1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Samsung SoC MIPI DSI Master driver. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd 6 * 7 * Contacts: Tomasz Figa <t.figa@samsung.com> 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/delay.h> 12 #include <linux/component.h> 13 #include <linux/gpio/consumer.h> 14 #include <linux/irq.h> 15 #include <linux/of_device.h> 16 #include <linux/of_gpio.h> 17 #include <linux/of_graph.h> 18 #include <linux/phy/phy.h> 19 #include <linux/regulator/consumer.h> 20 21 #include <asm/unaligned.h> 22 23 #include <video/mipi_display.h> 24 #include <video/videomode.h> 25 26 #include <drm/drm_atomic_helper.h> 27 #include <drm/drm_bridge.h> 28 #include <drm/drm_fb_helper.h> 29 #include <drm/drm_mipi_dsi.h> 30 #include <drm/drm_panel.h> 31 #include <drm/drm_print.h> 32 #include <drm/drm_probe_helper.h> 33 #include <drm/drm_simple_kms_helper.h> 34 35 #include "exynos_drm_crtc.h" 36 #include "exynos_drm_drv.h" 37 38 /* returns true iff both arguments logically differs */ 39 #define NEQV(a, b) (!(a) ^ !(b)) 40 41 /* DSIM_STATUS */ 42 #define DSIM_STOP_STATE_DAT(x) (((x) & 0xf) << 0) 43 #define DSIM_STOP_STATE_CLK (1 << 8) 44 #define DSIM_TX_READY_HS_CLK (1 << 10) 45 #define DSIM_PLL_STABLE (1 << 31) 46 47 /* DSIM_SWRST */ 48 #define DSIM_FUNCRST (1 << 16) 49 #define DSIM_SWRST (1 << 0) 50 51 /* DSIM_TIMEOUT */ 52 #define DSIM_LPDR_TIMEOUT(x) ((x) << 0) 53 #define DSIM_BTA_TIMEOUT(x) ((x) << 16) 54 55 /* DSIM_CLKCTRL */ 56 #define DSIM_ESC_PRESCALER(x) (((x) & 0xffff) << 0) 57 #define DSIM_ESC_PRESCALER_MASK (0xffff << 0) 58 #define DSIM_LANE_ESC_CLK_EN_CLK (1 << 19) 59 #define DSIM_LANE_ESC_CLK_EN_DATA(x) (((x) & 0xf) << 20) 60 #define DSIM_LANE_ESC_CLK_EN_DATA_MASK (0xf << 20) 61 #define DSIM_BYTE_CLKEN (1 << 24) 62 #define DSIM_BYTE_CLK_SRC(x) (((x) & 0x3) << 25) 63 #define DSIM_BYTE_CLK_SRC_MASK (0x3 << 25) 64 #define DSIM_PLL_BYPASS (1 << 27) 65 #define DSIM_ESC_CLKEN (1 << 28) 66 #define DSIM_TX_REQUEST_HSCLK (1 << 31) 67 68 /* DSIM_CONFIG */ 69 #define DSIM_LANE_EN_CLK (1 << 0) 70 #define DSIM_LANE_EN(x) (((x) & 0xf) << 1) 71 #define DSIM_NUM_OF_DATA_LANE(x) (((x) & 0x3) << 5) 72 #define DSIM_SUB_PIX_FORMAT(x) (((x) & 0x7) << 8) 73 #define DSIM_MAIN_PIX_FORMAT_MASK (0x7 << 12) 74 #define DSIM_MAIN_PIX_FORMAT_RGB888 (0x7 << 12) 75 #define DSIM_MAIN_PIX_FORMAT_RGB666 (0x6 << 12) 76 #define DSIM_MAIN_PIX_FORMAT_RGB666_P (0x5 << 12) 77 #define DSIM_MAIN_PIX_FORMAT_RGB565 (0x4 << 12) 78 #define DSIM_SUB_VC (((x) & 0x3) << 16) 79 #define DSIM_MAIN_VC (((x) & 0x3) << 18) 80 #define DSIM_HSA_MODE (1 << 20) 81 #define DSIM_HBP_MODE (1 << 21) 82 #define DSIM_HFP_MODE (1 << 22) 83 #define DSIM_HSE_MODE (1 << 23) 84 #define DSIM_AUTO_MODE (1 << 24) 85 #define DSIM_VIDEO_MODE (1 << 25) 86 #define DSIM_BURST_MODE (1 << 26) 87 #define DSIM_SYNC_INFORM (1 << 27) 88 #define DSIM_EOT_DISABLE (1 << 28) 89 #define DSIM_MFLUSH_VS (1 << 29) 90 /* This flag is valid only for exynos3250/3472/5260/5430 */ 91 #define DSIM_CLKLANE_STOP (1 << 30) 92 93 /* DSIM_ESCMODE */ 94 #define DSIM_TX_TRIGGER_RST (1 << 4) 95 #define DSIM_TX_LPDT_LP (1 << 6) 96 #define DSIM_CMD_LPDT_LP (1 << 7) 97 #define DSIM_FORCE_BTA (1 << 16) 98 #define DSIM_FORCE_STOP_STATE (1 << 20) 99 #define DSIM_STOP_STATE_CNT(x) (((x) & 0x7ff) << 21) 100 #define DSIM_STOP_STATE_CNT_MASK (0x7ff << 21) 101 102 /* DSIM_MDRESOL */ 103 #define DSIM_MAIN_STAND_BY (1 << 31) 104 #define DSIM_MAIN_VRESOL(x, num_bits) (((x) & ((1 << (num_bits)) - 1)) << 16) 105 #define DSIM_MAIN_HRESOL(x, num_bits) (((x) & ((1 << (num_bits)) - 1)) << 0) 106 107 /* DSIM_MVPORCH */ 108 #define DSIM_CMD_ALLOW(x) ((x) << 28) 109 #define DSIM_STABLE_VFP(x) ((x) << 16) 110 #define DSIM_MAIN_VBP(x) ((x) << 0) 111 #define DSIM_CMD_ALLOW_MASK (0xf << 28) 112 #define DSIM_STABLE_VFP_MASK (0x7ff << 16) 113 #define DSIM_MAIN_VBP_MASK (0x7ff << 0) 114 115 /* DSIM_MHPORCH */ 116 #define DSIM_MAIN_HFP(x) ((x) << 16) 117 #define DSIM_MAIN_HBP(x) ((x) << 0) 118 #define DSIM_MAIN_HFP_MASK ((0xffff) << 16) 119 #define DSIM_MAIN_HBP_MASK ((0xffff) << 0) 120 121 /* DSIM_MSYNC */ 122 #define DSIM_MAIN_VSA(x) ((x) << 22) 123 #define DSIM_MAIN_HSA(x) ((x) << 0) 124 #define DSIM_MAIN_VSA_MASK ((0x3ff) << 22) 125 #define DSIM_MAIN_HSA_MASK ((0xffff) << 0) 126 127 /* DSIM_SDRESOL */ 128 #define DSIM_SUB_STANDY(x) ((x) << 31) 129 #define DSIM_SUB_VRESOL(x) ((x) << 16) 130 #define DSIM_SUB_HRESOL(x) ((x) << 0) 131 #define DSIM_SUB_STANDY_MASK ((0x1) << 31) 132 #define DSIM_SUB_VRESOL_MASK ((0x7ff) << 16) 133 #define DSIM_SUB_HRESOL_MASK ((0x7ff) << 0) 134 135 /* DSIM_INTSRC */ 136 #define DSIM_INT_PLL_STABLE (1 << 31) 137 #define DSIM_INT_SW_RST_RELEASE (1 << 30) 138 #define DSIM_INT_SFR_FIFO_EMPTY (1 << 29) 139 #define DSIM_INT_SFR_HDR_FIFO_EMPTY (1 << 28) 140 #define DSIM_INT_BTA (1 << 25) 141 #define DSIM_INT_FRAME_DONE (1 << 24) 142 #define DSIM_INT_RX_TIMEOUT (1 << 21) 143 #define DSIM_INT_BTA_TIMEOUT (1 << 20) 144 #define DSIM_INT_RX_DONE (1 << 18) 145 #define DSIM_INT_RX_TE (1 << 17) 146 #define DSIM_INT_RX_ACK (1 << 16) 147 #define DSIM_INT_RX_ECC_ERR (1 << 15) 148 #define DSIM_INT_RX_CRC_ERR (1 << 14) 149 150 /* DSIM_FIFOCTRL */ 151 #define DSIM_RX_DATA_FULL (1 << 25) 152 #define DSIM_RX_DATA_EMPTY (1 << 24) 153 #define DSIM_SFR_HEADER_FULL (1 << 23) 154 #define DSIM_SFR_HEADER_EMPTY (1 << 22) 155 #define DSIM_SFR_PAYLOAD_FULL (1 << 21) 156 #define DSIM_SFR_PAYLOAD_EMPTY (1 << 20) 157 #define DSIM_I80_HEADER_FULL (1 << 19) 158 #define DSIM_I80_HEADER_EMPTY (1 << 18) 159 #define DSIM_I80_PAYLOAD_FULL (1 << 17) 160 #define DSIM_I80_PAYLOAD_EMPTY (1 << 16) 161 #define DSIM_SD_HEADER_FULL (1 << 15) 162 #define DSIM_SD_HEADER_EMPTY (1 << 14) 163 #define DSIM_SD_PAYLOAD_FULL (1 << 13) 164 #define DSIM_SD_PAYLOAD_EMPTY (1 << 12) 165 #define DSIM_MD_HEADER_FULL (1 << 11) 166 #define DSIM_MD_HEADER_EMPTY (1 << 10) 167 #define DSIM_MD_PAYLOAD_FULL (1 << 9) 168 #define DSIM_MD_PAYLOAD_EMPTY (1 << 8) 169 #define DSIM_RX_FIFO (1 << 4) 170 #define DSIM_SFR_FIFO (1 << 3) 171 #define DSIM_I80_FIFO (1 << 2) 172 #define DSIM_SD_FIFO (1 << 1) 173 #define DSIM_MD_FIFO (1 << 0) 174 175 /* DSIM_PHYACCHR */ 176 #define DSIM_AFC_EN (1 << 14) 177 #define DSIM_AFC_CTL(x) (((x) & 0x7) << 5) 178 179 /* DSIM_PLLCTRL */ 180 #define DSIM_FREQ_BAND(x) ((x) << 24) 181 #define DSIM_PLL_EN (1 << 23) 182 #define DSIM_PLL_P(x) ((x) << 13) 183 #define DSIM_PLL_M(x) ((x) << 4) 184 #define DSIM_PLL_S(x) ((x) << 1) 185 186 /* DSIM_PHYCTRL */ 187 #define DSIM_PHYCTRL_ULPS_EXIT(x) (((x) & 0x1ff) << 0) 188 #define DSIM_PHYCTRL_B_DPHYCTL_VREG_LP (1 << 30) 189 #define DSIM_PHYCTRL_B_DPHYCTL_SLEW_UP (1 << 14) 190 191 /* DSIM_PHYTIMING */ 192 #define DSIM_PHYTIMING_LPX(x) ((x) << 8) 193 #define DSIM_PHYTIMING_HS_EXIT(x) ((x) << 0) 194 195 /* DSIM_PHYTIMING1 */ 196 #define DSIM_PHYTIMING1_CLK_PREPARE(x) ((x) << 24) 197 #define DSIM_PHYTIMING1_CLK_ZERO(x) ((x) << 16) 198 #define DSIM_PHYTIMING1_CLK_POST(x) ((x) << 8) 199 #define DSIM_PHYTIMING1_CLK_TRAIL(x) ((x) << 0) 200 201 /* DSIM_PHYTIMING2 */ 202 #define DSIM_PHYTIMING2_HS_PREPARE(x) ((x) << 16) 203 #define DSIM_PHYTIMING2_HS_ZERO(x) ((x) << 8) 204 #define DSIM_PHYTIMING2_HS_TRAIL(x) ((x) << 0) 205 206 #define DSI_MAX_BUS_WIDTH 4 207 #define DSI_NUM_VIRTUAL_CHANNELS 4 208 #define DSI_TX_FIFO_SIZE 2048 209 #define DSI_RX_FIFO_SIZE 256 210 #define DSI_XFER_TIMEOUT_MS 100 211 #define DSI_RX_FIFO_EMPTY 0x30800002 212 213 #define OLD_SCLK_MIPI_CLK_NAME "pll_clk" 214 215 static const char *const clk_names[5] = { "bus_clk", "sclk_mipi", 216 "phyclk_mipidphy0_bitclkdiv8", "phyclk_mipidphy0_rxclkesc0", 217 "sclk_rgb_vclk_to_dsim0" }; 218 219 enum exynos_dsi_transfer_type { 220 EXYNOS_DSI_TX, 221 EXYNOS_DSI_RX, 222 }; 223 224 struct exynos_dsi_transfer { 225 struct list_head list; 226 struct completion completed; 227 int result; 228 struct mipi_dsi_packet packet; 229 u16 flags; 230 u16 tx_done; 231 232 u8 *rx_payload; 233 u16 rx_len; 234 u16 rx_done; 235 }; 236 237 #define DSIM_STATE_ENABLED BIT(0) 238 #define DSIM_STATE_INITIALIZED BIT(1) 239 #define DSIM_STATE_CMD_LPM BIT(2) 240 #define DSIM_STATE_VIDOUT_AVAILABLE BIT(3) 241 242 struct exynos_dsi_driver_data { 243 const unsigned int *reg_ofs; 244 unsigned int plltmr_reg; 245 unsigned int has_freqband:1; 246 unsigned int has_clklane_stop:1; 247 unsigned int num_clks; 248 unsigned int max_freq; 249 unsigned int wait_for_reset; 250 unsigned int num_bits_resol; 251 const unsigned int *reg_values; 252 }; 253 254 struct exynos_dsi { 255 struct drm_encoder encoder; 256 struct mipi_dsi_host dsi_host; 257 struct drm_connector connector; 258 struct drm_panel *panel; 259 struct list_head bridge_chain; 260 struct drm_bridge *out_bridge; 261 struct device *dev; 262 263 void __iomem *reg_base; 264 struct phy *phy; 265 struct clk **clks; 266 struct regulator_bulk_data supplies[2]; 267 int irq; 268 int te_gpio; 269 270 u32 pll_clk_rate; 271 u32 burst_clk_rate; 272 u32 esc_clk_rate; 273 u32 lanes; 274 u32 mode_flags; 275 u32 format; 276 277 int state; 278 struct drm_property *brightness; 279 struct completion completed; 280 281 spinlock_t transfer_lock; /* protects transfer_list */ 282 struct list_head transfer_list; 283 284 const struct exynos_dsi_driver_data *driver_data; 285 struct device_node *in_bridge_node; 286 }; 287 288 #define host_to_dsi(host) container_of(host, struct exynos_dsi, dsi_host) 289 #define connector_to_dsi(c) container_of(c, struct exynos_dsi, connector) 290 291 static inline struct exynos_dsi *encoder_to_dsi(struct drm_encoder *e) 292 { 293 return container_of(e, struct exynos_dsi, encoder); 294 } 295 296 enum reg_idx { 297 DSIM_STATUS_REG, /* Status register */ 298 DSIM_SWRST_REG, /* Software reset register */ 299 DSIM_CLKCTRL_REG, /* Clock control register */ 300 DSIM_TIMEOUT_REG, /* Time out register */ 301 DSIM_CONFIG_REG, /* Configuration register */ 302 DSIM_ESCMODE_REG, /* Escape mode register */ 303 DSIM_MDRESOL_REG, 304 DSIM_MVPORCH_REG, /* Main display Vporch register */ 305 DSIM_MHPORCH_REG, /* Main display Hporch register */ 306 DSIM_MSYNC_REG, /* Main display sync area register */ 307 DSIM_INTSRC_REG, /* Interrupt source register */ 308 DSIM_INTMSK_REG, /* Interrupt mask register */ 309 DSIM_PKTHDR_REG, /* Packet Header FIFO register */ 310 DSIM_PAYLOAD_REG, /* Payload FIFO register */ 311 DSIM_RXFIFO_REG, /* Read FIFO register */ 312 DSIM_FIFOCTRL_REG, /* FIFO status and control register */ 313 DSIM_PLLCTRL_REG, /* PLL control register */ 314 DSIM_PHYCTRL_REG, 315 DSIM_PHYTIMING_REG, 316 DSIM_PHYTIMING1_REG, 317 DSIM_PHYTIMING2_REG, 318 NUM_REGS 319 }; 320 321 static inline void exynos_dsi_write(struct exynos_dsi *dsi, enum reg_idx idx, 322 u32 val) 323 { 324 325 writel(val, dsi->reg_base + dsi->driver_data->reg_ofs[idx]); 326 } 327 328 static inline u32 exynos_dsi_read(struct exynos_dsi *dsi, enum reg_idx idx) 329 { 330 return readl(dsi->reg_base + dsi->driver_data->reg_ofs[idx]); 331 } 332 333 static const unsigned int exynos_reg_ofs[] = { 334 [DSIM_STATUS_REG] = 0x00, 335 [DSIM_SWRST_REG] = 0x04, 336 [DSIM_CLKCTRL_REG] = 0x08, 337 [DSIM_TIMEOUT_REG] = 0x0c, 338 [DSIM_CONFIG_REG] = 0x10, 339 [DSIM_ESCMODE_REG] = 0x14, 340 [DSIM_MDRESOL_REG] = 0x18, 341 [DSIM_MVPORCH_REG] = 0x1c, 342 [DSIM_MHPORCH_REG] = 0x20, 343 [DSIM_MSYNC_REG] = 0x24, 344 [DSIM_INTSRC_REG] = 0x2c, 345 [DSIM_INTMSK_REG] = 0x30, 346 [DSIM_PKTHDR_REG] = 0x34, 347 [DSIM_PAYLOAD_REG] = 0x38, 348 [DSIM_RXFIFO_REG] = 0x3c, 349 [DSIM_FIFOCTRL_REG] = 0x44, 350 [DSIM_PLLCTRL_REG] = 0x4c, 351 [DSIM_PHYCTRL_REG] = 0x5c, 352 [DSIM_PHYTIMING_REG] = 0x64, 353 [DSIM_PHYTIMING1_REG] = 0x68, 354 [DSIM_PHYTIMING2_REG] = 0x6c, 355 }; 356 357 static const unsigned int exynos5433_reg_ofs[] = { 358 [DSIM_STATUS_REG] = 0x04, 359 [DSIM_SWRST_REG] = 0x0C, 360 [DSIM_CLKCTRL_REG] = 0x10, 361 [DSIM_TIMEOUT_REG] = 0x14, 362 [DSIM_CONFIG_REG] = 0x18, 363 [DSIM_ESCMODE_REG] = 0x1C, 364 [DSIM_MDRESOL_REG] = 0x20, 365 [DSIM_MVPORCH_REG] = 0x24, 366 [DSIM_MHPORCH_REG] = 0x28, 367 [DSIM_MSYNC_REG] = 0x2C, 368 [DSIM_INTSRC_REG] = 0x34, 369 [DSIM_INTMSK_REG] = 0x38, 370 [DSIM_PKTHDR_REG] = 0x3C, 371 [DSIM_PAYLOAD_REG] = 0x40, 372 [DSIM_RXFIFO_REG] = 0x44, 373 [DSIM_FIFOCTRL_REG] = 0x4C, 374 [DSIM_PLLCTRL_REG] = 0x94, 375 [DSIM_PHYCTRL_REG] = 0xA4, 376 [DSIM_PHYTIMING_REG] = 0xB4, 377 [DSIM_PHYTIMING1_REG] = 0xB8, 378 [DSIM_PHYTIMING2_REG] = 0xBC, 379 }; 380 381 enum reg_value_idx { 382 RESET_TYPE, 383 PLL_TIMER, 384 STOP_STATE_CNT, 385 PHYCTRL_ULPS_EXIT, 386 PHYCTRL_VREG_LP, 387 PHYCTRL_SLEW_UP, 388 PHYTIMING_LPX, 389 PHYTIMING_HS_EXIT, 390 PHYTIMING_CLK_PREPARE, 391 PHYTIMING_CLK_ZERO, 392 PHYTIMING_CLK_POST, 393 PHYTIMING_CLK_TRAIL, 394 PHYTIMING_HS_PREPARE, 395 PHYTIMING_HS_ZERO, 396 PHYTIMING_HS_TRAIL 397 }; 398 399 static const unsigned int reg_values[] = { 400 [RESET_TYPE] = DSIM_SWRST, 401 [PLL_TIMER] = 500, 402 [STOP_STATE_CNT] = 0xf, 403 [PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0x0af), 404 [PHYCTRL_VREG_LP] = 0, 405 [PHYCTRL_SLEW_UP] = 0, 406 [PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x06), 407 [PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0b), 408 [PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x07), 409 [PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x27), 410 [PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0d), 411 [PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x08), 412 [PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x09), 413 [PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x0d), 414 [PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0b), 415 }; 416 417 static const unsigned int exynos5422_reg_values[] = { 418 [RESET_TYPE] = DSIM_SWRST, 419 [PLL_TIMER] = 500, 420 [STOP_STATE_CNT] = 0xf, 421 [PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0xaf), 422 [PHYCTRL_VREG_LP] = 0, 423 [PHYCTRL_SLEW_UP] = 0, 424 [PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x08), 425 [PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0d), 426 [PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x09), 427 [PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x30), 428 [PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0e), 429 [PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x0a), 430 [PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x0c), 431 [PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x11), 432 [PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0d), 433 }; 434 435 static const unsigned int exynos5433_reg_values[] = { 436 [RESET_TYPE] = DSIM_FUNCRST, 437 [PLL_TIMER] = 22200, 438 [STOP_STATE_CNT] = 0xa, 439 [PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0x190), 440 [PHYCTRL_VREG_LP] = DSIM_PHYCTRL_B_DPHYCTL_VREG_LP, 441 [PHYCTRL_SLEW_UP] = DSIM_PHYCTRL_B_DPHYCTL_SLEW_UP, 442 [PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x07), 443 [PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0c), 444 [PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x09), 445 [PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x2d), 446 [PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0e), 447 [PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x09), 448 [PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x0b), 449 [PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x10), 450 [PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0c), 451 }; 452 453 static const struct exynos_dsi_driver_data exynos3_dsi_driver_data = { 454 .reg_ofs = exynos_reg_ofs, 455 .plltmr_reg = 0x50, 456 .has_freqband = 1, 457 .has_clklane_stop = 1, 458 .num_clks = 2, 459 .max_freq = 1000, 460 .wait_for_reset = 1, 461 .num_bits_resol = 11, 462 .reg_values = reg_values, 463 }; 464 465 static const struct exynos_dsi_driver_data exynos4_dsi_driver_data = { 466 .reg_ofs = exynos_reg_ofs, 467 .plltmr_reg = 0x50, 468 .has_freqband = 1, 469 .has_clklane_stop = 1, 470 .num_clks = 2, 471 .max_freq = 1000, 472 .wait_for_reset = 1, 473 .num_bits_resol = 11, 474 .reg_values = reg_values, 475 }; 476 477 static const struct exynos_dsi_driver_data exynos5_dsi_driver_data = { 478 .reg_ofs = exynos_reg_ofs, 479 .plltmr_reg = 0x58, 480 .num_clks = 2, 481 .max_freq = 1000, 482 .wait_for_reset = 1, 483 .num_bits_resol = 11, 484 .reg_values = reg_values, 485 }; 486 487 static const struct exynos_dsi_driver_data exynos5433_dsi_driver_data = { 488 .reg_ofs = exynos5433_reg_ofs, 489 .plltmr_reg = 0xa0, 490 .has_clklane_stop = 1, 491 .num_clks = 5, 492 .max_freq = 1500, 493 .wait_for_reset = 0, 494 .num_bits_resol = 12, 495 .reg_values = exynos5433_reg_values, 496 }; 497 498 static const struct exynos_dsi_driver_data exynos5422_dsi_driver_data = { 499 .reg_ofs = exynos5433_reg_ofs, 500 .plltmr_reg = 0xa0, 501 .has_clklane_stop = 1, 502 .num_clks = 2, 503 .max_freq = 1500, 504 .wait_for_reset = 1, 505 .num_bits_resol = 12, 506 .reg_values = exynos5422_reg_values, 507 }; 508 509 static const struct of_device_id exynos_dsi_of_match[] = { 510 { .compatible = "samsung,exynos3250-mipi-dsi", 511 .data = &exynos3_dsi_driver_data }, 512 { .compatible = "samsung,exynos4210-mipi-dsi", 513 .data = &exynos4_dsi_driver_data }, 514 { .compatible = "samsung,exynos5410-mipi-dsi", 515 .data = &exynos5_dsi_driver_data }, 516 { .compatible = "samsung,exynos5422-mipi-dsi", 517 .data = &exynos5422_dsi_driver_data }, 518 { .compatible = "samsung,exynos5433-mipi-dsi", 519 .data = &exynos5433_dsi_driver_data }, 520 { } 521 }; 522 523 static void exynos_dsi_wait_for_reset(struct exynos_dsi *dsi) 524 { 525 if (wait_for_completion_timeout(&dsi->completed, msecs_to_jiffies(300))) 526 return; 527 528 dev_err(dsi->dev, "timeout waiting for reset\n"); 529 } 530 531 static void exynos_dsi_reset(struct exynos_dsi *dsi) 532 { 533 u32 reset_val = dsi->driver_data->reg_values[RESET_TYPE]; 534 535 reinit_completion(&dsi->completed); 536 exynos_dsi_write(dsi, DSIM_SWRST_REG, reset_val); 537 } 538 539 #ifndef MHZ 540 #define MHZ (1000*1000) 541 #endif 542 543 static unsigned long exynos_dsi_pll_find_pms(struct exynos_dsi *dsi, 544 unsigned long fin, unsigned long fout, u8 *p, u16 *m, u8 *s) 545 { 546 const struct exynos_dsi_driver_data *driver_data = dsi->driver_data; 547 unsigned long best_freq = 0; 548 u32 min_delta = 0xffffffff; 549 u8 p_min, p_max; 550 u8 _p, best_p; 551 u16 _m, best_m; 552 u8 _s, best_s; 553 554 p_min = DIV_ROUND_UP(fin, (12 * MHZ)); 555 p_max = fin / (6 * MHZ); 556 557 for (_p = p_min; _p <= p_max; ++_p) { 558 for (_s = 0; _s <= 5; ++_s) { 559 u64 tmp; 560 u32 delta; 561 562 tmp = (u64)fout * (_p << _s); 563 do_div(tmp, fin); 564 _m = tmp; 565 if (_m < 41 || _m > 125) 566 continue; 567 568 tmp = (u64)_m * fin; 569 do_div(tmp, _p); 570 if (tmp < 500 * MHZ || 571 tmp > driver_data->max_freq * MHZ) 572 continue; 573 574 tmp = (u64)_m * fin; 575 do_div(tmp, _p << _s); 576 577 delta = abs(fout - tmp); 578 if (delta < min_delta) { 579 best_p = _p; 580 best_m = _m; 581 best_s = _s; 582 min_delta = delta; 583 best_freq = tmp; 584 } 585 } 586 } 587 588 if (best_freq) { 589 *p = best_p; 590 *m = best_m; 591 *s = best_s; 592 } 593 594 return best_freq; 595 } 596 597 static unsigned long exynos_dsi_set_pll(struct exynos_dsi *dsi, 598 unsigned long freq) 599 { 600 const struct exynos_dsi_driver_data *driver_data = dsi->driver_data; 601 unsigned long fin, fout; 602 int timeout; 603 u8 p, s; 604 u16 m; 605 u32 reg; 606 607 fin = dsi->pll_clk_rate; 608 fout = exynos_dsi_pll_find_pms(dsi, fin, freq, &p, &m, &s); 609 if (!fout) { 610 dev_err(dsi->dev, 611 "failed to find PLL PMS for requested frequency\n"); 612 return 0; 613 } 614 dev_dbg(dsi->dev, "PLL freq %lu, (p %d, m %d, s %d)\n", fout, p, m, s); 615 616 writel(driver_data->reg_values[PLL_TIMER], 617 dsi->reg_base + driver_data->plltmr_reg); 618 619 reg = DSIM_PLL_EN | DSIM_PLL_P(p) | DSIM_PLL_M(m) | DSIM_PLL_S(s); 620 621 if (driver_data->has_freqband) { 622 static const unsigned long freq_bands[] = { 623 100 * MHZ, 120 * MHZ, 160 * MHZ, 200 * MHZ, 624 270 * MHZ, 320 * MHZ, 390 * MHZ, 450 * MHZ, 625 510 * MHZ, 560 * MHZ, 640 * MHZ, 690 * MHZ, 626 770 * MHZ, 870 * MHZ, 950 * MHZ, 627 }; 628 int band; 629 630 for (band = 0; band < ARRAY_SIZE(freq_bands); ++band) 631 if (fout < freq_bands[band]) 632 break; 633 634 dev_dbg(dsi->dev, "band %d\n", band); 635 636 reg |= DSIM_FREQ_BAND(band); 637 } 638 639 exynos_dsi_write(dsi, DSIM_PLLCTRL_REG, reg); 640 641 timeout = 1000; 642 do { 643 if (timeout-- == 0) { 644 dev_err(dsi->dev, "PLL failed to stabilize\n"); 645 return 0; 646 } 647 reg = exynos_dsi_read(dsi, DSIM_STATUS_REG); 648 } while ((reg & DSIM_PLL_STABLE) == 0); 649 650 return fout; 651 } 652 653 static int exynos_dsi_enable_clock(struct exynos_dsi *dsi) 654 { 655 unsigned long hs_clk, byte_clk, esc_clk; 656 unsigned long esc_div; 657 u32 reg; 658 659 hs_clk = exynos_dsi_set_pll(dsi, dsi->burst_clk_rate); 660 if (!hs_clk) { 661 dev_err(dsi->dev, "failed to configure DSI PLL\n"); 662 return -EFAULT; 663 } 664 665 byte_clk = hs_clk / 8; 666 esc_div = DIV_ROUND_UP(byte_clk, dsi->esc_clk_rate); 667 esc_clk = byte_clk / esc_div; 668 669 if (esc_clk > 20 * MHZ) { 670 ++esc_div; 671 esc_clk = byte_clk / esc_div; 672 } 673 674 dev_dbg(dsi->dev, "hs_clk = %lu, byte_clk = %lu, esc_clk = %lu\n", 675 hs_clk, byte_clk, esc_clk); 676 677 reg = exynos_dsi_read(dsi, DSIM_CLKCTRL_REG); 678 reg &= ~(DSIM_ESC_PRESCALER_MASK | DSIM_LANE_ESC_CLK_EN_CLK 679 | DSIM_LANE_ESC_CLK_EN_DATA_MASK | DSIM_PLL_BYPASS 680 | DSIM_BYTE_CLK_SRC_MASK); 681 reg |= DSIM_ESC_CLKEN | DSIM_BYTE_CLKEN 682 | DSIM_ESC_PRESCALER(esc_div) 683 | DSIM_LANE_ESC_CLK_EN_CLK 684 | DSIM_LANE_ESC_CLK_EN_DATA(BIT(dsi->lanes) - 1) 685 | DSIM_BYTE_CLK_SRC(0) 686 | DSIM_TX_REQUEST_HSCLK; 687 exynos_dsi_write(dsi, DSIM_CLKCTRL_REG, reg); 688 689 return 0; 690 } 691 692 static void exynos_dsi_set_phy_ctrl(struct exynos_dsi *dsi) 693 { 694 const struct exynos_dsi_driver_data *driver_data = dsi->driver_data; 695 const unsigned int *reg_values = driver_data->reg_values; 696 u32 reg; 697 698 if (driver_data->has_freqband) 699 return; 700 701 /* B D-PHY: D-PHY Master & Slave Analog Block control */ 702 reg = reg_values[PHYCTRL_ULPS_EXIT] | reg_values[PHYCTRL_VREG_LP] | 703 reg_values[PHYCTRL_SLEW_UP]; 704 exynos_dsi_write(dsi, DSIM_PHYCTRL_REG, reg); 705 706 /* 707 * T LPX: Transmitted length of any Low-Power state period 708 * T HS-EXIT: Time that the transmitter drives LP-11 following a HS 709 * burst 710 */ 711 reg = reg_values[PHYTIMING_LPX] | reg_values[PHYTIMING_HS_EXIT]; 712 exynos_dsi_write(dsi, DSIM_PHYTIMING_REG, reg); 713 714 /* 715 * T CLK-PREPARE: Time that the transmitter drives the Clock Lane LP-00 716 * Line state immediately before the HS-0 Line state starting the 717 * HS transmission 718 * T CLK-ZERO: Time that the transmitter drives the HS-0 state prior to 719 * transmitting the Clock. 720 * T CLK_POST: Time that the transmitter continues to send HS clock 721 * after the last associated Data Lane has transitioned to LP Mode 722 * Interval is defined as the period from the end of T HS-TRAIL to 723 * the beginning of T CLK-TRAIL 724 * T CLK-TRAIL: Time that the transmitter drives the HS-0 state after 725 * the last payload clock bit of a HS transmission burst 726 */ 727 reg = reg_values[PHYTIMING_CLK_PREPARE] | 728 reg_values[PHYTIMING_CLK_ZERO] | 729 reg_values[PHYTIMING_CLK_POST] | 730 reg_values[PHYTIMING_CLK_TRAIL]; 731 732 exynos_dsi_write(dsi, DSIM_PHYTIMING1_REG, reg); 733 734 /* 735 * T HS-PREPARE: Time that the transmitter drives the Data Lane LP-00 736 * Line state immediately before the HS-0 Line state starting the 737 * HS transmission 738 * T HS-ZERO: Time that the transmitter drives the HS-0 state prior to 739 * transmitting the Sync sequence. 740 * T HS-TRAIL: Time that the transmitter drives the flipped differential 741 * state after last payload data bit of a HS transmission burst 742 */ 743 reg = reg_values[PHYTIMING_HS_PREPARE] | reg_values[PHYTIMING_HS_ZERO] | 744 reg_values[PHYTIMING_HS_TRAIL]; 745 exynos_dsi_write(dsi, DSIM_PHYTIMING2_REG, reg); 746 } 747 748 static void exynos_dsi_disable_clock(struct exynos_dsi *dsi) 749 { 750 u32 reg; 751 752 reg = exynos_dsi_read(dsi, DSIM_CLKCTRL_REG); 753 reg &= ~(DSIM_LANE_ESC_CLK_EN_CLK | DSIM_LANE_ESC_CLK_EN_DATA_MASK 754 | DSIM_ESC_CLKEN | DSIM_BYTE_CLKEN); 755 exynos_dsi_write(dsi, DSIM_CLKCTRL_REG, reg); 756 757 reg = exynos_dsi_read(dsi, DSIM_PLLCTRL_REG); 758 reg &= ~DSIM_PLL_EN; 759 exynos_dsi_write(dsi, DSIM_PLLCTRL_REG, reg); 760 } 761 762 static void exynos_dsi_enable_lane(struct exynos_dsi *dsi, u32 lane) 763 { 764 u32 reg = exynos_dsi_read(dsi, DSIM_CONFIG_REG); 765 reg |= (DSIM_NUM_OF_DATA_LANE(dsi->lanes - 1) | DSIM_LANE_EN_CLK | 766 DSIM_LANE_EN(lane)); 767 exynos_dsi_write(dsi, DSIM_CONFIG_REG, reg); 768 } 769 770 static int exynos_dsi_init_link(struct exynos_dsi *dsi) 771 { 772 const struct exynos_dsi_driver_data *driver_data = dsi->driver_data; 773 int timeout; 774 u32 reg; 775 u32 lanes_mask; 776 777 /* Initialize FIFO pointers */ 778 reg = exynos_dsi_read(dsi, DSIM_FIFOCTRL_REG); 779 reg &= ~0x1f; 780 exynos_dsi_write(dsi, DSIM_FIFOCTRL_REG, reg); 781 782 usleep_range(9000, 11000); 783 784 reg |= 0x1f; 785 exynos_dsi_write(dsi, DSIM_FIFOCTRL_REG, reg); 786 usleep_range(9000, 11000); 787 788 /* DSI configuration */ 789 reg = 0; 790 791 /* 792 * The first bit of mode_flags specifies display configuration. 793 * If this bit is set[= MIPI_DSI_MODE_VIDEO], dsi will support video 794 * mode, otherwise it will support command mode. 795 */ 796 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 797 reg |= DSIM_VIDEO_MODE; 798 799 /* 800 * The user manual describes that following bits are ignored in 801 * command mode. 802 */ 803 if (!(dsi->mode_flags & MIPI_DSI_MODE_VSYNC_FLUSH)) 804 reg |= DSIM_MFLUSH_VS; 805 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) 806 reg |= DSIM_SYNC_INFORM; 807 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST) 808 reg |= DSIM_BURST_MODE; 809 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_AUTO_VERT) 810 reg |= DSIM_AUTO_MODE; 811 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HSE) 812 reg |= DSIM_HSE_MODE; 813 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HFP)) 814 reg |= DSIM_HFP_MODE; 815 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HBP)) 816 reg |= DSIM_HBP_MODE; 817 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HSA)) 818 reg |= DSIM_HSA_MODE; 819 } 820 821 if (!(dsi->mode_flags & MIPI_DSI_MODE_EOT_PACKET)) 822 reg |= DSIM_EOT_DISABLE; 823 824 switch (dsi->format) { 825 case MIPI_DSI_FMT_RGB888: 826 reg |= DSIM_MAIN_PIX_FORMAT_RGB888; 827 break; 828 case MIPI_DSI_FMT_RGB666: 829 reg |= DSIM_MAIN_PIX_FORMAT_RGB666; 830 break; 831 case MIPI_DSI_FMT_RGB666_PACKED: 832 reg |= DSIM_MAIN_PIX_FORMAT_RGB666_P; 833 break; 834 case MIPI_DSI_FMT_RGB565: 835 reg |= DSIM_MAIN_PIX_FORMAT_RGB565; 836 break; 837 default: 838 dev_err(dsi->dev, "invalid pixel format\n"); 839 return -EINVAL; 840 } 841 842 /* 843 * Use non-continuous clock mode if the periparal wants and 844 * host controller supports 845 * 846 * In non-continous clock mode, host controller will turn off 847 * the HS clock between high-speed transmissions to reduce 848 * power consumption. 849 */ 850 if (driver_data->has_clklane_stop && 851 dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) { 852 reg |= DSIM_CLKLANE_STOP; 853 } 854 exynos_dsi_write(dsi, DSIM_CONFIG_REG, reg); 855 856 lanes_mask = BIT(dsi->lanes) - 1; 857 exynos_dsi_enable_lane(dsi, lanes_mask); 858 859 /* Check clock and data lane state are stop state */ 860 timeout = 100; 861 do { 862 if (timeout-- == 0) { 863 dev_err(dsi->dev, "waiting for bus lanes timed out\n"); 864 return -EFAULT; 865 } 866 867 reg = exynos_dsi_read(dsi, DSIM_STATUS_REG); 868 if ((reg & DSIM_STOP_STATE_DAT(lanes_mask)) 869 != DSIM_STOP_STATE_DAT(lanes_mask)) 870 continue; 871 } while (!(reg & (DSIM_STOP_STATE_CLK | DSIM_TX_READY_HS_CLK))); 872 873 reg = exynos_dsi_read(dsi, DSIM_ESCMODE_REG); 874 reg &= ~DSIM_STOP_STATE_CNT_MASK; 875 reg |= DSIM_STOP_STATE_CNT(driver_data->reg_values[STOP_STATE_CNT]); 876 exynos_dsi_write(dsi, DSIM_ESCMODE_REG, reg); 877 878 reg = DSIM_BTA_TIMEOUT(0xff) | DSIM_LPDR_TIMEOUT(0xffff); 879 exynos_dsi_write(dsi, DSIM_TIMEOUT_REG, reg); 880 881 return 0; 882 } 883 884 static void exynos_dsi_set_display_mode(struct exynos_dsi *dsi) 885 { 886 struct drm_display_mode *m = &dsi->encoder.crtc->state->adjusted_mode; 887 unsigned int num_bits_resol = dsi->driver_data->num_bits_resol; 888 u32 reg; 889 890 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 891 reg = DSIM_CMD_ALLOW(0xf) 892 | DSIM_STABLE_VFP(m->vsync_start - m->vdisplay) 893 | DSIM_MAIN_VBP(m->vtotal - m->vsync_end); 894 exynos_dsi_write(dsi, DSIM_MVPORCH_REG, reg); 895 896 reg = DSIM_MAIN_HFP(m->hsync_start - m->hdisplay) 897 | DSIM_MAIN_HBP(m->htotal - m->hsync_end); 898 exynos_dsi_write(dsi, DSIM_MHPORCH_REG, reg); 899 900 reg = DSIM_MAIN_VSA(m->vsync_end - m->vsync_start) 901 | DSIM_MAIN_HSA(m->hsync_end - m->hsync_start); 902 exynos_dsi_write(dsi, DSIM_MSYNC_REG, reg); 903 } 904 reg = DSIM_MAIN_HRESOL(m->hdisplay, num_bits_resol) | 905 DSIM_MAIN_VRESOL(m->vdisplay, num_bits_resol); 906 907 exynos_dsi_write(dsi, DSIM_MDRESOL_REG, reg); 908 909 dev_dbg(dsi->dev, "LCD size = %dx%d\n", m->hdisplay, m->vdisplay); 910 } 911 912 static void exynos_dsi_set_display_enable(struct exynos_dsi *dsi, bool enable) 913 { 914 u32 reg; 915 916 reg = exynos_dsi_read(dsi, DSIM_MDRESOL_REG); 917 if (enable) 918 reg |= DSIM_MAIN_STAND_BY; 919 else 920 reg &= ~DSIM_MAIN_STAND_BY; 921 exynos_dsi_write(dsi, DSIM_MDRESOL_REG, reg); 922 } 923 924 static int exynos_dsi_wait_for_hdr_fifo(struct exynos_dsi *dsi) 925 { 926 int timeout = 2000; 927 928 do { 929 u32 reg = exynos_dsi_read(dsi, DSIM_FIFOCTRL_REG); 930 931 if (!(reg & DSIM_SFR_HEADER_FULL)) 932 return 0; 933 934 if (!cond_resched()) 935 usleep_range(950, 1050); 936 } while (--timeout); 937 938 return -ETIMEDOUT; 939 } 940 941 static void exynos_dsi_set_cmd_lpm(struct exynos_dsi *dsi, bool lpm) 942 { 943 u32 v = exynos_dsi_read(dsi, DSIM_ESCMODE_REG); 944 945 if (lpm) 946 v |= DSIM_CMD_LPDT_LP; 947 else 948 v &= ~DSIM_CMD_LPDT_LP; 949 950 exynos_dsi_write(dsi, DSIM_ESCMODE_REG, v); 951 } 952 953 static void exynos_dsi_force_bta(struct exynos_dsi *dsi) 954 { 955 u32 v = exynos_dsi_read(dsi, DSIM_ESCMODE_REG); 956 v |= DSIM_FORCE_BTA; 957 exynos_dsi_write(dsi, DSIM_ESCMODE_REG, v); 958 } 959 960 static void exynos_dsi_send_to_fifo(struct exynos_dsi *dsi, 961 struct exynos_dsi_transfer *xfer) 962 { 963 struct device *dev = dsi->dev; 964 struct mipi_dsi_packet *pkt = &xfer->packet; 965 const u8 *payload = pkt->payload + xfer->tx_done; 966 u16 length = pkt->payload_length - xfer->tx_done; 967 bool first = !xfer->tx_done; 968 u32 reg; 969 970 dev_dbg(dev, "< xfer %pK: tx len %u, done %u, rx len %u, done %u\n", 971 xfer, length, xfer->tx_done, xfer->rx_len, xfer->rx_done); 972 973 if (length > DSI_TX_FIFO_SIZE) 974 length = DSI_TX_FIFO_SIZE; 975 976 xfer->tx_done += length; 977 978 /* Send payload */ 979 while (length >= 4) { 980 reg = get_unaligned_le32(payload); 981 exynos_dsi_write(dsi, DSIM_PAYLOAD_REG, reg); 982 payload += 4; 983 length -= 4; 984 } 985 986 reg = 0; 987 switch (length) { 988 case 3: 989 reg |= payload[2] << 16; 990 fallthrough; 991 case 2: 992 reg |= payload[1] << 8; 993 fallthrough; 994 case 1: 995 reg |= payload[0]; 996 exynos_dsi_write(dsi, DSIM_PAYLOAD_REG, reg); 997 break; 998 } 999 1000 /* Send packet header */ 1001 if (!first) 1002 return; 1003 1004 reg = get_unaligned_le32(pkt->header); 1005 if (exynos_dsi_wait_for_hdr_fifo(dsi)) { 1006 dev_err(dev, "waiting for header FIFO timed out\n"); 1007 return; 1008 } 1009 1010 if (NEQV(xfer->flags & MIPI_DSI_MSG_USE_LPM, 1011 dsi->state & DSIM_STATE_CMD_LPM)) { 1012 exynos_dsi_set_cmd_lpm(dsi, xfer->flags & MIPI_DSI_MSG_USE_LPM); 1013 dsi->state ^= DSIM_STATE_CMD_LPM; 1014 } 1015 1016 exynos_dsi_write(dsi, DSIM_PKTHDR_REG, reg); 1017 1018 if (xfer->flags & MIPI_DSI_MSG_REQ_ACK) 1019 exynos_dsi_force_bta(dsi); 1020 } 1021 1022 static void exynos_dsi_read_from_fifo(struct exynos_dsi *dsi, 1023 struct exynos_dsi_transfer *xfer) 1024 { 1025 u8 *payload = xfer->rx_payload + xfer->rx_done; 1026 bool first = !xfer->rx_done; 1027 struct device *dev = dsi->dev; 1028 u16 length; 1029 u32 reg; 1030 1031 if (first) { 1032 reg = exynos_dsi_read(dsi, DSIM_RXFIFO_REG); 1033 1034 switch (reg & 0x3f) { 1035 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE: 1036 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE: 1037 if (xfer->rx_len >= 2) { 1038 payload[1] = reg >> 16; 1039 ++xfer->rx_done; 1040 } 1041 fallthrough; 1042 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE: 1043 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE: 1044 payload[0] = reg >> 8; 1045 ++xfer->rx_done; 1046 xfer->rx_len = xfer->rx_done; 1047 xfer->result = 0; 1048 goto clear_fifo; 1049 case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT: 1050 dev_err(dev, "DSI Error Report: 0x%04x\n", 1051 (reg >> 8) & 0xffff); 1052 xfer->result = 0; 1053 goto clear_fifo; 1054 } 1055 1056 length = (reg >> 8) & 0xffff; 1057 if (length > xfer->rx_len) { 1058 dev_err(dev, 1059 "response too long (%u > %u bytes), stripping\n", 1060 xfer->rx_len, length); 1061 length = xfer->rx_len; 1062 } else if (length < xfer->rx_len) 1063 xfer->rx_len = length; 1064 } 1065 1066 length = xfer->rx_len - xfer->rx_done; 1067 xfer->rx_done += length; 1068 1069 /* Receive payload */ 1070 while (length >= 4) { 1071 reg = exynos_dsi_read(dsi, DSIM_RXFIFO_REG); 1072 payload[0] = (reg >> 0) & 0xff; 1073 payload[1] = (reg >> 8) & 0xff; 1074 payload[2] = (reg >> 16) & 0xff; 1075 payload[3] = (reg >> 24) & 0xff; 1076 payload += 4; 1077 length -= 4; 1078 } 1079 1080 if (length) { 1081 reg = exynos_dsi_read(dsi, DSIM_RXFIFO_REG); 1082 switch (length) { 1083 case 3: 1084 payload[2] = (reg >> 16) & 0xff; 1085 fallthrough; 1086 case 2: 1087 payload[1] = (reg >> 8) & 0xff; 1088 fallthrough; 1089 case 1: 1090 payload[0] = reg & 0xff; 1091 } 1092 } 1093 1094 if (xfer->rx_done == xfer->rx_len) 1095 xfer->result = 0; 1096 1097 clear_fifo: 1098 length = DSI_RX_FIFO_SIZE / 4; 1099 do { 1100 reg = exynos_dsi_read(dsi, DSIM_RXFIFO_REG); 1101 if (reg == DSI_RX_FIFO_EMPTY) 1102 break; 1103 } while (--length); 1104 } 1105 1106 static void exynos_dsi_transfer_start(struct exynos_dsi *dsi) 1107 { 1108 unsigned long flags; 1109 struct exynos_dsi_transfer *xfer; 1110 bool start = false; 1111 1112 again: 1113 spin_lock_irqsave(&dsi->transfer_lock, flags); 1114 1115 if (list_empty(&dsi->transfer_list)) { 1116 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1117 return; 1118 } 1119 1120 xfer = list_first_entry(&dsi->transfer_list, 1121 struct exynos_dsi_transfer, list); 1122 1123 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1124 1125 if (xfer->packet.payload_length && 1126 xfer->tx_done == xfer->packet.payload_length) 1127 /* waiting for RX */ 1128 return; 1129 1130 exynos_dsi_send_to_fifo(dsi, xfer); 1131 1132 if (xfer->packet.payload_length || xfer->rx_len) 1133 return; 1134 1135 xfer->result = 0; 1136 complete(&xfer->completed); 1137 1138 spin_lock_irqsave(&dsi->transfer_lock, flags); 1139 1140 list_del_init(&xfer->list); 1141 start = !list_empty(&dsi->transfer_list); 1142 1143 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1144 1145 if (start) 1146 goto again; 1147 } 1148 1149 static bool exynos_dsi_transfer_finish(struct exynos_dsi *dsi) 1150 { 1151 struct exynos_dsi_transfer *xfer; 1152 unsigned long flags; 1153 bool start = true; 1154 1155 spin_lock_irqsave(&dsi->transfer_lock, flags); 1156 1157 if (list_empty(&dsi->transfer_list)) { 1158 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1159 return false; 1160 } 1161 1162 xfer = list_first_entry(&dsi->transfer_list, 1163 struct exynos_dsi_transfer, list); 1164 1165 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1166 1167 dev_dbg(dsi->dev, 1168 "> xfer %pK, tx_len %zu, tx_done %u, rx_len %u, rx_done %u\n", 1169 xfer, xfer->packet.payload_length, xfer->tx_done, xfer->rx_len, 1170 xfer->rx_done); 1171 1172 if (xfer->tx_done != xfer->packet.payload_length) 1173 return true; 1174 1175 if (xfer->rx_done != xfer->rx_len) 1176 exynos_dsi_read_from_fifo(dsi, xfer); 1177 1178 if (xfer->rx_done != xfer->rx_len) 1179 return true; 1180 1181 spin_lock_irqsave(&dsi->transfer_lock, flags); 1182 1183 list_del_init(&xfer->list); 1184 start = !list_empty(&dsi->transfer_list); 1185 1186 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1187 1188 if (!xfer->rx_len) 1189 xfer->result = 0; 1190 complete(&xfer->completed); 1191 1192 return start; 1193 } 1194 1195 static void exynos_dsi_remove_transfer(struct exynos_dsi *dsi, 1196 struct exynos_dsi_transfer *xfer) 1197 { 1198 unsigned long flags; 1199 bool start; 1200 1201 spin_lock_irqsave(&dsi->transfer_lock, flags); 1202 1203 if (!list_empty(&dsi->transfer_list) && 1204 xfer == list_first_entry(&dsi->transfer_list, 1205 struct exynos_dsi_transfer, list)) { 1206 list_del_init(&xfer->list); 1207 start = !list_empty(&dsi->transfer_list); 1208 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1209 if (start) 1210 exynos_dsi_transfer_start(dsi); 1211 return; 1212 } 1213 1214 list_del_init(&xfer->list); 1215 1216 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1217 } 1218 1219 static int exynos_dsi_transfer(struct exynos_dsi *dsi, 1220 struct exynos_dsi_transfer *xfer) 1221 { 1222 unsigned long flags; 1223 bool stopped; 1224 1225 xfer->tx_done = 0; 1226 xfer->rx_done = 0; 1227 xfer->result = -ETIMEDOUT; 1228 init_completion(&xfer->completed); 1229 1230 spin_lock_irqsave(&dsi->transfer_lock, flags); 1231 1232 stopped = list_empty(&dsi->transfer_list); 1233 list_add_tail(&xfer->list, &dsi->transfer_list); 1234 1235 spin_unlock_irqrestore(&dsi->transfer_lock, flags); 1236 1237 if (stopped) 1238 exynos_dsi_transfer_start(dsi); 1239 1240 wait_for_completion_timeout(&xfer->completed, 1241 msecs_to_jiffies(DSI_XFER_TIMEOUT_MS)); 1242 if (xfer->result == -ETIMEDOUT) { 1243 struct mipi_dsi_packet *pkt = &xfer->packet; 1244 exynos_dsi_remove_transfer(dsi, xfer); 1245 dev_err(dsi->dev, "xfer timed out: %*ph %*ph\n", 4, pkt->header, 1246 (int)pkt->payload_length, pkt->payload); 1247 return -ETIMEDOUT; 1248 } 1249 1250 /* Also covers hardware timeout condition */ 1251 return xfer->result; 1252 } 1253 1254 static irqreturn_t exynos_dsi_irq(int irq, void *dev_id) 1255 { 1256 struct exynos_dsi *dsi = dev_id; 1257 u32 status; 1258 1259 status = exynos_dsi_read(dsi, DSIM_INTSRC_REG); 1260 if (!status) { 1261 static unsigned long int j; 1262 if (printk_timed_ratelimit(&j, 500)) 1263 dev_warn(dsi->dev, "spurious interrupt\n"); 1264 return IRQ_HANDLED; 1265 } 1266 exynos_dsi_write(dsi, DSIM_INTSRC_REG, status); 1267 1268 if (status & DSIM_INT_SW_RST_RELEASE) { 1269 u32 mask = ~(DSIM_INT_RX_DONE | DSIM_INT_SFR_FIFO_EMPTY | 1270 DSIM_INT_SFR_HDR_FIFO_EMPTY | DSIM_INT_RX_ECC_ERR | 1271 DSIM_INT_SW_RST_RELEASE); 1272 exynos_dsi_write(dsi, DSIM_INTMSK_REG, mask); 1273 complete(&dsi->completed); 1274 return IRQ_HANDLED; 1275 } 1276 1277 if (!(status & (DSIM_INT_RX_DONE | DSIM_INT_SFR_FIFO_EMPTY | 1278 DSIM_INT_PLL_STABLE))) 1279 return IRQ_HANDLED; 1280 1281 if (exynos_dsi_transfer_finish(dsi)) 1282 exynos_dsi_transfer_start(dsi); 1283 1284 return IRQ_HANDLED; 1285 } 1286 1287 static irqreturn_t exynos_dsi_te_irq_handler(int irq, void *dev_id) 1288 { 1289 struct exynos_dsi *dsi = (struct exynos_dsi *)dev_id; 1290 struct drm_encoder *encoder = &dsi->encoder; 1291 1292 if (dsi->state & DSIM_STATE_VIDOUT_AVAILABLE) 1293 exynos_drm_crtc_te_handler(encoder->crtc); 1294 1295 return IRQ_HANDLED; 1296 } 1297 1298 static void exynos_dsi_enable_irq(struct exynos_dsi *dsi) 1299 { 1300 enable_irq(dsi->irq); 1301 1302 if (gpio_is_valid(dsi->te_gpio)) 1303 enable_irq(gpio_to_irq(dsi->te_gpio)); 1304 } 1305 1306 static void exynos_dsi_disable_irq(struct exynos_dsi *dsi) 1307 { 1308 if (gpio_is_valid(dsi->te_gpio)) 1309 disable_irq(gpio_to_irq(dsi->te_gpio)); 1310 1311 disable_irq(dsi->irq); 1312 } 1313 1314 static int exynos_dsi_init(struct exynos_dsi *dsi) 1315 { 1316 const struct exynos_dsi_driver_data *driver_data = dsi->driver_data; 1317 1318 exynos_dsi_reset(dsi); 1319 exynos_dsi_enable_irq(dsi); 1320 1321 if (driver_data->reg_values[RESET_TYPE] == DSIM_FUNCRST) 1322 exynos_dsi_enable_lane(dsi, BIT(dsi->lanes) - 1); 1323 1324 exynos_dsi_enable_clock(dsi); 1325 if (driver_data->wait_for_reset) 1326 exynos_dsi_wait_for_reset(dsi); 1327 exynos_dsi_set_phy_ctrl(dsi); 1328 exynos_dsi_init_link(dsi); 1329 1330 return 0; 1331 } 1332 1333 static int exynos_dsi_register_te_irq(struct exynos_dsi *dsi, 1334 struct device *panel) 1335 { 1336 int ret; 1337 int te_gpio_irq; 1338 1339 dsi->te_gpio = of_get_named_gpio(panel->of_node, "te-gpios", 0); 1340 if (dsi->te_gpio == -ENOENT) 1341 return 0; 1342 1343 if (!gpio_is_valid(dsi->te_gpio)) { 1344 ret = dsi->te_gpio; 1345 dev_err(dsi->dev, "cannot get te-gpios, %d\n", ret); 1346 goto out; 1347 } 1348 1349 ret = gpio_request(dsi->te_gpio, "te_gpio"); 1350 if (ret) { 1351 dev_err(dsi->dev, "gpio request failed with %d\n", ret); 1352 goto out; 1353 } 1354 1355 te_gpio_irq = gpio_to_irq(dsi->te_gpio); 1356 irq_set_status_flags(te_gpio_irq, IRQ_NOAUTOEN); 1357 1358 ret = request_threaded_irq(te_gpio_irq, exynos_dsi_te_irq_handler, NULL, 1359 IRQF_TRIGGER_RISING, "TE", dsi); 1360 if (ret) { 1361 dev_err(dsi->dev, "request interrupt failed with %d\n", ret); 1362 gpio_free(dsi->te_gpio); 1363 goto out; 1364 } 1365 1366 out: 1367 return ret; 1368 } 1369 1370 static void exynos_dsi_unregister_te_irq(struct exynos_dsi *dsi) 1371 { 1372 if (gpio_is_valid(dsi->te_gpio)) { 1373 free_irq(gpio_to_irq(dsi->te_gpio), dsi); 1374 gpio_free(dsi->te_gpio); 1375 dsi->te_gpio = -ENOENT; 1376 } 1377 } 1378 1379 static void exynos_dsi_enable(struct drm_encoder *encoder) 1380 { 1381 struct exynos_dsi *dsi = encoder_to_dsi(encoder); 1382 struct drm_bridge *iter; 1383 int ret; 1384 1385 if (dsi->state & DSIM_STATE_ENABLED) 1386 return; 1387 1388 pm_runtime_get_sync(dsi->dev); 1389 dsi->state |= DSIM_STATE_ENABLED; 1390 1391 if (dsi->panel) { 1392 ret = drm_panel_prepare(dsi->panel); 1393 if (ret < 0) 1394 goto err_put_sync; 1395 } else { 1396 list_for_each_entry_reverse(iter, &dsi->bridge_chain, 1397 chain_node) { 1398 if (iter->funcs->pre_enable) 1399 iter->funcs->pre_enable(iter); 1400 } 1401 } 1402 1403 exynos_dsi_set_display_mode(dsi); 1404 exynos_dsi_set_display_enable(dsi, true); 1405 1406 if (dsi->panel) { 1407 ret = drm_panel_enable(dsi->panel); 1408 if (ret < 0) 1409 goto err_display_disable; 1410 } else { 1411 list_for_each_entry(iter, &dsi->bridge_chain, chain_node) { 1412 if (iter->funcs->enable) 1413 iter->funcs->enable(iter); 1414 } 1415 } 1416 1417 dsi->state |= DSIM_STATE_VIDOUT_AVAILABLE; 1418 return; 1419 1420 err_display_disable: 1421 exynos_dsi_set_display_enable(dsi, false); 1422 drm_panel_unprepare(dsi->panel); 1423 1424 err_put_sync: 1425 dsi->state &= ~DSIM_STATE_ENABLED; 1426 pm_runtime_put(dsi->dev); 1427 } 1428 1429 static void exynos_dsi_disable(struct drm_encoder *encoder) 1430 { 1431 struct exynos_dsi *dsi = encoder_to_dsi(encoder); 1432 struct drm_bridge *iter; 1433 1434 if (!(dsi->state & DSIM_STATE_ENABLED)) 1435 return; 1436 1437 dsi->state &= ~DSIM_STATE_VIDOUT_AVAILABLE; 1438 1439 drm_panel_disable(dsi->panel); 1440 1441 list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) { 1442 if (iter->funcs->disable) 1443 iter->funcs->disable(iter); 1444 } 1445 1446 exynos_dsi_set_display_enable(dsi, false); 1447 drm_panel_unprepare(dsi->panel); 1448 1449 list_for_each_entry(iter, &dsi->bridge_chain, chain_node) { 1450 if (iter->funcs->post_disable) 1451 iter->funcs->post_disable(iter); 1452 } 1453 1454 dsi->state &= ~DSIM_STATE_ENABLED; 1455 pm_runtime_put_sync(dsi->dev); 1456 } 1457 1458 static enum drm_connector_status 1459 exynos_dsi_detect(struct drm_connector *connector, bool force) 1460 { 1461 return connector->status; 1462 } 1463 1464 static void exynos_dsi_connector_destroy(struct drm_connector *connector) 1465 { 1466 drm_connector_unregister(connector); 1467 drm_connector_cleanup(connector); 1468 connector->dev = NULL; 1469 } 1470 1471 static const struct drm_connector_funcs exynos_dsi_connector_funcs = { 1472 .detect = exynos_dsi_detect, 1473 .fill_modes = drm_helper_probe_single_connector_modes, 1474 .destroy = exynos_dsi_connector_destroy, 1475 .reset = drm_atomic_helper_connector_reset, 1476 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, 1477 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 1478 }; 1479 1480 static int exynos_dsi_get_modes(struct drm_connector *connector) 1481 { 1482 struct exynos_dsi *dsi = connector_to_dsi(connector); 1483 1484 if (dsi->panel) 1485 return drm_panel_get_modes(dsi->panel, connector); 1486 1487 return 0; 1488 } 1489 1490 static const struct drm_connector_helper_funcs exynos_dsi_connector_helper_funcs = { 1491 .get_modes = exynos_dsi_get_modes, 1492 }; 1493 1494 static int exynos_dsi_create_connector(struct drm_encoder *encoder) 1495 { 1496 struct exynos_dsi *dsi = encoder_to_dsi(encoder); 1497 struct drm_connector *connector = &dsi->connector; 1498 struct drm_device *drm = encoder->dev; 1499 int ret; 1500 1501 connector->polled = DRM_CONNECTOR_POLL_HPD; 1502 1503 ret = drm_connector_init(drm, connector, &exynos_dsi_connector_funcs, 1504 DRM_MODE_CONNECTOR_DSI); 1505 if (ret) { 1506 DRM_DEV_ERROR(dsi->dev, 1507 "Failed to initialize connector with drm\n"); 1508 return ret; 1509 } 1510 1511 connector->status = connector_status_disconnected; 1512 drm_connector_helper_add(connector, &exynos_dsi_connector_helper_funcs); 1513 drm_connector_attach_encoder(connector, encoder); 1514 if (!drm->registered) 1515 return 0; 1516 1517 connector->funcs->reset(connector); 1518 drm_connector_register(connector); 1519 return 0; 1520 } 1521 1522 static const struct drm_encoder_helper_funcs exynos_dsi_encoder_helper_funcs = { 1523 .enable = exynos_dsi_enable, 1524 .disable = exynos_dsi_disable, 1525 }; 1526 1527 MODULE_DEVICE_TABLE(of, exynos_dsi_of_match); 1528 1529 static int exynos_dsi_host_attach(struct mipi_dsi_host *host, 1530 struct mipi_dsi_device *device) 1531 { 1532 struct exynos_dsi *dsi = host_to_dsi(host); 1533 struct drm_encoder *encoder = &dsi->encoder; 1534 struct drm_device *drm = encoder->dev; 1535 struct drm_bridge *out_bridge; 1536 1537 out_bridge = of_drm_find_bridge(device->dev.of_node); 1538 if (out_bridge) { 1539 drm_bridge_attach(encoder, out_bridge, NULL, 0); 1540 dsi->out_bridge = out_bridge; 1541 list_splice_init(&encoder->bridge_chain, &dsi->bridge_chain); 1542 } else { 1543 int ret = exynos_dsi_create_connector(encoder); 1544 1545 if (ret) { 1546 DRM_DEV_ERROR(dsi->dev, 1547 "failed to create connector ret = %d\n", 1548 ret); 1549 drm_encoder_cleanup(encoder); 1550 return ret; 1551 } 1552 1553 dsi->panel = of_drm_find_panel(device->dev.of_node); 1554 if (IS_ERR(dsi->panel)) 1555 dsi->panel = NULL; 1556 else 1557 dsi->connector.status = connector_status_connected; 1558 } 1559 1560 /* 1561 * This is a temporary solution and should be made by more generic way. 1562 * 1563 * If attached panel device is for command mode one, dsi should register 1564 * TE interrupt handler. 1565 */ 1566 if (!(device->mode_flags & MIPI_DSI_MODE_VIDEO)) { 1567 int ret = exynos_dsi_register_te_irq(dsi, &device->dev); 1568 if (ret) 1569 return ret; 1570 } 1571 1572 mutex_lock(&drm->mode_config.mutex); 1573 1574 dsi->lanes = device->lanes; 1575 dsi->format = device->format; 1576 dsi->mode_flags = device->mode_flags; 1577 exynos_drm_crtc_get_by_type(drm, EXYNOS_DISPLAY_TYPE_LCD)->i80_mode = 1578 !(dsi->mode_flags & MIPI_DSI_MODE_VIDEO); 1579 1580 mutex_unlock(&drm->mode_config.mutex); 1581 1582 if (drm->mode_config.poll_enabled) 1583 drm_kms_helper_hotplug_event(drm); 1584 1585 return 0; 1586 } 1587 1588 static int exynos_dsi_host_detach(struct mipi_dsi_host *host, 1589 struct mipi_dsi_device *device) 1590 { 1591 struct exynos_dsi *dsi = host_to_dsi(host); 1592 struct drm_device *drm = dsi->encoder.dev; 1593 1594 if (dsi->panel) { 1595 mutex_lock(&drm->mode_config.mutex); 1596 exynos_dsi_disable(&dsi->encoder); 1597 dsi->panel = NULL; 1598 dsi->connector.status = connector_status_disconnected; 1599 mutex_unlock(&drm->mode_config.mutex); 1600 } else { 1601 if (dsi->out_bridge->funcs->detach) 1602 dsi->out_bridge->funcs->detach(dsi->out_bridge); 1603 dsi->out_bridge = NULL; 1604 INIT_LIST_HEAD(&dsi->bridge_chain); 1605 } 1606 1607 if (drm->mode_config.poll_enabled) 1608 drm_kms_helper_hotplug_event(drm); 1609 1610 exynos_dsi_unregister_te_irq(dsi); 1611 1612 return 0; 1613 } 1614 1615 static ssize_t exynos_dsi_host_transfer(struct mipi_dsi_host *host, 1616 const struct mipi_dsi_msg *msg) 1617 { 1618 struct exynos_dsi *dsi = host_to_dsi(host); 1619 struct exynos_dsi_transfer xfer; 1620 int ret; 1621 1622 if (!(dsi->state & DSIM_STATE_ENABLED)) 1623 return -EINVAL; 1624 1625 if (!(dsi->state & DSIM_STATE_INITIALIZED)) { 1626 ret = exynos_dsi_init(dsi); 1627 if (ret) 1628 return ret; 1629 dsi->state |= DSIM_STATE_INITIALIZED; 1630 } 1631 1632 ret = mipi_dsi_create_packet(&xfer.packet, msg); 1633 if (ret < 0) 1634 return ret; 1635 1636 xfer.rx_len = msg->rx_len; 1637 xfer.rx_payload = msg->rx_buf; 1638 xfer.flags = msg->flags; 1639 1640 ret = exynos_dsi_transfer(dsi, &xfer); 1641 return (ret < 0) ? ret : xfer.rx_done; 1642 } 1643 1644 static const struct mipi_dsi_host_ops exynos_dsi_ops = { 1645 .attach = exynos_dsi_host_attach, 1646 .detach = exynos_dsi_host_detach, 1647 .transfer = exynos_dsi_host_transfer, 1648 }; 1649 1650 static int exynos_dsi_of_read_u32(const struct device_node *np, 1651 const char *propname, u32 *out_value) 1652 { 1653 int ret = of_property_read_u32(np, propname, out_value); 1654 1655 if (ret < 0) 1656 pr_err("%pOF: failed to get '%s' property\n", np, propname); 1657 1658 return ret; 1659 } 1660 1661 enum { 1662 DSI_PORT_IN, 1663 DSI_PORT_OUT 1664 }; 1665 1666 static int exynos_dsi_parse_dt(struct exynos_dsi *dsi) 1667 { 1668 struct device *dev = dsi->dev; 1669 struct device_node *node = dev->of_node; 1670 int ret; 1671 1672 ret = exynos_dsi_of_read_u32(node, "samsung,pll-clock-frequency", 1673 &dsi->pll_clk_rate); 1674 if (ret < 0) 1675 return ret; 1676 1677 ret = exynos_dsi_of_read_u32(node, "samsung,burst-clock-frequency", 1678 &dsi->burst_clk_rate); 1679 if (ret < 0) 1680 return ret; 1681 1682 ret = exynos_dsi_of_read_u32(node, "samsung,esc-clock-frequency", 1683 &dsi->esc_clk_rate); 1684 if (ret < 0) 1685 return ret; 1686 1687 dsi->in_bridge_node = of_graph_get_remote_node(node, DSI_PORT_IN, 0); 1688 1689 return 0; 1690 } 1691 1692 static int exynos_dsi_bind(struct device *dev, struct device *master, 1693 void *data) 1694 { 1695 struct drm_encoder *encoder = dev_get_drvdata(dev); 1696 struct exynos_dsi *dsi = encoder_to_dsi(encoder); 1697 struct drm_device *drm_dev = data; 1698 struct drm_bridge *in_bridge; 1699 int ret; 1700 1701 drm_simple_encoder_init(drm_dev, encoder, DRM_MODE_ENCODER_TMDS); 1702 1703 drm_encoder_helper_add(encoder, &exynos_dsi_encoder_helper_funcs); 1704 1705 ret = exynos_drm_set_possible_crtcs(encoder, EXYNOS_DISPLAY_TYPE_LCD); 1706 if (ret < 0) 1707 return ret; 1708 1709 if (dsi->in_bridge_node) { 1710 in_bridge = of_drm_find_bridge(dsi->in_bridge_node); 1711 if (in_bridge) 1712 drm_bridge_attach(encoder, in_bridge, NULL, 0); 1713 } 1714 1715 return mipi_dsi_host_register(&dsi->dsi_host); 1716 } 1717 1718 static void exynos_dsi_unbind(struct device *dev, struct device *master, 1719 void *data) 1720 { 1721 struct drm_encoder *encoder = dev_get_drvdata(dev); 1722 struct exynos_dsi *dsi = encoder_to_dsi(encoder); 1723 1724 exynos_dsi_disable(encoder); 1725 1726 mipi_dsi_host_unregister(&dsi->dsi_host); 1727 } 1728 1729 static const struct component_ops exynos_dsi_component_ops = { 1730 .bind = exynos_dsi_bind, 1731 .unbind = exynos_dsi_unbind, 1732 }; 1733 1734 static int exynos_dsi_probe(struct platform_device *pdev) 1735 { 1736 struct device *dev = &pdev->dev; 1737 struct resource *res; 1738 struct exynos_dsi *dsi; 1739 int ret, i; 1740 1741 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); 1742 if (!dsi) 1743 return -ENOMEM; 1744 1745 /* To be checked as invalid one */ 1746 dsi->te_gpio = -ENOENT; 1747 1748 init_completion(&dsi->completed); 1749 spin_lock_init(&dsi->transfer_lock); 1750 INIT_LIST_HEAD(&dsi->transfer_list); 1751 INIT_LIST_HEAD(&dsi->bridge_chain); 1752 1753 dsi->dsi_host.ops = &exynos_dsi_ops; 1754 dsi->dsi_host.dev = dev; 1755 1756 dsi->dev = dev; 1757 dsi->driver_data = of_device_get_match_data(dev); 1758 1759 dsi->supplies[0].supply = "vddcore"; 1760 dsi->supplies[1].supply = "vddio"; 1761 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(dsi->supplies), 1762 dsi->supplies); 1763 if (ret) 1764 return dev_err_probe(dev, ret, "failed to get regulators\n"); 1765 1766 dsi->clks = devm_kcalloc(dev, 1767 dsi->driver_data->num_clks, sizeof(*dsi->clks), 1768 GFP_KERNEL); 1769 if (!dsi->clks) 1770 return -ENOMEM; 1771 1772 for (i = 0; i < dsi->driver_data->num_clks; i++) { 1773 dsi->clks[i] = devm_clk_get(dev, clk_names[i]); 1774 if (IS_ERR(dsi->clks[i])) { 1775 if (strcmp(clk_names[i], "sclk_mipi") == 0) { 1776 dsi->clks[i] = devm_clk_get(dev, 1777 OLD_SCLK_MIPI_CLK_NAME); 1778 if (!IS_ERR(dsi->clks[i])) 1779 continue; 1780 } 1781 1782 dev_info(dev, "failed to get the clock: %s\n", 1783 clk_names[i]); 1784 return PTR_ERR(dsi->clks[i]); 1785 } 1786 } 1787 1788 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1789 dsi->reg_base = devm_ioremap_resource(dev, res); 1790 if (IS_ERR(dsi->reg_base)) { 1791 dev_err(dev, "failed to remap io region\n"); 1792 return PTR_ERR(dsi->reg_base); 1793 } 1794 1795 dsi->phy = devm_phy_get(dev, "dsim"); 1796 if (IS_ERR(dsi->phy)) { 1797 dev_info(dev, "failed to get dsim phy\n"); 1798 return PTR_ERR(dsi->phy); 1799 } 1800 1801 dsi->irq = platform_get_irq(pdev, 0); 1802 if (dsi->irq < 0) 1803 return dsi->irq; 1804 1805 irq_set_status_flags(dsi->irq, IRQ_NOAUTOEN); 1806 ret = devm_request_threaded_irq(dev, dsi->irq, NULL, 1807 exynos_dsi_irq, IRQF_ONESHOT, 1808 dev_name(dev), dsi); 1809 if (ret) { 1810 dev_err(dev, "failed to request dsi irq\n"); 1811 return ret; 1812 } 1813 1814 ret = exynos_dsi_parse_dt(dsi); 1815 if (ret) 1816 return ret; 1817 1818 platform_set_drvdata(pdev, &dsi->encoder); 1819 1820 pm_runtime_enable(dev); 1821 1822 ret = component_add(dev, &exynos_dsi_component_ops); 1823 if (ret) 1824 goto err_disable_runtime; 1825 1826 return 0; 1827 1828 err_disable_runtime: 1829 pm_runtime_disable(dev); 1830 of_node_put(dsi->in_bridge_node); 1831 1832 return ret; 1833 } 1834 1835 static int exynos_dsi_remove(struct platform_device *pdev) 1836 { 1837 struct exynos_dsi *dsi = platform_get_drvdata(pdev); 1838 1839 of_node_put(dsi->in_bridge_node); 1840 1841 pm_runtime_disable(&pdev->dev); 1842 1843 component_del(&pdev->dev, &exynos_dsi_component_ops); 1844 1845 return 0; 1846 } 1847 1848 static int __maybe_unused exynos_dsi_suspend(struct device *dev) 1849 { 1850 struct drm_encoder *encoder = dev_get_drvdata(dev); 1851 struct exynos_dsi *dsi = encoder_to_dsi(encoder); 1852 const struct exynos_dsi_driver_data *driver_data = dsi->driver_data; 1853 int ret, i; 1854 1855 usleep_range(10000, 20000); 1856 1857 if (dsi->state & DSIM_STATE_INITIALIZED) { 1858 dsi->state &= ~DSIM_STATE_INITIALIZED; 1859 1860 exynos_dsi_disable_clock(dsi); 1861 1862 exynos_dsi_disable_irq(dsi); 1863 } 1864 1865 dsi->state &= ~DSIM_STATE_CMD_LPM; 1866 1867 phy_power_off(dsi->phy); 1868 1869 for (i = driver_data->num_clks - 1; i > -1; i--) 1870 clk_disable_unprepare(dsi->clks[i]); 1871 1872 ret = regulator_bulk_disable(ARRAY_SIZE(dsi->supplies), dsi->supplies); 1873 if (ret < 0) 1874 dev_err(dsi->dev, "cannot disable regulators %d\n", ret); 1875 1876 return 0; 1877 } 1878 1879 static int __maybe_unused exynos_dsi_resume(struct device *dev) 1880 { 1881 struct drm_encoder *encoder = dev_get_drvdata(dev); 1882 struct exynos_dsi *dsi = encoder_to_dsi(encoder); 1883 const struct exynos_dsi_driver_data *driver_data = dsi->driver_data; 1884 int ret, i; 1885 1886 ret = regulator_bulk_enable(ARRAY_SIZE(dsi->supplies), dsi->supplies); 1887 if (ret < 0) { 1888 dev_err(dsi->dev, "cannot enable regulators %d\n", ret); 1889 return ret; 1890 } 1891 1892 for (i = 0; i < driver_data->num_clks; i++) { 1893 ret = clk_prepare_enable(dsi->clks[i]); 1894 if (ret < 0) 1895 goto err_clk; 1896 } 1897 1898 ret = phy_power_on(dsi->phy); 1899 if (ret < 0) { 1900 dev_err(dsi->dev, "cannot enable phy %d\n", ret); 1901 goto err_clk; 1902 } 1903 1904 return 0; 1905 1906 err_clk: 1907 while (--i > -1) 1908 clk_disable_unprepare(dsi->clks[i]); 1909 regulator_bulk_disable(ARRAY_SIZE(dsi->supplies), dsi->supplies); 1910 1911 return ret; 1912 } 1913 1914 static const struct dev_pm_ops exynos_dsi_pm_ops = { 1915 SET_RUNTIME_PM_OPS(exynos_dsi_suspend, exynos_dsi_resume, NULL) 1916 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1917 pm_runtime_force_resume) 1918 }; 1919 1920 struct platform_driver dsi_driver = { 1921 .probe = exynos_dsi_probe, 1922 .remove = exynos_dsi_remove, 1923 .driver = { 1924 .name = "exynos-dsi", 1925 .owner = THIS_MODULE, 1926 .pm = &exynos_dsi_pm_ops, 1927 .of_match_table = exynos_dsi_of_match, 1928 }, 1929 }; 1930 1931 MODULE_AUTHOR("Tomasz Figa <t.figa@samsung.com>"); 1932 MODULE_AUTHOR("Andrzej Hajda <a.hajda@samsung.com>"); 1933 MODULE_DESCRIPTION("Samsung SoC MIPI DSI Master"); 1934 MODULE_LICENSE("GPL v2"); 1935