xref: /openbmc/linux/drivers/gpu/drm/drm_vblank.c (revision e15a5365)
1 /*
2  * drm_irq.c IRQ and vblank support
3  *
4  * \author Rickard E. (Rik) Faith <faith@valinux.com>
5  * \author Gareth Hughes <gareth@valinux.com>
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the next
15  * paragraph) shall be included in all copies or substantial portions of the
16  * Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24  * OTHER DEALINGS IN THE SOFTWARE.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kthread.h>
29 #include <linux/moduleparam.h>
30 
31 #include <drm/drm_crtc.h>
32 #include <drm/drm_drv.h>
33 #include <drm/drm_framebuffer.h>
34 #include <drm/drm_managed.h>
35 #include <drm/drm_modeset_helper_vtables.h>
36 #include <drm/drm_print.h>
37 #include <drm/drm_vblank.h>
38 
39 #include "drm_internal.h"
40 #include "drm_trace.h"
41 
42 /**
43  * DOC: vblank handling
44  *
45  * From the computer's perspective, every time the monitor displays
46  * a new frame the scanout engine has "scanned out" the display image
47  * from top to bottom, one row of pixels at a time. The current row
48  * of pixels is referred to as the current scanline.
49  *
50  * In addition to the display's visible area, there's usually a couple of
51  * extra scanlines which aren't actually displayed on the screen.
52  * These extra scanlines don't contain image data and are occasionally used
53  * for features like audio and infoframes. The region made up of these
54  * scanlines is referred to as the vertical blanking region, or vblank for
55  * short.
56  *
57  * For historical reference, the vertical blanking period was designed to
58  * give the electron gun (on CRTs) enough time to move back to the top of
59  * the screen to start scanning out the next frame. Similar for horizontal
60  * blanking periods. They were designed to give the electron gun enough
61  * time to move back to the other side of the screen to start scanning the
62  * next scanline.
63  *
64  * ::
65  *
66  *
67  *    physical →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
68  *    top of      |                                        |
69  *    display     |                                        |
70  *                |               New frame                |
71  *                |                                        |
72  *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|
73  *                |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline,
74  *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|   updates the
75  *                |                                        |   frame as it
76  *                |                                        |   travels down
77  *                |                                        |   ("sacn out")
78  *                |               Old frame                |
79  *                |                                        |
80  *                |                                        |
81  *                |                                        |
82  *                |                                        |   physical
83  *                |                                        |   bottom of
84  *    vertical    |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display
85  *    blanking    ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
86  *    region   →  ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
87  *                ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
88  *    start of →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
89  *    new frame
90  *
91  * "Physical top of display" is the reference point for the high-precision/
92  * corrected timestamp.
93  *
94  * On a lot of display hardware, programming needs to take effect during the
95  * vertical blanking period so that settings like gamma, the image buffer
96  * buffer to be scanned out, etc. can safely be changed without showing
97  * any visual artifacts on the screen. In some unforgiving hardware, some of
98  * this programming has to both start and end in the same vblank. To help
99  * with the timing of the hardware programming, an interrupt is usually
100  * available to notify the driver when it can start the updating of registers.
101  * The interrupt is in this context named the vblank interrupt.
102  *
103  * The vblank interrupt may be fired at different points depending on the
104  * hardware. Some hardware implementations will fire the interrupt when the
105  * new frame start, other implementations will fire the interrupt at different
106  * points in time.
107  *
108  * Vertical blanking plays a major role in graphics rendering. To achieve
109  * tear-free display, users must synchronize page flips and/or rendering to
110  * vertical blanking. The DRM API offers ioctls to perform page flips
111  * synchronized to vertical blanking and wait for vertical blanking.
112  *
113  * The DRM core handles most of the vertical blanking management logic, which
114  * involves filtering out spurious interrupts, keeping race-free blanking
115  * counters, coping with counter wrap-around and resets and keeping use counts.
116  * It relies on the driver to generate vertical blanking interrupts and
117  * optionally provide a hardware vertical blanking counter.
118  *
119  * Drivers must initialize the vertical blanking handling core with a call to
120  * drm_vblank_init(). Minimally, a driver needs to implement
121  * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
122  * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
123  * support.
124  *
125  * Vertical blanking interrupts can be enabled by the DRM core or by drivers
126  * themselves (for instance to handle page flipping operations).  The DRM core
127  * maintains a vertical blanking use count to ensure that the interrupts are not
128  * disabled while a user still needs them. To increment the use count, drivers
129  * call drm_crtc_vblank_get() and release the vblank reference again with
130  * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
131  * guaranteed to be enabled.
132  *
133  * On many hardware disabling the vblank interrupt cannot be done in a race-free
134  * manner, see &drm_driver.vblank_disable_immediate and
135  * &drm_driver.max_vblank_count. In that case the vblank core only disables the
136  * vblanks after a timer has expired, which can be configured through the
137  * ``vblankoffdelay`` module parameter.
138  *
139  * Drivers for hardware without support for vertical-blanking interrupts
140  * must not call drm_vblank_init(). For such drivers, atomic helpers will
141  * automatically generate fake vblank events as part of the display update.
142  * This functionality also can be controlled by the driver by enabling and
143  * disabling struct drm_crtc_state.no_vblank.
144  */
145 
146 /* Retry timestamp calculation up to 3 times to satisfy
147  * drm_timestamp_precision before giving up.
148  */
149 #define DRM_TIMESTAMP_MAXRETRIES 3
150 
151 /* Threshold in nanoseconds for detection of redundant
152  * vblank irq in drm_handle_vblank(). 1 msec should be ok.
153  */
154 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
155 
156 static bool
157 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
158 			  ktime_t *tvblank, bool in_vblank_irq);
159 
160 static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
161 
162 static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
163 
164 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
165 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
166 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
167 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
168 
169 static void store_vblank(struct drm_device *dev, unsigned int pipe,
170 			 u32 vblank_count_inc,
171 			 ktime_t t_vblank, u32 last)
172 {
173 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
174 
175 	assert_spin_locked(&dev->vblank_time_lock);
176 
177 	vblank->last = last;
178 
179 	write_seqlock(&vblank->seqlock);
180 	vblank->time = t_vblank;
181 	atomic64_add(vblank_count_inc, &vblank->count);
182 	write_sequnlock(&vblank->seqlock);
183 }
184 
185 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
186 {
187 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
188 
189 	return vblank->max_vblank_count ?: dev->max_vblank_count;
190 }
191 
192 /*
193  * "No hw counter" fallback implementation of .get_vblank_counter() hook,
194  * if there is no useable hardware frame counter available.
195  */
196 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
197 {
198 	drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0);
199 	return 0;
200 }
201 
202 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
203 {
204 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
205 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
206 
207 		if (drm_WARN_ON(dev, !crtc))
208 			return 0;
209 
210 		if (crtc->funcs->get_vblank_counter)
211 			return crtc->funcs->get_vblank_counter(crtc);
212 	} else if (dev->driver->get_vblank_counter) {
213 		return dev->driver->get_vblank_counter(dev, pipe);
214 	}
215 
216 	return drm_vblank_no_hw_counter(dev, pipe);
217 }
218 
219 /*
220  * Reset the stored timestamp for the current vblank count to correspond
221  * to the last vblank occurred.
222  *
223  * Only to be called from drm_crtc_vblank_on().
224  *
225  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
226  * device vblank fields.
227  */
228 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
229 {
230 	u32 cur_vblank;
231 	bool rc;
232 	ktime_t t_vblank;
233 	int count = DRM_TIMESTAMP_MAXRETRIES;
234 
235 	spin_lock(&dev->vblank_time_lock);
236 
237 	/*
238 	 * sample the current counter to avoid random jumps
239 	 * when drm_vblank_enable() applies the diff
240 	 */
241 	do {
242 		cur_vblank = __get_vblank_counter(dev, pipe);
243 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
244 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
245 
246 	/*
247 	 * Only reinitialize corresponding vblank timestamp if high-precision query
248 	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
249 	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
250 	 */
251 	if (!rc)
252 		t_vblank = 0;
253 
254 	/*
255 	 * +1 to make sure user will never see the same
256 	 * vblank counter value before and after a modeset
257 	 */
258 	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
259 
260 	spin_unlock(&dev->vblank_time_lock);
261 }
262 
263 /*
264  * Call back into the driver to update the appropriate vblank counter
265  * (specified by @pipe).  Deal with wraparound, if it occurred, and
266  * update the last read value so we can deal with wraparound on the next
267  * call if necessary.
268  *
269  * Only necessary when going from off->on, to account for frames we
270  * didn't get an interrupt for.
271  *
272  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
273  * device vblank fields.
274  */
275 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
276 				    bool in_vblank_irq)
277 {
278 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
279 	u32 cur_vblank, diff;
280 	bool rc;
281 	ktime_t t_vblank;
282 	int count = DRM_TIMESTAMP_MAXRETRIES;
283 	int framedur_ns = vblank->framedur_ns;
284 	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
285 
286 	/*
287 	 * Interrupts were disabled prior to this call, so deal with counter
288 	 * wrap if needed.
289 	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
290 	 * here if the register is small or we had vblank interrupts off for
291 	 * a long time.
292 	 *
293 	 * We repeat the hardware vblank counter & timestamp query until
294 	 * we get consistent results. This to prevent races between gpu
295 	 * updating its hardware counter while we are retrieving the
296 	 * corresponding vblank timestamp.
297 	 */
298 	do {
299 		cur_vblank = __get_vblank_counter(dev, pipe);
300 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
301 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
302 
303 	if (max_vblank_count) {
304 		/* trust the hw counter when it's around */
305 		diff = (cur_vblank - vblank->last) & max_vblank_count;
306 	} else if (rc && framedur_ns) {
307 		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
308 
309 		/*
310 		 * Figure out how many vblanks we've missed based
311 		 * on the difference in the timestamps and the
312 		 * frame/field duration.
313 		 */
314 
315 		drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks."
316 			    " diff_ns = %lld, framedur_ns = %d)\n",
317 			    pipe, (long long)diff_ns, framedur_ns);
318 
319 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
320 
321 		if (diff == 0 && in_vblank_irq)
322 			drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n",
323 				    pipe);
324 	} else {
325 		/* some kind of default for drivers w/o accurate vbl timestamping */
326 		diff = in_vblank_irq ? 1 : 0;
327 	}
328 
329 	/*
330 	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
331 	 * interval? If so then vblank irqs keep running and it will likely
332 	 * happen that the hardware vblank counter is not trustworthy as it
333 	 * might reset at some point in that interval and vblank timestamps
334 	 * are not trustworthy either in that interval. Iow. this can result
335 	 * in a bogus diff >> 1 which must be avoided as it would cause
336 	 * random large forward jumps of the software vblank counter.
337 	 */
338 	if (diff > 1 && (vblank->inmodeset & 0x2)) {
339 		drm_dbg_vbl(dev,
340 			    "clamping vblank bump to 1 on crtc %u: diffr=%u"
341 			    " due to pre-modeset.\n", pipe, diff);
342 		diff = 1;
343 	}
344 
345 	drm_dbg_vbl(dev, "updating vblank count on crtc %u:"
346 		    " current=%llu, diff=%u, hw=%u hw_last=%u\n",
347 		    pipe, (unsigned long long)atomic64_read(&vblank->count),
348 		    diff, cur_vblank, vblank->last);
349 
350 	if (diff == 0) {
351 		drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last);
352 		return;
353 	}
354 
355 	/*
356 	 * Only reinitialize corresponding vblank timestamp if high-precision query
357 	 * available and didn't fail, or we were called from the vblank interrupt.
358 	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
359 	 * for now, to mark the vblanktimestamp as invalid.
360 	 */
361 	if (!rc && !in_vblank_irq)
362 		t_vblank = 0;
363 
364 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
365 }
366 
367 u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
368 {
369 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
370 	u64 count;
371 
372 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
373 		return 0;
374 
375 	count = atomic64_read(&vblank->count);
376 
377 	/*
378 	 * This read barrier corresponds to the implicit write barrier of the
379 	 * write seqlock in store_vblank(). Note that this is the only place
380 	 * where we need an explicit barrier, since all other access goes
381 	 * through drm_vblank_count_and_time(), which already has the required
382 	 * read barrier curtesy of the read seqlock.
383 	 */
384 	smp_rmb();
385 
386 	return count;
387 }
388 
389 /**
390  * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
391  * @crtc: which counter to retrieve
392  *
393  * This function is similar to drm_crtc_vblank_count() but this function
394  * interpolates to handle a race with vblank interrupts using the high precision
395  * timestamping support.
396  *
397  * This is mostly useful for hardware that can obtain the scanout position, but
398  * doesn't have a hardware frame counter.
399  */
400 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
401 {
402 	struct drm_device *dev = crtc->dev;
403 	unsigned int pipe = drm_crtc_index(crtc);
404 	u64 vblank;
405 	unsigned long flags;
406 
407 	drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) &&
408 		      !crtc->funcs->get_vblank_timestamp,
409 		      "This function requires support for accurate vblank timestamps.");
410 
411 	spin_lock_irqsave(&dev->vblank_time_lock, flags);
412 
413 	drm_update_vblank_count(dev, pipe, false);
414 	vblank = drm_vblank_count(dev, pipe);
415 
416 	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
417 
418 	return vblank;
419 }
420 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
421 
422 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
423 {
424 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
425 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
426 
427 		if (drm_WARN_ON(dev, !crtc))
428 			return;
429 
430 		if (crtc->funcs->disable_vblank)
431 			crtc->funcs->disable_vblank(crtc);
432 	} else {
433 		dev->driver->disable_vblank(dev, pipe);
434 	}
435 }
436 
437 /*
438  * Disable vblank irq's on crtc, make sure that last vblank count
439  * of hardware and corresponding consistent software vblank counter
440  * are preserved, even if there are any spurious vblank irq's after
441  * disable.
442  */
443 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
444 {
445 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
446 	unsigned long irqflags;
447 
448 	assert_spin_locked(&dev->vbl_lock);
449 
450 	/* Prevent vblank irq processing while disabling vblank irqs,
451 	 * so no updates of timestamps or count can happen after we've
452 	 * disabled. Needed to prevent races in case of delayed irq's.
453 	 */
454 	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
455 
456 	/*
457 	 * Update vblank count and disable vblank interrupts only if the
458 	 * interrupts were enabled. This avoids calling the ->disable_vblank()
459 	 * operation in atomic context with the hardware potentially runtime
460 	 * suspended.
461 	 */
462 	if (!vblank->enabled)
463 		goto out;
464 
465 	/*
466 	 * Update the count and timestamp to maintain the
467 	 * appearance that the counter has been ticking all along until
468 	 * this time. This makes the count account for the entire time
469 	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
470 	 */
471 	drm_update_vblank_count(dev, pipe, false);
472 	__disable_vblank(dev, pipe);
473 	vblank->enabled = false;
474 
475 out:
476 	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
477 }
478 
479 static void vblank_disable_fn(struct timer_list *t)
480 {
481 	struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
482 	struct drm_device *dev = vblank->dev;
483 	unsigned int pipe = vblank->pipe;
484 	unsigned long irqflags;
485 
486 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
487 	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
488 		drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe);
489 		drm_vblank_disable_and_save(dev, pipe);
490 	}
491 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
492 }
493 
494 static void drm_vblank_init_release(struct drm_device *dev, void *ptr)
495 {
496 	struct drm_vblank_crtc *vblank = ptr;
497 
498 	drm_WARN_ON(dev, READ_ONCE(vblank->enabled) &&
499 		    drm_core_check_feature(dev, DRIVER_MODESET));
500 
501 	drm_vblank_destroy_worker(vblank);
502 	del_timer_sync(&vblank->disable_timer);
503 }
504 
505 /**
506  * drm_vblank_init - initialize vblank support
507  * @dev: DRM device
508  * @num_crtcs: number of CRTCs supported by @dev
509  *
510  * This function initializes vblank support for @num_crtcs display pipelines.
511  * Cleanup is handled automatically through a cleanup function added with
512  * drmm_add_action_or_reset().
513  *
514  * Returns:
515  * Zero on success or a negative error code on failure.
516  */
517 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
518 {
519 	int ret;
520 	unsigned int i;
521 
522 	spin_lock_init(&dev->vbl_lock);
523 	spin_lock_init(&dev->vblank_time_lock);
524 
525 	dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
526 	if (!dev->vblank)
527 		return -ENOMEM;
528 
529 	dev->num_crtcs = num_crtcs;
530 
531 	for (i = 0; i < num_crtcs; i++) {
532 		struct drm_vblank_crtc *vblank = &dev->vblank[i];
533 
534 		vblank->dev = dev;
535 		vblank->pipe = i;
536 		init_waitqueue_head(&vblank->queue);
537 		timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
538 		seqlock_init(&vblank->seqlock);
539 
540 		ret = drmm_add_action_or_reset(dev, drm_vblank_init_release,
541 					       vblank);
542 		if (ret)
543 			return ret;
544 
545 		ret = drm_vblank_worker_init(vblank);
546 		if (ret)
547 			return ret;
548 	}
549 
550 	return 0;
551 }
552 EXPORT_SYMBOL(drm_vblank_init);
553 
554 /**
555  * drm_dev_has_vblank - test if vblanking has been initialized for
556  *                      a device
557  * @dev: the device
558  *
559  * Drivers may call this function to test if vblank support is
560  * initialized for a device. For most hardware this means that vblanking
561  * can also be enabled.
562  *
563  * Atomic helpers use this function to initialize
564  * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset().
565  *
566  * Returns:
567  * True if vblanking has been initialized for the given device, false
568  * otherwise.
569  */
570 bool drm_dev_has_vblank(const struct drm_device *dev)
571 {
572 	return dev->num_crtcs != 0;
573 }
574 EXPORT_SYMBOL(drm_dev_has_vblank);
575 
576 /**
577  * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
578  * @crtc: which CRTC's vblank waitqueue to retrieve
579  *
580  * This function returns a pointer to the vblank waitqueue for the CRTC.
581  * Drivers can use this to implement vblank waits using wait_event() and related
582  * functions.
583  */
584 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
585 {
586 	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
587 }
588 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
589 
590 
591 /**
592  * drm_calc_timestamping_constants - calculate vblank timestamp constants
593  * @crtc: drm_crtc whose timestamp constants should be updated.
594  * @mode: display mode containing the scanout timings
595  *
596  * Calculate and store various constants which are later needed by vblank and
597  * swap-completion timestamping, e.g, by
598  * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from
599  * CRTC's true scanout timing, so they take things like panel scaling or
600  * other adjustments into account.
601  */
602 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
603 				     const struct drm_display_mode *mode)
604 {
605 	struct drm_device *dev = crtc->dev;
606 	unsigned int pipe = drm_crtc_index(crtc);
607 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
608 	int linedur_ns = 0, framedur_ns = 0;
609 	int dotclock = mode->crtc_clock;
610 
611 	if (!drm_dev_has_vblank(dev))
612 		return;
613 
614 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
615 		return;
616 
617 	/* Valid dotclock? */
618 	if (dotclock > 0) {
619 		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
620 
621 		/*
622 		 * Convert scanline length in pixels and video
623 		 * dot clock to line duration and frame duration
624 		 * in nanoseconds:
625 		 */
626 		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
627 		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
628 
629 		/*
630 		 * Fields of interlaced scanout modes are only half a frame duration.
631 		 */
632 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
633 			framedur_ns /= 2;
634 	} else {
635 		drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n",
636 			crtc->base.id);
637 	}
638 
639 	vblank->linedur_ns  = linedur_ns;
640 	vblank->framedur_ns = framedur_ns;
641 	vblank->hwmode = *mode;
642 
643 	drm_dbg_core(dev,
644 		     "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
645 		     crtc->base.id, mode->crtc_htotal,
646 		     mode->crtc_vtotal, mode->crtc_vdisplay);
647 	drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n",
648 		     crtc->base.id, dotclock, framedur_ns, linedur_ns);
649 }
650 EXPORT_SYMBOL(drm_calc_timestamping_constants);
651 
652 /**
653  * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank
654  *                                                        timestamp helper
655  * @crtc: CRTC whose vblank timestamp to retrieve
656  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
657  *             On return contains true maximum error of timestamp
658  * @vblank_time: Pointer to time which should receive the timestamp
659  * @in_vblank_irq:
660  *     True when called from drm_crtc_handle_vblank().  Some drivers
661  *     need to apply some workarounds for gpu-specific vblank irq quirks
662  *     if flag is set.
663  * @get_scanout_position:
664  *     Callback function to retrieve the scanout position. See
665  *     @struct drm_crtc_helper_funcs.get_scanout_position.
666  *
667  * Implements calculation of exact vblank timestamps from given drm_display_mode
668  * timings and current video scanout position of a CRTC.
669  *
670  * The current implementation only handles standard video modes. For double scan
671  * and interlaced modes the driver is supposed to adjust the hardware mode
672  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
673  * match the scanout position reported.
674  *
675  * Note that atomic drivers must call drm_calc_timestamping_constants() before
676  * enabling a CRTC. The atomic helpers already take care of that in
677  * drm_atomic_helper_calc_timestamping_constants().
678  *
679  * Returns:
680  *
681  * Returns true on success, and false on failure, i.e. when no accurate
682  * timestamp could be acquired.
683  */
684 bool
685 drm_crtc_vblank_helper_get_vblank_timestamp_internal(
686 	struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time,
687 	bool in_vblank_irq,
688 	drm_vblank_get_scanout_position_func get_scanout_position)
689 {
690 	struct drm_device *dev = crtc->dev;
691 	unsigned int pipe = crtc->index;
692 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
693 	struct timespec64 ts_etime, ts_vblank_time;
694 	ktime_t stime, etime;
695 	bool vbl_status;
696 	const struct drm_display_mode *mode;
697 	int vpos, hpos, i;
698 	int delta_ns, duration_ns;
699 
700 	if (pipe >= dev->num_crtcs) {
701 		drm_err(dev, "Invalid crtc %u\n", pipe);
702 		return false;
703 	}
704 
705 	/* Scanout position query not supported? Should not happen. */
706 	if (!get_scanout_position) {
707 		drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n");
708 		return false;
709 	}
710 
711 	if (drm_drv_uses_atomic_modeset(dev))
712 		mode = &vblank->hwmode;
713 	else
714 		mode = &crtc->hwmode;
715 
716 	/* If mode timing undefined, just return as no-op:
717 	 * Happens during initial modesetting of a crtc.
718 	 */
719 	if (mode->crtc_clock == 0) {
720 		drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n",
721 			     pipe);
722 		drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev));
723 		return false;
724 	}
725 
726 	/* Get current scanout position with system timestamp.
727 	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
728 	 * if single query takes longer than max_error nanoseconds.
729 	 *
730 	 * This guarantees a tight bound on maximum error if
731 	 * code gets preempted or delayed for some reason.
732 	 */
733 	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
734 		/*
735 		 * Get vertical and horizontal scanout position vpos, hpos,
736 		 * and bounding timestamps stime, etime, pre/post query.
737 		 */
738 		vbl_status = get_scanout_position(crtc, in_vblank_irq,
739 						  &vpos, &hpos,
740 						  &stime, &etime,
741 						  mode);
742 
743 		/* Return as no-op if scanout query unsupported or failed. */
744 		if (!vbl_status) {
745 			drm_dbg_core(dev,
746 				     "crtc %u : scanoutpos query failed.\n",
747 				     pipe);
748 			return false;
749 		}
750 
751 		/* Compute uncertainty in timestamp of scanout position query. */
752 		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
753 
754 		/* Accept result with <  max_error nsecs timing uncertainty. */
755 		if (duration_ns <= *max_error)
756 			break;
757 	}
758 
759 	/* Noisy system timing? */
760 	if (i == DRM_TIMESTAMP_MAXRETRIES) {
761 		drm_dbg_core(dev,
762 			     "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
763 			     pipe, duration_ns / 1000, *max_error / 1000, i);
764 	}
765 
766 	/* Return upper bound of timestamp precision error. */
767 	*max_error = duration_ns;
768 
769 	/* Convert scanout position into elapsed time at raw_time query
770 	 * since start of scanout at first display scanline. delta_ns
771 	 * can be negative if start of scanout hasn't happened yet.
772 	 */
773 	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
774 			   mode->crtc_clock);
775 
776 	/* Subtract time delta from raw timestamp to get final
777 	 * vblank_time timestamp for end of vblank.
778 	 */
779 	*vblank_time = ktime_sub_ns(etime, delta_ns);
780 
781 	if (!drm_debug_enabled(DRM_UT_VBL))
782 		return true;
783 
784 	ts_etime = ktime_to_timespec64(etime);
785 	ts_vblank_time = ktime_to_timespec64(*vblank_time);
786 
787 	drm_dbg_vbl(dev,
788 		    "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
789 		    pipe, hpos, vpos,
790 		    (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
791 		    (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
792 		    duration_ns / 1000, i);
793 
794 	return true;
795 }
796 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal);
797 
798 /**
799  * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp
800  *                                               helper
801  * @crtc: CRTC whose vblank timestamp to retrieve
802  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
803  *             On return contains true maximum error of timestamp
804  * @vblank_time: Pointer to time which should receive the timestamp
805  * @in_vblank_irq:
806  *     True when called from drm_crtc_handle_vblank().  Some drivers
807  *     need to apply some workarounds for gpu-specific vblank irq quirks
808  *     if flag is set.
809  *
810  * Implements calculation of exact vblank timestamps from given drm_display_mode
811  * timings and current video scanout position of a CRTC. This can be directly
812  * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms
813  * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented.
814  *
815  * The current implementation only handles standard video modes. For double scan
816  * and interlaced modes the driver is supposed to adjust the hardware mode
817  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
818  * match the scanout position reported.
819  *
820  * Note that atomic drivers must call drm_calc_timestamping_constants() before
821  * enabling a CRTC. The atomic helpers already take care of that in
822  * drm_atomic_helper_calc_timestamping_constants().
823  *
824  * Returns:
825  *
826  * Returns true on success, and false on failure, i.e. when no accurate
827  * timestamp could be acquired.
828  */
829 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc,
830 						 int *max_error,
831 						 ktime_t *vblank_time,
832 						 bool in_vblank_irq)
833 {
834 	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
835 		crtc, max_error, vblank_time, in_vblank_irq,
836 		crtc->helper_private->get_scanout_position);
837 }
838 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp);
839 
840 /**
841  * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
842  *                             vblank interval
843  * @dev: DRM device
844  * @pipe: index of CRTC whose vblank timestamp to retrieve
845  * @tvblank: Pointer to target time which should receive the timestamp
846  * @in_vblank_irq:
847  *     True when called from drm_crtc_handle_vblank().  Some drivers
848  *     need to apply some workarounds for gpu-specific vblank irq quirks
849  *     if flag is set.
850  *
851  * Fetches the system timestamp corresponding to the time of the most recent
852  * vblank interval on specified CRTC. May call into kms-driver to
853  * compute the timestamp with a high-precision GPU specific method.
854  *
855  * Returns zero if timestamp originates from uncorrected do_gettimeofday()
856  * call, i.e., it isn't very precisely locked to the true vblank.
857  *
858  * Returns:
859  * True if timestamp is considered to be very precise, false otherwise.
860  */
861 static bool
862 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
863 			  ktime_t *tvblank, bool in_vblank_irq)
864 {
865 	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
866 	bool ret = false;
867 
868 	/* Define requested maximum error on timestamps (nanoseconds). */
869 	int max_error = (int) drm_timestamp_precision * 1000;
870 
871 	/* Query driver if possible and precision timestamping enabled. */
872 	if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) {
873 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
874 
875 		ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error,
876 							tvblank, in_vblank_irq);
877 	}
878 
879 	/* GPU high precision timestamp query unsupported or failed.
880 	 * Return current monotonic/gettimeofday timestamp as best estimate.
881 	 */
882 	if (!ret)
883 		*tvblank = ktime_get();
884 
885 	return ret;
886 }
887 
888 /**
889  * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
890  * @crtc: which counter to retrieve
891  *
892  * Fetches the "cooked" vblank count value that represents the number of
893  * vblank events since the system was booted, including lost events due to
894  * modesetting activity. Note that this timer isn't correct against a racing
895  * vblank interrupt (since it only reports the software vblank counter), see
896  * drm_crtc_accurate_vblank_count() for such use-cases.
897  *
898  * Note that for a given vblank counter value drm_crtc_handle_vblank()
899  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
900  * provide a barrier: Any writes done before calling
901  * drm_crtc_handle_vblank() will be visible to callers of the later
902  * functions, iff the vblank count is the same or a later one.
903  *
904  * See also &drm_vblank_crtc.count.
905  *
906  * Returns:
907  * The software vblank counter.
908  */
909 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
910 {
911 	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
912 }
913 EXPORT_SYMBOL(drm_crtc_vblank_count);
914 
915 /**
916  * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
917  *     system timestamp corresponding to that vblank counter value.
918  * @dev: DRM device
919  * @pipe: index of CRTC whose counter to retrieve
920  * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
921  *
922  * Fetches the "cooked" vblank count value that represents the number of
923  * vblank events since the system was booted, including lost events due to
924  * modesetting activity. Returns corresponding system timestamp of the time
925  * of the vblank interval that corresponds to the current vblank counter value.
926  *
927  * This is the legacy version of drm_crtc_vblank_count_and_time().
928  */
929 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
930 				     ktime_t *vblanktime)
931 {
932 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
933 	u64 vblank_count;
934 	unsigned int seq;
935 
936 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) {
937 		*vblanktime = 0;
938 		return 0;
939 	}
940 
941 	do {
942 		seq = read_seqbegin(&vblank->seqlock);
943 		vblank_count = atomic64_read(&vblank->count);
944 		*vblanktime = vblank->time;
945 	} while (read_seqretry(&vblank->seqlock, seq));
946 
947 	return vblank_count;
948 }
949 
950 /**
951  * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
952  *     and the system timestamp corresponding to that vblank counter value
953  * @crtc: which counter to retrieve
954  * @vblanktime: Pointer to time to receive the vblank timestamp.
955  *
956  * Fetches the "cooked" vblank count value that represents the number of
957  * vblank events since the system was booted, including lost events due to
958  * modesetting activity. Returns corresponding system timestamp of the time
959  * of the vblank interval that corresponds to the current vblank counter value.
960  *
961  * Note that for a given vblank counter value drm_crtc_handle_vblank()
962  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
963  * provide a barrier: Any writes done before calling
964  * drm_crtc_handle_vblank() will be visible to callers of the later
965  * functions, iff the vblank count is the same or a later one.
966  *
967  * See also &drm_vblank_crtc.count.
968  */
969 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
970 				   ktime_t *vblanktime)
971 {
972 	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
973 					 vblanktime);
974 }
975 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
976 
977 static void send_vblank_event(struct drm_device *dev,
978 		struct drm_pending_vblank_event *e,
979 		u64 seq, ktime_t now)
980 {
981 	struct timespec64 tv;
982 
983 	switch (e->event.base.type) {
984 	case DRM_EVENT_VBLANK:
985 	case DRM_EVENT_FLIP_COMPLETE:
986 		tv = ktime_to_timespec64(now);
987 		e->event.vbl.sequence = seq;
988 		/*
989 		 * e->event is a user space structure, with hardcoded unsigned
990 		 * 32-bit seconds/microseconds. This is safe as we always use
991 		 * monotonic timestamps since linux-4.15
992 		 */
993 		e->event.vbl.tv_sec = tv.tv_sec;
994 		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
995 		break;
996 	case DRM_EVENT_CRTC_SEQUENCE:
997 		if (seq)
998 			e->event.seq.sequence = seq;
999 		e->event.seq.time_ns = ktime_to_ns(now);
1000 		break;
1001 	}
1002 	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
1003 	drm_send_event_locked(dev, &e->base);
1004 }
1005 
1006 /**
1007  * drm_crtc_arm_vblank_event - arm vblank event after pageflip
1008  * @crtc: the source CRTC of the vblank event
1009  * @e: the event to send
1010  *
1011  * A lot of drivers need to generate vblank events for the very next vblank
1012  * interrupt. For example when the page flip interrupt happens when the page
1013  * flip gets armed, but not when it actually executes within the next vblank
1014  * period. This helper function implements exactly the required vblank arming
1015  * behaviour.
1016  *
1017  * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
1018  * atomic commit must ensure that the next vblank happens at exactly the same
1019  * time as the atomic commit is committed to the hardware. This function itself
1020  * does **not** protect against the next vblank interrupt racing with either this
1021  * function call or the atomic commit operation. A possible sequence could be:
1022  *
1023  * 1. Driver commits new hardware state into vblank-synchronized registers.
1024  * 2. A vblank happens, committing the hardware state. Also the corresponding
1025  *    vblank interrupt is fired off and fully processed by the interrupt
1026  *    handler.
1027  * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
1028  * 4. The event is only send out for the next vblank, which is wrong.
1029  *
1030  * An equivalent race can happen when the driver calls
1031  * drm_crtc_arm_vblank_event() before writing out the new hardware state.
1032  *
1033  * The only way to make this work safely is to prevent the vblank from firing
1034  * (and the hardware from committing anything else) until the entire atomic
1035  * commit sequence has run to completion. If the hardware does not have such a
1036  * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
1037  * Instead drivers need to manually send out the event from their interrupt
1038  * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
1039  * possible race with the hardware committing the atomic update.
1040  *
1041  * Caller must hold a vblank reference for the event @e acquired by a
1042  * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
1043  */
1044 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
1045 			       struct drm_pending_vblank_event *e)
1046 {
1047 	struct drm_device *dev = crtc->dev;
1048 	unsigned int pipe = drm_crtc_index(crtc);
1049 
1050 	assert_spin_locked(&dev->event_lock);
1051 
1052 	e->pipe = pipe;
1053 	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
1054 	list_add_tail(&e->base.link, &dev->vblank_event_list);
1055 }
1056 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
1057 
1058 /**
1059  * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
1060  * @crtc: the source CRTC of the vblank event
1061  * @e: the event to send
1062  *
1063  * Updates sequence # and timestamp on event for the most recently processed
1064  * vblank, and sends it to userspace.  Caller must hold event lock.
1065  *
1066  * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
1067  * situation, especially to send out events for atomic commit operations.
1068  */
1069 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
1070 				struct drm_pending_vblank_event *e)
1071 {
1072 	struct drm_device *dev = crtc->dev;
1073 	u64 seq;
1074 	unsigned int pipe = drm_crtc_index(crtc);
1075 	ktime_t now;
1076 
1077 	if (drm_dev_has_vblank(dev)) {
1078 		seq = drm_vblank_count_and_time(dev, pipe, &now);
1079 	} else {
1080 		seq = 0;
1081 
1082 		now = ktime_get();
1083 	}
1084 	e->pipe = pipe;
1085 	send_vblank_event(dev, e, seq, now);
1086 }
1087 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
1088 
1089 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
1090 {
1091 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1092 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1093 
1094 		if (drm_WARN_ON(dev, !crtc))
1095 			return 0;
1096 
1097 		if (crtc->funcs->enable_vblank)
1098 			return crtc->funcs->enable_vblank(crtc);
1099 	} else if (dev->driver->enable_vblank) {
1100 		return dev->driver->enable_vblank(dev, pipe);
1101 	}
1102 
1103 	return -EINVAL;
1104 }
1105 
1106 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1107 {
1108 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1109 	int ret = 0;
1110 
1111 	assert_spin_locked(&dev->vbl_lock);
1112 
1113 	spin_lock(&dev->vblank_time_lock);
1114 
1115 	if (!vblank->enabled) {
1116 		/*
1117 		 * Enable vblank irqs under vblank_time_lock protection.
1118 		 * All vblank count & timestamp updates are held off
1119 		 * until we are done reinitializing master counter and
1120 		 * timestamps. Filtercode in drm_handle_vblank() will
1121 		 * prevent double-accounting of same vblank interval.
1122 		 */
1123 		ret = __enable_vblank(dev, pipe);
1124 		drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n",
1125 			     pipe, ret);
1126 		if (ret) {
1127 			atomic_dec(&vblank->refcount);
1128 		} else {
1129 			drm_update_vblank_count(dev, pipe, 0);
1130 			/* drm_update_vblank_count() includes a wmb so we just
1131 			 * need to ensure that the compiler emits the write
1132 			 * to mark the vblank as enabled after the call
1133 			 * to drm_update_vblank_count().
1134 			 */
1135 			WRITE_ONCE(vblank->enabled, true);
1136 		}
1137 	}
1138 
1139 	spin_unlock(&dev->vblank_time_lock);
1140 
1141 	return ret;
1142 }
1143 
1144 int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1145 {
1146 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1147 	unsigned long irqflags;
1148 	int ret = 0;
1149 
1150 	if (!drm_dev_has_vblank(dev))
1151 		return -EINVAL;
1152 
1153 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1154 		return -EINVAL;
1155 
1156 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1157 	/* Going from 0->1 means we have to enable interrupts again */
1158 	if (atomic_add_return(1, &vblank->refcount) == 1) {
1159 		ret = drm_vblank_enable(dev, pipe);
1160 	} else {
1161 		if (!vblank->enabled) {
1162 			atomic_dec(&vblank->refcount);
1163 			ret = -EINVAL;
1164 		}
1165 	}
1166 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1167 
1168 	return ret;
1169 }
1170 
1171 /**
1172  * drm_crtc_vblank_get - get a reference count on vblank events
1173  * @crtc: which CRTC to own
1174  *
1175  * Acquire a reference count on vblank events to avoid having them disabled
1176  * while in use.
1177  *
1178  * Returns:
1179  * Zero on success or a negative error code on failure.
1180  */
1181 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1182 {
1183 	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1184 }
1185 EXPORT_SYMBOL(drm_crtc_vblank_get);
1186 
1187 void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1188 {
1189 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1190 
1191 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1192 		return;
1193 
1194 	if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0))
1195 		return;
1196 
1197 	/* Last user schedules interrupt disable */
1198 	if (atomic_dec_and_test(&vblank->refcount)) {
1199 		if (drm_vblank_offdelay == 0)
1200 			return;
1201 		else if (drm_vblank_offdelay < 0)
1202 			vblank_disable_fn(&vblank->disable_timer);
1203 		else if (!dev->vblank_disable_immediate)
1204 			mod_timer(&vblank->disable_timer,
1205 				  jiffies + ((drm_vblank_offdelay * HZ)/1000));
1206 	}
1207 }
1208 
1209 /**
1210  * drm_crtc_vblank_put - give up ownership of vblank events
1211  * @crtc: which counter to give up
1212  *
1213  * Release ownership of a given vblank counter, turning off interrupts
1214  * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1215  */
1216 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1217 {
1218 	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1219 }
1220 EXPORT_SYMBOL(drm_crtc_vblank_put);
1221 
1222 /**
1223  * drm_wait_one_vblank - wait for one vblank
1224  * @dev: DRM device
1225  * @pipe: CRTC index
1226  *
1227  * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1228  * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1229  * due to lack of driver support or because the crtc is off.
1230  *
1231  * This is the legacy version of drm_crtc_wait_one_vblank().
1232  */
1233 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1234 {
1235 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1236 	int ret;
1237 	u64 last;
1238 
1239 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1240 		return;
1241 
1242 	ret = drm_vblank_get(dev, pipe);
1243 	if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n",
1244 		     pipe, ret))
1245 		return;
1246 
1247 	last = drm_vblank_count(dev, pipe);
1248 
1249 	ret = wait_event_timeout(vblank->queue,
1250 				 last != drm_vblank_count(dev, pipe),
1251 				 msecs_to_jiffies(100));
1252 
1253 	drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1254 
1255 	drm_vblank_put(dev, pipe);
1256 }
1257 EXPORT_SYMBOL(drm_wait_one_vblank);
1258 
1259 /**
1260  * drm_crtc_wait_one_vblank - wait for one vblank
1261  * @crtc: DRM crtc
1262  *
1263  * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1264  * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1265  * due to lack of driver support or because the crtc is off.
1266  */
1267 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1268 {
1269 	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1270 }
1271 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1272 
1273 /**
1274  * drm_crtc_vblank_off - disable vblank events on a CRTC
1275  * @crtc: CRTC in question
1276  *
1277  * Drivers can use this function to shut down the vblank interrupt handling when
1278  * disabling a crtc. This function ensures that the latest vblank frame count is
1279  * stored so that drm_vblank_on can restore it again.
1280  *
1281  * Drivers must use this function when the hardware vblank counter can get
1282  * reset, e.g. when suspending or disabling the @crtc in general.
1283  */
1284 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1285 {
1286 	struct drm_device *dev = crtc->dev;
1287 	unsigned int pipe = drm_crtc_index(crtc);
1288 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1289 	struct drm_pending_vblank_event *e, *t;
1290 	ktime_t now;
1291 	u64 seq;
1292 
1293 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1294 		return;
1295 
1296 	/*
1297 	 * Grab event_lock early to prevent vblank work from being scheduled
1298 	 * while we're in the middle of shutting down vblank interrupts
1299 	 */
1300 	spin_lock_irq(&dev->event_lock);
1301 
1302 	spin_lock(&dev->vbl_lock);
1303 	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1304 		    pipe, vblank->enabled, vblank->inmodeset);
1305 
1306 	/* Avoid redundant vblank disables without previous
1307 	 * drm_crtc_vblank_on(). */
1308 	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1309 		drm_vblank_disable_and_save(dev, pipe);
1310 
1311 	wake_up(&vblank->queue);
1312 
1313 	/*
1314 	 * Prevent subsequent drm_vblank_get() from re-enabling
1315 	 * the vblank interrupt by bumping the refcount.
1316 	 */
1317 	if (!vblank->inmodeset) {
1318 		atomic_inc(&vblank->refcount);
1319 		vblank->inmodeset = 1;
1320 	}
1321 	spin_unlock(&dev->vbl_lock);
1322 
1323 	/* Send any queued vblank events, lest the natives grow disquiet */
1324 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1325 
1326 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1327 		if (e->pipe != pipe)
1328 			continue;
1329 		drm_dbg_core(dev, "Sending premature vblank event on disable: "
1330 			     "wanted %llu, current %llu\n",
1331 			     e->sequence, seq);
1332 		list_del(&e->base.link);
1333 		drm_vblank_put(dev, pipe);
1334 		send_vblank_event(dev, e, seq, now);
1335 	}
1336 
1337 	/* Cancel any leftover pending vblank work */
1338 	drm_vblank_cancel_pending_works(vblank);
1339 
1340 	spin_unlock_irq(&dev->event_lock);
1341 
1342 	/* Will be reset by the modeset helpers when re-enabling the crtc by
1343 	 * calling drm_calc_timestamping_constants(). */
1344 	vblank->hwmode.crtc_clock = 0;
1345 
1346 	/* Wait for any vblank work that's still executing to finish */
1347 	drm_vblank_flush_worker(vblank);
1348 }
1349 EXPORT_SYMBOL(drm_crtc_vblank_off);
1350 
1351 /**
1352  * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1353  * @crtc: CRTC in question
1354  *
1355  * Drivers can use this function to reset the vblank state to off at load time.
1356  * Drivers should use this together with the drm_crtc_vblank_off() and
1357  * drm_crtc_vblank_on() functions. The difference compared to
1358  * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1359  * and hence doesn't need to call any driver hooks.
1360  *
1361  * This is useful for recovering driver state e.g. on driver load, or on resume.
1362  */
1363 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1364 {
1365 	struct drm_device *dev = crtc->dev;
1366 	unsigned int pipe = drm_crtc_index(crtc);
1367 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1368 
1369 	spin_lock_irq(&dev->vbl_lock);
1370 	/*
1371 	 * Prevent subsequent drm_vblank_get() from enabling the vblank
1372 	 * interrupt by bumping the refcount.
1373 	 */
1374 	if (!vblank->inmodeset) {
1375 		atomic_inc(&vblank->refcount);
1376 		vblank->inmodeset = 1;
1377 	}
1378 	spin_unlock_irq(&dev->vbl_lock);
1379 
1380 	drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list));
1381 	drm_WARN_ON(dev, !list_empty(&vblank->pending_work));
1382 }
1383 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1384 
1385 /**
1386  * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1387  * @crtc: CRTC in question
1388  * @max_vblank_count: max hardware vblank counter value
1389  *
1390  * Update the maximum hardware vblank counter value for @crtc
1391  * at runtime. Useful for hardware where the operation of the
1392  * hardware vblank counter depends on the currently active
1393  * display configuration.
1394  *
1395  * For example, if the hardware vblank counter does not work
1396  * when a specific connector is active the maximum can be set
1397  * to zero. And when that specific connector isn't active the
1398  * maximum can again be set to the appropriate non-zero value.
1399  *
1400  * If used, must be called before drm_vblank_on().
1401  */
1402 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1403 				   u32 max_vblank_count)
1404 {
1405 	struct drm_device *dev = crtc->dev;
1406 	unsigned int pipe = drm_crtc_index(crtc);
1407 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1408 
1409 	drm_WARN_ON(dev, dev->max_vblank_count);
1410 	drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset));
1411 
1412 	vblank->max_vblank_count = max_vblank_count;
1413 }
1414 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1415 
1416 /**
1417  * drm_crtc_vblank_on - enable vblank events on a CRTC
1418  * @crtc: CRTC in question
1419  *
1420  * This functions restores the vblank interrupt state captured with
1421  * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1422  * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1423  * unbalanced and so can also be unconditionally called in driver load code to
1424  * reflect the current hardware state of the crtc.
1425  */
1426 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1427 {
1428 	struct drm_device *dev = crtc->dev;
1429 	unsigned int pipe = drm_crtc_index(crtc);
1430 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1431 
1432 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1433 		return;
1434 
1435 	spin_lock_irq(&dev->vbl_lock);
1436 	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1437 		    pipe, vblank->enabled, vblank->inmodeset);
1438 
1439 	/* Drop our private "prevent drm_vblank_get" refcount */
1440 	if (vblank->inmodeset) {
1441 		atomic_dec(&vblank->refcount);
1442 		vblank->inmodeset = 0;
1443 	}
1444 
1445 	drm_reset_vblank_timestamp(dev, pipe);
1446 
1447 	/*
1448 	 * re-enable interrupts if there are users left, or the
1449 	 * user wishes vblank interrupts to be enabled all the time.
1450 	 */
1451 	if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1452 		drm_WARN_ON(dev, drm_vblank_enable(dev, pipe));
1453 	spin_unlock_irq(&dev->vbl_lock);
1454 }
1455 EXPORT_SYMBOL(drm_crtc_vblank_on);
1456 
1457 /**
1458  * drm_vblank_restore - estimate missed vblanks and update vblank count.
1459  * @dev: DRM device
1460  * @pipe: CRTC index
1461  *
1462  * Power manamement features can cause frame counter resets between vblank
1463  * disable and enable. Drivers can use this function in their
1464  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1465  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1466  * vblank counter.
1467  *
1468  * This function is the legacy version of drm_crtc_vblank_restore().
1469  */
1470 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1471 {
1472 	ktime_t t_vblank;
1473 	struct drm_vblank_crtc *vblank;
1474 	int framedur_ns;
1475 	u64 diff_ns;
1476 	u32 cur_vblank, diff = 1;
1477 	int count = DRM_TIMESTAMP_MAXRETRIES;
1478 
1479 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1480 		return;
1481 
1482 	assert_spin_locked(&dev->vbl_lock);
1483 	assert_spin_locked(&dev->vblank_time_lock);
1484 
1485 	vblank = &dev->vblank[pipe];
1486 	drm_WARN_ONCE(dev,
1487 		      drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1488 		      "Cannot compute missed vblanks without frame duration\n");
1489 	framedur_ns = vblank->framedur_ns;
1490 
1491 	do {
1492 		cur_vblank = __get_vblank_counter(dev, pipe);
1493 		drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1494 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1495 
1496 	diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1497 	if (framedur_ns)
1498 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1499 
1500 
1501 	drm_dbg_vbl(dev,
1502 		    "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
1503 		    diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1504 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
1505 }
1506 EXPORT_SYMBOL(drm_vblank_restore);
1507 
1508 /**
1509  * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1510  * @crtc: CRTC in question
1511  *
1512  * Power manamement features can cause frame counter resets between vblank
1513  * disable and enable. Drivers can use this function in their
1514  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1515  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1516  * vblank counter.
1517  */
1518 void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1519 {
1520 	drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1521 }
1522 EXPORT_SYMBOL(drm_crtc_vblank_restore);
1523 
1524 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1525 					  unsigned int pipe)
1526 {
1527 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1528 
1529 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1530 	if (!drm_dev_has_vblank(dev))
1531 		return;
1532 
1533 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1534 		return;
1535 
1536 	/*
1537 	 * To avoid all the problems that might happen if interrupts
1538 	 * were enabled/disabled around or between these calls, we just
1539 	 * have the kernel take a reference on the CRTC (just once though
1540 	 * to avoid corrupting the count if multiple, mismatch calls occur),
1541 	 * so that interrupts remain enabled in the interim.
1542 	 */
1543 	if (!vblank->inmodeset) {
1544 		vblank->inmodeset = 0x1;
1545 		if (drm_vblank_get(dev, pipe) == 0)
1546 			vblank->inmodeset |= 0x2;
1547 	}
1548 }
1549 
1550 static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1551 					   unsigned int pipe)
1552 {
1553 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1554 
1555 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1556 	if (!drm_dev_has_vblank(dev))
1557 		return;
1558 
1559 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1560 		return;
1561 
1562 	if (vblank->inmodeset) {
1563 		spin_lock_irq(&dev->vbl_lock);
1564 		drm_reset_vblank_timestamp(dev, pipe);
1565 		spin_unlock_irq(&dev->vbl_lock);
1566 
1567 		if (vblank->inmodeset & 0x2)
1568 			drm_vblank_put(dev, pipe);
1569 
1570 		vblank->inmodeset = 0;
1571 	}
1572 }
1573 
1574 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1575 				 struct drm_file *file_priv)
1576 {
1577 	struct drm_modeset_ctl *modeset = data;
1578 	unsigned int pipe;
1579 
1580 	/* If drm_vblank_init() hasn't been called yet, just no-op */
1581 	if (!drm_dev_has_vblank(dev))
1582 		return 0;
1583 
1584 	/* KMS drivers handle this internally */
1585 	if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1586 		return 0;
1587 
1588 	pipe = modeset->crtc;
1589 	if (pipe >= dev->num_crtcs)
1590 		return -EINVAL;
1591 
1592 	switch (modeset->cmd) {
1593 	case _DRM_PRE_MODESET:
1594 		drm_legacy_vblank_pre_modeset(dev, pipe);
1595 		break;
1596 	case _DRM_POST_MODESET:
1597 		drm_legacy_vblank_post_modeset(dev, pipe);
1598 		break;
1599 	default:
1600 		return -EINVAL;
1601 	}
1602 
1603 	return 0;
1604 }
1605 
1606 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1607 				  u64 req_seq,
1608 				  union drm_wait_vblank *vblwait,
1609 				  struct drm_file *file_priv)
1610 {
1611 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1612 	struct drm_pending_vblank_event *e;
1613 	ktime_t now;
1614 	u64 seq;
1615 	int ret;
1616 
1617 	e = kzalloc(sizeof(*e), GFP_KERNEL);
1618 	if (e == NULL) {
1619 		ret = -ENOMEM;
1620 		goto err_put;
1621 	}
1622 
1623 	e->pipe = pipe;
1624 	e->event.base.type = DRM_EVENT_VBLANK;
1625 	e->event.base.length = sizeof(e->event.vbl);
1626 	e->event.vbl.user_data = vblwait->request.signal;
1627 	e->event.vbl.crtc_id = 0;
1628 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1629 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1630 
1631 		if (crtc)
1632 			e->event.vbl.crtc_id = crtc->base.id;
1633 	}
1634 
1635 	spin_lock_irq(&dev->event_lock);
1636 
1637 	/*
1638 	 * drm_crtc_vblank_off() might have been called after we called
1639 	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1640 	 * vblank disable, so no need for further locking.  The reference from
1641 	 * drm_vblank_get() protects against vblank disable from another source.
1642 	 */
1643 	if (!READ_ONCE(vblank->enabled)) {
1644 		ret = -EINVAL;
1645 		goto err_unlock;
1646 	}
1647 
1648 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1649 					    &e->event.base);
1650 
1651 	if (ret)
1652 		goto err_unlock;
1653 
1654 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1655 
1656 	drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n",
1657 		     req_seq, seq, pipe);
1658 
1659 	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1660 
1661 	e->sequence = req_seq;
1662 	if (drm_vblank_passed(seq, req_seq)) {
1663 		drm_vblank_put(dev, pipe);
1664 		send_vblank_event(dev, e, seq, now);
1665 		vblwait->reply.sequence = seq;
1666 	} else {
1667 		/* drm_handle_vblank_events will call drm_vblank_put */
1668 		list_add_tail(&e->base.link, &dev->vblank_event_list);
1669 		vblwait->reply.sequence = req_seq;
1670 	}
1671 
1672 	spin_unlock_irq(&dev->event_lock);
1673 
1674 	return 0;
1675 
1676 err_unlock:
1677 	spin_unlock_irq(&dev->event_lock);
1678 	kfree(e);
1679 err_put:
1680 	drm_vblank_put(dev, pipe);
1681 	return ret;
1682 }
1683 
1684 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1685 {
1686 	if (vblwait->request.sequence)
1687 		return false;
1688 
1689 	return _DRM_VBLANK_RELATIVE ==
1690 		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1691 					  _DRM_VBLANK_EVENT |
1692 					  _DRM_VBLANK_NEXTONMISS));
1693 }
1694 
1695 /*
1696  * Widen a 32-bit param to 64-bits.
1697  *
1698  * \param narrow 32-bit value (missing upper 32 bits)
1699  * \param near 64-bit value that should be 'close' to near
1700  *
1701  * This function returns a 64-bit value using the lower 32-bits from
1702  * 'narrow' and constructing the upper 32-bits so that the result is
1703  * as close as possible to 'near'.
1704  */
1705 
1706 static u64 widen_32_to_64(u32 narrow, u64 near)
1707 {
1708 	return near + (s32) (narrow - near);
1709 }
1710 
1711 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1712 				  struct drm_wait_vblank_reply *reply)
1713 {
1714 	ktime_t now;
1715 	struct timespec64 ts;
1716 
1717 	/*
1718 	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1719 	 * to store the seconds. This is safe as we always use monotonic
1720 	 * timestamps since linux-4.15.
1721 	 */
1722 	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1723 	ts = ktime_to_timespec64(now);
1724 	reply->tval_sec = (u32)ts.tv_sec;
1725 	reply->tval_usec = ts.tv_nsec / 1000;
1726 }
1727 
1728 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1729 			  struct drm_file *file_priv)
1730 {
1731 	struct drm_crtc *crtc;
1732 	struct drm_vblank_crtc *vblank;
1733 	union drm_wait_vblank *vblwait = data;
1734 	int ret;
1735 	u64 req_seq, seq;
1736 	unsigned int pipe_index;
1737 	unsigned int flags, pipe, high_pipe;
1738 
1739 	if (!dev->irq_enabled)
1740 		return -EOPNOTSUPP;
1741 
1742 	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1743 		return -EINVAL;
1744 
1745 	if (vblwait->request.type &
1746 	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1747 	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
1748 		drm_dbg_core(dev,
1749 			     "Unsupported type value 0x%x, supported mask 0x%x\n",
1750 			     vblwait->request.type,
1751 			     (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1752 			      _DRM_VBLANK_HIGH_CRTC_MASK));
1753 		return -EINVAL;
1754 	}
1755 
1756 	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1757 	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1758 	if (high_pipe)
1759 		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1760 	else
1761 		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1762 
1763 	/* Convert lease-relative crtc index into global crtc index */
1764 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1765 		pipe = 0;
1766 		drm_for_each_crtc(crtc, dev) {
1767 			if (drm_lease_held(file_priv, crtc->base.id)) {
1768 				if (pipe_index == 0)
1769 					break;
1770 				pipe_index--;
1771 			}
1772 			pipe++;
1773 		}
1774 	} else {
1775 		pipe = pipe_index;
1776 	}
1777 
1778 	if (pipe >= dev->num_crtcs)
1779 		return -EINVAL;
1780 
1781 	vblank = &dev->vblank[pipe];
1782 
1783 	/* If the counter is currently enabled and accurate, short-circuit
1784 	 * queries to return the cached timestamp of the last vblank.
1785 	 */
1786 	if (dev->vblank_disable_immediate &&
1787 	    drm_wait_vblank_is_query(vblwait) &&
1788 	    READ_ONCE(vblank->enabled)) {
1789 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1790 		return 0;
1791 	}
1792 
1793 	ret = drm_vblank_get(dev, pipe);
1794 	if (ret) {
1795 		drm_dbg_core(dev,
1796 			     "crtc %d failed to acquire vblank counter, %d\n",
1797 			     pipe, ret);
1798 		return ret;
1799 	}
1800 	seq = drm_vblank_count(dev, pipe);
1801 
1802 	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1803 	case _DRM_VBLANK_RELATIVE:
1804 		req_seq = seq + vblwait->request.sequence;
1805 		vblwait->request.sequence = req_seq;
1806 		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1807 		break;
1808 	case _DRM_VBLANK_ABSOLUTE:
1809 		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1810 		break;
1811 	default:
1812 		ret = -EINVAL;
1813 		goto done;
1814 	}
1815 
1816 	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1817 	    drm_vblank_passed(seq, req_seq)) {
1818 		req_seq = seq + 1;
1819 		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1820 		vblwait->request.sequence = req_seq;
1821 	}
1822 
1823 	if (flags & _DRM_VBLANK_EVENT) {
1824 		/* must hold on to the vblank ref until the event fires
1825 		 * drm_vblank_put will be called asynchronously
1826 		 */
1827 		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1828 	}
1829 
1830 	if (req_seq != seq) {
1831 		int wait;
1832 
1833 		drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n",
1834 			     req_seq, pipe);
1835 		wait = wait_event_interruptible_timeout(vblank->queue,
1836 			drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1837 				      !READ_ONCE(vblank->enabled),
1838 			msecs_to_jiffies(3000));
1839 
1840 		switch (wait) {
1841 		case 0:
1842 			/* timeout */
1843 			ret = -EBUSY;
1844 			break;
1845 		case -ERESTARTSYS:
1846 			/* interrupted by signal */
1847 			ret = -EINTR;
1848 			break;
1849 		default:
1850 			ret = 0;
1851 			break;
1852 		}
1853 	}
1854 
1855 	if (ret != -EINTR) {
1856 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1857 
1858 		drm_dbg_core(dev, "crtc %d returning %u to client\n",
1859 			     pipe, vblwait->reply.sequence);
1860 	} else {
1861 		drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n",
1862 			     pipe);
1863 	}
1864 
1865 done:
1866 	drm_vblank_put(dev, pipe);
1867 	return ret;
1868 }
1869 
1870 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1871 {
1872 	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1873 	bool high_prec = false;
1874 	struct drm_pending_vblank_event *e, *t;
1875 	ktime_t now;
1876 	u64 seq;
1877 
1878 	assert_spin_locked(&dev->event_lock);
1879 
1880 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1881 
1882 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1883 		if (e->pipe != pipe)
1884 			continue;
1885 		if (!drm_vblank_passed(seq, e->sequence))
1886 			continue;
1887 
1888 		drm_dbg_core(dev, "vblank event on %llu, current %llu\n",
1889 			     e->sequence, seq);
1890 
1891 		list_del(&e->base.link);
1892 		drm_vblank_put(dev, pipe);
1893 		send_vblank_event(dev, e, seq, now);
1894 	}
1895 
1896 	if (crtc && crtc->funcs->get_vblank_timestamp)
1897 		high_prec = true;
1898 
1899 	trace_drm_vblank_event(pipe, seq, now, high_prec);
1900 }
1901 
1902 /**
1903  * drm_handle_vblank - handle a vblank event
1904  * @dev: DRM device
1905  * @pipe: index of CRTC where this event occurred
1906  *
1907  * Drivers should call this routine in their vblank interrupt handlers to
1908  * update the vblank counter and send any signals that may be pending.
1909  *
1910  * This is the legacy version of drm_crtc_handle_vblank().
1911  */
1912 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1913 {
1914 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1915 	unsigned long irqflags;
1916 	bool disable_irq;
1917 
1918 	if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev)))
1919 		return false;
1920 
1921 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1922 		return false;
1923 
1924 	spin_lock_irqsave(&dev->event_lock, irqflags);
1925 
1926 	/* Need timestamp lock to prevent concurrent execution with
1927 	 * vblank enable/disable, as this would cause inconsistent
1928 	 * or corrupted timestamps and vblank counts.
1929 	 */
1930 	spin_lock(&dev->vblank_time_lock);
1931 
1932 	/* Vblank irq handling disabled. Nothing to do. */
1933 	if (!vblank->enabled) {
1934 		spin_unlock(&dev->vblank_time_lock);
1935 		spin_unlock_irqrestore(&dev->event_lock, irqflags);
1936 		return false;
1937 	}
1938 
1939 	drm_update_vblank_count(dev, pipe, true);
1940 
1941 	spin_unlock(&dev->vblank_time_lock);
1942 
1943 	wake_up(&vblank->queue);
1944 
1945 	/* With instant-off, we defer disabling the interrupt until after
1946 	 * we finish processing the following vblank after all events have
1947 	 * been signaled. The disable has to be last (after
1948 	 * drm_handle_vblank_events) so that the timestamp is always accurate.
1949 	 */
1950 	disable_irq = (dev->vblank_disable_immediate &&
1951 		       drm_vblank_offdelay > 0 &&
1952 		       !atomic_read(&vblank->refcount));
1953 
1954 	drm_handle_vblank_events(dev, pipe);
1955 	drm_handle_vblank_works(vblank);
1956 
1957 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1958 
1959 	if (disable_irq)
1960 		vblank_disable_fn(&vblank->disable_timer);
1961 
1962 	return true;
1963 }
1964 EXPORT_SYMBOL(drm_handle_vblank);
1965 
1966 /**
1967  * drm_crtc_handle_vblank - handle a vblank event
1968  * @crtc: where this event occurred
1969  *
1970  * Drivers should call this routine in their vblank interrupt handlers to
1971  * update the vblank counter and send any signals that may be pending.
1972  *
1973  * This is the native KMS version of drm_handle_vblank().
1974  *
1975  * Note that for a given vblank counter value drm_crtc_handle_vblank()
1976  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1977  * provide a barrier: Any writes done before calling
1978  * drm_crtc_handle_vblank() will be visible to callers of the later
1979  * functions, iff the vblank count is the same or a later one.
1980  *
1981  * See also &drm_vblank_crtc.count.
1982  *
1983  * Returns:
1984  * True if the event was successfully handled, false on failure.
1985  */
1986 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1987 {
1988 	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1989 }
1990 EXPORT_SYMBOL(drm_crtc_handle_vblank);
1991 
1992 /*
1993  * Get crtc VBLANK count.
1994  *
1995  * \param dev DRM device
1996  * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
1997  * \param file_priv drm file private for the user's open file descriptor
1998  */
1999 
2000 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
2001 				struct drm_file *file_priv)
2002 {
2003 	struct drm_crtc *crtc;
2004 	struct drm_vblank_crtc *vblank;
2005 	int pipe;
2006 	struct drm_crtc_get_sequence *get_seq = data;
2007 	ktime_t now;
2008 	bool vblank_enabled;
2009 	int ret;
2010 
2011 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2012 		return -EOPNOTSUPP;
2013 
2014 	if (!dev->irq_enabled)
2015 		return -EOPNOTSUPP;
2016 
2017 	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
2018 	if (!crtc)
2019 		return -ENOENT;
2020 
2021 	pipe = drm_crtc_index(crtc);
2022 
2023 	vblank = &dev->vblank[pipe];
2024 	vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
2025 
2026 	if (!vblank_enabled) {
2027 		ret = drm_crtc_vblank_get(crtc);
2028 		if (ret) {
2029 			drm_dbg_core(dev,
2030 				     "crtc %d failed to acquire vblank counter, %d\n",
2031 				     pipe, ret);
2032 			return ret;
2033 		}
2034 	}
2035 	drm_modeset_lock(&crtc->mutex, NULL);
2036 	if (crtc->state)
2037 		get_seq->active = crtc->state->enable;
2038 	else
2039 		get_seq->active = crtc->enabled;
2040 	drm_modeset_unlock(&crtc->mutex);
2041 	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
2042 	get_seq->sequence_ns = ktime_to_ns(now);
2043 	if (!vblank_enabled)
2044 		drm_crtc_vblank_put(crtc);
2045 	return 0;
2046 }
2047 
2048 /*
2049  * Queue a event for VBLANK sequence
2050  *
2051  * \param dev DRM device
2052  * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
2053  * \param file_priv drm file private for the user's open file descriptor
2054  */
2055 
2056 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
2057 				  struct drm_file *file_priv)
2058 {
2059 	struct drm_crtc *crtc;
2060 	struct drm_vblank_crtc *vblank;
2061 	int pipe;
2062 	struct drm_crtc_queue_sequence *queue_seq = data;
2063 	ktime_t now;
2064 	struct drm_pending_vblank_event *e;
2065 	u32 flags;
2066 	u64 seq;
2067 	u64 req_seq;
2068 	int ret;
2069 
2070 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2071 		return -EOPNOTSUPP;
2072 
2073 	if (!dev->irq_enabled)
2074 		return -EOPNOTSUPP;
2075 
2076 	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
2077 	if (!crtc)
2078 		return -ENOENT;
2079 
2080 	flags = queue_seq->flags;
2081 	/* Check valid flag bits */
2082 	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
2083 		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
2084 		return -EINVAL;
2085 
2086 	pipe = drm_crtc_index(crtc);
2087 
2088 	vblank = &dev->vblank[pipe];
2089 
2090 	e = kzalloc(sizeof(*e), GFP_KERNEL);
2091 	if (e == NULL)
2092 		return -ENOMEM;
2093 
2094 	ret = drm_crtc_vblank_get(crtc);
2095 	if (ret) {
2096 		drm_dbg_core(dev,
2097 			     "crtc %d failed to acquire vblank counter, %d\n",
2098 			     pipe, ret);
2099 		goto err_free;
2100 	}
2101 
2102 	seq = drm_vblank_count_and_time(dev, pipe, &now);
2103 	req_seq = queue_seq->sequence;
2104 
2105 	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2106 		req_seq += seq;
2107 
2108 	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq))
2109 		req_seq = seq + 1;
2110 
2111 	e->pipe = pipe;
2112 	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2113 	e->event.base.length = sizeof(e->event.seq);
2114 	e->event.seq.user_data = queue_seq->user_data;
2115 
2116 	spin_lock_irq(&dev->event_lock);
2117 
2118 	/*
2119 	 * drm_crtc_vblank_off() might have been called after we called
2120 	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2121 	 * vblank disable, so no need for further locking.  The reference from
2122 	 * drm_crtc_vblank_get() protects against vblank disable from another source.
2123 	 */
2124 	if (!READ_ONCE(vblank->enabled)) {
2125 		ret = -EINVAL;
2126 		goto err_unlock;
2127 	}
2128 
2129 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2130 					    &e->event.base);
2131 
2132 	if (ret)
2133 		goto err_unlock;
2134 
2135 	e->sequence = req_seq;
2136 
2137 	if (drm_vblank_passed(seq, req_seq)) {
2138 		drm_crtc_vblank_put(crtc);
2139 		send_vblank_event(dev, e, seq, now);
2140 		queue_seq->sequence = seq;
2141 	} else {
2142 		/* drm_handle_vblank_events will call drm_vblank_put */
2143 		list_add_tail(&e->base.link, &dev->vblank_event_list);
2144 		queue_seq->sequence = req_seq;
2145 	}
2146 
2147 	spin_unlock_irq(&dev->event_lock);
2148 	return 0;
2149 
2150 err_unlock:
2151 	spin_unlock_irq(&dev->event_lock);
2152 	drm_crtc_vblank_put(crtc);
2153 err_free:
2154 	kfree(e);
2155 	return ret;
2156 }
2157 
2158