	[PHYCTRL_VREG_LP] = DSIM_PHYCTRL_B_DPHYCTL_VREG_LP,
417 	[PHYCTRL_SLEW_UP] = DSIM_PHYCTRL_B_DPHYCTL_SLEW_UP,
418 	[PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x07),
419 	[PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0c),
420 	[PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x09),
421 	[PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x2d),
422 	[PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0e),
423 	[PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x09),
424 	[PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x0b),
425 	[PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x10),
426 	[PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0c),
427 };
428 
429 static struct exynos_dsi_driver_data exynos3_dsi_driver_data = {
430 	.reg_ofs = exynos_reg_ofs,
431 	.plltmr_reg = 0x50,
432 	.has_freqband = 1,
433 	.has_clklane_stop = 1,
434 	.num_clks = 2,
435 	.max_freq = 1000,
436 	.wait_for_reset = 1,
437 	.num_bits_resol = 11,
438 	.reg_values = reg_values,
439 };
440 
441 static struct exynos_dsi_driver_data exynos4_dsi_driver_data = {
442 	.reg_ofs = exynos_reg_ofs,
443 	.plltmr_reg = 0x50,
444 	.has_freqband = 1,
445 	.has_clklane_stop = 1,
446 	.num_clks = 2,
447 	.max_freq = 1000,
448 	.wait_for_reset = 1,
449 	.num_bits_resol = 11,
450 	.reg_values = reg_values,
451 };
452 
453 static struct exynos_dsi_driver_data exynos4415_dsi_driver_data = {
454 	.reg_ofs = exynos_reg_ofs,
455 	.plltmr_reg = 0x58,
456 	.has_clklane_stop = 1,
457 	.num_clks = 2,
458 	.max_freq = 1000,
459 	.wait_for_reset = 1,
460 	.num_bits_resol = 11,
461 	.reg_values = reg_values,
462 };
463 
464 static struct exynos_dsi_driver_data exynos5_dsi_driver_data = {
465 	.reg_ofs = exynos_reg_ofs,
466 	.plltmr_reg = 0x58,
467 	.num_clks = 2,
468 	.max_freq = 1000,
469 	.wait_for_reset = 1,
470 	.num_bits_resol = 11,
471 	.reg_values = reg_values,
472 };
473 
474 static struct exynos_dsi_driver_data exynos5433_dsi_driver_data = {
475 	.reg_ofs = exynos5433_reg_ofs,
476 	.plltmr_reg = 0xa0,
477 	.has_clklane_stop = 1,
478 	.num_clks = 5,
479 	.max_freq = 1500,
480 	.wait_for_reset = 0,
481 	.num_bits_resol = 12,
482 	.reg_values = exynos5433_reg_values,
483 };
484 
485 static struct of_device_id exynos_dsi_of_match[] = {
486 	{ .compatible = "samsung,exynos3250-mipi-dsi",
487 	  .data = &exynos3_dsi_driver_data },
488 	{ .compatible = "samsung,exynos4210-mipi-dsi",
489 	  .data = &exynos4_dsi_driver_data },
490 	{ .compatible = "samsung,exynos4415-mipi-dsi",
491 	  .data = &exynos4415_dsi_driver_data },
492 	{ .compatible = "samsung,exynos5410-mipi-dsi",
493 	  .data = &exynos5_dsi_driver_data },
494 	{ .compatible = "samsung,exynos5433-mipi-dsi",
495 	  .data = &exynos5433_dsi_driver_data },
496 	{ }
497 };
498 
499 static inline struct exynos_dsi_driver_data *exynos_dsi_get_driver_data(
500 						struct platform_device *pdev)
501 {
502 	const struct of_device_id *of_id =
503 			of_match_device(exynos_dsi_of_match, &pdev->dev);
504 
505 	return (struct exynos_dsi_driver_data *)of_id->data;
506 }
507 
508 static void exynos_dsi_wait_for_reset(struct exynos_dsi *dsi)
509 {
510 	if (wait_for_completion_timeout(&dsi->completed, msecs_to_jiffies(300)))
511 		return;
512 
513 	dev_err(dsi->dev, "timeout waiting for reset\n");
514 }
515 
516 static void exynos_dsi_reset(struct exynos_dsi *dsi)
517 {
518 	struct exynos_dsi_driver_data *driver_data = dsi->driver_data;
519 
520 	reinit_completion(&dsi->completed);
521 	DSI_WRITE(dsi, DSIM_SWRST_REG, driver_data->reg_values[RESET_TYPE]);
522 }
523 
524 #ifndef MHZ
525 #define MHZ	(1000*1000)
526 #endif
527 
528 static unsigned long exynos_dsi_pll_find_pms(struct exynos_dsi *dsi,
529 		unsigned long fin, unsigned long fout, u8 *p, u16 *m, u8 *s)
530 {
531 	struct exynos_dsi_driver_data *driver_data = dsi->driver_data;
532 	unsigned long best_freq = 0;
533 	u32 min_delta = 0xffffffff;
534 	u8 p_min, p_max;
535 	u8 _p, uninitialized_var(best_p);
536 	u16 _m, uninitialized_var(best_m);
537 	u8 _s, uninitialized_var(best_s);
538 
539 	p_min = DIV_ROUND_UP(fin, (12 * MHZ));
540 	p_max = fin / (6 * MHZ);
541 
542 	for (_p = p_min; _p <= p_max; ++_p) {
543 		for (_s = 0; _s <= 5; ++_s) {
544 			u64 tmp;
545 			u32 delta;
546 
547 			tmp = (u64)fout * (_p << _s);
548 			do_div(tmp, fin);
549 			_m = tmp;
550 			if (_m < 41 || _m > 125)
551 				continue;
552 
553 			tmp = (u64)_m * fin;
554 			do_div(tmp, _p);
555 			if (tmp < 500 * MHZ ||
556 					tmp > driver_data->max_freq * MHZ)
557 				continue;
558 
559 			tmp = (u64)_m * fin;
560 			do_div(tmp, _p << _s);
561 
562 			delta = abs(fout - tmp);
563 			if (delta < min_delta) {
564 				best_p = _p;
565 				best_m = _m;
566 				best_s = _s;
567 				min_delta = delta;
568 				best_freq = tmp;
569 			}
570 		}
571 	}
572 
573 	if (best_freq) {
574 		*p = best_p;
575 		*m = best_m;
576 		*s = best_s;
577 	}
578 
579 	return best_freq;
580 }
581 
582 static unsigned long exynos_dsi_set_pll(struct exynos_dsi *dsi,
583 					unsigned long freq)
584 {
585 	struct exynos_dsi_driver_data *driver_data = dsi->driver_data;
586 	unsigned long fin, fout;
587 	int timeout;
588 	u8 p, s;
589 	u16 m;
590 	u32 reg;
591 
592 	fin = dsi->pll_clk_rate;
593 	fout = exynos_dsi_pll_find_pms(dsi, fin, freq, &p, &m, &s);
594 	if (!fout) {
595 		dev_err(dsi->dev,
596 			"failed to find PLL PMS for requested frequency\n");
597 		return 0;
598 	}
599 	dev_dbg(dsi->dev, "PLL freq %lu, (p %d, m %d, s %d)\n", fout, p, m, s);
600 
601 	writel(driver_data->reg_values[PLL_TIMER],
602 			dsi->reg_base + driver_data->plltmr_reg);
603 
604 	reg = DSIM_PLL_EN | DSIM_PLL_P(p) | DSIM_PLL_M(m) | DSIM_PLL_S(s);
605 
606 	if (driver_data->has_freqband) {
607 		static const unsigned long freq_bands[] = {
608 			100 * MHZ, 120 * MHZ, 160 * MHZ, 200 * MHZ,
609 			270 * MHZ, 320 * MHZ, 390 * MHZ, 450 * MHZ,
610 			510 * MHZ, 560 * MHZ, 640 * MHZ, 690 * MHZ,
611 			770 * MHZ, 870 * MHZ, 950 * MHZ,
612 		};
613 		int band;
614 
615 		for (band = 0; band < ARRAY_SIZE(freq_bands); ++band)
616 			if (fout < freq_bands[band])
617 				break;
618 
619 		dev_dbg(dsi->dev, "band %d\n", band);
620 
621 		reg |= DSIM_FREQ_BAND(band);
622 	}
623 
624 	DSI_WRITE(dsi, DSIM_PLLCTRL_REG, reg);
625 
626 	timeout = 1000;
627 	do {
628 		if (timeout-- == 0) {
629 			dev_err(dsi->dev, "PLL failed to stabilize\n");
630 			return 0;
631 		}
632 		reg = DSI_READ(dsi, DSIM_STATUS_REG);
633 	} while ((reg & DSIM_PLL_STABLE) == 0);
634 
635 	return fout;
636 }
637 
638 static int exynos_dsi_enable_clock(struct exynos_dsi *dsi)
639 {
640 	unsigned long hs_clk, byte_clk, esc_clk;
641 	unsigned long esc_div;
642 	u32 reg;
643 
644 	hs_clk = exynos_dsi_set_pll(dsi, dsi->burst_clk_rate);
645 	if (!hs_clk) {
646 		dev_err(dsi->dev, "failed to configure DSI PLL\n");
647 		return -EFAULT;
648 	}
649 
650 	byte_clk = hs_clk / 8;
651 	esc_div = DIV_ROUND_UP(byte_clk, dsi->esc_clk_rate);
652 	esc_clk = byte_clk / esc_div;
653 
654 	if (esc_clk > 20 * MHZ) {
655 		++esc_div;
656 		esc_clk = byte_clk / esc_div;
657 	}
658 
659 	dev_dbg(dsi->dev, "hs_clk = %lu, byte_clk = %lu, esc_clk = %lu\n",
660 		hs_clk, byte_clk, esc_clk);
661 
662 	reg = DSI_READ(dsi, DSIM_CLKCTRL_REG);
663 	reg &= ~(DSIM_ESC_PRESCALER_MASK | DSIM_LANE_ESC_CLK_EN_CLK
664 			| DSIM_LANE_ESC_CLK_EN_DATA_MASK | DSIM_PLL_BYPASS
665 			| DSIM_BYTE_CLK_SRC_MASK);
666 	reg |= DSIM_ESC_CLKEN | DSIM_BYTE_CLKEN
667 			| DSIM_ESC_PRESCALER(esc_div)
668 			| DSIM_LANE_ESC_CLK_EN_CLK
669 			| DSIM_LANE_ESC_CLK_EN_DATA(BIT(dsi->lanes) - 1)
670 			| DSIM_BYTE_CLK_SRC(0)
671 			| DSIM_TX_REQUEST_HSCLK;
672 	DSI_WRITE(dsi, DSIM_CLKCTRL_REG, reg);
673 
674 	return 0;
675 }
676 
677 static void exynos_dsi_set_phy_ctrl(struct exynos_dsi *dsi)
678 {
679 	struct exynos_dsi_driver_data *driver_data = dsi->driver_data;
680 	unsigned int *reg_values = driver_data->reg_values;
681 	u32 reg;
682 
683 	if (driver_data->has_freqband)
684 		return;
685 
686 	/* B D-PHY: D-PHY Master & Slave Analog Block control */
687 	reg = reg_values[PHYCTRL_ULPS_EXIT] | reg_values[PHYCTRL_VREG_LP] |
688 		reg_values[PHYCTRL_SLEW_UP];
689 	DSI_WRITE(dsi, DSIM_PHYCTRL_REG, reg);
690 
691 	/*
692 	 * T LPX: Transmitted length of any Low-Power state period
693 	 * T HS-EXIT: Time that the transmitter drives LP-11 following a HS
694 	 *	burst
695 	 */
696 	reg = reg_values[PHYTIMING_LPX] | reg_values[PHYTIMING_HS_EXIT];
697 	DSI_WRITE(dsi, DSIM_PHYTIMING_REG, reg);
698 
699 	/*
700 	 * T CLK-PREPARE: Time that the transmitter drives the Clock Lane LP-00
701 	 *	Line state immediately before the HS-0 Line state starting the
702 	 *	HS transmission
703 	 * T CLK-ZERO: Time that the transmitter drives the HS-0 state prior to
704 	 *	transmitting the Clock.
705 	 * T CLK_POST: Time that the transmitter continues to send HS clock
706 	 *	after the last associated Data Lane has transitioned to LP Mode
707 	 *	Interval is defined as the period from the end of T HS-TRAIL to
708 	 *	the beginning of T CLK-TRAIL
709 	 * T CLK-TRAIL: Time that the transmitter drives the HS-0 state after
710 	 *	the last payload clock bit of a HS transmission burst
711 	 */
712 	reg = reg_values[PHYTIMING_CLK_PREPARE] |
713 		reg_values[PHYTIMING_CLK_ZERO] |
714 		reg_values[PHYTIMING_CLK_POST] |
715 		reg_values[PHYTIMING_CLK_TRAIL];
716 
717 	DSI_WRITE(dsi, DSIM_PHYTIMING1_REG, reg);
718 
719 	/*
720 	 * T HS-PREPARE: Time that the transmitter drives the Data Lane LP-00
721 	 *	Line state immediately before the HS-0 Line state starting the
722 	 *	HS transmission
723 	 * T HS-ZERO: Time that the transmitter drives the HS-0 state prior to
724 	 *	transmitting the Sync sequence.
725 	 * T HS-TRAIL: Time that the transmitter drives the flipped differential
726 	 *	state after last payload data bit of a HS transmission burst
727 	 */
728 	reg = reg_values[PHYTIMING_HS_PREPARE] | reg_values[PHYTIMING_HS_ZERO] |
729 		reg_values[PHYTIMING_HS_TRAIL];
730 	DSI_WRITE(dsi, DSIM_PHYTIMING2_REG, reg);
731 }
732 
733 static void exynos_dsi_disable_clock(struct exynos_dsi *dsi)
734 {
735 	u32 reg;
736 
737 	reg = DSI_READ(dsi, DSIM_CLKCTRL_REG);
738 	reg &= ~(DSIM_LANE_ESC_CLK_EN_CLK | DSIM_LANE_ESC_CLK_EN_DATA_MASK
739 			| DSIM_ESC_CLKEN | DSIM_BYTE_CLKEN);
740 	DSI_WRITE(dsi, DSIM_CLKCTRL_REG, reg);
741 
742 	reg = DSI_READ(dsi, DSIM_PLLCTRL_REG);
743 	reg &= ~DSIM_PLL_EN;
744 	DSI_WRITE(dsi, DSIM_PLLCTRL_REG, reg);
745 }
746 
747 static void exynos_dsi_enable_lane(struct exynos_dsi *dsi, u32 lane)
748 {
749 	u32 reg = DSI_READ(dsi, DSIM_CONFIG_REG);
750 	reg |= (DSIM_NUM_OF_DATA_LANE(dsi->lanes - 1) | DSIM_LANE_EN_CLK |
751 			DSIM_LANE_EN(lane));
752 	DSI_WRITE(dsi, DSIM_CONFIG_REG, reg);
753 }
754 
755 static int exynos_dsi_init_link(struct exynos_dsi *dsi)
756 {
757 	struct exynos_dsi_driver_data *driver_data = dsi->driver_data;
758 	int timeout;
759 	u32 reg;
760 	u32 lanes_mask;
761 
762 	/* Initialize FIFO pointers */
763 	reg = DSI_READ(dsi, DSIM_FIFOCTRL_REG);
764 	reg &= ~0x1f;
765 	DSI_WRITE(dsi, DSIM_FIFOCTRL_REG, reg);
766 
767 	usleep_range(9000, 11000);
768 
769 	reg |= 0x1f;
770 	DSI_WRITE(dsi, DSIM_FIFOCTRL_REG, reg);
771 	usleep_range(9000, 11000);
772 
773 	/* DSI configuration */
774 	reg = 0;
775 
776 	/*
777 	 * The first bit of mode_flags specifies display configuration.
778 	 * If this bit is set[= MIPI_DSI_MODE_VIDEO], dsi will support video
779 	 * mode, otherwise it will support command mode.
780 	 */
781 	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
782 		reg |= DSIM_VIDEO_MODE;
783 
784 		/*
785 		 * The user manual describes that following bits are ignored in
786 		 * command mode.
787 		 */
788 		if (!(dsi->mode_flags & MIPI_DSI_MODE_VSYNC_FLUSH))
789 			reg |= DSIM_MFLUSH_VS;
790 		if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
791 			reg |= DSIM_SYNC_INFORM;
792 		if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
793 			reg |= DSIM_BURST_MODE;
794 		if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_AUTO_VERT)
795 			reg |= DSIM_AUTO_MODE;
796 		if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HSE)
797 			reg |= DSIM_HSE_MODE;
798 		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HFP))
799 			reg |= DSIM_HFP_MODE;
800 		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HBP))
801 			reg |= DSIM_HBP_MODE;
802 		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HSA))
803 			reg |= DSIM_HSA_MODE;
804 	}
805 
806 	if (!(dsi->mode_flags & MIPI_DSI_MODE_EOT_PACKET))
807 		reg |= DSIM_EOT_DISABLE;
808 
809 	switch (dsi->format) {
810 	case MIPI_DSI_FMT_RGB888:
811 		reg |= DSIM_MAIN_PIX_FORMAT_RGB888;
812 		break;
813 	case MIPI_DSI_FMT_RGB666:
814 		reg |= DSIM_MAIN_PIX_FORMAT_RGB666;
815 		break;
816 	case MIPI_DSI_FMT_RGB666_PACKED:
817 		reg |= DSIM_MAIN_PIX_FORMAT_RGB666_P;
818 		break;
819 	case MIPI_DSI_FMT_RGB565:
820 		reg |= DSIM_MAIN_PIX_FORMAT_RGB565;
821 		break;
822 	default:
823 		dev_err(dsi->dev, "invalid pixel format\n");
824 		return -EINVAL;
825 	}
826 
827 	/*
828 	 * Use non-continuous clock mode if the periparal wants and
829 	 * host controller supports
830 	 *
831 	 * In non-continous clock mode, host controller will turn off
832 	 * the HS clock between high-speed transmissions to reduce
833 	 * power consumption.
834 	 */
835 	if (driver_data->has_clklane_stop &&
836 			dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) {
837 		reg |= DSIM_CLKLANE_STOP;
838 	}
839 	DSI_WRITE(dsi, DSIM_CONFIG_REG, reg);
840 
841 	lanes_mask = BIT(dsi->lanes) - 1;
842 	exynos_dsi_enable_lane(dsi, lanes_mask);
843 
844 	/* Check clock and data lane state are stop state */
845 	timeout = 100;
846 	do {
847 		if (timeout-- == 0) {
848 			dev_err(dsi->dev, "waiting for bus lanes timed out\n");
849 			return -EFAULT;
850 		}
851 
852 		reg = DSI_READ(dsi, DSIM_STATUS_REG);
853 		if ((reg & DSIM_STOP_STATE_DAT(lanes_mask))
854 		    != DSIM_STOP_STATE_DAT(lanes_mask))
855 			continue;
856 	} while (!(reg & (DSIM_STOP_STATE_CLK | DSIM_TX_READY_HS_CLK)));
857 
858 	reg = DSI_READ(dsi, DSIM_ESCMODE_REG);
859 	reg &= ~DSIM_STOP_STATE_CNT_MASK;
860 	reg |= DSIM_STOP_STATE_CNT(driver_data->reg_values[STOP_STATE_CNT]);
861 	DSI_WRITE(dsi, DSIM_ESCMODE_REG, reg);
862 
863 	reg = DSIM_BTA_TIMEOUT(0xff) | DSIM_LPDR_TIMEOUT(0xffff);
864 	DSI_WRITE(dsi, DSIM_TIMEOUT_REG, reg);
865 
866 	return 0;
867 }
868 
869 static void exynos_dsi_set_display_mode(struct exynos_dsi *dsi)
870 {
871 	struct videomode *vm = &dsi->vm;
872 	unsigned int num_bits_resol = dsi->driver_data->num_bits_resol;
873 	u32 reg;
874 
875 	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
876 		reg = DSIM_CMD_ALLOW(0xf)
877 			| DSIM_STABLE_VFP(vm->vfront_porch)
878 			| DSIM_MAIN_VBP(vm->vback_porch);
879 		DSI_WRITE(dsi, DSIM_MVPORCH_REG, reg);
880 
881 		reg = DSIM_MAIN_HFP(vm->hfront_porch)
882 			| DSIM_MAIN_HBP(vm->hback_porch);
883 		DSI_WRITE(dsi, DSIM_MHPORCH_REG, reg);
884 
885 		reg = DSIM_MAIN_VSA(vm->vsync_len)
886 			| DSIM_MAIN_HSA(vm->hsync_len);
887 		DSI_WRITE(dsi, DSIM_MSYNC_REG, reg);
888 	}
889 	reg =  DSIM_MAIN_HRESOL(vm->hactive, num_bits_resol) |
890 		DSIM_MAIN_VRESOL(vm->vactive, num_bits_resol);
891 
892 	DSI_WRITE(dsi, DSIM_MDRESOL_REG, reg);
893 
894 	dev_dbg(dsi->dev, "LCD size = %dx%d\n", vm->hactive, vm->vactive);
895 }
896 
897 static void exynos_dsi_set_display_enable(struct exynos_dsi *dsi, bool enable)
898 {
899 	u32 reg;
900 
901 	reg = DSI_READ(dsi, DSIM_MDRESOL_REG);
902 	if (enable)
903 		reg |= DSIM_MAIN_STAND_BY;
904 	else
905 		reg &= ~DSIM_MAIN_STAND_BY;
906 	DSI_WRITE(dsi, DSIM_MDRESOL_REG, reg);
907 }
908 
909 static int exynos_dsi_wait_for_hdr_fifo(struct exynos_dsi *dsi)
910 {
911 	int timeout = 2000;
912 
913 	do {
914 		u32 reg = DSI_READ(dsi, DSIM_FIFOCTRL_REG);
915 
916 		if (!(reg & DSIM_SFR_HEADER_FULL))
917 			return 0;
918 
919 		if (!cond_resched())
920 			usleep_range(950, 1050);
921 	} while (--timeout);
922 
923 	return -ETIMEDOUT;
924 }
925 
926 static void exynos_dsi_set_cmd_lpm(struct exynos_dsi *dsi, bool lpm)
927 {
928 	u32 v = DSI_READ(dsi, DSIM_ESCMODE_REG);
929 
930 	if (lpm)
931 		v |= DSIM_CMD_LPDT_LP;
932 	else
933 		v &= ~DSIM_CMD_LPDT_LP;
934 
935 	DSI_WRITE(dsi, DSIM_ESCMODE_REG, v);
936 }
937 
938 static void exynos_dsi_force_bta(struct exynos_dsi *dsi)
939 {
940 	u32 v = DSI_READ(dsi, DSIM_ESCMODE_REG);
941 	v |= DSIM_FORCE_BTA;
942 	DSI_WRITE(dsi, DSIM_ESCMODE_REG, v);
943 }
944 
945 static void exynos_dsi_send_to_fifo(struct exynos_dsi *dsi,
946 					struct exynos_dsi_transfer *xfer)
947 {
948 	struct device *dev = dsi->dev;
949 	const u8 *payload = xfer->tx_payload + xfer->tx_done;
950 	u16 length = xfer->tx_len - xfer->tx_done;
951 	bool first = !xfer->tx_done;
952 	u32 reg;
953 
954 	dev_dbg(dev, "< xfer %p: tx len %u, done %u, rx len %u, done %u\n",
955 		xfer, xfer->tx_len, xfer->tx_done, xfer->rx_len, xfer->rx_done);
956 
957 	if (length > DSI_TX_FIFO_SIZE)
958 		length = DSI_TX_FIFO_SIZE;
959 
960 	xfer->tx_done += length;
961 
962 	/* Send payload */
963 	while (length >= 4) {
964 		reg = (payload[3] << 24) | (payload[2] << 16)
965 					| (payload[1] << 8) | payload[0];
966 		DSI_WRITE(dsi, DSIM_PAYLOAD_REG, reg);
967 		payload += 4;
968 		length -= 4;
969 	}
970 
971 	reg = 0;
972 	switch (length) {
973 	case 3:
974 		reg |= payload[2] << 16;
975 		/* Fall through */
976 	case 2:
977 		reg |= payload[1] << 8;
978 		/* Fall through */
979 	case 1:
980 		reg |= payload[0];
981 		DSI_WRITE(dsi, DSIM_PAYLOAD_REG, reg);
982 		break;
983 	case 0:
984 		/* Do nothing */
985 		break;
986 	}
987 
988 	/* Send packet header */
989 	if (!first)
990 		return;
991 
992 	reg = (xfer->data[1] << 16) | (xfer->data[0] << 8) | xfer->data_id;
993 	if (exynos_dsi_wait_for_hdr_fifo(dsi)) {
994 		dev_err(dev, "waiting for header FIFO timed out\n");
995 		return;
996 	}
997 
998 	if (NEQV(xfer->flags & MIPI_DSI_MSG_USE_LPM,
999 		 dsi->state & DSIM_STATE_CMD_LPM)) {
1000 		exynos_dsi_set_cmd_lpm(dsi, xfer->flags & MIPI_DSI_MSG_USE_LPM);
1001 		dsi->state ^= DSIM_STATE_CMD_LPM;
1002 	}
1003 
1004 	DSI_WRITE(dsi, DSIM_PKTHDR_REG, reg);
1005 
1006 	if (xfer->flags & MIPI_DSI_MSG_REQ_ACK)
1007 		exynos_dsi_force_bta(dsi);
1008 }
1009 
1010 static void exynos_dsi_read_from_fifo(struct exynos_dsi *dsi,
1011 					struct exynos_dsi_transfer *xfer)
1012 {
1013 	u8 *payload = xfer->rx_payload + xfer->rx_done;
1014 	bool first = !xfer->rx_done;
1015 	struct device *dev = dsi->dev;
1016 	u16 length;
1017 	u32 reg;
1018 
1019 	if (first) {
1020 		reg = DSI_READ(dsi, DSIM_RXFIFO_REG);
1021 
1022 		switch (reg & 0x3f) {
1023 		case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE:
1024 		case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
1025 			if (xfer->rx_len >= 2) {
1026 				payload[1] = reg >> 16;
1027 				++xfer->rx_done;
1028 			}
1029 			/* Fall through */
1030 		case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE:
1031 		case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
1032 			payload[0] = reg >> 8;
1033 			++xfer->rx_done;
1034 			xfer->rx_len = xfer->rx_done;
1035 			xfer->result = 0;
1036 			goto clear_fifo;
1037 		case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
1038 			dev_err(dev, "DSI Error Report: 0x%04x\n",
1039 				(reg >> 8) & 0xffff);
1040 			xfer->result = 0;
1041 			goto clear_fifo;
1042 		}
1043 
1044 		length = (reg >> 8) & 0xffff;
1045 		if (length > xfer->rx_len) {
1046 			dev_err(dev,
1047 				"response too long (%u > %u bytes), stripping\n",
1048 				xfer->rx_len, length);
1049 			length = xfer->rx_len;
1050 		} else if (length < xfer->rx_len)
1051 			xfer->rx_len = length;
1052 	}
1053 
1054 	length = xfer->rx_len - xfer->rx_done;
1055 	xfer->rx_done += length;
1056 
1057 	/* Receive payload */
1058 	while (length >= 4) {
1059 		reg = DSI_READ(dsi, DSIM_RXFIFO_REG);
1060 		payload[0] = (reg >>  0) & 0xff;
1061 		payload[1] = (reg >>  8) & 0xff;
1062 		payload[2] = (reg >> 16) & 0xff;
1063 		payload[3] = (reg >> 24) & 0xff;
1064 		payload += 4;
1065 		length -= 4;
1066 	}
1067 
1068 	if (length) {
1069 		reg = DSI_READ(dsi, DSIM_RXFIFO_REG);
1070 		switch (length) {
1071 		case 3:
1072 			payload[2] = (reg >> 16) & 0xff;
1073 			/* Fall through */
1074 		case 2:
1075 			payload[1] = (reg >> 8) & 0xff;
1076 			/* Fall through */
1077 		case 1:
1078 			payload[0] = reg & 0xff;
1079 		}
1080 	}
1081 
1082 	if (xfer->rx_done == xfer->rx_len)
1083 		xfer->result = 0;
1084 
1085 clear_fifo:
1086 	length = DSI_RX_FIFO_SIZE / 4;
1087 	do {
1088 		reg = DSI_READ(dsi, DSIM_RXFIFO_REG);
1089 		if (reg == DSI_RX_FIFO_EMPTY)
1090 			break;
1091 	} while (--length);
1092 }
1093 
1094 static void exynos_dsi_transfer_start(struct exynos_dsi *dsi)
1095 {
1096 	unsigned long flags;
1097 	struct exynos_dsi_transfer *xfer;
1098 	bool start = false;
1099 
1100 again:
1101 	spin_lock_irqsave(&dsi->transfer_lock, flags);
1102 
1103 	if (list_empty(&dsi->transfer_list)) {
1104 		spin_unlock_irqrestore(&dsi->transfer_lock, flags);
1105 		return;
1106 	}
1107 
1108 	xfer = list_first_entry(&dsi->transfer_list,
1109 					struct exynos_dsi_transfer, list);
1110 
1111 	spin_unlock_irqrestore(&dsi->transfer_lock, flags);
1112 
1113 	if (xfer->tx_len && xfer->tx_done == xfer->tx_len)
1114 		/* waiting for RX */
1115 		return;
1116 
1117 	exynos_dsi_send_to_fifo(dsi, xfer);
1118 
1119 	if (xfer->tx_len || xfer->rx_len)
1120 		return;
1121 
1122 	xfer->result = 0;
1123 	complete(&xfer->completed);
1124 
1125 	spin_lock_irqsave(&dsi->transfer_lock, flags);
1126 
1127 	list_del_init(&xfer->list);
1128 	start = !list_empty(&dsi->transfer_list);
1129 
1130 	spin_unlock_irqrestore(&dsi->transfer_lock, flags);
1131 
1132 	if (start)
1133 		goto again;
1134 }
1135 
1136 static bool exynos_dsi_transfer_finish(struct exynos_dsi *dsi)
1137 {
1138 	struct exynos_dsi_transfer *xfer;
1139 	unsigned long flags;
1140 	bool start = true;
1141 
1142 	spin_lock_irqsave(&dsi->transfer_lock, flags);
1143 
1144 	if (list_empty(&dsi->transfer_list)) {
1145 		spin_unlock_irqrestore(&dsi->transfer_lock, flags);
1146 		return false;
1147 	}
1148 
1149 	xfer = list_first_entry(&dsi->transfer_list,
1150 					struct exynos_dsi_transfer, list);
1151 
1152 	spin_unlock_irqrestore(&dsi->transfer_lock, flags);
1153 
1154 	dev_dbg(dsi->dev,
1155 		"> xfer %p, tx_len %u, tx_done %u, rx_len %u, rx_done %u\n",
1156 		xfer, xfer->tx_len, xfer->tx_done, xfer->rx_len, xfer->rx_done);
1157 
1158 	if (xfer->tx_done != xfer->tx_len)
1159 		return true;
1160 
1161 	if (xfer->rx_done != xfer->rx_len)
1162 		exynos_dsi_read_from_fifo(dsi, xfer);
1163 
1164 	if (xfer->rx_done != xfer->rx_len)
1165 		return true;
1166 
1167 	spin_lock_irqsave(&dsi->transfer_lock, flags);
1168 
1169 	list_del_init(&xfer->list);
1170 	start = !list_empty(&dsi->transfer_list);
1171 
1172 	spin_unlock_irqrestore(&dsi->transfer_lock, flags);
1173 
1174 	if (!xfer->rx_len)
1175 		xfer->result = 0;
1176 	complete(&xfer->completed);
1177 
1178 	return start;
1179 }
1180 
1181 static void exynos_dsi_remove_transfer(struct exynos_dsi *dsi,
1182 					struct exynos_dsi_transfer *xfer)
1183 {
1184 	unsigned long flags;
1185 	bool start;
1186 
1187 	spin_lock_irqsave(&dsi->transfer_lock, flags);
1188 
1189 	if (!list_empty(&dsi->transfer_list) &&
1190 	    xfer == list_first_entry(&dsi->transfer_list,
1191 				     struct exynos_dsi_transfer, list)) {
1192 		list_del_init(&xfer->list);
1193 		start = !list_empty(&dsi->transfer_list);
1194 		spin_unlock_irqrestore(&dsi->transfer_lock, flags);
1195 		if (start)
1196 			exynos_dsi_transfer_start(dsi);
1197 		return;
1198 	}
1199 
1200 	list_del_init(&xfer->list);
1201 
1202 	spin_unlock_irqrestore(&dsi->transfer_lock, flags);
1203 }
1204 
1205 static int exynos_dsi_transfer(struct exynos_dsi *dsi,
1206 					struct exynos_dsi_transfer *xfer)
1207 {
1208 	unsigned long flags;
1209 	bool stopped;
1210 
1211 	xfer->tx_done = 0;
1212 	xfer->rx_done = 0;
1213 	xfer->result = -ETIMEDOUT;
1214 	init_completion(&xfer->completed);
1215 
1216 	spin_lock_irqsave(&dsi->transfer_lock, flags);
1217 
1218 	stopped = list_empty(&dsi->transfer_list);
1219 	list_add_tail(&xfer->list, &dsi->transfer_list);
1220 
1221 	spin_unlock_irqrestore(&dsi->transfer_lock, flags);
1222 
1223 	if (stopped)
1224 		exynos_dsi_transfer_start(dsi);
1225 
1226 	wait_for_completion_timeout(&xfer->completed,
1227 				    msecs_to_jiffies(DSI_XFER_TIMEOUT_MS));
1228 	if (xfer->result == -ETIMEDOUT) {
1229 		exynos_dsi_remove_transfer(dsi, xfer);
1230 		dev_err(dsi->dev, "xfer timed out: %*ph %*ph\n", 2, xfer->data,
1231 			xfer->tx_len, xfer->tx_payload);
1232 		return -ETIMEDOUT;
1233 	}
1234 
1235 	/* Also covers hardware timeout condition */
1236 	return xfer->result;
1237 }
1238 
1239 static irqreturn_t exynos_dsi_irq(int irq, void *dev_id)
1240 {
1241 	struct exynos_dsi *dsi = dev_id;
1242 	u32 status;
1243 
1244 	status = DSI_READ(dsi, DSIM_INTSRC_REG);
1245 	if (!status) {
1246 		static unsigned long int j;
1247 		if (printk_timed_ratelimit(&j, 500))
1248 			dev_warn(dsi->dev, "spurious interrupt\n");
1249 		return IRQ_HANDLED;
1250 	}
1251 	DSI_WRITE(dsi, DSIM_INTSRC_REG, status);
1252 
1253 	if (status & DSIM_INT_SW_RST_RELEASE) {
1254 		u32 mask = ~(DSIM_INT_RX_DONE | DSIM_INT_SFR_FIFO_EMPTY |
1255 			DSIM_INT_SFR_HDR_FIFO_EMPTY | DSIM_INT_FRAME_DONE |
1256 			DSIM_INT_RX_ECC_ERR | DSIM_INT_SW_RST_RELEASE);
1257 		DSI_WRITE(dsi, DSIM_INTMSK_REG, mask);
1258 		complete(&dsi->completed);
1259 		return IRQ_HANDLED;
1260 	}
1261 
1262 	if (!(status & (DSIM_INT_RX_DONE | DSIM_INT_SFR_FIFO_EMPTY |
1263 			DSIM_INT_FRAME_DONE | DSIM_INT_PLL_STABLE)))
1264 		return IRQ_HANDLED;
1265 
1266 	if (exynos_dsi_transfer_finish(dsi))
1267 		exynos_dsi_transfer_start(dsi);
1268 
1269 	return IRQ_HANDLED;
1270 }
1271 
1272 static irqreturn_t exynos_dsi_te_irq_handler(int irq, void *dev_id)
1273 {
1274 	struct exynos_dsi *dsi = (struct exynos_dsi *)dev_id;
1275 	struct drm_encoder *encoder = &dsi->encoder;
1276 
1277 	if (dsi->state & DSIM_STATE_VIDOUT_AVAILABLE)
1278 		exynos_drm_crtc_te_handler(encoder->crtc);
1279 
1280 	return IRQ_HANDLED;
1281 }
1282 
1283 static void exynos_dsi_enable_irq(struct exynos_dsi *dsi)
1284 {
1285 	enable_irq(dsi->irq);
1286 
1287 	if (gpio_is_valid(dsi->te_gpio))
1288 		enable_irq(gpio_to_irq(dsi->te_gpio));
1289 }
1290 
1291 static void exynos_dsi_disable_irq(struct exynos_dsi *dsi)
1292 {
1293 	if (gpio_is_valid(dsi->te_gpio))
1294 		disable_irq(gpio_to_irq(dsi->te_gpio));
1295 
1296 	disable_irq(dsi->irq);
1297 }
1298 
1299 static int exynos_dsi_init(struct exynos_dsi *dsi)
1300 {
1301 	struct exynos_dsi_driver_data *driver_data = dsi->driver_data;
1302 
1303 	exynos_dsi_reset(dsi);
1304 	exynos_dsi_enable_irq(dsi);
1305 
1306 	if (driver_data->reg_values[RESET_TYPE] == DSIM_FUNCRST)
1307 		exynos_dsi_enable_lane(dsi, BIT(dsi->lanes) - 1);
1308 
1309 	exynos_dsi_enable_clock(dsi);
1310 	if (driver_data->wait_for_reset)
1311 		exynos_dsi_wait_for_reset(dsi);
1312 	exynos_dsi_set_phy_ctrl(dsi);
1313 	exynos_dsi_init_link(dsi);
1314 
1315 	return 0;
1316 }
1317 
1318 static int exynos_dsi_register_te_irq(struct exynos_dsi *dsi)
1319 {
1320 	int ret;
1321 	int te_gpio_irq;
1322 
1323 	dsi->te_gpio = of_get_named_gpio(dsi->panel_node, "te-gpios", 0);
1324 	if (!gpio_is_valid(dsi->te_gpio)) {
1325 		dev_err(dsi->dev, "no te-gpios specified\n");
1326 		ret = dsi->te_gpio;
1327 		goto out;
1328 	}
1329 
1330 	ret = gpio_request(dsi->te_gpio, "te_gpio");
1331 	if (ret) {
1332 		dev_err(dsi->dev, "gpio request failed with %d\n", ret);
1333 		goto out;
1334 	}
1335 
1336 	te_gpio_irq = gpio_to_irq(dsi->te_gpio);
1337 	irq_set_status_flags(te_gpio_irq, IRQ_NOAUTOEN);
1338 
1339 	ret = request_threaded_irq(te_gpio_irq, exynos_dsi_te_irq_handler, NULL,
1340 					IRQF_TRIGGER_RISING, "TE", dsi);
1341 	if (ret) {
1342 		dev_err(dsi->dev, "request interrupt failed with %d\n", ret);
1343 		gpio_free(dsi->te_gpio);
1344 		goto out;
1345 	}
1346 
1347 out:
1348 	return ret;
1349 }
1350 
1351 static void exynos_dsi_unregister_te_irq(struct exynos_dsi *dsi)
1352 {
1353 	if (gpio_is_valid(dsi->te_gpio)) {
1354 		free_irq(gpio_to_irq(dsi->te_gpio), dsi);
1355 		gpio_free(dsi->te_gpio);
1356 		dsi->te_gpio = -ENOENT;
1357 	}
1358 }
1359 
1360 static int exynos_dsi_host_attach(struct mipi_dsi_host *host,
1361 				  struct mipi_dsi_device *device)
1362 {
1363 	struct exynos_dsi *dsi = host_to_dsi(host);
1364 
1365 	dsi->lanes = device->lanes;
1366 	dsi->format = device->format;
1367 	dsi->mode_flags = device->mode_flags;
1368 	dsi->panel_node = device->dev.of_node;
1369 
1370 	/*
1371 	 * This is a temporary solution and should be made by more generic way.
1372 	 *
1373 	 * If attached panel device is for command mode one, dsi should register
1374 	 * TE interrupt handler.
1375 	 */
1376 	if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1377 		int ret = exynos_dsi_register_te_irq(dsi);
1378 
1379 		if (ret)
1380 			return ret;
1381 	}
1382 
1383 	if (dsi->connector.dev)
1384 		drm_helper_hpd_irq_event(dsi->connector.dev);
1385 
1386 	return 0;
1387 }
1388 
1389 static int exynos_dsi_host_detach(struct mipi_dsi_host *host,
1390 				  struct mipi_dsi_device *device)
1391 {
1392 	struct exynos_dsi *dsi = host_to_dsi(host);
1393 
1394 	exynos_dsi_unregister_te_irq(dsi);
1395 
1396 	dsi->panel_node = NULL;
1397 
1398 	if (dsi->connector.dev)
1399 		drm_helper_hpd_irq_event(dsi->connector.dev);
1400 
1401 	return 0;
1402 }
1403 
1404 /* distinguish between short and long DSI packet types */
1405 static bool exynos_dsi_is_short_dsi_type(u8 type)
1406 {
1407 	return (type & 0x0f) <= 8;
1408 }
1409 
1410 static ssize_t exynos_dsi_host_transfer(struct mipi_dsi_host *host,
1411 				        const struct mipi_dsi_msg *msg)
1412 {
1413 	struct exynos_dsi *dsi = host_to_dsi(host);
1414 	struct exynos_dsi_transfer xfer;
1415 	int ret;
1416 
1417 	if (!(dsi->state & DSIM_STATE_ENABLED))
1418 		return -EINVAL;
1419 
1420 	if (!(dsi->state & DSIM_STATE_INITIALIZED)) {
1421 		ret = exynos_dsi_init(dsi);
1422 		if (ret)
1423 			return ret;
1424 		dsi->state |= DSIM_STATE_INITIALIZED;
1425 	}
1426 
1427 	if (msg->tx_len == 0)
1428 		return -EINVAL;
1429 
1430 	xfer.data_id = msg->type | (msg->channel << 6);
1431 
1432 	if (exynos_dsi_is_short_dsi_type(msg->type)) {
1433 		const char *tx_buf = msg->tx_buf;
1434 
1435 		if (msg->tx_len > 2)
1436 			return -EINVAL;
1437 		xfer.tx_len = 0;
1438 		xfer.data[0] = tx_buf[0];
1439 		xfer.data[1] = (msg->tx_len == 2) ? tx_buf[1] : 0;
1440 	} else {
1441 		xfer.tx_len = msg->tx_len;
1442 		xfer.data[0] = msg->tx_len & 0xff;
1443 		xfer.data[1] = msg->tx_len >> 8;
1444 		xfer.tx_payload = msg->tx_buf;
1445 	}
1446 
1447 	xfer.rx_len = msg->rx_len;
1448 	xfer.rx_payload = msg->rx_buf;
1449 	xfer.flags = msg->flags;
1450 
1451 	ret = exynos_dsi_transfer(dsi, &xfer);
1452 	return (ret < 0) ? ret : xfer.rx_done;
1453 }
1454 
1455 static const struct mipi_dsi_host_ops exynos_dsi_ops = {
1456 	.attach = exynos_dsi_host_attach,
1457 	.detach = exynos_dsi_host_detach,
1458 	.transfer = exynos_dsi_host_transfer,
1459 };
1460 
1461 static void exynos_dsi_enable(struct drm_encoder *encoder)
1462 {
1463 	struct exynos_dsi *dsi = encoder_to_dsi(encoder);
1464 	int ret;
1465 
1466 	if (dsi->state & DSIM_STATE_ENABLED)
1467 		return;
1468 
1469 	pm_runtime_get_sync(dsi->dev);
1470 
1471 	dsi->state |= DSIM_STATE_ENABLED;
1472 
1473 	ret = drm_panel_prepare(dsi->panel);
1474 	if (ret < 0) {
1475 		dsi->state &= ~DSIM_STATE_ENABLED;
1476 		pm_runtime_put_sync(dsi->dev);
1477 		return;
1478 	}
1479 
1480 	exynos_dsi_set_display_mode(dsi);
1481 	exynos_dsi_set_display_enable(dsi, true);
1482 
1483 	ret = drm_panel_enable(dsi->panel);
1484 	if (ret < 0) {
1485 		dsi->state &= ~DSIM_STATE_ENABLED;
1486 		exynos_dsi_set_display_enable(dsi, false);
1487 		drm_panel_unprepare(dsi->panel);
1488 		pm_runtime_put_sync(dsi->dev);
1489 		return;
1490 	}
1491 
1492 	dsi->state |= DSIM_STATE_VIDOUT_AVAILABLE;
1493 }
1494 
1495 static void exynos_dsi_disable(struct drm_encoder *encoder)
1496 {
1497 	struct exynos_dsi *dsi = encoder_to_dsi(encoder);
1498 
1499 	if (!(dsi->state & DSIM_STATE_ENABLED))
1500 		return;
1501 
1502 	dsi->state &= ~DSIM_STATE_VIDOUT_AVAILABLE;
1503 
1504 	drm_panel_disable(dsi->panel);
1505 	exynos_dsi_set_display_enable(dsi, false);
1506 	drm_panel_unprepare(dsi->panel);
1507 
1508 	dsi->state &= ~DSIM_STATE_ENABLED;
1509 
1510 	pm_runtime_put_sync(dsi->dev);
1511 }
1512 
1513 static enum drm_connector_status
1514 exynos_dsi_detect(struct drm_connector *connector, bool force)
1515 {
1516 	struct exynos_dsi *dsi = connector_to_dsi(connector);
1517 
1518 	if (!dsi->panel) {
1519 		dsi->panel = of_drm_find_panel(dsi->panel_node);
1520 		if (dsi->panel)
1521 			drm_panel_attach(dsi->panel, &dsi->connector);
1522 	} else if (!dsi->panel_node) {
1523 		struct drm_encoder *encoder;
1524 
1525 		encoder = platform_get_drvdata(to_platform_device(dsi->dev));
1526 		exynos_dsi_disable(encoder);
1527 		drm_panel_detach(dsi->panel);
1528 		dsi->panel = NULL;
1529 	}
1530 
1531 	if (dsi->panel)
1532 		return connector_status_connected;
1533 
1534 	return connector_status_disconnected;
1535 }
1536 
1537 static void exynos_dsi_connector_destroy(struct drm_connector *connector)
1538 {
1539 	drm_connector_unregister(connector);
1540 	drm_connector_cleanup(connector);
1541 	connector->dev = NULL;
1542 }
1543 
1544 static const struct drm_connector_funcs exynos_dsi_connector_funcs = {
1545 	.dpms = drm_atomic_helper_connector_dpms,
1546 	.detect = exynos_dsi_detect,
1547 	.fill_modes = drm_helper_probe_single_connector_modes,
1548 	.destroy = exynos_dsi_connector_destroy,
1549 	.reset = drm_atomic_helper_connector_reset,
1550 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1551 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1552 };
1553 
1554 static int exynos_dsi_get_modes(struct drm_connector *connector)
1555 {
1556 	struct exynos_dsi *dsi = connector_to_dsi(connector);
1557 
1558 	if (dsi->panel)
1559 		return dsi->panel->funcs->get_modes(dsi->panel);
1560 
1561 	return 0;
1562 }
1563 
1564 static struct drm_encoder *
1565 exynos_dsi_best_encoder(struct drm_connector *connector)
1566 {
1567 	struct exynos_dsi *dsi = connector_to_dsi(connector);
1568 
1569 	return &dsi->encoder;
1570 }
1571 
1572 static const struct drm_connector_helper_funcs exynos_dsi_connector_helper_funcs = {
1573 	.get_modes = exynos_dsi_get_modes,
1574 	.best_encoder = exynos_dsi_best_encoder,
1575 };
1576 
1577 static int exynos_dsi_create_connector(struct drm_encoder *encoder)
1578 {
1579 	struct exynos_dsi *dsi = encoder_to_dsi(encoder);
1580 	struct drm_connector *connector = &dsi->connector;
1581 	int ret;
1582 
1583 	connector->polled = DRM_CONNECTOR_POLL_HPD;
1584 
1585 	ret = drm_connector_init(encoder->dev, connector,
1586 				 &exynos_dsi_connector_funcs,
1587 				 DRM_MODE_CONNECTOR_DSI);
1588 	if (ret) {
1589 		DRM_ERROR("Failed to initialize connector with drm\n");
1590 		return ret;
1591 	}
1592 
1593 	drm_connector_helper_add(connector, &exynos_dsi_connector_helper_funcs);
1594 	drm_connector_register(connector);
1595 	drm_mode_connector_attach_encoder(connector, encoder);
1596 
1597 	return 0;
1598 }
1599 
1600 static bool exynos_dsi_mode_fixup(struct drm_encoder *encoder,
1601 				  const struct drm_display_mode *mode,
1602 				  struct drm_display_mode *adjusted_mode)
1603 {
1604 	return true;
1605 }
1606 
1607 static void exynos_dsi_mode_set(struct drm_encoder *encoder,
1608 				struct drm_display_mode *mode,
1609 				struct drm_display_mode *adjusted_mode)
1610 {
1611 	struct exynos_dsi *dsi = encoder_to_dsi(encoder);
1612 	struct videomode *vm = &dsi->vm;
1613 	struct drm_display_mode *m = adjusted_mode;
1614 
1615 	vm->hactive = m->hdisplay;
1616 	vm->vactive = m->vdisplay;
1617 	vm->vfront_porch = m->vsync_start - m->vdisplay;
1618 	vm->vback_porch = m->vtotal - m->vsync_end;
1619 	vm->vsync_len = m->vsync_end - m->vsync_start;
1620 	vm->hfront_porch = m->hsync_start - m->hdisplay;
1621 	vm->hback_porch = m->htotal - m->hsync_end;
1622 	vm->hsync_len = m->hsync_end - m->hsync_start;
1623 }
1624 
1625 static const struct drm_encoder_helper_funcs exynos_dsi_encoder_helper_funcs = {
1626 	.mode_fixup = exynos_dsi_mode_fixup,
1627 	.mode_set = exynos_dsi_mode_set,
1628 	.enable = exynos_dsi_enable,
1629 	.disable = exynos_dsi_disable,
1630 };
1631 
1632 static const struct drm_encoder_funcs exynos_dsi_encoder_funcs = {
1633 	.destroy = drm_encoder_cleanup,
1634 };
1635 
1636 MODULE_DEVICE_TABLE(of, exynos_dsi_of_match);
1637 
1638 /* of_* functions will be removed after merge of of_graph patches */
1639 static struct device_node *
1640 of_get_child_by_name_reg(struct device_node *parent, const char *name, u32 reg)
1641 {
1642 	struct device_node *np;
1643 
1644 	for_each_child_of_node(parent, np) {
1645 		u32 r;
1646 
1647 		if (!np->name || of_node_cmp(np->name, name))
1648 			continue;
1649 
1650 		if (of_property_read_u32(np, "reg", &r) < 0)
1651 			r = 0;
1652 
1653 		if (reg == r)
1654 			break;
1655 	}
1656 
1657 	return np;
1658 }
1659 
1660 static struct device_node *of_graph_get_port_by_reg(struct device_node *parent,
1661 						    u32 reg)
1662 {
1663 	struct device_node *ports, *port;
1664 
1665 	ports = of_get_child_by_name(parent, "ports");
1666 	if (ports)
1667 		parent = ports;
1668 
1669 	port = of_get_child_by_name_reg(parent, "port", reg);
1670 
1671 	of_node_put(ports);
1672 
1673 	return port;
1674 }
1675 
1676 static struct device_node *
1677 of_graph_get_endpoint_by_reg(struct device_node *port, u32 reg)
1678 {
1679 	return of_get_child_by_name_reg(port, "endpoint", reg);
1680 }
1681 
1682 static int exynos_dsi_of_read_u32(const struct device_node *np,
1683 				  const char *propname, u32 *out_value)
1684 {
1685 	int ret = of_property_read_u32(np, propname, out_value);
1686 
1687 	if (ret < 0)
1688 		pr_err("%s: failed to get '%s' property\n", np->full_name,
1689 		       propname);
1690 
1691 	return ret;
1692 }
1693 
1694 enum {
1695 	DSI_PORT_IN,
1696 	DSI_PORT_OUT
1697 };
1698 
1699 static int exynos_dsi_parse_dt(struct exynos_dsi *dsi)
1700 {
1701 	struct device *dev = dsi->dev;
1702 	struct device_node *node = dev->of_node;
1703 	struct device_node *port, *ep;
1704 	int ret;
1705 
1706 	ret = exynos_dsi_of_read_u32(node, "samsung,pll-clock-frequency",
1707 				     &dsi->pll_clk_rate);
1708 	if (ret < 0)
1709 		return ret;
1710 
1711 	port = of_graph_get_port_by_reg(node, DSI_PORT_OUT);
1712 	if (!port) {
1713 		dev_err(dev, "no output port specified\n");
1714 		return -EINVAL;
1715 	}
1716 
1717 	ep = of_graph_get_endpoint_by_reg(port, 0);
1718 	of_node_put(port);
1719 	if (!ep) {
1720 		dev_err(dev, "no endpoint specified in output port\n");
1721 		return -EINVAL;
1722 	}
1723 
1724 	ret = exynos_dsi_of_read_u32(ep, "samsung,burst-clock-frequency",
1725 				     &dsi->burst_clk_rate);
1726 	if (ret < 0)
1727 		goto end;
1728 
1729 	ret = exynos_dsi_of_read_u32(ep, "samsung,esc-clock-frequency",
1730 				     &dsi->esc_clk_rate);
1731 	if (ret < 0)
1732 		goto end;
1733 
1734 	of_node_put(ep);
1735 
1736 	ep = of_graph_get_next_endpoint(node, NULL);
1737 	if (!ep) {
1738 		ret = -EINVAL;
1739 		goto end;
1740 	}
1741 
1742 	dsi->bridge_node = of_graph_get_remote_port_parent(ep);
1743 	if (!dsi->bridge_node) {
1744 		ret = -EINVAL;
1745 		goto end;
1746 	}
1747 end:
1748 	of_node_put(ep);
1749 
1750 	return ret;
1751 }
1752 
1753 static int exynos_dsi_bind(struct device *dev, struct device *master,
1754 				void *data)
1755 {
1756 	struct drm_encoder *encoder = dev_get_drvdata(dev);
1757 	struct exynos_dsi *dsi = encoder_to_dsi(encoder);
1758 	struct drm_device *drm_dev = data;
1759 	struct drm_bridge *bridge;
1760 	int ret;
1761 
1762 	ret = exynos_drm_crtc_get_pipe_from_type(drm_dev,
1763 						  EXYNOS_DISPLAY_TYPE_LCD);
1764 	if (ret < 0)
1765 		return ret;
1766 
1767 	encoder->possible_crtcs = 1 << ret;
1768 
1769 	DRM_DEBUG_KMS("possible_crtcs = 0x%x\n", encoder->possible_crtcs);
1770 
1771 	drm_encoder_init(drm_dev, encoder, &exynos_dsi_encoder_funcs,
1772 			 DRM_MODE_ENCODER_TMDS, NULL);
1773 
1774 	drm_encoder_helper_add(encoder, &exynos_dsi_encoder_helper_funcs);
1775 
1776 	ret = exynos_dsi_create_connector(encoder);
1777 	if (ret) {
1778 		DRM_ERROR("failed to create connector ret = %d\n", ret);
1779 		drm_encoder_cleanup(encoder);
1780 		return ret;
1781 	}
1782 
1783 	bridge = of_drm_find_bridge(dsi->bridge_node);
1784 	if (bridge) {
1785 		encoder->bridge = bridge;
1786 		drm_bridge_attach(drm_dev, bridge);
1787 	}
1788 
1789 	return mipi_dsi_host_register(&dsi->dsi_host);
1790 }
1791 
1792 static void exynos_dsi_unbind(struct device *dev, struct device *master,
1793 				void *data)
1794 {
1795 	struct drm_encoder *encoder = dev_get_drvdata(dev);
1796 	struct exynos_dsi *dsi = encoder_to_dsi(encoder);
1797 
1798 	exynos_dsi_disable(encoder);
1799 
1800 	mipi_dsi_host_unregister(&dsi->dsi_host);
1801 }
1802 
1803 static const struct component_ops exynos_dsi_component_ops = {
1804 	.bind	= exynos_dsi_bind,
1805 	.unbind	= exynos_dsi_unbind,
1806 };
1807 
1808 static int exynos_dsi_probe(struct platform_device *pdev)
1809 {
1810 	struct device *dev = &pdev->dev;
1811 	struct resource *res;
1812 	struct exynos_dsi *dsi;
1813 	int ret, i;
1814 
1815 	dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1816 	if (!dsi)
1817 		return -ENOMEM;
1818 
1819 	/* To be checked as invalid one */
1820 	dsi->te_gpio = -ENOENT;
1821 
1822 	init_completion(&dsi->completed);
1823 	spin_lock_init(&dsi->transfer_lock);
1824 	INIT_LIST_HEAD(&dsi->transfer_list);
1825 
1826 	dsi->dsi_host.ops = &exynos_dsi_ops;
1827 	dsi->dsi_host.dev = dev;
1828 
1829 	dsi->dev = dev;
1830 	dsi->driver_data = exynos_dsi_get_driver_data(pdev);
1831 
1832 	ret = exynos_dsi_parse_dt(dsi);
1833 	if (ret)
1834 		return ret;
1835 
1836 	dsi->supplies[0].supply = "vddcore";
1837 	dsi->supplies[1].supply = "vddio";
1838 	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(dsi->supplies),
1839 				      dsi->supplies);
1840 	if (ret) {
1841 		dev_info(dev, "failed to get regulators: %d\n", ret);
1842 		return -EPROBE_DEFER;
1843 	}
1844 
1845 	dsi->clks = devm_kzalloc(dev,
1846 			sizeof(*dsi->clks) * dsi->driver_data->num_clks,
1847 			GFP_KERNEL);
1848 	if (!dsi->clks)
1849 		return -ENOMEM;
1850 
1851 	for (i = 0; i < dsi->driver_data->num_clks; i++) {
1852 		dsi->clks[i] = devm_clk_get(dev, clk_names[i]);
1853 		if (IS_ERR(dsi->clks[i])) {
1854 			if (strcmp(clk_names[i], "sclk_mipi") == 0) {
1855 				strcpy(clk_names[i], OLD_SCLK_MIPI_CLK_NAME);
1856 				i--;
1857 				continue;
1858 			}
1859 
1860 			dev_info(dev, "failed to get the clock: %s\n",
1861 					clk_names[i]);
1862 			return PTR_ERR(dsi->clks[i]);
1863 		}
1864 	}
1865 
1866 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1867 	dsi->reg_base = devm_ioremap_resource(dev, res);
1868 	if (IS_ERR(dsi->reg_base)) {
1869 		dev_err(dev, "failed to remap io region\n");
1870 		return PTR_ERR(dsi->reg_base);
1871 	}
1872 
1873 	dsi->phy = devm_phy_get(dev, "dsim");
1874 	if (IS_ERR(dsi->phy)) {
1875 		dev_info(dev, "failed to get dsim phy\n");
1876 		return PTR_ERR(dsi->phy);
1877 	}
1878 
1879 	dsi->irq = platform_get_irq(pdev, 0);
1880 	if (dsi->irq < 0) {
1881 		dev_err(dev, "failed to request dsi irq resource\n");
1882 		return dsi->irq;
1883 	}
1884 
1885 	irq_set_status_flags(dsi->irq, IRQ_NOAUTOEN);
1886 	ret = devm_request_threaded_irq(dev, dsi->irq, NULL,
1887 					exynos_dsi_irq, IRQF_ONESHOT,
1888 					dev_name(dev), dsi);
1889 	if (ret) {
1890 		dev_err(dev, "failed to request dsi irq\n");
1891 		return ret;
1892 	}
1893 
1894 	platform_set_drvdata(pdev, &dsi->encoder);
1895 
1896 	pm_runtime_enable(dev);
1897 
1898 	return component_add(dev, &exynos_dsi_component_ops);
1899 }
1900 
1901 static int exynos_dsi_remove(struct platform_device *pdev)
1902 {
1903 	pm_runtime_disable(&pdev->dev);
1904 
1905 	component_del(&pdev->dev, &exynos_dsi_component_ops);
1906 
1907 	return 0;
1908 }
1909 
1910 static int __maybe_unused exynos_dsi_suspend(struct device *dev)
1911 {
1912 	struct drm_encoder *encoder = dev_get_drvdata(dev);
1913 	struct exynos_dsi *dsi = encoder_to_dsi(encoder);
1914 	struct exynos_dsi_driver_data *driver_data = dsi->driver_data;
1915 	int ret, i;
1916 
1917 	usleep_range(10000, 20000);
1918 
1919 	if (dsi->state & DSIM_STATE_INITIALIZED) {
1920 		dsi->state &= ~DSIM_STATE_INITIALIZED;
1921 
1922 		exynos_dsi_disable_clock(dsi);
1923 
1924 		exynos_dsi_disable_irq(dsi);
1925 	}
1926 
1927 	dsi->state &= ~DSIM_STATE_CMD_LPM;
1928 
1929 	phy_power_off(dsi->phy);
1930 
1931 	for (i = driver_data->num_clks - 1; i > -1; i--)
1932 		clk_disable_unprepare(dsi->clks[i]);
1933 
1934 	ret = regulator_bulk_disable(ARRAY_SIZE(dsi->supplies), dsi->supplies);
1935 	if (ret < 0)
1936 		dev_err(dsi->dev, "cannot disable regulators %d\n", ret);
1937 
1938 	return 0;
1939 }
1940 
1941 static int __maybe_unused exynos_dsi_resume(struct device *dev)
1942 {
1943 	struct drm_encoder *encoder = dev_get_drvdata(dev);
1944 	struct exynos_dsi *dsi = encoder_to_dsi(encoder);
1945 	struct exynos_dsi_driver_data *driver_data = dsi->driver_data;
1946 	int ret, i;
1947 
1948 	ret = regulator_bulk_enable(ARRAY_SIZE(dsi->supplies), dsi->supplies);
1949 	if (ret < 0) {
1950 		dev_err(dsi->dev, "cannot enable regulators %d\n", ret);
1951 		return ret;
1952 	}
1953 
1954 	for (i = 0; i < driver_data->num_clks; i++) {
1955 		ret = clk_prepare_enable(dsi->clks[i]);
1956 		if (ret < 0)
1957 			goto err_clk;
1958 	}
1959 
1960 	ret = phy_power_on(dsi->phy);
1961 	if (ret < 0) {
1962 		dev_err(dsi->dev, "cannot enable phy %d\n", ret);
1963 		goto err_clk;
1964 	}
1965 
1966 	return 0;
1967 
1968 err_clk:
1969 	while (--i > -1)
1970 		clk_disable_unprepare(dsi->clks[i]);
1971 	regulator_bulk_disable(ARRAY_SIZE(dsi->supplies), dsi->supplies);
1972 
1973 	return ret;
1974 }
1975 
1976 static const struct dev_pm_ops exynos_dsi_pm_ops = {
1977 	SET_RUNTIME_PM_OPS(exynos_dsi_suspend, exynos_dsi_resume, NULL)
1978 };
1979 
1980 struct platform_driver dsi_driver = {
1981 	.probe = exynos_dsi_probe,
1982 	.remove = exynos_dsi_remove,
1983 	.driver = {
1984 		   .name = "exynos-dsi",
1985 		   .owner = THIS_MODULE,
1986 		   .pm = &exynos_dsi_pm_ops,
1987 		   .of_match_table = exynos_dsi_of_match,
1988 	},
1989 };
1990 
1991 MODULE_AUTHOR("Tomasz Figa <t.figa@samsung.com>");
1992 MODULE_AUTHOR("Andrzej Hajda <a.hajda@samsung.com>");
1993 MODULE_DESCRIPTION("Samsung SoC MIPI DSI Master");
1994 MODULE_LICENSE("GPL v2");
1995