1 /* 2 * drm_irq.c IRQ and vblank support 3 * 4 * \author Rickard E. (Rik) Faith <faith@valinux.com> 5 * \author Gareth Hughes <gareth@valinux.com> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 24 * OTHER DEALINGS IN THE SOFTWARE. 25 */ 26 27 #include <drm/drm_vblank.h> 28 #include <drm/drmP.h> 29 #include <linux/export.h> 30 31 #include "drm_trace.h" 32 #include "drm_internal.h" 33 34 /** 35 * DOC: vblank handling 36 * 37 * Vertical blanking plays a major role in graphics rendering. To achieve 38 * tear-free display, users must synchronize page flips and/or rendering to 39 * vertical blanking. The DRM API offers ioctls to perform page flips 40 * synchronized to vertical blanking and wait for vertical blanking. 41 * 42 * The DRM core handles most of the vertical blanking management logic, which 43 * involves filtering out spurious interrupts, keeping race-free blanking 44 * counters, coping with counter wrap-around and resets and keeping use counts. 45 * It relies on the driver to generate vertical blanking interrupts and 46 * optionally provide a hardware vertical blanking counter. 47 * 48 * Drivers must initialize the vertical blanking handling core with a call to 49 * drm_vblank_init(). Minimally, a driver needs to implement 50 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call 51 * drm_crtc_handle_vblank() in it's vblank interrupt handler for working vblank 52 * support. 53 * 54 * Vertical blanking interrupts can be enabled by the DRM core or by drivers 55 * themselves (for instance to handle page flipping operations). The DRM core 56 * maintains a vertical blanking use count to ensure that the interrupts are not 57 * disabled while a user still needs them. To increment the use count, drivers 58 * call drm_crtc_vblank_get() and release the vblank reference again with 59 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are 60 * guaranteed to be enabled. 61 * 62 * On many hardware disabling the vblank interrupt cannot be done in a race-free 63 * manner, see &drm_driver.vblank_disable_immediate and 64 * &drm_driver.max_vblank_count. In that case the vblank core only disables the 65 * vblanks after a timer has expired, which can be configured through the 66 * ``vblankoffdelay`` module parameter. 67 */ 68 69 /* Retry timestamp calculation up to 3 times to satisfy 70 * drm_timestamp_precision before giving up. 71 */ 72 #define DRM_TIMESTAMP_MAXRETRIES 3 73 74 /* Threshold in nanoseconds for detection of redundant 75 * vblank irq in drm_handle_vblank(). 1 msec should be ok. 76 */ 77 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 78 79 static bool 80 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 81 ktime_t *tvblank, bool in_vblank_irq); 82 83 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */ 84 85 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */ 86 87 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600); 88 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600); 89 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)"); 90 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]"); 91 92 static void store_vblank(struct drm_device *dev, unsigned int pipe, 93 u32 vblank_count_inc, 94 ktime_t t_vblank, u32 last) 95 { 96 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 97 98 assert_spin_locked(&dev->vblank_time_lock); 99 100 vblank->last = last; 101 102 write_seqlock(&vblank->seqlock); 103 vblank->time = t_vblank; 104 vblank->count += vblank_count_inc; 105 write_sequnlock(&vblank->seqlock); 106 } 107 108 /* 109 * "No hw counter" fallback implementation of .get_vblank_counter() hook, 110 * if there is no useable hardware frame counter available. 111 */ 112 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe) 113 { 114 WARN_ON_ONCE(dev->max_vblank_count != 0); 115 return 0; 116 } 117 118 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe) 119 { 120 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 121 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 122 123 if (WARN_ON(!crtc)) 124 return 0; 125 126 if (crtc->funcs->get_vblank_counter) 127 return crtc->funcs->get_vblank_counter(crtc); 128 } 129 130 if (dev->driver->get_vblank_counter) 131 return dev->driver->get_vblank_counter(dev, pipe); 132 133 return drm_vblank_no_hw_counter(dev, pipe); 134 } 135 136 /* 137 * Reset the stored timestamp for the current vblank count to correspond 138 * to the last vblank occurred. 139 * 140 * Only to be called from drm_crtc_vblank_on(). 141 * 142 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 143 * device vblank fields. 144 */ 145 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe) 146 { 147 u32 cur_vblank; 148 bool rc; 149 ktime_t t_vblank; 150 int count = DRM_TIMESTAMP_MAXRETRIES; 151 152 spin_lock(&dev->vblank_time_lock); 153 154 /* 155 * sample the current counter to avoid random jumps 156 * when drm_vblank_enable() applies the diff 157 */ 158 do { 159 cur_vblank = __get_vblank_counter(dev, pipe); 160 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 161 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 162 163 /* 164 * Only reinitialize corresponding vblank timestamp if high-precision query 165 * available and didn't fail. Otherwise reinitialize delayed at next vblank 166 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid. 167 */ 168 if (!rc) 169 t_vblank = 0; 170 171 /* 172 * +1 to make sure user will never see the same 173 * vblank counter value before and after a modeset 174 */ 175 store_vblank(dev, pipe, 1, t_vblank, cur_vblank); 176 177 spin_unlock(&dev->vblank_time_lock); 178 } 179 180 /* 181 * Call back into the driver to update the appropriate vblank counter 182 * (specified by @pipe). Deal with wraparound, if it occurred, and 183 * update the last read value so we can deal with wraparound on the next 184 * call if necessary. 185 * 186 * Only necessary when going from off->on, to account for frames we 187 * didn't get an interrupt for. 188 * 189 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 190 * device vblank fields. 191 */ 192 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe, 193 bool in_vblank_irq) 194 { 195 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 196 u32 cur_vblank, diff; 197 bool rc; 198 ktime_t t_vblank; 199 int count = DRM_TIMESTAMP_MAXRETRIES; 200 int framedur_ns = vblank->framedur_ns; 201 202 /* 203 * Interrupts were disabled prior to this call, so deal with counter 204 * wrap if needed. 205 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events 206 * here if the register is small or we had vblank interrupts off for 207 * a long time. 208 * 209 * We repeat the hardware vblank counter & timestamp query until 210 * we get consistent results. This to prevent races between gpu 211 * updating its hardware counter while we are retrieving the 212 * corresponding vblank timestamp. 213 */ 214 do { 215 cur_vblank = __get_vblank_counter(dev, pipe); 216 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq); 217 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 218 219 if (dev->max_vblank_count != 0) { 220 /* trust the hw counter when it's around */ 221 diff = (cur_vblank - vblank->last) & dev->max_vblank_count; 222 } else if (rc && framedur_ns) { 223 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 224 225 /* 226 * Figure out how many vblanks we've missed based 227 * on the difference in the timestamps and the 228 * frame/field duration. 229 */ 230 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 231 232 if (diff == 0 && in_vblank_irq) 233 DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored." 234 " diff_ns = %lld, framedur_ns = %d)\n", 235 pipe, (long long) diff_ns, framedur_ns); 236 } else { 237 /* some kind of default for drivers w/o accurate vbl timestamping */ 238 diff = in_vblank_irq ? 1 : 0; 239 } 240 241 /* 242 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset 243 * interval? If so then vblank irqs keep running and it will likely 244 * happen that the hardware vblank counter is not trustworthy as it 245 * might reset at some point in that interval and vblank timestamps 246 * are not trustworthy either in that interval. Iow. this can result 247 * in a bogus diff >> 1 which must be avoided as it would cause 248 * random large forward jumps of the software vblank counter. 249 */ 250 if (diff > 1 && (vblank->inmodeset & 0x2)) { 251 DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u" 252 " due to pre-modeset.\n", pipe, diff); 253 diff = 1; 254 } 255 256 DRM_DEBUG_VBL("updating vblank count on crtc %u:" 257 " current=%llu, diff=%u, hw=%u hw_last=%u\n", 258 pipe, vblank->count, diff, cur_vblank, vblank->last); 259 260 if (diff == 0) { 261 WARN_ON_ONCE(cur_vblank != vblank->last); 262 return; 263 } 264 265 /* 266 * Only reinitialize corresponding vblank timestamp if high-precision query 267 * available and didn't fail, or we were called from the vblank interrupt. 268 * Otherwise reinitialize delayed at next vblank interrupt and assign 0 269 * for now, to mark the vblanktimestamp as invalid. 270 */ 271 if (!rc && !in_vblank_irq) 272 t_vblank = 0; 273 274 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 275 } 276 277 static u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe) 278 { 279 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 280 281 if (WARN_ON(pipe >= dev->num_crtcs)) 282 return 0; 283 284 return vblank->count; 285 } 286 287 /** 288 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter 289 * @crtc: which counter to retrieve 290 * 291 * This function is similar to drm_crtc_vblank_count() but this function 292 * interpolates to handle a race with vblank interrupts using the high precision 293 * timestamping support. 294 * 295 * This is mostly useful for hardware that can obtain the scanout position, but 296 * doesn't have a hardware frame counter. 297 */ 298 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc) 299 { 300 struct drm_device *dev = crtc->dev; 301 unsigned int pipe = drm_crtc_index(crtc); 302 u64 vblank; 303 unsigned long flags; 304 305 WARN_ONCE(drm_debug & DRM_UT_VBL && !dev->driver->get_vblank_timestamp, 306 "This function requires support for accurate vblank timestamps."); 307 308 spin_lock_irqsave(&dev->vblank_time_lock, flags); 309 310 drm_update_vblank_count(dev, pipe, false); 311 vblank = drm_vblank_count(dev, pipe); 312 313 spin_unlock_irqrestore(&dev->vblank_time_lock, flags); 314 315 return vblank; 316 } 317 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count); 318 319 static void __disable_vblank(struct drm_device *dev, unsigned int pipe) 320 { 321 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 322 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 323 324 if (WARN_ON(!crtc)) 325 return; 326 327 if (crtc->funcs->disable_vblank) { 328 crtc->funcs->disable_vblank(crtc); 329 return; 330 } 331 } 332 333 dev->driver->disable_vblank(dev, pipe); 334 } 335 336 /* 337 * Disable vblank irq's on crtc, make sure that last vblank count 338 * of hardware and corresponding consistent software vblank counter 339 * are preserved, even if there are any spurious vblank irq's after 340 * disable. 341 */ 342 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe) 343 { 344 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 345 unsigned long irqflags; 346 347 assert_spin_locked(&dev->vbl_lock); 348 349 /* Prevent vblank irq processing while disabling vblank irqs, 350 * so no updates of timestamps or count can happen after we've 351 * disabled. Needed to prevent races in case of delayed irq's. 352 */ 353 spin_lock_irqsave(&dev->vblank_time_lock, irqflags); 354 355 /* 356 * Update vblank count and disable vblank interrupts only if the 357 * interrupts were enabled. This avoids calling the ->disable_vblank() 358 * operation in atomic context with the hardware potentially runtime 359 * suspended. 360 */ 361 if (!vblank->enabled) 362 goto out; 363 364 /* 365 * Update the count and timestamp to maintain the 366 * appearance that the counter has been ticking all along until 367 * this time. This makes the count account for the entire time 368 * between drm_crtc_vblank_on() and drm_crtc_vblank_off(). 369 */ 370 drm_update_vblank_count(dev, pipe, false); 371 __disable_vblank(dev, pipe); 372 vblank->enabled = false; 373 374 out: 375 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 376 } 377 378 static void vblank_disable_fn(struct timer_list *t) 379 { 380 struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer); 381 struct drm_device *dev = vblank->dev; 382 unsigned int pipe = vblank->pipe; 383 unsigned long irqflags; 384 385 spin_lock_irqsave(&dev->vbl_lock, irqflags); 386 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) { 387 DRM_DEBUG("disabling vblank on crtc %u\n", pipe); 388 drm_vblank_disable_and_save(dev, pipe); 389 } 390 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 391 } 392 393 void drm_vblank_cleanup(struct drm_device *dev) 394 { 395 unsigned int pipe; 396 397 /* Bail if the driver didn't call drm_vblank_init() */ 398 if (dev->num_crtcs == 0) 399 return; 400 401 for (pipe = 0; pipe < dev->num_crtcs; pipe++) { 402 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 403 404 WARN_ON(READ_ONCE(vblank->enabled) && 405 drm_core_check_feature(dev, DRIVER_MODESET)); 406 407 del_timer_sync(&vblank->disable_timer); 408 } 409 410 kfree(dev->vblank); 411 412 dev->num_crtcs = 0; 413 } 414 415 /** 416 * drm_vblank_init - initialize vblank support 417 * @dev: DRM device 418 * @num_crtcs: number of CRTCs supported by @dev 419 * 420 * This function initializes vblank support for @num_crtcs display pipelines. 421 * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for 422 * drivers with a &drm_driver.release callback. 423 * 424 * Returns: 425 * Zero on success or a negative error code on failure. 426 */ 427 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs) 428 { 429 int ret = -ENOMEM; 430 unsigned int i; 431 432 spin_lock_init(&dev->vbl_lock); 433 spin_lock_init(&dev->vblank_time_lock); 434 435 dev->num_crtcs = num_crtcs; 436 437 dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL); 438 if (!dev->vblank) 439 goto err; 440 441 for (i = 0; i < num_crtcs; i++) { 442 struct drm_vblank_crtc *vblank = &dev->vblank[i]; 443 444 vblank->dev = dev; 445 vblank->pipe = i; 446 init_waitqueue_head(&vblank->queue); 447 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0); 448 seqlock_init(&vblank->seqlock); 449 } 450 451 DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n"); 452 453 /* Driver specific high-precision vblank timestamping supported? */ 454 if (dev->driver->get_vblank_timestamp) 455 DRM_INFO("Driver supports precise vblank timestamp query.\n"); 456 else 457 DRM_INFO("No driver support for vblank timestamp query.\n"); 458 459 /* Must have precise timestamping for reliable vblank instant disable */ 460 if (dev->vblank_disable_immediate && !dev->driver->get_vblank_timestamp) { 461 dev->vblank_disable_immediate = false; 462 DRM_INFO("Setting vblank_disable_immediate to false because " 463 "get_vblank_timestamp == NULL\n"); 464 } 465 466 return 0; 467 468 err: 469 dev->num_crtcs = 0; 470 return ret; 471 } 472 EXPORT_SYMBOL(drm_vblank_init); 473 474 /** 475 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC 476 * @crtc: which CRTC's vblank waitqueue to retrieve 477 * 478 * This function returns a pointer to the vblank waitqueue for the CRTC. 479 * Drivers can use this to implement vblank waits using wait_event() and related 480 * functions. 481 */ 482 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc) 483 { 484 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue; 485 } 486 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue); 487 488 489 /** 490 * drm_calc_timestamping_constants - calculate vblank timestamp constants 491 * @crtc: drm_crtc whose timestamp constants should be updated. 492 * @mode: display mode containing the scanout timings 493 * 494 * Calculate and store various constants which are later needed by vblank and 495 * swap-completion timestamping, e.g, by 496 * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true 497 * scanout timing, so they take things like panel scaling or other adjustments 498 * into account. 499 */ 500 void drm_calc_timestamping_constants(struct drm_crtc *crtc, 501 const struct drm_display_mode *mode) 502 { 503 struct drm_device *dev = crtc->dev; 504 unsigned int pipe = drm_crtc_index(crtc); 505 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 506 int linedur_ns = 0, framedur_ns = 0; 507 int dotclock = mode->crtc_clock; 508 509 if (!dev->num_crtcs) 510 return; 511 512 if (WARN_ON(pipe >= dev->num_crtcs)) 513 return; 514 515 /* Valid dotclock? */ 516 if (dotclock > 0) { 517 int frame_size = mode->crtc_htotal * mode->crtc_vtotal; 518 519 /* 520 * Convert scanline length in pixels and video 521 * dot clock to line duration and frame duration 522 * in nanoseconds: 523 */ 524 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock); 525 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock); 526 527 /* 528 * Fields of interlaced scanout modes are only half a frame duration. 529 */ 530 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 531 framedur_ns /= 2; 532 } else 533 DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n", 534 crtc->base.id); 535 536 vblank->linedur_ns = linedur_ns; 537 vblank->framedur_ns = framedur_ns; 538 vblank->hwmode = *mode; 539 540 DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n", 541 crtc->base.id, mode->crtc_htotal, 542 mode->crtc_vtotal, mode->crtc_vdisplay); 543 DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n", 544 crtc->base.id, dotclock, framedur_ns, linedur_ns); 545 } 546 EXPORT_SYMBOL(drm_calc_timestamping_constants); 547 548 /** 549 * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper 550 * @dev: DRM device 551 * @pipe: index of CRTC whose vblank timestamp to retrieve 552 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 553 * On return contains true maximum error of timestamp 554 * @vblank_time: Pointer to time which should receive the timestamp 555 * @in_vblank_irq: 556 * True when called from drm_crtc_handle_vblank(). Some drivers 557 * need to apply some workarounds for gpu-specific vblank irq quirks 558 * if flag is set. 559 * 560 * Implements calculation of exact vblank timestamps from given drm_display_mode 561 * timings and current video scanout position of a CRTC. This can be directly 562 * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver 563 * if &drm_driver.get_scanout_position is implemented. 564 * 565 * The current implementation only handles standard video modes. For double scan 566 * and interlaced modes the driver is supposed to adjust the hardware mode 567 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 568 * match the scanout position reported. 569 * 570 * Note that atomic drivers must call drm_calc_timestamping_constants() before 571 * enabling a CRTC. The atomic helpers already take care of that in 572 * drm_atomic_helper_update_legacy_modeset_state(). 573 * 574 * Returns: 575 * 576 * Returns true on success, and false on failure, i.e. when no accurate 577 * timestamp could be acquired. 578 */ 579 bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev, 580 unsigned int pipe, 581 int *max_error, 582 ktime_t *vblank_time, 583 bool in_vblank_irq) 584 { 585 struct timespec64 ts_etime, ts_vblank_time; 586 ktime_t stime, etime; 587 bool vbl_status; 588 struct drm_crtc *crtc; 589 const struct drm_display_mode *mode; 590 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 591 int vpos, hpos, i; 592 int delta_ns, duration_ns; 593 594 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 595 return false; 596 597 crtc = drm_crtc_from_index(dev, pipe); 598 599 if (pipe >= dev->num_crtcs || !crtc) { 600 DRM_ERROR("Invalid crtc %u\n", pipe); 601 return false; 602 } 603 604 /* Scanout position query not supported? Should not happen. */ 605 if (!dev->driver->get_scanout_position) { 606 DRM_ERROR("Called from driver w/o get_scanout_position()!?\n"); 607 return false; 608 } 609 610 if (drm_drv_uses_atomic_modeset(dev)) 611 mode = &vblank->hwmode; 612 else 613 mode = &crtc->hwmode; 614 615 /* If mode timing undefined, just return as no-op: 616 * Happens during initial modesetting of a crtc. 617 */ 618 if (mode->crtc_clock == 0) { 619 DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe); 620 WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev)); 621 622 return false; 623 } 624 625 /* Get current scanout position with system timestamp. 626 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times 627 * if single query takes longer than max_error nanoseconds. 628 * 629 * This guarantees a tight bound on maximum error if 630 * code gets preempted or delayed for some reason. 631 */ 632 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { 633 /* 634 * Get vertical and horizontal scanout position vpos, hpos, 635 * and bounding timestamps stime, etime, pre/post query. 636 */ 637 vbl_status = dev->driver->get_scanout_position(dev, pipe, 638 in_vblank_irq, 639 &vpos, &hpos, 640 &stime, &etime, 641 mode); 642 643 /* Return as no-op if scanout query unsupported or failed. */ 644 if (!vbl_status) { 645 DRM_DEBUG("crtc %u : scanoutpos query failed.\n", 646 pipe); 647 return false; 648 } 649 650 /* Compute uncertainty in timestamp of scanout position query. */ 651 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime); 652 653 /* Accept result with < max_error nsecs timing uncertainty. */ 654 if (duration_ns <= *max_error) 655 break; 656 } 657 658 /* Noisy system timing? */ 659 if (i == DRM_TIMESTAMP_MAXRETRIES) { 660 DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n", 661 pipe, duration_ns/1000, *max_error/1000, i); 662 } 663 664 /* Return upper bound of timestamp precision error. */ 665 *max_error = duration_ns; 666 667 /* Convert scanout position into elapsed time at raw_time query 668 * since start of scanout at first display scanline. delta_ns 669 * can be negative if start of scanout hasn't happened yet. 670 */ 671 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos), 672 mode->crtc_clock); 673 674 /* Subtract time delta from raw timestamp to get final 675 * vblank_time timestamp for end of vblank. 676 */ 677 *vblank_time = ktime_sub_ns(etime, delta_ns); 678 679 if ((drm_debug & DRM_UT_VBL) == 0) 680 return true; 681 682 ts_etime = ktime_to_timespec64(etime); 683 ts_vblank_time = ktime_to_timespec64(*vblank_time); 684 685 DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n", 686 pipe, hpos, vpos, 687 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000, 688 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000, 689 duration_ns / 1000, i); 690 691 return true; 692 } 693 EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos); 694 695 /** 696 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent 697 * vblank interval 698 * @dev: DRM device 699 * @pipe: index of CRTC whose vblank timestamp to retrieve 700 * @tvblank: Pointer to target time which should receive the timestamp 701 * @in_vblank_irq: 702 * True when called from drm_crtc_handle_vblank(). Some drivers 703 * need to apply some workarounds for gpu-specific vblank irq quirks 704 * if flag is set. 705 * 706 * Fetches the system timestamp corresponding to the time of the most recent 707 * vblank interval on specified CRTC. May call into kms-driver to 708 * compute the timestamp with a high-precision GPU specific method. 709 * 710 * Returns zero if timestamp originates from uncorrected do_gettimeofday() 711 * call, i.e., it isn't very precisely locked to the true vblank. 712 * 713 * Returns: 714 * True if timestamp is considered to be very precise, false otherwise. 715 */ 716 static bool 717 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 718 ktime_t *tvblank, bool in_vblank_irq) 719 { 720 bool ret = false; 721 722 /* Define requested maximum error on timestamps (nanoseconds). */ 723 int max_error = (int) drm_timestamp_precision * 1000; 724 725 /* Query driver if possible and precision timestamping enabled. */ 726 if (dev->driver->get_vblank_timestamp && (max_error > 0)) 727 ret = dev->driver->get_vblank_timestamp(dev, pipe, &max_error, 728 tvblank, in_vblank_irq); 729 730 /* GPU high precision timestamp query unsupported or failed. 731 * Return current monotonic/gettimeofday timestamp as best estimate. 732 */ 733 if (!ret) 734 *tvblank = ktime_get(); 735 736 return ret; 737 } 738 739 /** 740 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value 741 * @crtc: which counter to retrieve 742 * 743 * Fetches the "cooked" vblank count value that represents the number of 744 * vblank events since the system was booted, including lost events due to 745 * modesetting activity. Note that this timer isn't correct against a racing 746 * vblank interrupt (since it only reports the software vblank counter), see 747 * drm_crtc_accurate_vblank_count() for such use-cases. 748 * 749 * Returns: 750 * The software vblank counter. 751 */ 752 u64 drm_crtc_vblank_count(struct drm_crtc *crtc) 753 { 754 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc)); 755 } 756 EXPORT_SYMBOL(drm_crtc_vblank_count); 757 758 /** 759 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the 760 * system timestamp corresponding to that vblank counter value. 761 * @dev: DRM device 762 * @pipe: index of CRTC whose counter to retrieve 763 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp. 764 * 765 * Fetches the "cooked" vblank count value that represents the number of 766 * vblank events since the system was booted, including lost events due to 767 * modesetting activity. Returns corresponding system timestamp of the time 768 * of the vblank interval that corresponds to the current vblank counter value. 769 * 770 * This is the legacy version of drm_crtc_vblank_count_and_time(). 771 */ 772 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe, 773 ktime_t *vblanktime) 774 { 775 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 776 u64 vblank_count; 777 unsigned int seq; 778 779 if (WARN_ON(pipe >= dev->num_crtcs)) { 780 *vblanktime = 0; 781 return 0; 782 } 783 784 do { 785 seq = read_seqbegin(&vblank->seqlock); 786 vblank_count = vblank->count; 787 *vblanktime = vblank->time; 788 } while (read_seqretry(&vblank->seqlock, seq)); 789 790 return vblank_count; 791 } 792 793 /** 794 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value 795 * and the system timestamp corresponding to that vblank counter value 796 * @crtc: which counter to retrieve 797 * @vblanktime: Pointer to time to receive the vblank timestamp. 798 * 799 * Fetches the "cooked" vblank count value that represents the number of 800 * vblank events since the system was booted, including lost events due to 801 * modesetting activity. Returns corresponding system timestamp of the time 802 * of the vblank interval that corresponds to the current vblank counter value. 803 */ 804 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc, 805 ktime_t *vblanktime) 806 { 807 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc), 808 vblanktime); 809 } 810 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time); 811 812 static void send_vblank_event(struct drm_device *dev, 813 struct drm_pending_vblank_event *e, 814 u64 seq, ktime_t now) 815 { 816 struct timespec64 tv; 817 818 switch (e->event.base.type) { 819 case DRM_EVENT_VBLANK: 820 case DRM_EVENT_FLIP_COMPLETE: 821 tv = ktime_to_timespec64(now); 822 e->event.vbl.sequence = seq; 823 /* 824 * e->event is a user space structure, with hardcoded unsigned 825 * 32-bit seconds/microseconds. This is safe as we always use 826 * monotonic timestamps since linux-4.15 827 */ 828 e->event.vbl.tv_sec = tv.tv_sec; 829 e->event.vbl.tv_usec = tv.tv_nsec / 1000; 830 break; 831 case DRM_EVENT_CRTC_SEQUENCE: 832 if (seq) 833 e->event.seq.sequence = seq; 834 e->event.seq.time_ns = ktime_to_ns(now); 835 break; 836 } 837 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq); 838 drm_send_event_locked(dev, &e->base); 839 } 840 841 /** 842 * drm_crtc_arm_vblank_event - arm vblank event after pageflip 843 * @crtc: the source CRTC of the vblank event 844 * @e: the event to send 845 * 846 * A lot of drivers need to generate vblank events for the very next vblank 847 * interrupt. For example when the page flip interrupt happens when the page 848 * flip gets armed, but not when it actually executes within the next vblank 849 * period. This helper function implements exactly the required vblank arming 850 * behaviour. 851 * 852 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an 853 * atomic commit must ensure that the next vblank happens at exactly the same 854 * time as the atomic commit is committed to the hardware. This function itself 855 * does **not** protect against the next vblank interrupt racing with either this 856 * function call or the atomic commit operation. A possible sequence could be: 857 * 858 * 1. Driver commits new hardware state into vblank-synchronized registers. 859 * 2. A vblank happens, committing the hardware state. Also the corresponding 860 * vblank interrupt is fired off and fully processed by the interrupt 861 * handler. 862 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event(). 863 * 4. The event is only send out for the next vblank, which is wrong. 864 * 865 * An equivalent race can happen when the driver calls 866 * drm_crtc_arm_vblank_event() before writing out the new hardware state. 867 * 868 * The only way to make this work safely is to prevent the vblank from firing 869 * (and the hardware from committing anything else) until the entire atomic 870 * commit sequence has run to completion. If the hardware does not have such a 871 * feature (e.g. using a "go" bit), then it is unsafe to use this functions. 872 * Instead drivers need to manually send out the event from their interrupt 873 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no 874 * possible race with the hardware committing the atomic update. 875 * 876 * Caller must hold a vblank reference for the event @e, which will be dropped 877 * when the next vblank arrives. 878 */ 879 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc, 880 struct drm_pending_vblank_event *e) 881 { 882 struct drm_device *dev = crtc->dev; 883 unsigned int pipe = drm_crtc_index(crtc); 884 885 assert_spin_locked(&dev->event_lock); 886 887 e->pipe = pipe; 888 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1; 889 list_add_tail(&e->base.link, &dev->vblank_event_list); 890 } 891 EXPORT_SYMBOL(drm_crtc_arm_vblank_event); 892 893 /** 894 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip 895 * @crtc: the source CRTC of the vblank event 896 * @e: the event to send 897 * 898 * Updates sequence # and timestamp on event for the most recently processed 899 * vblank, and sends it to userspace. Caller must hold event lock. 900 * 901 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain 902 * situation, especially to send out events for atomic commit operations. 903 */ 904 void drm_crtc_send_vblank_event(struct drm_crtc *crtc, 905 struct drm_pending_vblank_event *e) 906 { 907 struct drm_device *dev = crtc->dev; 908 u64 seq; 909 unsigned int pipe = drm_crtc_index(crtc); 910 ktime_t now; 911 912 if (dev->num_crtcs > 0) { 913 seq = drm_vblank_count_and_time(dev, pipe, &now); 914 } else { 915 seq = 0; 916 917 now = ktime_get(); 918 } 919 e->pipe = pipe; 920 send_vblank_event(dev, e, seq, now); 921 } 922 EXPORT_SYMBOL(drm_crtc_send_vblank_event); 923 924 static int __enable_vblank(struct drm_device *dev, unsigned int pipe) 925 { 926 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 927 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 928 929 if (WARN_ON(!crtc)) 930 return 0; 931 932 if (crtc->funcs->enable_vblank) 933 return crtc->funcs->enable_vblank(crtc); 934 } 935 936 return dev->driver->enable_vblank(dev, pipe); 937 } 938 939 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe) 940 { 941 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 942 int ret = 0; 943 944 assert_spin_locked(&dev->vbl_lock); 945 946 spin_lock(&dev->vblank_time_lock); 947 948 if (!vblank->enabled) { 949 /* 950 * Enable vblank irqs under vblank_time_lock protection. 951 * All vblank count & timestamp updates are held off 952 * until we are done reinitializing master counter and 953 * timestamps. Filtercode in drm_handle_vblank() will 954 * prevent double-accounting of same vblank interval. 955 */ 956 ret = __enable_vblank(dev, pipe); 957 DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret); 958 if (ret) { 959 atomic_dec(&vblank->refcount); 960 } else { 961 drm_update_vblank_count(dev, pipe, 0); 962 /* drm_update_vblank_count() includes a wmb so we just 963 * need to ensure that the compiler emits the write 964 * to mark the vblank as enabled after the call 965 * to drm_update_vblank_count(). 966 */ 967 WRITE_ONCE(vblank->enabled, true); 968 } 969 } 970 971 spin_unlock(&dev->vblank_time_lock); 972 973 return ret; 974 } 975 976 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe) 977 { 978 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 979 unsigned long irqflags; 980 int ret = 0; 981 982 if (!dev->num_crtcs) 983 return -EINVAL; 984 985 if (WARN_ON(pipe >= dev->num_crtcs)) 986 return -EINVAL; 987 988 spin_lock_irqsave(&dev->vbl_lock, irqflags); 989 /* Going from 0->1 means we have to enable interrupts again */ 990 if (atomic_add_return(1, &vblank->refcount) == 1) { 991 ret = drm_vblank_enable(dev, pipe); 992 } else { 993 if (!vblank->enabled) { 994 atomic_dec(&vblank->refcount); 995 ret = -EINVAL; 996 } 997 } 998 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 999 1000 return ret; 1001 } 1002 1003 /** 1004 * drm_crtc_vblank_get - get a reference count on vblank events 1005 * @crtc: which CRTC to own 1006 * 1007 * Acquire a reference count on vblank events to avoid having them disabled 1008 * while in use. 1009 * 1010 * Returns: 1011 * Zero on success or a negative error code on failure. 1012 */ 1013 int drm_crtc_vblank_get(struct drm_crtc *crtc) 1014 { 1015 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc)); 1016 } 1017 EXPORT_SYMBOL(drm_crtc_vblank_get); 1018 1019 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe) 1020 { 1021 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1022 1023 if (WARN_ON(pipe >= dev->num_crtcs)) 1024 return; 1025 1026 if (WARN_ON(atomic_read(&vblank->refcount) == 0)) 1027 return; 1028 1029 /* Last user schedules interrupt disable */ 1030 if (atomic_dec_and_test(&vblank->refcount)) { 1031 if (drm_vblank_offdelay == 0) 1032 return; 1033 else if (drm_vblank_offdelay < 0) 1034 vblank_disable_fn(&vblank->disable_timer); 1035 else if (!dev->vblank_disable_immediate) 1036 mod_timer(&vblank->disable_timer, 1037 jiffies + ((drm_vblank_offdelay * HZ)/1000)); 1038 } 1039 } 1040 1041 /** 1042 * drm_crtc_vblank_put - give up ownership of vblank events 1043 * @crtc: which counter to give up 1044 * 1045 * Release ownership of a given vblank counter, turning off interrupts 1046 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds. 1047 */ 1048 void drm_crtc_vblank_put(struct drm_crtc *crtc) 1049 { 1050 drm_vblank_put(crtc->dev, drm_crtc_index(crtc)); 1051 } 1052 EXPORT_SYMBOL(drm_crtc_vblank_put); 1053 1054 /** 1055 * drm_wait_one_vblank - wait for one vblank 1056 * @dev: DRM device 1057 * @pipe: CRTC index 1058 * 1059 * This waits for one vblank to pass on @pipe, using the irq driver interfaces. 1060 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g. 1061 * due to lack of driver support or because the crtc is off. 1062 * 1063 * This is the legacy version of drm_crtc_wait_one_vblank(). 1064 */ 1065 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe) 1066 { 1067 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1068 int ret; 1069 u64 last; 1070 1071 if (WARN_ON(pipe >= dev->num_crtcs)) 1072 return; 1073 1074 ret = drm_vblank_get(dev, pipe); 1075 if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret)) 1076 return; 1077 1078 last = drm_vblank_count(dev, pipe); 1079 1080 ret = wait_event_timeout(vblank->queue, 1081 last != drm_vblank_count(dev, pipe), 1082 msecs_to_jiffies(100)); 1083 1084 WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe); 1085 1086 drm_vblank_put(dev, pipe); 1087 } 1088 EXPORT_SYMBOL(drm_wait_one_vblank); 1089 1090 /** 1091 * drm_crtc_wait_one_vblank - wait for one vblank 1092 * @crtc: DRM crtc 1093 * 1094 * This waits for one vblank to pass on @crtc, using the irq driver interfaces. 1095 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g. 1096 * due to lack of driver support or because the crtc is off. 1097 */ 1098 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc) 1099 { 1100 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc)); 1101 } 1102 EXPORT_SYMBOL(drm_crtc_wait_one_vblank); 1103 1104 /** 1105 * drm_crtc_vblank_off - disable vblank events on a CRTC 1106 * @crtc: CRTC in question 1107 * 1108 * Drivers can use this function to shut down the vblank interrupt handling when 1109 * disabling a crtc. This function ensures that the latest vblank frame count is 1110 * stored so that drm_vblank_on can restore it again. 1111 * 1112 * Drivers must use this function when the hardware vblank counter can get 1113 * reset, e.g. when suspending or disabling the @crtc in general. 1114 */ 1115 void drm_crtc_vblank_off(struct drm_crtc *crtc) 1116 { 1117 struct drm_device *dev = crtc->dev; 1118 unsigned int pipe = drm_crtc_index(crtc); 1119 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1120 struct drm_pending_vblank_event *e, *t; 1121 1122 ktime_t now; 1123 unsigned long irqflags; 1124 u64 seq; 1125 1126 if (WARN_ON(pipe >= dev->num_crtcs)) 1127 return; 1128 1129 spin_lock_irqsave(&dev->event_lock, irqflags); 1130 1131 spin_lock(&dev->vbl_lock); 1132 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n", 1133 pipe, vblank->enabled, vblank->inmodeset); 1134 1135 /* Avoid redundant vblank disables without previous 1136 * drm_crtc_vblank_on(). */ 1137 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset) 1138 drm_vblank_disable_and_save(dev, pipe); 1139 1140 wake_up(&vblank->queue); 1141 1142 /* 1143 * Prevent subsequent drm_vblank_get() from re-enabling 1144 * the vblank interrupt by bumping the refcount. 1145 */ 1146 if (!vblank->inmodeset) { 1147 atomic_inc(&vblank->refcount); 1148 vblank->inmodeset = 1; 1149 } 1150 spin_unlock(&dev->vbl_lock); 1151 1152 /* Send any queued vblank events, lest the natives grow disquiet */ 1153 seq = drm_vblank_count_and_time(dev, pipe, &now); 1154 1155 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1156 if (e->pipe != pipe) 1157 continue; 1158 DRM_DEBUG("Sending premature vblank event on disable: " 1159 "wanted %llu, current %llu\n", 1160 e->sequence, seq); 1161 list_del(&e->base.link); 1162 drm_vblank_put(dev, pipe); 1163 send_vblank_event(dev, e, seq, now); 1164 } 1165 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1166 1167 /* Will be reset by the modeset helpers when re-enabling the crtc by 1168 * calling drm_calc_timestamping_constants(). */ 1169 vblank->hwmode.crtc_clock = 0; 1170 } 1171 EXPORT_SYMBOL(drm_crtc_vblank_off); 1172 1173 /** 1174 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC 1175 * @crtc: CRTC in question 1176 * 1177 * Drivers can use this function to reset the vblank state to off at load time. 1178 * Drivers should use this together with the drm_crtc_vblank_off() and 1179 * drm_crtc_vblank_on() functions. The difference compared to 1180 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter 1181 * and hence doesn't need to call any driver hooks. 1182 * 1183 * This is useful for recovering driver state e.g. on driver load, or on resume. 1184 */ 1185 void drm_crtc_vblank_reset(struct drm_crtc *crtc) 1186 { 1187 struct drm_device *dev = crtc->dev; 1188 unsigned long irqflags; 1189 unsigned int pipe = drm_crtc_index(crtc); 1190 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1191 1192 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1193 /* 1194 * Prevent subsequent drm_vblank_get() from enabling the vblank 1195 * interrupt by bumping the refcount. 1196 */ 1197 if (!vblank->inmodeset) { 1198 atomic_inc(&vblank->refcount); 1199 vblank->inmodeset = 1; 1200 } 1201 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1202 1203 WARN_ON(!list_empty(&dev->vblank_event_list)); 1204 } 1205 EXPORT_SYMBOL(drm_crtc_vblank_reset); 1206 1207 /** 1208 * drm_crtc_vblank_on - enable vblank events on a CRTC 1209 * @crtc: CRTC in question 1210 * 1211 * This functions restores the vblank interrupt state captured with 1212 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note 1213 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be 1214 * unbalanced and so can also be unconditionally called in driver load code to 1215 * reflect the current hardware state of the crtc. 1216 */ 1217 void drm_crtc_vblank_on(struct drm_crtc *crtc) 1218 { 1219 struct drm_device *dev = crtc->dev; 1220 unsigned int pipe = drm_crtc_index(crtc); 1221 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1222 unsigned long irqflags; 1223 1224 if (WARN_ON(pipe >= dev->num_crtcs)) 1225 return; 1226 1227 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1228 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n", 1229 pipe, vblank->enabled, vblank->inmodeset); 1230 1231 /* Drop our private "prevent drm_vblank_get" refcount */ 1232 if (vblank->inmodeset) { 1233 atomic_dec(&vblank->refcount); 1234 vblank->inmodeset = 0; 1235 } 1236 1237 drm_reset_vblank_timestamp(dev, pipe); 1238 1239 /* 1240 * re-enable interrupts if there are users left, or the 1241 * user wishes vblank interrupts to be enabled all the time. 1242 */ 1243 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0) 1244 WARN_ON(drm_vblank_enable(dev, pipe)); 1245 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1246 } 1247 EXPORT_SYMBOL(drm_crtc_vblank_on); 1248 1249 /** 1250 * drm_vblank_restore - estimate missed vblanks and update vblank count. 1251 * @dev: DRM device 1252 * @pipe: CRTC index 1253 * 1254 * Power manamement features can cause frame counter resets between vblank 1255 * disable and enable. Drivers can use this function in their 1256 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1257 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1258 * vblank counter. 1259 * 1260 * This function is the legacy version of drm_crtc_vblank_restore(). 1261 */ 1262 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe) 1263 { 1264 ktime_t t_vblank; 1265 struct drm_vblank_crtc *vblank; 1266 int framedur_ns; 1267 u64 diff_ns; 1268 u32 cur_vblank, diff = 1; 1269 int count = DRM_TIMESTAMP_MAXRETRIES; 1270 1271 if (WARN_ON(pipe >= dev->num_crtcs)) 1272 return; 1273 1274 assert_spin_locked(&dev->vbl_lock); 1275 assert_spin_locked(&dev->vblank_time_lock); 1276 1277 vblank = &dev->vblank[pipe]; 1278 WARN_ONCE((drm_debug & DRM_UT_VBL) && !vblank->framedur_ns, 1279 "Cannot compute missed vblanks without frame duration\n"); 1280 framedur_ns = vblank->framedur_ns; 1281 1282 do { 1283 cur_vblank = __get_vblank_counter(dev, pipe); 1284 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 1285 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 1286 1287 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 1288 if (framedur_ns) 1289 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 1290 1291 1292 DRM_DEBUG_VBL("missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n", 1293 diff, diff_ns, framedur_ns, cur_vblank - vblank->last); 1294 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 1295 } 1296 EXPORT_SYMBOL(drm_vblank_restore); 1297 1298 /** 1299 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count. 1300 * @crtc: CRTC in question 1301 * 1302 * Power manamement features can cause frame counter resets between vblank 1303 * disable and enable. Drivers can use this function in their 1304 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1305 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1306 * vblank counter. 1307 */ 1308 void drm_crtc_vblank_restore(struct drm_crtc *crtc) 1309 { 1310 drm_vblank_restore(crtc->dev, drm_crtc_index(crtc)); 1311 } 1312 EXPORT_SYMBOL(drm_crtc_vblank_restore); 1313 1314 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev, 1315 unsigned int pipe) 1316 { 1317 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1318 1319 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1320 if (!dev->num_crtcs) 1321 return; 1322 1323 if (WARN_ON(pipe >= dev->num_crtcs)) 1324 return; 1325 1326 /* 1327 * To avoid all the problems that might happen if interrupts 1328 * were enabled/disabled around or between these calls, we just 1329 * have the kernel take a reference on the CRTC (just once though 1330 * to avoid corrupting the count if multiple, mismatch calls occur), 1331 * so that interrupts remain enabled in the interim. 1332 */ 1333 if (!vblank->inmodeset) { 1334 vblank->inmodeset = 0x1; 1335 if (drm_vblank_get(dev, pipe) == 0) 1336 vblank->inmodeset |= 0x2; 1337 } 1338 } 1339 1340 static void drm_legacy_vblank_post_modeset(struct drm_device *dev, 1341 unsigned int pipe) 1342 { 1343 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1344 unsigned long irqflags; 1345 1346 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1347 if (!dev->num_crtcs) 1348 return; 1349 1350 if (WARN_ON(pipe >= dev->num_crtcs)) 1351 return; 1352 1353 if (vblank->inmodeset) { 1354 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1355 drm_reset_vblank_timestamp(dev, pipe); 1356 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1357 1358 if (vblank->inmodeset & 0x2) 1359 drm_vblank_put(dev, pipe); 1360 1361 vblank->inmodeset = 0; 1362 } 1363 } 1364 1365 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data, 1366 struct drm_file *file_priv) 1367 { 1368 struct drm_modeset_ctl *modeset = data; 1369 unsigned int pipe; 1370 1371 /* If drm_vblank_init() hasn't been called yet, just no-op */ 1372 if (!dev->num_crtcs) 1373 return 0; 1374 1375 /* KMS drivers handle this internally */ 1376 if (!drm_core_check_feature(dev, DRIVER_LEGACY)) 1377 return 0; 1378 1379 pipe = modeset->crtc; 1380 if (pipe >= dev->num_crtcs) 1381 return -EINVAL; 1382 1383 switch (modeset->cmd) { 1384 case _DRM_PRE_MODESET: 1385 drm_legacy_vblank_pre_modeset(dev, pipe); 1386 break; 1387 case _DRM_POST_MODESET: 1388 drm_legacy_vblank_post_modeset(dev, pipe); 1389 break; 1390 default: 1391 return -EINVAL; 1392 } 1393 1394 return 0; 1395 } 1396 1397 static inline bool vblank_passed(u64 seq, u64 ref) 1398 { 1399 return (seq - ref) <= (1 << 23); 1400 } 1401 1402 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe, 1403 u64 req_seq, 1404 union drm_wait_vblank *vblwait, 1405 struct drm_file *file_priv) 1406 { 1407 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1408 struct drm_pending_vblank_event *e; 1409 ktime_t now; 1410 unsigned long flags; 1411 u64 seq; 1412 int ret; 1413 1414 e = kzalloc(sizeof(*e), GFP_KERNEL); 1415 if (e == NULL) { 1416 ret = -ENOMEM; 1417 goto err_put; 1418 } 1419 1420 e->pipe = pipe; 1421 e->event.base.type = DRM_EVENT_VBLANK; 1422 e->event.base.length = sizeof(e->event.vbl); 1423 e->event.vbl.user_data = vblwait->request.signal; 1424 e->event.vbl.crtc_id = 0; 1425 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1426 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1427 if (crtc) 1428 e->event.vbl.crtc_id = crtc->base.id; 1429 } 1430 1431 spin_lock_irqsave(&dev->event_lock, flags); 1432 1433 /* 1434 * drm_crtc_vblank_off() might have been called after we called 1435 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1436 * vblank disable, so no need for further locking. The reference from 1437 * drm_vblank_get() protects against vblank disable from another source. 1438 */ 1439 if (!READ_ONCE(vblank->enabled)) { 1440 ret = -EINVAL; 1441 goto err_unlock; 1442 } 1443 1444 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1445 &e->event.base); 1446 1447 if (ret) 1448 goto err_unlock; 1449 1450 seq = drm_vblank_count_and_time(dev, pipe, &now); 1451 1452 DRM_DEBUG("event on vblank count %llu, current %llu, crtc %u\n", 1453 req_seq, seq, pipe); 1454 1455 trace_drm_vblank_event_queued(file_priv, pipe, req_seq); 1456 1457 e->sequence = req_seq; 1458 if (vblank_passed(seq, req_seq)) { 1459 drm_vblank_put(dev, pipe); 1460 send_vblank_event(dev, e, seq, now); 1461 vblwait->reply.sequence = seq; 1462 } else { 1463 /* drm_handle_vblank_events will call drm_vblank_put */ 1464 list_add_tail(&e->base.link, &dev->vblank_event_list); 1465 vblwait->reply.sequence = req_seq; 1466 } 1467 1468 spin_unlock_irqrestore(&dev->event_lock, flags); 1469 1470 return 0; 1471 1472 err_unlock: 1473 spin_unlock_irqrestore(&dev->event_lock, flags); 1474 kfree(e); 1475 err_put: 1476 drm_vblank_put(dev, pipe); 1477 return ret; 1478 } 1479 1480 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait) 1481 { 1482 if (vblwait->request.sequence) 1483 return false; 1484 1485 return _DRM_VBLANK_RELATIVE == 1486 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK | 1487 _DRM_VBLANK_EVENT | 1488 _DRM_VBLANK_NEXTONMISS)); 1489 } 1490 1491 /* 1492 * Widen a 32-bit param to 64-bits. 1493 * 1494 * \param narrow 32-bit value (missing upper 32 bits) 1495 * \param near 64-bit value that should be 'close' to near 1496 * 1497 * This function returns a 64-bit value using the lower 32-bits from 1498 * 'narrow' and constructing the upper 32-bits so that the result is 1499 * as close as possible to 'near'. 1500 */ 1501 1502 static u64 widen_32_to_64(u32 narrow, u64 near) 1503 { 1504 return near + (s32) (narrow - near); 1505 } 1506 1507 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe, 1508 struct drm_wait_vblank_reply *reply) 1509 { 1510 ktime_t now; 1511 struct timespec64 ts; 1512 1513 /* 1514 * drm_wait_vblank_reply is a UAPI structure that uses 'long' 1515 * to store the seconds. This is safe as we always use monotonic 1516 * timestamps since linux-4.15. 1517 */ 1518 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1519 ts = ktime_to_timespec64(now); 1520 reply->tval_sec = (u32)ts.tv_sec; 1521 reply->tval_usec = ts.tv_nsec / 1000; 1522 } 1523 1524 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data, 1525 struct drm_file *file_priv) 1526 { 1527 struct drm_crtc *crtc; 1528 struct drm_vblank_crtc *vblank; 1529 union drm_wait_vblank *vblwait = data; 1530 int ret; 1531 u64 req_seq, seq; 1532 unsigned int pipe_index; 1533 unsigned int flags, pipe, high_pipe; 1534 1535 if (!dev->irq_enabled) 1536 return -EINVAL; 1537 1538 if (vblwait->request.type & _DRM_VBLANK_SIGNAL) 1539 return -EINVAL; 1540 1541 if (vblwait->request.type & 1542 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1543 _DRM_VBLANK_HIGH_CRTC_MASK)) { 1544 DRM_ERROR("Unsupported type value 0x%x, supported mask 0x%x\n", 1545 vblwait->request.type, 1546 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1547 _DRM_VBLANK_HIGH_CRTC_MASK)); 1548 return -EINVAL; 1549 } 1550 1551 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; 1552 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); 1553 if (high_pipe) 1554 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT; 1555 else 1556 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; 1557 1558 /* Convert lease-relative crtc index into global crtc index */ 1559 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1560 pipe = 0; 1561 drm_for_each_crtc(crtc, dev) { 1562 if (drm_lease_held(file_priv, crtc->base.id)) { 1563 if (pipe_index == 0) 1564 break; 1565 pipe_index--; 1566 } 1567 pipe++; 1568 } 1569 } else { 1570 pipe = pipe_index; 1571 } 1572 1573 if (pipe >= dev->num_crtcs) 1574 return -EINVAL; 1575 1576 vblank = &dev->vblank[pipe]; 1577 1578 /* If the counter is currently enabled and accurate, short-circuit 1579 * queries to return the cached timestamp of the last vblank. 1580 */ 1581 if (dev->vblank_disable_immediate && 1582 drm_wait_vblank_is_query(vblwait) && 1583 READ_ONCE(vblank->enabled)) { 1584 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1585 return 0; 1586 } 1587 1588 ret = drm_vblank_get(dev, pipe); 1589 if (ret) { 1590 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 1591 return ret; 1592 } 1593 seq = drm_vblank_count(dev, pipe); 1594 1595 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { 1596 case _DRM_VBLANK_RELATIVE: 1597 req_seq = seq + vblwait->request.sequence; 1598 vblwait->request.sequence = req_seq; 1599 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; 1600 break; 1601 case _DRM_VBLANK_ABSOLUTE: 1602 req_seq = widen_32_to_64(vblwait->request.sequence, seq); 1603 break; 1604 default: 1605 ret = -EINVAL; 1606 goto done; 1607 } 1608 1609 if ((flags & _DRM_VBLANK_NEXTONMISS) && 1610 vblank_passed(seq, req_seq)) { 1611 req_seq = seq + 1; 1612 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS; 1613 vblwait->request.sequence = req_seq; 1614 } 1615 1616 if (flags & _DRM_VBLANK_EVENT) { 1617 /* must hold on to the vblank ref until the event fires 1618 * drm_vblank_put will be called asynchronously 1619 */ 1620 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv); 1621 } 1622 1623 if (req_seq != seq) { 1624 DRM_DEBUG("waiting on vblank count %llu, crtc %u\n", 1625 req_seq, pipe); 1626 DRM_WAIT_ON(ret, vblank->queue, 3 * HZ, 1627 vblank_passed(drm_vblank_count(dev, pipe), 1628 req_seq) || 1629 !READ_ONCE(vblank->enabled)); 1630 } 1631 1632 if (ret != -EINTR) { 1633 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1634 1635 DRM_DEBUG("crtc %d returning %u to client\n", 1636 pipe, vblwait->reply.sequence); 1637 } else { 1638 DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe); 1639 } 1640 1641 done: 1642 drm_vblank_put(dev, pipe); 1643 return ret; 1644 } 1645 1646 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe) 1647 { 1648 struct drm_pending_vblank_event *e, *t; 1649 ktime_t now; 1650 u64 seq; 1651 1652 assert_spin_locked(&dev->event_lock); 1653 1654 seq = drm_vblank_count_and_time(dev, pipe, &now); 1655 1656 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1657 if (e->pipe != pipe) 1658 continue; 1659 if (!vblank_passed(seq, e->sequence)) 1660 continue; 1661 1662 DRM_DEBUG("vblank event on %llu, current %llu\n", 1663 e->sequence, seq); 1664 1665 list_del(&e->base.link); 1666 drm_vblank_put(dev, pipe); 1667 send_vblank_event(dev, e, seq, now); 1668 } 1669 1670 trace_drm_vblank_event(pipe, seq); 1671 } 1672 1673 /** 1674 * drm_handle_vblank - handle a vblank event 1675 * @dev: DRM device 1676 * @pipe: index of CRTC where this event occurred 1677 * 1678 * Drivers should call this routine in their vblank interrupt handlers to 1679 * update the vblank counter and send any signals that may be pending. 1680 * 1681 * This is the legacy version of drm_crtc_handle_vblank(). 1682 */ 1683 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe) 1684 { 1685 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1686 unsigned long irqflags; 1687 bool disable_irq; 1688 1689 if (WARN_ON_ONCE(!dev->num_crtcs)) 1690 return false; 1691 1692 if (WARN_ON(pipe >= dev->num_crtcs)) 1693 return false; 1694 1695 spin_lock_irqsave(&dev->event_lock, irqflags); 1696 1697 /* Need timestamp lock to prevent concurrent execution with 1698 * vblank enable/disable, as this would cause inconsistent 1699 * or corrupted timestamps and vblank counts. 1700 */ 1701 spin_lock(&dev->vblank_time_lock); 1702 1703 /* Vblank irq handling disabled. Nothing to do. */ 1704 if (!vblank->enabled) { 1705 spin_unlock(&dev->vblank_time_lock); 1706 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1707 return false; 1708 } 1709 1710 drm_update_vblank_count(dev, pipe, true); 1711 1712 spin_unlock(&dev->vblank_time_lock); 1713 1714 wake_up(&vblank->queue); 1715 1716 /* With instant-off, we defer disabling the interrupt until after 1717 * we finish processing the following vblank after all events have 1718 * been signaled. The disable has to be last (after 1719 * drm_handle_vblank_events) so that the timestamp is always accurate. 1720 */ 1721 disable_irq = (dev->vblank_disable_immediate && 1722 drm_vblank_offdelay > 0 && 1723 !atomic_read(&vblank->refcount)); 1724 1725 drm_handle_vblank_events(dev, pipe); 1726 1727 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1728 1729 if (disable_irq) 1730 vblank_disable_fn(&vblank->disable_timer); 1731 1732 return true; 1733 } 1734 EXPORT_SYMBOL(drm_handle_vblank); 1735 1736 /** 1737 * drm_crtc_handle_vblank - handle a vblank event 1738 * @crtc: where this event occurred 1739 * 1740 * Drivers should call this routine in their vblank interrupt handlers to 1741 * update the vblank counter and send any signals that may be pending. 1742 * 1743 * This is the native KMS version of drm_handle_vblank(). 1744 * 1745 * Returns: 1746 * True if the event was successfully handled, false on failure. 1747 */ 1748 bool drm_crtc_handle_vblank(struct drm_crtc *crtc) 1749 { 1750 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc)); 1751 } 1752 EXPORT_SYMBOL(drm_crtc_handle_vblank); 1753 1754 /* 1755 * Get crtc VBLANK count. 1756 * 1757 * \param dev DRM device 1758 * \param data user arguement, pointing to a drm_crtc_get_sequence structure. 1759 * \param file_priv drm file private for the user's open file descriptor 1760 */ 1761 1762 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data, 1763 struct drm_file *file_priv) 1764 { 1765 struct drm_crtc *crtc; 1766 struct drm_vblank_crtc *vblank; 1767 int pipe; 1768 struct drm_crtc_get_sequence *get_seq = data; 1769 ktime_t now; 1770 bool vblank_enabled; 1771 int ret; 1772 1773 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 1774 return -EINVAL; 1775 1776 if (!dev->irq_enabled) 1777 return -EINVAL; 1778 1779 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id); 1780 if (!crtc) 1781 return -ENOENT; 1782 1783 pipe = drm_crtc_index(crtc); 1784 1785 vblank = &dev->vblank[pipe]; 1786 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled); 1787 1788 if (!vblank_enabled) { 1789 ret = drm_crtc_vblank_get(crtc); 1790 if (ret) { 1791 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 1792 return ret; 1793 } 1794 } 1795 drm_modeset_lock(&crtc->mutex, NULL); 1796 if (crtc->state) 1797 get_seq->active = crtc->state->enable; 1798 else 1799 get_seq->active = crtc->enabled; 1800 drm_modeset_unlock(&crtc->mutex); 1801 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1802 get_seq->sequence_ns = ktime_to_ns(now); 1803 if (!vblank_enabled) 1804 drm_crtc_vblank_put(crtc); 1805 return 0; 1806 } 1807 1808 /* 1809 * Queue a event for VBLANK sequence 1810 * 1811 * \param dev DRM device 1812 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure. 1813 * \param file_priv drm file private for the user's open file descriptor 1814 */ 1815 1816 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data, 1817 struct drm_file *file_priv) 1818 { 1819 struct drm_crtc *crtc; 1820 struct drm_vblank_crtc *vblank; 1821 int pipe; 1822 struct drm_crtc_queue_sequence *queue_seq = data; 1823 ktime_t now; 1824 struct drm_pending_vblank_event *e; 1825 u32 flags; 1826 u64 seq; 1827 u64 req_seq; 1828 int ret; 1829 unsigned long spin_flags; 1830 1831 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 1832 return -EINVAL; 1833 1834 if (!dev->irq_enabled) 1835 return -EINVAL; 1836 1837 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id); 1838 if (!crtc) 1839 return -ENOENT; 1840 1841 flags = queue_seq->flags; 1842 /* Check valid flag bits */ 1843 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE| 1844 DRM_CRTC_SEQUENCE_NEXT_ON_MISS)) 1845 return -EINVAL; 1846 1847 pipe = drm_crtc_index(crtc); 1848 1849 vblank = &dev->vblank[pipe]; 1850 1851 e = kzalloc(sizeof(*e), GFP_KERNEL); 1852 if (e == NULL) 1853 return -ENOMEM; 1854 1855 ret = drm_crtc_vblank_get(crtc); 1856 if (ret) { 1857 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 1858 goto err_free; 1859 } 1860 1861 seq = drm_vblank_count_and_time(dev, pipe, &now); 1862 req_seq = queue_seq->sequence; 1863 1864 if (flags & DRM_CRTC_SEQUENCE_RELATIVE) 1865 req_seq += seq; 1866 1867 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq)) 1868 req_seq = seq + 1; 1869 1870 e->pipe = pipe; 1871 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE; 1872 e->event.base.length = sizeof(e->event.seq); 1873 e->event.seq.user_data = queue_seq->user_data; 1874 1875 spin_lock_irqsave(&dev->event_lock, spin_flags); 1876 1877 /* 1878 * drm_crtc_vblank_off() might have been called after we called 1879 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1880 * vblank disable, so no need for further locking. The reference from 1881 * drm_crtc_vblank_get() protects against vblank disable from another source. 1882 */ 1883 if (!READ_ONCE(vblank->enabled)) { 1884 ret = -EINVAL; 1885 goto err_unlock; 1886 } 1887 1888 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1889 &e->event.base); 1890 1891 if (ret) 1892 goto err_unlock; 1893 1894 e->sequence = req_seq; 1895 1896 if (vblank_passed(seq, req_seq)) { 1897 drm_crtc_vblank_put(crtc); 1898 send_vblank_event(dev, e, seq, now); 1899 queue_seq->sequence = seq; 1900 } else { 1901 /* drm_handle_vblank_events will call drm_vblank_put */ 1902 list_add_tail(&e->base.link, &dev->vblank_event_list); 1903 queue_seq->sequence = req_seq; 1904 } 1905 1906 spin_unlock_irqrestore(&dev->event_lock, spin_flags); 1907 return 0; 1908 1909 err_unlock: 1910 spin_unlock_irqrestore(&dev->event_lock, spin_flags); 1911 drm_crtc_vblank_put(crtc); 1912 err_free: 1913 kfree(e); 1914 return ret; 1915 } 1916