1 /* 2 * drm_irq.c IRQ and vblank support 3 * 4 * \author Rickard E. (Rik) Faith <faith@valinux.com> 5 * \author Gareth Hughes <gareth@valinux.com> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 24 * OTHER DEALINGS IN THE SOFTWARE. 25 */ 26 27 #include <drm/drm_vblank.h> 28 #include <drm/drmP.h> 29 #include <linux/export.h> 30 31 #include "drm_trace.h" 32 #include "drm_internal.h" 33 34 /** 35 * DOC: vblank handling 36 * 37 * Vertical blanking plays a major role in graphics rendering. To achieve 38 * tear-free display, users must synchronize page flips and/or rendering to 39 * vertical blanking. The DRM API offers ioctls to perform page flips 40 * synchronized to vertical blanking and wait for vertical blanking. 41 * 42 * The DRM core handles most of the vertical blanking management logic, which 43 * involves filtering out spurious interrupts, keeping race-free blanking 44 * counters, coping with counter wrap-around and resets and keeping use counts. 45 * It relies on the driver to generate vertical blanking interrupts and 46 * optionally provide a hardware vertical blanking counter. 47 * 48 * Drivers must initialize the vertical blanking handling core with a call to 49 * drm_vblank_init(). Minimally, a driver needs to implement 50 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call 51 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank 52 * support. 53 * 54 * Vertical blanking interrupts can be enabled by the DRM core or by drivers 55 * themselves (for instance to handle page flipping operations). The DRM core 56 * maintains a vertical blanking use count to ensure that the interrupts are not 57 * disabled while a user still needs them. To increment the use count, drivers 58 * call drm_crtc_vblank_get() and release the vblank reference again with 59 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are 60 * guaranteed to be enabled. 61 * 62 * On many hardware disabling the vblank interrupt cannot be done in a race-free 63 * manner, see &drm_driver.vblank_disable_immediate and 64 * &drm_driver.max_vblank_count. In that case the vblank core only disables the 65 * vblanks after a timer has expired, which can be configured through the 66 * ``vblankoffdelay`` module parameter. 67 */ 68 69 /* Retry timestamp calculation up to 3 times to satisfy 70 * drm_timestamp_precision before giving up. 71 */ 72 #define DRM_TIMESTAMP_MAXRETRIES 3 73 74 /* Threshold in nanoseconds for detection of redundant 75 * vblank irq in drm_handle_vblank(). 1 msec should be ok. 76 */ 77 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 78 79 static bool 80 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 81 ktime_t *tvblank, bool in_vblank_irq); 82 83 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */ 84 85 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */ 86 87 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600); 88 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600); 89 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)"); 90 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]"); 91 92 static void store_vblank(struct drm_device *dev, unsigned int pipe, 93 u32 vblank_count_inc, 94 ktime_t t_vblank, u32 last) 95 { 96 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 97 98 assert_spin_locked(&dev->vblank_time_lock); 99 100 vblank->last = last; 101 102 write_seqlock(&vblank->seqlock); 103 vblank->time = t_vblank; 104 vblank->count += vblank_count_inc; 105 write_sequnlock(&vblank->seqlock); 106 } 107 108 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe) 109 { 110 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 111 112 return vblank->max_vblank_count ?: dev->max_vblank_count; 113 } 114 115 /* 116 * "No hw counter" fallback implementation of .get_vblank_counter() hook, 117 * if there is no useable hardware frame counter available. 118 */ 119 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe) 120 { 121 WARN_ON_ONCE(drm_max_vblank_count(dev, pipe) != 0); 122 return 0; 123 } 124 125 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe) 126 { 127 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 128 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 129 130 if (WARN_ON(!crtc)) 131 return 0; 132 133 if (crtc->funcs->get_vblank_counter) 134 return crtc->funcs->get_vblank_counter(crtc); 135 } 136 137 if (dev->driver->get_vblank_counter) 138 return dev->driver->get_vblank_counter(dev, pipe); 139 140 return drm_vblank_no_hw_counter(dev, pipe); 141 } 142 143 /* 144 * Reset the stored timestamp for the current vblank count to correspond 145 * to the last vblank occurred. 146 * 147 * Only to be called from drm_crtc_vblank_on(). 148 * 149 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 150 * device vblank fields. 151 */ 152 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe) 153 { 154 u32 cur_vblank; 155 bool rc; 156 ktime_t t_vblank; 157 int count = DRM_TIMESTAMP_MAXRETRIES; 158 159 spin_lock(&dev->vblank_time_lock); 160 161 /* 162 * sample the current counter to avoid random jumps 163 * when drm_vblank_enable() applies the diff 164 */ 165 do { 166 cur_vblank = __get_vblank_counter(dev, pipe); 167 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 168 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 169 170 /* 171 * Only reinitialize corresponding vblank timestamp if high-precision query 172 * available and didn't fail. Otherwise reinitialize delayed at next vblank 173 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid. 174 */ 175 if (!rc) 176 t_vblank = 0; 177 178 /* 179 * +1 to make sure user will never see the same 180 * vblank counter value before and after a modeset 181 */ 182 store_vblank(dev, pipe, 1, t_vblank, cur_vblank); 183 184 spin_unlock(&dev->vblank_time_lock); 185 } 186 187 /* 188 * Call back into the driver to update the appropriate vblank counter 189 * (specified by @pipe). Deal with wraparound, if it occurred, and 190 * update the last read value so we can deal with wraparound on the next 191 * call if necessary. 192 * 193 * Only necessary when going from off->on, to account for frames we 194 * didn't get an interrupt for. 195 * 196 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 197 * device vblank fields. 198 */ 199 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe, 200 bool in_vblank_irq) 201 { 202 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 203 u32 cur_vblank, diff; 204 bool rc; 205 ktime_t t_vblank; 206 int count = DRM_TIMESTAMP_MAXRETRIES; 207 int framedur_ns = vblank->framedur_ns; 208 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 209 210 /* 211 * Interrupts were disabled prior to this call, so deal with counter 212 * wrap if needed. 213 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events 214 * here if the register is small or we had vblank interrupts off for 215 * a long time. 216 * 217 * We repeat the hardware vblank counter & timestamp query until 218 * we get consistent results. This to prevent races between gpu 219 * updating its hardware counter while we are retrieving the 220 * corresponding vblank timestamp. 221 */ 222 do { 223 cur_vblank = __get_vblank_counter(dev, pipe); 224 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq); 225 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 226 227 if (max_vblank_count) { 228 /* trust the hw counter when it's around */ 229 diff = (cur_vblank - vblank->last) & max_vblank_count; 230 } else if (rc && framedur_ns) { 231 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 232 233 /* 234 * Figure out how many vblanks we've missed based 235 * on the difference in the timestamps and the 236 * frame/field duration. 237 */ 238 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 239 240 if (diff == 0 && in_vblank_irq) 241 DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored." 242 " diff_ns = %lld, framedur_ns = %d)\n", 243 pipe, (long long) diff_ns, framedur_ns); 244 } else { 245 /* some kind of default for drivers w/o accurate vbl timestamping */ 246 diff = in_vblank_irq ? 1 : 0; 247 } 248 249 /* 250 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset 251 * interval? If so then vblank irqs keep running and it will likely 252 * happen that the hardware vblank counter is not trustworthy as it 253 * might reset at some point in that interval and vblank timestamps 254 * are not trustworthy either in that interval. Iow. this can result 255 * in a bogus diff >> 1 which must be avoided as it would cause 256 * random large forward jumps of the software vblank counter. 257 */ 258 if (diff > 1 && (vblank->inmodeset & 0x2)) { 259 DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u" 260 " due to pre-modeset.\n", pipe, diff); 261 diff = 1; 262 } 263 264 DRM_DEBUG_VBL("updating vblank count on crtc %u:" 265 " current=%llu, diff=%u, hw=%u hw_last=%u\n", 266 pipe, vblank->count, diff, cur_vblank, vblank->last); 267 268 if (diff == 0) { 269 WARN_ON_ONCE(cur_vblank != vblank->last); 270 return; 271 } 272 273 /* 274 * Only reinitialize corresponding vblank timestamp if high-precision query 275 * available and didn't fail, or we were called from the vblank interrupt. 276 * Otherwise reinitialize delayed at next vblank interrupt and assign 0 277 * for now, to mark the vblanktimestamp as invalid. 278 */ 279 if (!rc && !in_vblank_irq) 280 t_vblank = 0; 281 282 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 283 } 284 285 static u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe) 286 { 287 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 288 289 if (WARN_ON(pipe >= dev->num_crtcs)) 290 return 0; 291 292 return vblank->count; 293 } 294 295 /** 296 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter 297 * @crtc: which counter to retrieve 298 * 299 * This function is similar to drm_crtc_vblank_count() but this function 300 * interpolates to handle a race with vblank interrupts using the high precision 301 * timestamping support. 302 * 303 * This is mostly useful for hardware that can obtain the scanout position, but 304 * doesn't have a hardware frame counter. 305 */ 306 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc) 307 { 308 struct drm_device *dev = crtc->dev; 309 unsigned int pipe = drm_crtc_index(crtc); 310 u64 vblank; 311 unsigned long flags; 312 313 WARN_ONCE(drm_debug & DRM_UT_VBL && !dev->driver->get_vblank_timestamp, 314 "This function requires support for accurate vblank timestamps."); 315 316 spin_lock_irqsave(&dev->vblank_time_lock, flags); 317 318 drm_update_vblank_count(dev, pipe, false); 319 vblank = drm_vblank_count(dev, pipe); 320 321 spin_unlock_irqrestore(&dev->vblank_time_lock, flags); 322 323 return vblank; 324 } 325 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count); 326 327 static void __disable_vblank(struct drm_device *dev, unsigned int pipe) 328 { 329 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 330 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 331 332 if (WARN_ON(!crtc)) 333 return; 334 335 if (crtc->funcs->disable_vblank) { 336 crtc->funcs->disable_vblank(crtc); 337 return; 338 } 339 } 340 341 dev->driver->disable_vblank(dev, pipe); 342 } 343 344 /* 345 * Disable vblank irq's on crtc, make sure that last vblank count 346 * of hardware and corresponding consistent software vblank counter 347 * are preserved, even if there are any spurious vblank irq's after 348 * disable. 349 */ 350 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe) 351 { 352 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 353 unsigned long irqflags; 354 355 assert_spin_locked(&dev->vbl_lock); 356 357 /* Prevent vblank irq processing while disabling vblank irqs, 358 * so no updates of timestamps or count can happen after we've 359 * disabled. Needed to prevent races in case of delayed irq's. 360 */ 361 spin_lock_irqsave(&dev->vblank_time_lock, irqflags); 362 363 /* 364 * Update vblank count and disable vblank interrupts only if the 365 * interrupts were enabled. This avoids calling the ->disable_vblank() 366 * operation in atomic context with the hardware potentially runtime 367 * suspended. 368 */ 369 if (!vblank->enabled) 370 goto out; 371 372 /* 373 * Update the count and timestamp to maintain the 374 * appearance that the counter has been ticking all along until 375 * this time. This makes the count account for the entire time 376 * between drm_crtc_vblank_on() and drm_crtc_vblank_off(). 377 */ 378 drm_update_vblank_count(dev, pipe, false); 379 __disable_vblank(dev, pipe); 380 vblank->enabled = false; 381 382 out: 383 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 384 } 385 386 static void vblank_disable_fn(struct timer_list *t) 387 { 388 struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer); 389 struct drm_device *dev = vblank->dev; 390 unsigned int pipe = vblank->pipe; 391 unsigned long irqflags; 392 393 spin_lock_irqsave(&dev->vbl_lock, irqflags); 394 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) { 395 DRM_DEBUG("disabling vblank on crtc %u\n", pipe); 396 drm_vblank_disable_and_save(dev, pipe); 397 } 398 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 399 } 400 401 void drm_vblank_cleanup(struct drm_device *dev) 402 { 403 unsigned int pipe; 404 405 /* Bail if the driver didn't call drm_vblank_init() */ 406 if (dev->num_crtcs == 0) 407 return; 408 409 for (pipe = 0; pipe < dev->num_crtcs; pipe++) { 410 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 411 412 WARN_ON(READ_ONCE(vblank->enabled) && 413 drm_core_check_feature(dev, DRIVER_MODESET)); 414 415 del_timer_sync(&vblank->disable_timer); 416 } 417 418 kfree(dev->vblank); 419 420 dev->num_crtcs = 0; 421 } 422 423 /** 424 * drm_vblank_init - initialize vblank support 425 * @dev: DRM device 426 * @num_crtcs: number of CRTCs supported by @dev 427 * 428 * This function initializes vblank support for @num_crtcs display pipelines. 429 * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for 430 * drivers with a &drm_driver.release callback. 431 * 432 * Returns: 433 * Zero on success or a negative error code on failure. 434 */ 435 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs) 436 { 437 int ret = -ENOMEM; 438 unsigned int i; 439 440 spin_lock_init(&dev->vbl_lock); 441 spin_lock_init(&dev->vblank_time_lock); 442 443 dev->num_crtcs = num_crtcs; 444 445 dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL); 446 if (!dev->vblank) 447 goto err; 448 449 for (i = 0; i < num_crtcs; i++) { 450 struct drm_vblank_crtc *vblank = &dev->vblank[i]; 451 452 vblank->dev = dev; 453 vblank->pipe = i; 454 init_waitqueue_head(&vblank->queue); 455 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0); 456 seqlock_init(&vblank->seqlock); 457 } 458 459 DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n"); 460 461 /* Driver specific high-precision vblank timestamping supported? */ 462 if (dev->driver->get_vblank_timestamp) 463 DRM_INFO("Driver supports precise vblank timestamp query.\n"); 464 else 465 DRM_INFO("No driver support for vblank timestamp query.\n"); 466 467 /* Must have precise timestamping for reliable vblank instant disable */ 468 if (dev->vblank_disable_immediate && !dev->driver->get_vblank_timestamp) { 469 dev->vblank_disable_immediate = false; 470 DRM_INFO("Setting vblank_disable_immediate to false because " 471 "get_vblank_timestamp == NULL\n"); 472 } 473 474 return 0; 475 476 err: 477 dev->num_crtcs = 0; 478 return ret; 479 } 480 EXPORT_SYMBOL(drm_vblank_init); 481 482 /** 483 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC 484 * @crtc: which CRTC's vblank waitqueue to retrieve 485 * 486 * This function returns a pointer to the vblank waitqueue for the CRTC. 487 * Drivers can use this to implement vblank waits using wait_event() and related 488 * functions. 489 */ 490 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc) 491 { 492 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue; 493 } 494 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue); 495 496 497 /** 498 * drm_calc_timestamping_constants - calculate vblank timestamp constants 499 * @crtc: drm_crtc whose timestamp constants should be updated. 500 * @mode: display mode containing the scanout timings 501 * 502 * Calculate and store various constants which are later needed by vblank and 503 * swap-completion timestamping, e.g, by 504 * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true 505 * scanout timing, so they take things like panel scaling or other adjustments 506 * into account. 507 */ 508 void drm_calc_timestamping_constants(struct drm_crtc *crtc, 509 const struct drm_display_mode *mode) 510 { 511 struct drm_device *dev = crtc->dev; 512 unsigned int pipe = drm_crtc_index(crtc); 513 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 514 int linedur_ns = 0, framedur_ns = 0; 515 int dotclock = mode->crtc_clock; 516 517 if (!dev->num_crtcs) 518 return; 519 520 if (WARN_ON(pipe >= dev->num_crtcs)) 521 return; 522 523 /* Valid dotclock? */ 524 if (dotclock > 0) { 525 int frame_size = mode->crtc_htotal * mode->crtc_vtotal; 526 527 /* 528 * Convert scanline length in pixels and video 529 * dot clock to line duration and frame duration 530 * in nanoseconds: 531 */ 532 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock); 533 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock); 534 535 /* 536 * Fields of interlaced scanout modes are only half a frame duration. 537 */ 538 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 539 framedur_ns /= 2; 540 } else 541 DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n", 542 crtc->base.id); 543 544 vblank->linedur_ns = linedur_ns; 545 vblank->framedur_ns = framedur_ns; 546 vblank->hwmode = *mode; 547 548 DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n", 549 crtc->base.id, mode->crtc_htotal, 550 mode->crtc_vtotal, mode->crtc_vdisplay); 551 DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n", 552 crtc->base.id, dotclock, framedur_ns, linedur_ns); 553 } 554 EXPORT_SYMBOL(drm_calc_timestamping_constants); 555 556 /** 557 * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper 558 * @dev: DRM device 559 * @pipe: index of CRTC whose vblank timestamp to retrieve 560 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 561 * On return contains true maximum error of timestamp 562 * @vblank_time: Pointer to time which should receive the timestamp 563 * @in_vblank_irq: 564 * True when called from drm_crtc_handle_vblank(). Some drivers 565 * need to apply some workarounds for gpu-specific vblank irq quirks 566 * if flag is set. 567 * 568 * Implements calculation of exact vblank timestamps from given drm_display_mode 569 * timings and current video scanout position of a CRTC. This can be directly 570 * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver 571 * if &drm_driver.get_scanout_position is implemented. 572 * 573 * The current implementation only handles standard video modes. For double scan 574 * and interlaced modes the driver is supposed to adjust the hardware mode 575 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 576 * match the scanout position reported. 577 * 578 * Note that atomic drivers must call drm_calc_timestamping_constants() before 579 * enabling a CRTC. The atomic helpers already take care of that in 580 * drm_atomic_helper_update_legacy_modeset_state(). 581 * 582 * Returns: 583 * 584 * Returns true on success, and false on failure, i.e. when no accurate 585 * timestamp could be acquired. 586 */ 587 bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev, 588 unsigned int pipe, 589 int *max_error, 590 ktime_t *vblank_time, 591 bool in_vblank_irq) 592 { 593 struct timespec64 ts_etime, ts_vblank_time; 594 ktime_t stime, etime; 595 bool vbl_status; 596 struct drm_crtc *crtc; 597 const struct drm_display_mode *mode; 598 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 599 int vpos, hpos, i; 600 int delta_ns, duration_ns; 601 602 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 603 return false; 604 605 crtc = drm_crtc_from_index(dev, pipe); 606 607 if (pipe >= dev->num_crtcs || !crtc) { 608 DRM_ERROR("Invalid crtc %u\n", pipe); 609 return false; 610 } 611 612 /* Scanout position query not supported? Should not happen. */ 613 if (!dev->driver->get_scanout_position) { 614 DRM_ERROR("Called from driver w/o get_scanout_position()!?\n"); 615 return false; 616 } 617 618 if (drm_drv_uses_atomic_modeset(dev)) 619 mode = &vblank->hwmode; 620 else 621 mode = &crtc->hwmode; 622 623 /* If mode timing undefined, just return as no-op: 624 * Happens during initial modesetting of a crtc. 625 */ 626 if (mode->crtc_clock == 0) { 627 DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe); 628 WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev)); 629 630 return false; 631 } 632 633 /* Get current scanout position with system timestamp. 634 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times 635 * if single query takes longer than max_error nanoseconds. 636 * 637 * This guarantees a tight bound on maximum error if 638 * code gets preempted or delayed for some reason. 639 */ 640 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { 641 /* 642 * Get vertical and horizontal scanout position vpos, hpos, 643 * and bounding timestamps stime, etime, pre/post query. 644 */ 645 vbl_status = dev->driver->get_scanout_position(dev, pipe, 646 in_vblank_irq, 647 &vpos, &hpos, 648 &stime, &etime, 649 mode); 650 651 /* Return as no-op if scanout query unsupported or failed. */ 652 if (!vbl_status) { 653 DRM_DEBUG("crtc %u : scanoutpos query failed.\n", 654 pipe); 655 return false; 656 } 657 658 /* Compute uncertainty in timestamp of scanout position query. */ 659 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime); 660 661 /* Accept result with < max_error nsecs timing uncertainty. */ 662 if (duration_ns <= *max_error) 663 break; 664 } 665 666 /* Noisy system timing? */ 667 if (i == DRM_TIMESTAMP_MAXRETRIES) { 668 DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n", 669 pipe, duration_ns/1000, *max_error/1000, i); 670 } 671 672 /* Return upper bound of timestamp precision error. */ 673 *max_error = duration_ns; 674 675 /* Convert scanout position into elapsed time at raw_time query 676 * since start of scanout at first display scanline. delta_ns 677 * can be negative if start of scanout hasn't happened yet. 678 */ 679 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos), 680 mode->crtc_clock); 681 682 /* Subtract time delta from raw timestamp to get final 683 * vblank_time timestamp for end of vblank. 684 */ 685 *vblank_time = ktime_sub_ns(etime, delta_ns); 686 687 if ((drm_debug & DRM_UT_VBL) == 0) 688 return true; 689 690 ts_etime = ktime_to_timespec64(etime); 691 ts_vblank_time = ktime_to_timespec64(*vblank_time); 692 693 DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n", 694 pipe, hpos, vpos, 695 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000, 696 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000, 697 duration_ns / 1000, i); 698 699 return true; 700 } 701 EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos); 702 703 /** 704 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent 705 * vblank interval 706 * @dev: DRM device 707 * @pipe: index of CRTC whose vblank timestamp to retrieve 708 * @tvblank: Pointer to target time which should receive the timestamp 709 * @in_vblank_irq: 710 * True when called from drm_crtc_handle_vblank(). Some drivers 711 * need to apply some workarounds for gpu-specific vblank irq quirks 712 * if flag is set. 713 * 714 * Fetches the system timestamp corresponding to the time of the most recent 715 * vblank interval on specified CRTC. May call into kms-driver to 716 * compute the timestamp with a high-precision GPU specific method. 717 * 718 * Returns zero if timestamp originates from uncorrected do_gettimeofday() 719 * call, i.e., it isn't very precisely locked to the true vblank. 720 * 721 * Returns: 722 * True if timestamp is considered to be very precise, false otherwise. 723 */ 724 static bool 725 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 726 ktime_t *tvblank, bool in_vblank_irq) 727 { 728 bool ret = false; 729 730 /* Define requested maximum error on timestamps (nanoseconds). */ 731 int max_error = (int) drm_timestamp_precision * 1000; 732 733 /* Query driver if possible and precision timestamping enabled. */ 734 if (dev->driver->get_vblank_timestamp && (max_error > 0)) 735 ret = dev->driver->get_vblank_timestamp(dev, pipe, &max_error, 736 tvblank, in_vblank_irq); 737 738 /* GPU high precision timestamp query unsupported or failed. 739 * Return current monotonic/gettimeofday timestamp as best estimate. 740 */ 741 if (!ret) 742 *tvblank = ktime_get(); 743 744 return ret; 745 } 746 747 /** 748 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value 749 * @crtc: which counter to retrieve 750 * 751 * Fetches the "cooked" vblank count value that represents the number of 752 * vblank events since the system was booted, including lost events due to 753 * modesetting activity. Note that this timer isn't correct against a racing 754 * vblank interrupt (since it only reports the software vblank counter), see 755 * drm_crtc_accurate_vblank_count() for such use-cases. 756 * 757 * Returns: 758 * The software vblank counter. 759 */ 760 u64 drm_crtc_vblank_count(struct drm_crtc *crtc) 761 { 762 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc)); 763 } 764 EXPORT_SYMBOL(drm_crtc_vblank_count); 765 766 /** 767 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the 768 * system timestamp corresponding to that vblank counter value. 769 * @dev: DRM device 770 * @pipe: index of CRTC whose counter to retrieve 771 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp. 772 * 773 * Fetches the "cooked" vblank count value that represents the number of 774 * vblank events since the system was booted, including lost events due to 775 * modesetting activity. Returns corresponding system timestamp of the time 776 * of the vblank interval that corresponds to the current vblank counter value. 777 * 778 * This is the legacy version of drm_crtc_vblank_count_and_time(). 779 */ 780 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe, 781 ktime_t *vblanktime) 782 { 783 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 784 u64 vblank_count; 785 unsigned int seq; 786 787 if (WARN_ON(pipe >= dev->num_crtcs)) { 788 *vblanktime = 0; 789 return 0; 790 } 791 792 do { 793 seq = read_seqbegin(&vblank->seqlock); 794 vblank_count = vblank->count; 795 *vblanktime = vblank->time; 796 } while (read_seqretry(&vblank->seqlock, seq)); 797 798 return vblank_count; 799 } 800 801 /** 802 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value 803 * and the system timestamp corresponding to that vblank counter value 804 * @crtc: which counter to retrieve 805 * @vblanktime: Pointer to time to receive the vblank timestamp. 806 * 807 * Fetches the "cooked" vblank count value that represents the number of 808 * vblank events since the system was booted, including lost events due to 809 * modesetting activity. Returns corresponding system timestamp of the time 810 * of the vblank interval that corresponds to the current vblank counter value. 811 */ 812 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc, 813 ktime_t *vblanktime) 814 { 815 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc), 816 vblanktime); 817 } 818 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time); 819 820 static void send_vblank_event(struct drm_device *dev, 821 struct drm_pending_vblank_event *e, 822 u64 seq, ktime_t now) 823 { 824 struct timespec64 tv; 825 826 switch (e->event.base.type) { 827 case DRM_EVENT_VBLANK: 828 case DRM_EVENT_FLIP_COMPLETE: 829 tv = ktime_to_timespec64(now); 830 e->event.vbl.sequence = seq; 831 /* 832 * e->event is a user space structure, with hardcoded unsigned 833 * 32-bit seconds/microseconds. This is safe as we always use 834 * monotonic timestamps since linux-4.15 835 */ 836 e->event.vbl.tv_sec = tv.tv_sec; 837 e->event.vbl.tv_usec = tv.tv_nsec / 1000; 838 break; 839 case DRM_EVENT_CRTC_SEQUENCE: 840 if (seq) 841 e->event.seq.sequence = seq; 842 e->event.seq.time_ns = ktime_to_ns(now); 843 break; 844 } 845 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq); 846 drm_send_event_locked(dev, &e->base); 847 } 848 849 /** 850 * drm_crtc_arm_vblank_event - arm vblank event after pageflip 851 * @crtc: the source CRTC of the vblank event 852 * @e: the event to send 853 * 854 * A lot of drivers need to generate vblank events for the very next vblank 855 * interrupt. For example when the page flip interrupt happens when the page 856 * flip gets armed, but not when it actually executes within the next vblank 857 * period. This helper function implements exactly the required vblank arming 858 * behaviour. 859 * 860 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an 861 * atomic commit must ensure that the next vblank happens at exactly the same 862 * time as the atomic commit is committed to the hardware. This function itself 863 * does **not** protect against the next vblank interrupt racing with either this 864 * function call or the atomic commit operation. A possible sequence could be: 865 * 866 * 1. Driver commits new hardware state into vblank-synchronized registers. 867 * 2. A vblank happens, committing the hardware state. Also the corresponding 868 * vblank interrupt is fired off and fully processed by the interrupt 869 * handler. 870 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event(). 871 * 4. The event is only send out for the next vblank, which is wrong. 872 * 873 * An equivalent race can happen when the driver calls 874 * drm_crtc_arm_vblank_event() before writing out the new hardware state. 875 * 876 * The only way to make this work safely is to prevent the vblank from firing 877 * (and the hardware from committing anything else) until the entire atomic 878 * commit sequence has run to completion. If the hardware does not have such a 879 * feature (e.g. using a "go" bit), then it is unsafe to use this functions. 880 * Instead drivers need to manually send out the event from their interrupt 881 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no 882 * possible race with the hardware committing the atomic update. 883 * 884 * Caller must hold a vblank reference for the event @e acquired by a 885 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives. 886 */ 887 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc, 888 struct drm_pending_vblank_event *e) 889 { 890 struct drm_device *dev = crtc->dev; 891 unsigned int pipe = drm_crtc_index(crtc); 892 893 assert_spin_locked(&dev->event_lock); 894 895 e->pipe = pipe; 896 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1; 897 list_add_tail(&e->base.link, &dev->vblank_event_list); 898 } 899 EXPORT_SYMBOL(drm_crtc_arm_vblank_event); 900 901 /** 902 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip 903 * @crtc: the source CRTC of the vblank event 904 * @e: the event to send 905 * 906 * Updates sequence # and timestamp on event for the most recently processed 907 * vblank, and sends it to userspace. Caller must hold event lock. 908 * 909 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain 910 * situation, especially to send out events for atomic commit operations. 911 */ 912 void drm_crtc_send_vblank_event(struct drm_crtc *crtc, 913 struct drm_pending_vblank_event *e) 914 { 915 struct drm_device *dev = crtc->dev; 916 u64 seq; 917 unsigned int pipe = drm_crtc_index(crtc); 918 ktime_t now; 919 920 if (dev->num_crtcs > 0) { 921 seq = drm_vblank_count_and_time(dev, pipe, &now); 922 } else { 923 seq = 0; 924 925 now = ktime_get(); 926 } 927 e->pipe = pipe; 928 send_vblank_event(dev, e, seq, now); 929 } 930 EXPORT_SYMBOL(drm_crtc_send_vblank_event); 931 932 static int __enable_vblank(struct drm_device *dev, unsigned int pipe) 933 { 934 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 935 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 936 937 if (WARN_ON(!crtc)) 938 return 0; 939 940 if (crtc->funcs->enable_vblank) 941 return crtc->funcs->enable_vblank(crtc); 942 } 943 944 return dev->driver->enable_vblank(dev, pipe); 945 } 946 947 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe) 948 { 949 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 950 int ret = 0; 951 952 assert_spin_locked(&dev->vbl_lock); 953 954 spin_lock(&dev->vblank_time_lock); 955 956 if (!vblank->enabled) { 957 /* 958 * Enable vblank irqs under vblank_time_lock protection. 959 * All vblank count & timestamp updates are held off 960 * until we are done reinitializing master counter and 961 * timestamps. Filtercode in drm_handle_vblank() will 962 * prevent double-accounting of same vblank interval. 963 */ 964 ret = __enable_vblank(dev, pipe); 965 DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret); 966 if (ret) { 967 atomic_dec(&vblank->refcount); 968 } else { 969 drm_update_vblank_count(dev, pipe, 0); 970 /* drm_update_vblank_count() includes a wmb so we just 971 * need to ensure that the compiler emits the write 972 * to mark the vblank as enabled after the call 973 * to drm_update_vblank_count(). 974 */ 975 WRITE_ONCE(vblank->enabled, true); 976 } 977 } 978 979 spin_unlock(&dev->vblank_time_lock); 980 981 return ret; 982 } 983 984 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe) 985 { 986 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 987 unsigned long irqflags; 988 int ret = 0; 989 990 if (!dev->num_crtcs) 991 return -EINVAL; 992 993 if (WARN_ON(pipe >= dev->num_crtcs)) 994 return -EINVAL; 995 996 spin_lock_irqsave(&dev->vbl_lock, irqflags); 997 /* Going from 0->1 means we have to enable interrupts again */ 998 if (atomic_add_return(1, &vblank->refcount) == 1) { 999 ret = drm_vblank_enable(dev, pipe); 1000 } else { 1001 if (!vblank->enabled) { 1002 atomic_dec(&vblank->refcount); 1003 ret = -EINVAL; 1004 } 1005 } 1006 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1007 1008 return ret; 1009 } 1010 1011 /** 1012 * drm_crtc_vblank_get - get a reference count on vblank events 1013 * @crtc: which CRTC to own 1014 * 1015 * Acquire a reference count on vblank events to avoid having them disabled 1016 * while in use. 1017 * 1018 * Returns: 1019 * Zero on success or a negative error code on failure. 1020 */ 1021 int drm_crtc_vblank_get(struct drm_crtc *crtc) 1022 { 1023 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc)); 1024 } 1025 EXPORT_SYMBOL(drm_crtc_vblank_get); 1026 1027 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe) 1028 { 1029 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1030 1031 if (WARN_ON(pipe >= dev->num_crtcs)) 1032 return; 1033 1034 if (WARN_ON(atomic_read(&vblank->refcount) == 0)) 1035 return; 1036 1037 /* Last user schedules interrupt disable */ 1038 if (atomic_dec_and_test(&vblank->refcount)) { 1039 if (drm_vblank_offdelay == 0) 1040 return; 1041 else if (drm_vblank_offdelay < 0) 1042 vblank_disable_fn(&vblank->disable_timer); 1043 else if (!dev->vblank_disable_immediate) 1044 mod_timer(&vblank->disable_timer, 1045 jiffies + ((drm_vblank_offdelay * HZ)/1000)); 1046 } 1047 } 1048 1049 /** 1050 * drm_crtc_vblank_put - give up ownership of vblank events 1051 * @crtc: which counter to give up 1052 * 1053 * Release ownership of a given vblank counter, turning off interrupts 1054 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds. 1055 */ 1056 void drm_crtc_vblank_put(struct drm_crtc *crtc) 1057 { 1058 drm_vblank_put(crtc->dev, drm_crtc_index(crtc)); 1059 } 1060 EXPORT_SYMBOL(drm_crtc_vblank_put); 1061 1062 /** 1063 * drm_wait_one_vblank - wait for one vblank 1064 * @dev: DRM device 1065 * @pipe: CRTC index 1066 * 1067 * This waits for one vblank to pass on @pipe, using the irq driver interfaces. 1068 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g. 1069 * due to lack of driver support or because the crtc is off. 1070 * 1071 * This is the legacy version of drm_crtc_wait_one_vblank(). 1072 */ 1073 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe) 1074 { 1075 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1076 int ret; 1077 u64 last; 1078 1079 if (WARN_ON(pipe >= dev->num_crtcs)) 1080 return; 1081 1082 ret = drm_vblank_get(dev, pipe); 1083 if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret)) 1084 return; 1085 1086 last = drm_vblank_count(dev, pipe); 1087 1088 ret = wait_event_timeout(vblank->queue, 1089 last != drm_vblank_count(dev, pipe), 1090 msecs_to_jiffies(100)); 1091 1092 WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe); 1093 1094 drm_vblank_put(dev, pipe); 1095 } 1096 EXPORT_SYMBOL(drm_wait_one_vblank); 1097 1098 /** 1099 * drm_crtc_wait_one_vblank - wait for one vblank 1100 * @crtc: DRM crtc 1101 * 1102 * This waits for one vblank to pass on @crtc, using the irq driver interfaces. 1103 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g. 1104 * due to lack of driver support or because the crtc is off. 1105 */ 1106 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc) 1107 { 1108 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc)); 1109 } 1110 EXPORT_SYMBOL(drm_crtc_wait_one_vblank); 1111 1112 /** 1113 * drm_crtc_vblank_off - disable vblank events on a CRTC 1114 * @crtc: CRTC in question 1115 * 1116 * Drivers can use this function to shut down the vblank interrupt handling when 1117 * disabling a crtc. This function ensures that the latest vblank frame count is 1118 * stored so that drm_vblank_on can restore it again. 1119 * 1120 * Drivers must use this function when the hardware vblank counter can get 1121 * reset, e.g. when suspending or disabling the @crtc in general. 1122 */ 1123 void drm_crtc_vblank_off(struct drm_crtc *crtc) 1124 { 1125 struct drm_device *dev = crtc->dev; 1126 unsigned int pipe = drm_crtc_index(crtc); 1127 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1128 struct drm_pending_vblank_event *e, *t; 1129 1130 ktime_t now; 1131 unsigned long irqflags; 1132 u64 seq; 1133 1134 if (WARN_ON(pipe >= dev->num_crtcs)) 1135 return; 1136 1137 spin_lock_irqsave(&dev->event_lock, irqflags); 1138 1139 spin_lock(&dev->vbl_lock); 1140 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n", 1141 pipe, vblank->enabled, vblank->inmodeset); 1142 1143 /* Avoid redundant vblank disables without previous 1144 * drm_crtc_vblank_on(). */ 1145 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset) 1146 drm_vblank_disable_and_save(dev, pipe); 1147 1148 wake_up(&vblank->queue); 1149 1150 /* 1151 * Prevent subsequent drm_vblank_get() from re-enabling 1152 * the vblank interrupt by bumping the refcount. 1153 */ 1154 if (!vblank->inmodeset) { 1155 atomic_inc(&vblank->refcount); 1156 vblank->inmodeset = 1; 1157 } 1158 spin_unlock(&dev->vbl_lock); 1159 1160 /* Send any queued vblank events, lest the natives grow disquiet */ 1161 seq = drm_vblank_count_and_time(dev, pipe, &now); 1162 1163 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1164 if (e->pipe != pipe) 1165 continue; 1166 DRM_DEBUG("Sending premature vblank event on disable: " 1167 "wanted %llu, current %llu\n", 1168 e->sequence, seq); 1169 list_del(&e->base.link); 1170 drm_vblank_put(dev, pipe); 1171 send_vblank_event(dev, e, seq, now); 1172 } 1173 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1174 1175 /* Will be reset by the modeset helpers when re-enabling the crtc by 1176 * calling drm_calc_timestamping_constants(). */ 1177 vblank->hwmode.crtc_clock = 0; 1178 } 1179 EXPORT_SYMBOL(drm_crtc_vblank_off); 1180 1181 /** 1182 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC 1183 * @crtc: CRTC in question 1184 * 1185 * Drivers can use this function to reset the vblank state to off at load time. 1186 * Drivers should use this together with the drm_crtc_vblank_off() and 1187 * drm_crtc_vblank_on() functions. The difference compared to 1188 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter 1189 * and hence doesn't need to call any driver hooks. 1190 * 1191 * This is useful for recovering driver state e.g. on driver load, or on resume. 1192 */ 1193 void drm_crtc_vblank_reset(struct drm_crtc *crtc) 1194 { 1195 struct drm_device *dev = crtc->dev; 1196 unsigned long irqflags; 1197 unsigned int pipe = drm_crtc_index(crtc); 1198 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1199 1200 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1201 /* 1202 * Prevent subsequent drm_vblank_get() from enabling the vblank 1203 * interrupt by bumping the refcount. 1204 */ 1205 if (!vblank->inmodeset) { 1206 atomic_inc(&vblank->refcount); 1207 vblank->inmodeset = 1; 1208 } 1209 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1210 1211 WARN_ON(!list_empty(&dev->vblank_event_list)); 1212 } 1213 EXPORT_SYMBOL(drm_crtc_vblank_reset); 1214 1215 /** 1216 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value 1217 * @crtc: CRTC in question 1218 * @max_vblank_count: max hardware vblank counter value 1219 * 1220 * Update the maximum hardware vblank counter value for @crtc 1221 * at runtime. Useful for hardware where the operation of the 1222 * hardware vblank counter depends on the currently active 1223 * display configuration. 1224 * 1225 * For example, if the hardware vblank counter does not work 1226 * when a specific connector is active the maximum can be set 1227 * to zero. And when that specific connector isn't active the 1228 * maximum can again be set to the appropriate non-zero value. 1229 * 1230 * If used, must be called before drm_vblank_on(). 1231 */ 1232 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc, 1233 u32 max_vblank_count) 1234 { 1235 struct drm_device *dev = crtc->dev; 1236 unsigned int pipe = drm_crtc_index(crtc); 1237 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1238 1239 WARN_ON(dev->max_vblank_count); 1240 WARN_ON(!READ_ONCE(vblank->inmodeset)); 1241 1242 vblank->max_vblank_count = max_vblank_count; 1243 } 1244 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count); 1245 1246 /** 1247 * drm_crtc_vblank_on - enable vblank events on a CRTC 1248 * @crtc: CRTC in question 1249 * 1250 * This functions restores the vblank interrupt state captured with 1251 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note 1252 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be 1253 * unbalanced and so can also be unconditionally called in driver load code to 1254 * reflect the current hardware state of the crtc. 1255 */ 1256 void drm_crtc_vblank_on(struct drm_crtc *crtc) 1257 { 1258 struct drm_device *dev = crtc->dev; 1259 unsigned int pipe = drm_crtc_index(crtc); 1260 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1261 unsigned long irqflags; 1262 1263 if (WARN_ON(pipe >= dev->num_crtcs)) 1264 return; 1265 1266 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1267 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n", 1268 pipe, vblank->enabled, vblank->inmodeset); 1269 1270 /* Drop our private "prevent drm_vblank_get" refcount */ 1271 if (vblank->inmodeset) { 1272 atomic_dec(&vblank->refcount); 1273 vblank->inmodeset = 0; 1274 } 1275 1276 drm_reset_vblank_timestamp(dev, pipe); 1277 1278 /* 1279 * re-enable interrupts if there are users left, or the 1280 * user wishes vblank interrupts to be enabled all the time. 1281 */ 1282 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0) 1283 WARN_ON(drm_vblank_enable(dev, pipe)); 1284 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1285 } 1286 EXPORT_SYMBOL(drm_crtc_vblank_on); 1287 1288 /** 1289 * drm_vblank_restore - estimate missed vblanks and update vblank count. 1290 * @dev: DRM device 1291 * @pipe: CRTC index 1292 * 1293 * Power manamement features can cause frame counter resets between vblank 1294 * disable and enable. Drivers can use this function in their 1295 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1296 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1297 * vblank counter. 1298 * 1299 * This function is the legacy version of drm_crtc_vblank_restore(). 1300 */ 1301 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe) 1302 { 1303 ktime_t t_vblank; 1304 struct drm_vblank_crtc *vblank; 1305 int framedur_ns; 1306 u64 diff_ns; 1307 u32 cur_vblank, diff = 1; 1308 int count = DRM_TIMESTAMP_MAXRETRIES; 1309 1310 if (WARN_ON(pipe >= dev->num_crtcs)) 1311 return; 1312 1313 assert_spin_locked(&dev->vbl_lock); 1314 assert_spin_locked(&dev->vblank_time_lock); 1315 1316 vblank = &dev->vblank[pipe]; 1317 WARN_ONCE((drm_debug & DRM_UT_VBL) && !vblank->framedur_ns, 1318 "Cannot compute missed vblanks without frame duration\n"); 1319 framedur_ns = vblank->framedur_ns; 1320 1321 do { 1322 cur_vblank = __get_vblank_counter(dev, pipe); 1323 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 1324 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 1325 1326 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 1327 if (framedur_ns) 1328 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 1329 1330 1331 DRM_DEBUG_VBL("missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n", 1332 diff, diff_ns, framedur_ns, cur_vblank - vblank->last); 1333 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 1334 } 1335 EXPORT_SYMBOL(drm_vblank_restore); 1336 1337 /** 1338 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count. 1339 * @crtc: CRTC in question 1340 * 1341 * Power manamement features can cause frame counter resets between vblank 1342 * disable and enable. Drivers can use this function in their 1343 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1344 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1345 * vblank counter. 1346 */ 1347 void drm_crtc_vblank_restore(struct drm_crtc *crtc) 1348 { 1349 drm_vblank_restore(crtc->dev, drm_crtc_index(crtc)); 1350 } 1351 EXPORT_SYMBOL(drm_crtc_vblank_restore); 1352 1353 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev, 1354 unsigned int pipe) 1355 { 1356 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1357 1358 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1359 if (!dev->num_crtcs) 1360 return; 1361 1362 if (WARN_ON(pipe >= dev->num_crtcs)) 1363 return; 1364 1365 /* 1366 * To avoid all the problems that might happen if interrupts 1367 * were enabled/disabled around or between these calls, we just 1368 * have the kernel take a reference on the CRTC (just once though 1369 * to avoid corrupting the count if multiple, mismatch calls occur), 1370 * so that interrupts remain enabled in the interim. 1371 */ 1372 if (!vblank->inmodeset) { 1373 vblank->inmodeset = 0x1; 1374 if (drm_vblank_get(dev, pipe) == 0) 1375 vblank->inmodeset |= 0x2; 1376 } 1377 } 1378 1379 static void drm_legacy_vblank_post_modeset(struct drm_device *dev, 1380 unsigned int pipe) 1381 { 1382 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1383 unsigned long irqflags; 1384 1385 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1386 if (!dev->num_crtcs) 1387 return; 1388 1389 if (WARN_ON(pipe >= dev->num_crtcs)) 1390 return; 1391 1392 if (vblank->inmodeset) { 1393 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1394 drm_reset_vblank_timestamp(dev, pipe); 1395 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1396 1397 if (vblank->inmodeset & 0x2) 1398 drm_vblank_put(dev, pipe); 1399 1400 vblank->inmodeset = 0; 1401 } 1402 } 1403 1404 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data, 1405 struct drm_file *file_priv) 1406 { 1407 struct drm_modeset_ctl *modeset = data; 1408 unsigned int pipe; 1409 1410 /* If drm_vblank_init() hasn't been called yet, just no-op */ 1411 if (!dev->num_crtcs) 1412 return 0; 1413 1414 /* KMS drivers handle this internally */ 1415 if (!drm_core_check_feature(dev, DRIVER_LEGACY)) 1416 return 0; 1417 1418 pipe = modeset->crtc; 1419 if (pipe >= dev->num_crtcs) 1420 return -EINVAL; 1421 1422 switch (modeset->cmd) { 1423 case _DRM_PRE_MODESET: 1424 drm_legacy_vblank_pre_modeset(dev, pipe); 1425 break; 1426 case _DRM_POST_MODESET: 1427 drm_legacy_vblank_post_modeset(dev, pipe); 1428 break; 1429 default: 1430 return -EINVAL; 1431 } 1432 1433 return 0; 1434 } 1435 1436 static inline bool vblank_passed(u64 seq, u64 ref) 1437 { 1438 return (seq - ref) <= (1 << 23); 1439 } 1440 1441 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe, 1442 u64 req_seq, 1443 union drm_wait_vblank *vblwait, 1444 struct drm_file *file_priv) 1445 { 1446 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1447 struct drm_pending_vblank_event *e; 1448 ktime_t now; 1449 unsigned long flags; 1450 u64 seq; 1451 int ret; 1452 1453 e = kzalloc(sizeof(*e), GFP_KERNEL); 1454 if (e == NULL) { 1455 ret = -ENOMEM; 1456 goto err_put; 1457 } 1458 1459 e->pipe = pipe; 1460 e->event.base.type = DRM_EVENT_VBLANK; 1461 e->event.base.length = sizeof(e->event.vbl); 1462 e->event.vbl.user_data = vblwait->request.signal; 1463 e->event.vbl.crtc_id = 0; 1464 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1465 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1466 if (crtc) 1467 e->event.vbl.crtc_id = crtc->base.id; 1468 } 1469 1470 spin_lock_irqsave(&dev->event_lock, flags); 1471 1472 /* 1473 * drm_crtc_vblank_off() might have been called after we called 1474 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1475 * vblank disable, so no need for further locking. The reference from 1476 * drm_vblank_get() protects against vblank disable from another source. 1477 */ 1478 if (!READ_ONCE(vblank->enabled)) { 1479 ret = -EINVAL; 1480 goto err_unlock; 1481 } 1482 1483 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1484 &e->event.base); 1485 1486 if (ret) 1487 goto err_unlock; 1488 1489 seq = drm_vblank_count_and_time(dev, pipe, &now); 1490 1491 DRM_DEBUG("event on vblank count %llu, current %llu, crtc %u\n", 1492 req_seq, seq, pipe); 1493 1494 trace_drm_vblank_event_queued(file_priv, pipe, req_seq); 1495 1496 e->sequence = req_seq; 1497 if (vblank_passed(seq, req_seq)) { 1498 drm_vblank_put(dev, pipe); 1499 send_vblank_event(dev, e, seq, now); 1500 vblwait->reply.sequence = seq; 1501 } else { 1502 /* drm_handle_vblank_events will call drm_vblank_put */ 1503 list_add_tail(&e->base.link, &dev->vblank_event_list); 1504 vblwait->reply.sequence = req_seq; 1505 } 1506 1507 spin_unlock_irqrestore(&dev->event_lock, flags); 1508 1509 return 0; 1510 1511 err_unlock: 1512 spin_unlock_irqrestore(&dev->event_lock, flags); 1513 kfree(e); 1514 err_put: 1515 drm_vblank_put(dev, pipe); 1516 return ret; 1517 } 1518 1519 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait) 1520 { 1521 if (vblwait->request.sequence) 1522 return false; 1523 1524 return _DRM_VBLANK_RELATIVE == 1525 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK | 1526 _DRM_VBLANK_EVENT | 1527 _DRM_VBLANK_NEXTONMISS)); 1528 } 1529 1530 /* 1531 * Widen a 32-bit param to 64-bits. 1532 * 1533 * \param narrow 32-bit value (missing upper 32 bits) 1534 * \param near 64-bit value that should be 'close' to near 1535 * 1536 * This function returns a 64-bit value using the lower 32-bits from 1537 * 'narrow' and constructing the upper 32-bits so that the result is 1538 * as close as possible to 'near'. 1539 */ 1540 1541 static u64 widen_32_to_64(u32 narrow, u64 near) 1542 { 1543 return near + (s32) (narrow - near); 1544 } 1545 1546 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe, 1547 struct drm_wait_vblank_reply *reply) 1548 { 1549 ktime_t now; 1550 struct timespec64 ts; 1551 1552 /* 1553 * drm_wait_vblank_reply is a UAPI structure that uses 'long' 1554 * to store the seconds. This is safe as we always use monotonic 1555 * timestamps since linux-4.15. 1556 */ 1557 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1558 ts = ktime_to_timespec64(now); 1559 reply->tval_sec = (u32)ts.tv_sec; 1560 reply->tval_usec = ts.tv_nsec / 1000; 1561 } 1562 1563 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data, 1564 struct drm_file *file_priv) 1565 { 1566 struct drm_crtc *crtc; 1567 struct drm_vblank_crtc *vblank; 1568 union drm_wait_vblank *vblwait = data; 1569 int ret; 1570 u64 req_seq, seq; 1571 unsigned int pipe_index; 1572 unsigned int flags, pipe, high_pipe; 1573 1574 if (!dev->irq_enabled) 1575 return -EINVAL; 1576 1577 if (vblwait->request.type & _DRM_VBLANK_SIGNAL) 1578 return -EINVAL; 1579 1580 if (vblwait->request.type & 1581 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1582 _DRM_VBLANK_HIGH_CRTC_MASK)) { 1583 DRM_DEBUG("Unsupported type value 0x%x, supported mask 0x%x\n", 1584 vblwait->request.type, 1585 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1586 _DRM_VBLANK_HIGH_CRTC_MASK)); 1587 return -EINVAL; 1588 } 1589 1590 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; 1591 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); 1592 if (high_pipe) 1593 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT; 1594 else 1595 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; 1596 1597 /* Convert lease-relative crtc index into global crtc index */ 1598 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1599 pipe = 0; 1600 drm_for_each_crtc(crtc, dev) { 1601 if (drm_lease_held(file_priv, crtc->base.id)) { 1602 if (pipe_index == 0) 1603 break; 1604 pipe_index--; 1605 } 1606 pipe++; 1607 } 1608 } else { 1609 pipe = pipe_index; 1610 } 1611 1612 if (pipe >= dev->num_crtcs) 1613 return -EINVAL; 1614 1615 vblank = &dev->vblank[pipe]; 1616 1617 /* If the counter is currently enabled and accurate, short-circuit 1618 * queries to return the cached timestamp of the last vblank. 1619 */ 1620 if (dev->vblank_disable_immediate && 1621 drm_wait_vblank_is_query(vblwait) && 1622 READ_ONCE(vblank->enabled)) { 1623 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1624 return 0; 1625 } 1626 1627 ret = drm_vblank_get(dev, pipe); 1628 if (ret) { 1629 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 1630 return ret; 1631 } 1632 seq = drm_vblank_count(dev, pipe); 1633 1634 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { 1635 case _DRM_VBLANK_RELATIVE: 1636 req_seq = seq + vblwait->request.sequence; 1637 vblwait->request.sequence = req_seq; 1638 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; 1639 break; 1640 case _DRM_VBLANK_ABSOLUTE: 1641 req_seq = widen_32_to_64(vblwait->request.sequence, seq); 1642 break; 1643 default: 1644 ret = -EINVAL; 1645 goto done; 1646 } 1647 1648 if ((flags & _DRM_VBLANK_NEXTONMISS) && 1649 vblank_passed(seq, req_seq)) { 1650 req_seq = seq + 1; 1651 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS; 1652 vblwait->request.sequence = req_seq; 1653 } 1654 1655 if (flags & _DRM_VBLANK_EVENT) { 1656 /* must hold on to the vblank ref until the event fires 1657 * drm_vblank_put will be called asynchronously 1658 */ 1659 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv); 1660 } 1661 1662 if (req_seq != seq) { 1663 DRM_DEBUG("waiting on vblank count %llu, crtc %u\n", 1664 req_seq, pipe); 1665 DRM_WAIT_ON(ret, vblank->queue, 3 * HZ, 1666 vblank_passed(drm_vblank_count(dev, pipe), 1667 req_seq) || 1668 !READ_ONCE(vblank->enabled)); 1669 } 1670 1671 if (ret != -EINTR) { 1672 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1673 1674 DRM_DEBUG("crtc %d returning %u to client\n", 1675 pipe, vblwait->reply.sequence); 1676 } else { 1677 DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe); 1678 } 1679 1680 done: 1681 drm_vblank_put(dev, pipe); 1682 return ret; 1683 } 1684 1685 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe) 1686 { 1687 struct drm_pending_vblank_event *e, *t; 1688 ktime_t now; 1689 u64 seq; 1690 1691 assert_spin_locked(&dev->event_lock); 1692 1693 seq = drm_vblank_count_and_time(dev, pipe, &now); 1694 1695 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1696 if (e->pipe != pipe) 1697 continue; 1698 if (!vblank_passed(seq, e->sequence)) 1699 continue; 1700 1701 DRM_DEBUG("vblank event on %llu, current %llu\n", 1702 e->sequence, seq); 1703 1704 list_del(&e->base.link); 1705 drm_vblank_put(dev, pipe); 1706 send_vblank_event(dev, e, seq, now); 1707 } 1708 1709 trace_drm_vblank_event(pipe, seq); 1710 } 1711 1712 /** 1713 * drm_handle_vblank - handle a vblank event 1714 * @dev: DRM device 1715 * @pipe: index of CRTC where this event occurred 1716 * 1717 * Drivers should call this routine in their vblank interrupt handlers to 1718 * update the vblank counter and send any signals that may be pending. 1719 * 1720 * This is the legacy version of drm_crtc_handle_vblank(). 1721 */ 1722 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe) 1723 { 1724 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1725 unsigned long irqflags; 1726 bool disable_irq; 1727 1728 if (WARN_ON_ONCE(!dev->num_crtcs)) 1729 return false; 1730 1731 if (WARN_ON(pipe >= dev->num_crtcs)) 1732 return false; 1733 1734 spin_lock_irqsave(&dev->event_lock, irqflags); 1735 1736 /* Need timestamp lock to prevent concurrent execution with 1737 * vblank enable/disable, as this would cause inconsistent 1738 * or corrupted timestamps and vblank counts. 1739 */ 1740 spin_lock(&dev->vblank_time_lock); 1741 1742 /* Vblank irq handling disabled. Nothing to do. */ 1743 if (!vblank->enabled) { 1744 spin_unlock(&dev->vblank_time_lock); 1745 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1746 return false; 1747 } 1748 1749 drm_update_vblank_count(dev, pipe, true); 1750 1751 spin_unlock(&dev->vblank_time_lock); 1752 1753 wake_up(&vblank->queue); 1754 1755 /* With instant-off, we defer disabling the interrupt until after 1756 * we finish processing the following vblank after all events have 1757 * been signaled. The disable has to be last (after 1758 * drm_handle_vblank_events) so that the timestamp is always accurate. 1759 */ 1760 disable_irq = (dev->vblank_disable_immediate && 1761 drm_vblank_offdelay > 0 && 1762 !atomic_read(&vblank->refcount)); 1763 1764 drm_handle_vblank_events(dev, pipe); 1765 1766 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1767 1768 if (disable_irq) 1769 vblank_disable_fn(&vblank->disable_timer); 1770 1771 return true; 1772 } 1773 EXPORT_SYMBOL(drm_handle_vblank); 1774 1775 /** 1776 * drm_crtc_handle_vblank - handle a vblank event 1777 * @crtc: where this event occurred 1778 * 1779 * Drivers should call this routine in their vblank interrupt handlers to 1780 * update the vblank counter and send any signals that may be pending. 1781 * 1782 * This is the native KMS version of drm_handle_vblank(). 1783 * 1784 * Returns: 1785 * True if the event was successfully handled, false on failure. 1786 */ 1787 bool drm_crtc_handle_vblank(struct drm_crtc *crtc) 1788 { 1789 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc)); 1790 } 1791 EXPORT_SYMBOL(drm_crtc_handle_vblank); 1792 1793 /* 1794 * Get crtc VBLANK count. 1795 * 1796 * \param dev DRM device 1797 * \param data user arguement, pointing to a drm_crtc_get_sequence structure. 1798 * \param file_priv drm file private for the user's open file descriptor 1799 */ 1800 1801 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data, 1802 struct drm_file *file_priv) 1803 { 1804 struct drm_crtc *crtc; 1805 struct drm_vblank_crtc *vblank; 1806 int pipe; 1807 struct drm_crtc_get_sequence *get_seq = data; 1808 ktime_t now; 1809 bool vblank_enabled; 1810 int ret; 1811 1812 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 1813 return -EOPNOTSUPP; 1814 1815 if (!dev->irq_enabled) 1816 return -EINVAL; 1817 1818 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id); 1819 if (!crtc) 1820 return -ENOENT; 1821 1822 pipe = drm_crtc_index(crtc); 1823 1824 vblank = &dev->vblank[pipe]; 1825 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled); 1826 1827 if (!vblank_enabled) { 1828 ret = drm_crtc_vblank_get(crtc); 1829 if (ret) { 1830 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 1831 return ret; 1832 } 1833 } 1834 drm_modeset_lock(&crtc->mutex, NULL); 1835 if (crtc->state) 1836 get_seq->active = crtc->state->enable; 1837 else 1838 get_seq->active = crtc->enabled; 1839 drm_modeset_unlock(&crtc->mutex); 1840 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1841 get_seq->sequence_ns = ktime_to_ns(now); 1842 if (!vblank_enabled) 1843 drm_crtc_vblank_put(crtc); 1844 return 0; 1845 } 1846 1847 /* 1848 * Queue a event for VBLANK sequence 1849 * 1850 * \param dev DRM device 1851 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure. 1852 * \param file_priv drm file private for the user's open file descriptor 1853 */ 1854 1855 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data, 1856 struct drm_file *file_priv) 1857 { 1858 struct drm_crtc *crtc; 1859 struct drm_vblank_crtc *vblank; 1860 int pipe; 1861 struct drm_crtc_queue_sequence *queue_seq = data; 1862 ktime_t now; 1863 struct drm_pending_vblank_event *e; 1864 u32 flags; 1865 u64 seq; 1866 u64 req_seq; 1867 int ret; 1868 unsigned long spin_flags; 1869 1870 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 1871 return -EOPNOTSUPP; 1872 1873 if (!dev->irq_enabled) 1874 return -EINVAL; 1875 1876 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id); 1877 if (!crtc) 1878 return -ENOENT; 1879 1880 flags = queue_seq->flags; 1881 /* Check valid flag bits */ 1882 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE| 1883 DRM_CRTC_SEQUENCE_NEXT_ON_MISS)) 1884 return -EINVAL; 1885 1886 pipe = drm_crtc_index(crtc); 1887 1888 vblank = &dev->vblank[pipe]; 1889 1890 e = kzalloc(sizeof(*e), GFP_KERNEL); 1891 if (e == NULL) 1892 return -ENOMEM; 1893 1894 ret = drm_crtc_vblank_get(crtc); 1895 if (ret) { 1896 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 1897 goto err_free; 1898 } 1899 1900 seq = drm_vblank_count_and_time(dev, pipe, &now); 1901 req_seq = queue_seq->sequence; 1902 1903 if (flags & DRM_CRTC_SEQUENCE_RELATIVE) 1904 req_seq += seq; 1905 1906 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq)) 1907 req_seq = seq + 1; 1908 1909 e->pipe = pipe; 1910 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE; 1911 e->event.base.length = sizeof(e->event.seq); 1912 e->event.seq.user_data = queue_seq->user_data; 1913 1914 spin_lock_irqsave(&dev->event_lock, spin_flags); 1915 1916 /* 1917 * drm_crtc_vblank_off() might have been called after we called 1918 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1919 * vblank disable, so no need for further locking. The reference from 1920 * drm_crtc_vblank_get() protects against vblank disable from another source. 1921 */ 1922 if (!READ_ONCE(vblank->enabled)) { 1923 ret = -EINVAL; 1924 goto err_unlock; 1925 } 1926 1927 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1928 &e->event.base); 1929 1930 if (ret) 1931 goto err_unlock; 1932 1933 e->sequence = req_seq; 1934 1935 if (vblank_passed(seq, req_seq)) { 1936 drm_crtc_vblank_put(crtc); 1937 send_vblank_event(dev, e, seq, now); 1938 queue_seq->sequence = seq; 1939 } else { 1940 /* drm_handle_vblank_events will call drm_vblank_put */ 1941 list_add_tail(&e->base.link, &dev->vblank_event_list); 1942 queue_seq->sequence = req_seq; 1943 } 1944 1945 spin_unlock_irqrestore(&dev->event_lock, spin_flags); 1946 return 0; 1947 1948 err_unlock: 1949 spin_unlock_irqrestore(&dev->event_lock, spin_flags); 1950 drm_crtc_vblank_put(crtc); 1951 err_free: 1952 kfree(e); 1953 return ret; 1954 } 1955