1 /* 2 * drm_irq.c IRQ and vblank support 3 * 4 * \author Rickard E. (Rik) Faith <faith@valinux.com> 5 * \author Gareth Hughes <gareth@valinux.com> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 24 * OTHER DEALINGS IN THE SOFTWARE. 25 */ 26 27 #include <drm/drm_vblank.h> 28 #include <drm/drmP.h> 29 #include <linux/export.h> 30 31 #include "drm_trace.h" 32 #include "drm_internal.h" 33 34 /** 35 * DOC: vblank handling 36 * 37 * Vertical blanking plays a major role in graphics rendering. To achieve 38 * tear-free display, users must synchronize page flips and/or rendering to 39 * vertical blanking. The DRM API offers ioctls to perform page flips 40 * synchronized to vertical blanking and wait for vertical blanking. 41 * 42 * The DRM core handles most of the vertical blanking management logic, which 43 * involves filtering out spurious interrupts, keeping race-free blanking 44 * counters, coping with counter wrap-around and resets and keeping use counts. 45 * It relies on the driver to generate vertical blanking interrupts and 46 * optionally provide a hardware vertical blanking counter. 47 * 48 * Drivers must initialize the vertical blanking handling core with a call to 49 * drm_vblank_init(). Minimally, a driver needs to implement 50 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call 51 * drm_crtc_handle_vblank() in it's vblank interrupt handler for working vblank 52 * support. 53 * 54 * Vertical blanking interrupts can be enabled by the DRM core or by drivers 55 * themselves (for instance to handle page flipping operations). The DRM core 56 * maintains a vertical blanking use count to ensure that the interrupts are not 57 * disabled while a user still needs them. To increment the use count, drivers 58 * call drm_crtc_vblank_get() and release the vblank reference again with 59 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are 60 * guaranteed to be enabled. 61 * 62 * On many hardware disabling the vblank interrupt cannot be done in a race-free 63 * manner, see &drm_driver.vblank_disable_immediate and 64 * &drm_driver.max_vblank_count. In that case the vblank core only disables the 65 * vblanks after a timer has expired, which can be configured through the 66 * ``vblankoffdelay`` module parameter. 67 */ 68 69 /* Retry timestamp calculation up to 3 times to satisfy 70 * drm_timestamp_precision before giving up. 71 */ 72 #define DRM_TIMESTAMP_MAXRETRIES 3 73 74 /* Threshold in nanoseconds for detection of redundant 75 * vblank irq in drm_handle_vblank(). 1 msec should be ok. 76 */ 77 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 78 79 static bool 80 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 81 ktime_t *tvblank, bool in_vblank_irq); 82 83 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */ 84 85 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */ 86 87 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600); 88 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600); 89 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)"); 90 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]"); 91 92 static void store_vblank(struct drm_device *dev, unsigned int pipe, 93 u32 vblank_count_inc, 94 ktime_t t_vblank, u32 last) 95 { 96 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 97 98 assert_spin_locked(&dev->vblank_time_lock); 99 100 vblank->last = last; 101 102 write_seqlock(&vblank->seqlock); 103 vblank->time = t_vblank; 104 vblank->count += vblank_count_inc; 105 write_sequnlock(&vblank->seqlock); 106 } 107 108 /* 109 * "No hw counter" fallback implementation of .get_vblank_counter() hook, 110 * if there is no useable hardware frame counter available. 111 */ 112 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe) 113 { 114 WARN_ON_ONCE(dev->max_vblank_count != 0); 115 return 0; 116 } 117 118 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe) 119 { 120 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 121 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 122 123 if (crtc->funcs->get_vblank_counter) 124 return crtc->funcs->get_vblank_counter(crtc); 125 } 126 127 if (dev->driver->get_vblank_counter) 128 return dev->driver->get_vblank_counter(dev, pipe); 129 130 return drm_vblank_no_hw_counter(dev, pipe); 131 } 132 133 /* 134 * Reset the stored timestamp for the current vblank count to correspond 135 * to the last vblank occurred. 136 * 137 * Only to be called from drm_crtc_vblank_on(). 138 * 139 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 140 * device vblank fields. 141 */ 142 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe) 143 { 144 u32 cur_vblank; 145 bool rc; 146 ktime_t t_vblank; 147 int count = DRM_TIMESTAMP_MAXRETRIES; 148 149 spin_lock(&dev->vblank_time_lock); 150 151 /* 152 * sample the current counter to avoid random jumps 153 * when drm_vblank_enable() applies the diff 154 */ 155 do { 156 cur_vblank = __get_vblank_counter(dev, pipe); 157 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 158 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 159 160 /* 161 * Only reinitialize corresponding vblank timestamp if high-precision query 162 * available and didn't fail. Otherwise reinitialize delayed at next vblank 163 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid. 164 */ 165 if (!rc) 166 t_vblank = 0; 167 168 /* 169 * +1 to make sure user will never see the same 170 * vblank counter value before and after a modeset 171 */ 172 store_vblank(dev, pipe, 1, t_vblank, cur_vblank); 173 174 spin_unlock(&dev->vblank_time_lock); 175 } 176 177 /* 178 * Call back into the driver to update the appropriate vblank counter 179 * (specified by @pipe). Deal with wraparound, if it occurred, and 180 * update the last read value so we can deal with wraparound on the next 181 * call if necessary. 182 * 183 * Only necessary when going from off->on, to account for frames we 184 * didn't get an interrupt for. 185 * 186 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 187 * device vblank fields. 188 */ 189 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe, 190 bool in_vblank_irq) 191 { 192 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 193 u32 cur_vblank, diff; 194 bool rc; 195 ktime_t t_vblank; 196 int count = DRM_TIMESTAMP_MAXRETRIES; 197 int framedur_ns = vblank->framedur_ns; 198 199 /* 200 * Interrupts were disabled prior to this call, so deal with counter 201 * wrap if needed. 202 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events 203 * here if the register is small or we had vblank interrupts off for 204 * a long time. 205 * 206 * We repeat the hardware vblank counter & timestamp query until 207 * we get consistent results. This to prevent races between gpu 208 * updating its hardware counter while we are retrieving the 209 * corresponding vblank timestamp. 210 */ 211 do { 212 cur_vblank = __get_vblank_counter(dev, pipe); 213 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq); 214 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 215 216 if (dev->max_vblank_count != 0) { 217 /* trust the hw counter when it's around */ 218 diff = (cur_vblank - vblank->last) & dev->max_vblank_count; 219 } else if (rc && framedur_ns) { 220 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 221 222 /* 223 * Figure out how many vblanks we've missed based 224 * on the difference in the timestamps and the 225 * frame/field duration. 226 */ 227 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 228 229 if (diff == 0 && in_vblank_irq) 230 DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored." 231 " diff_ns = %lld, framedur_ns = %d)\n", 232 pipe, (long long) diff_ns, framedur_ns); 233 } else { 234 /* some kind of default for drivers w/o accurate vbl timestamping */ 235 diff = in_vblank_irq ? 1 : 0; 236 } 237 238 /* 239 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset 240 * interval? If so then vblank irqs keep running and it will likely 241 * happen that the hardware vblank counter is not trustworthy as it 242 * might reset at some point in that interval and vblank timestamps 243 * are not trustworthy either in that interval. Iow. this can result 244 * in a bogus diff >> 1 which must be avoided as it would cause 245 * random large forward jumps of the software vblank counter. 246 */ 247 if (diff > 1 && (vblank->inmodeset & 0x2)) { 248 DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u" 249 " due to pre-modeset.\n", pipe, diff); 250 diff = 1; 251 } 252 253 DRM_DEBUG_VBL("updating vblank count on crtc %u:" 254 " current=%llu, diff=%u, hw=%u hw_last=%u\n", 255 pipe, vblank->count, diff, cur_vblank, vblank->last); 256 257 if (diff == 0) { 258 WARN_ON_ONCE(cur_vblank != vblank->last); 259 return; 260 } 261 262 /* 263 * Only reinitialize corresponding vblank timestamp if high-precision query 264 * available and didn't fail, or we were called from the vblank interrupt. 265 * Otherwise reinitialize delayed at next vblank interrupt and assign 0 266 * for now, to mark the vblanktimestamp as invalid. 267 */ 268 if (!rc && !in_vblank_irq) 269 t_vblank = 0; 270 271 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 272 } 273 274 static u32 drm_vblank_count(struct drm_device *dev, unsigned int pipe) 275 { 276 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 277 278 if (WARN_ON(pipe >= dev->num_crtcs)) 279 return 0; 280 281 return vblank->count; 282 } 283 284 /** 285 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter 286 * @crtc: which counter to retrieve 287 * 288 * This function is similar to drm_crtc_vblank_count() but this function 289 * interpolates to handle a race with vblank interrupts using the high precision 290 * timestamping support. 291 * 292 * This is mostly useful for hardware that can obtain the scanout position, but 293 * doesn't have a hardware frame counter. 294 */ 295 u32 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc) 296 { 297 struct drm_device *dev = crtc->dev; 298 unsigned int pipe = drm_crtc_index(crtc); 299 u32 vblank; 300 unsigned long flags; 301 302 WARN_ONCE(drm_debug & DRM_UT_VBL && !dev->driver->get_vblank_timestamp, 303 "This function requires support for accurate vblank timestamps."); 304 305 spin_lock_irqsave(&dev->vblank_time_lock, flags); 306 307 drm_update_vblank_count(dev, pipe, false); 308 vblank = drm_vblank_count(dev, pipe); 309 310 spin_unlock_irqrestore(&dev->vblank_time_lock, flags); 311 312 return vblank; 313 } 314 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count); 315 316 static void __disable_vblank(struct drm_device *dev, unsigned int pipe) 317 { 318 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 319 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 320 321 if (crtc->funcs->disable_vblank) { 322 crtc->funcs->disable_vblank(crtc); 323 return; 324 } 325 } 326 327 dev->driver->disable_vblank(dev, pipe); 328 } 329 330 /* 331 * Disable vblank irq's on crtc, make sure that last vblank count 332 * of hardware and corresponding consistent software vblank counter 333 * are preserved, even if there are any spurious vblank irq's after 334 * disable. 335 */ 336 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe) 337 { 338 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 339 unsigned long irqflags; 340 341 assert_spin_locked(&dev->vbl_lock); 342 343 /* Prevent vblank irq processing while disabling vblank irqs, 344 * so no updates of timestamps or count can happen after we've 345 * disabled. Needed to prevent races in case of delayed irq's. 346 */ 347 spin_lock_irqsave(&dev->vblank_time_lock, irqflags); 348 349 /* 350 * Only disable vblank interrupts if they're enabled. This avoids 351 * calling the ->disable_vblank() operation in atomic context with the 352 * hardware potentially runtime suspended. 353 */ 354 if (vblank->enabled) { 355 __disable_vblank(dev, pipe); 356 vblank->enabled = false; 357 } 358 359 /* 360 * Always update the count and timestamp to maintain the 361 * appearance that the counter has been ticking all along until 362 * this time. This makes the count account for the entire time 363 * between drm_crtc_vblank_on() and drm_crtc_vblank_off(). 364 */ 365 drm_update_vblank_count(dev, pipe, false); 366 367 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 368 } 369 370 static void vblank_disable_fn(struct timer_list *t) 371 { 372 struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer); 373 struct drm_device *dev = vblank->dev; 374 unsigned int pipe = vblank->pipe; 375 unsigned long irqflags; 376 377 spin_lock_irqsave(&dev->vbl_lock, irqflags); 378 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) { 379 DRM_DEBUG("disabling vblank on crtc %u\n", pipe); 380 drm_vblank_disable_and_save(dev, pipe); 381 } 382 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 383 } 384 385 void drm_vblank_cleanup(struct drm_device *dev) 386 { 387 unsigned int pipe; 388 389 /* Bail if the driver didn't call drm_vblank_init() */ 390 if (dev->num_crtcs == 0) 391 return; 392 393 for (pipe = 0; pipe < dev->num_crtcs; pipe++) { 394 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 395 396 WARN_ON(READ_ONCE(vblank->enabled) && 397 drm_core_check_feature(dev, DRIVER_MODESET)); 398 399 del_timer_sync(&vblank->disable_timer); 400 } 401 402 kfree(dev->vblank); 403 404 dev->num_crtcs = 0; 405 } 406 407 /** 408 * drm_vblank_init - initialize vblank support 409 * @dev: DRM device 410 * @num_crtcs: number of CRTCs supported by @dev 411 * 412 * This function initializes vblank support for @num_crtcs display pipelines. 413 * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for 414 * drivers with a &drm_driver.release callback. 415 * 416 * Returns: 417 * Zero on success or a negative error code on failure. 418 */ 419 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs) 420 { 421 int ret = -ENOMEM; 422 unsigned int i; 423 424 spin_lock_init(&dev->vbl_lock); 425 spin_lock_init(&dev->vblank_time_lock); 426 427 dev->num_crtcs = num_crtcs; 428 429 dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL); 430 if (!dev->vblank) 431 goto err; 432 433 for (i = 0; i < num_crtcs; i++) { 434 struct drm_vblank_crtc *vblank = &dev->vblank[i]; 435 436 vblank->dev = dev; 437 vblank->pipe = i; 438 init_waitqueue_head(&vblank->queue); 439 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0); 440 seqlock_init(&vblank->seqlock); 441 } 442 443 DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n"); 444 445 /* Driver specific high-precision vblank timestamping supported? */ 446 if (dev->driver->get_vblank_timestamp) 447 DRM_INFO("Driver supports precise vblank timestamp query.\n"); 448 else 449 DRM_INFO("No driver support for vblank timestamp query.\n"); 450 451 /* Must have precise timestamping for reliable vblank instant disable */ 452 if (dev->vblank_disable_immediate && !dev->driver->get_vblank_timestamp) { 453 dev->vblank_disable_immediate = false; 454 DRM_INFO("Setting vblank_disable_immediate to false because " 455 "get_vblank_timestamp == NULL\n"); 456 } 457 458 return 0; 459 460 err: 461 dev->num_crtcs = 0; 462 return ret; 463 } 464 EXPORT_SYMBOL(drm_vblank_init); 465 466 /** 467 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC 468 * @crtc: which CRTC's vblank waitqueue to retrieve 469 * 470 * This function returns a pointer to the vblank waitqueue for the CRTC. 471 * Drivers can use this to implement vblank waits using wait_event() and related 472 * functions. 473 */ 474 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc) 475 { 476 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue; 477 } 478 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue); 479 480 481 /** 482 * drm_calc_timestamping_constants - calculate vblank timestamp constants 483 * @crtc: drm_crtc whose timestamp constants should be updated. 484 * @mode: display mode containing the scanout timings 485 * 486 * Calculate and store various constants which are later needed by vblank and 487 * swap-completion timestamping, e.g, by 488 * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true 489 * scanout timing, so they take things like panel scaling or other adjustments 490 * into account. 491 */ 492 void drm_calc_timestamping_constants(struct drm_crtc *crtc, 493 const struct drm_display_mode *mode) 494 { 495 struct drm_device *dev = crtc->dev; 496 unsigned int pipe = drm_crtc_index(crtc); 497 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 498 int linedur_ns = 0, framedur_ns = 0; 499 int dotclock = mode->crtc_clock; 500 501 if (!dev->num_crtcs) 502 return; 503 504 if (WARN_ON(pipe >= dev->num_crtcs)) 505 return; 506 507 /* Valid dotclock? */ 508 if (dotclock > 0) { 509 int frame_size = mode->crtc_htotal * mode->crtc_vtotal; 510 511 /* 512 * Convert scanline length in pixels and video 513 * dot clock to line duration and frame duration 514 * in nanoseconds: 515 */ 516 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock); 517 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock); 518 519 /* 520 * Fields of interlaced scanout modes are only half a frame duration. 521 */ 522 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 523 framedur_ns /= 2; 524 } else 525 DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n", 526 crtc->base.id); 527 528 vblank->linedur_ns = linedur_ns; 529 vblank->framedur_ns = framedur_ns; 530 vblank->hwmode = *mode; 531 532 DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n", 533 crtc->base.id, mode->crtc_htotal, 534 mode->crtc_vtotal, mode->crtc_vdisplay); 535 DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n", 536 crtc->base.id, dotclock, framedur_ns, linedur_ns); 537 } 538 EXPORT_SYMBOL(drm_calc_timestamping_constants); 539 540 /** 541 * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper 542 * @dev: DRM device 543 * @pipe: index of CRTC whose vblank timestamp to retrieve 544 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 545 * On return contains true maximum error of timestamp 546 * @vblank_time: Pointer to time which should receive the timestamp 547 * @in_vblank_irq: 548 * True when called from drm_crtc_handle_vblank(). Some drivers 549 * need to apply some workarounds for gpu-specific vblank irq quirks 550 * if flag is set. 551 * 552 * Implements calculation of exact vblank timestamps from given drm_display_mode 553 * timings and current video scanout position of a CRTC. This can be directly 554 * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver 555 * if &drm_driver.get_scanout_position is implemented. 556 * 557 * The current implementation only handles standard video modes. For double scan 558 * and interlaced modes the driver is supposed to adjust the hardware mode 559 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 560 * match the scanout position reported. 561 * 562 * Note that atomic drivers must call drm_calc_timestamping_constants() before 563 * enabling a CRTC. The atomic helpers already take care of that in 564 * drm_atomic_helper_update_legacy_modeset_state(). 565 * 566 * Returns: 567 * 568 * Returns true on success, and false on failure, i.e. when no accurate 569 * timestamp could be acquired. 570 */ 571 bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev, 572 unsigned int pipe, 573 int *max_error, 574 ktime_t *vblank_time, 575 bool in_vblank_irq) 576 { 577 struct timespec64 ts_etime, ts_vblank_time; 578 ktime_t stime, etime; 579 bool vbl_status; 580 struct drm_crtc *crtc; 581 const struct drm_display_mode *mode; 582 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 583 int vpos, hpos, i; 584 int delta_ns, duration_ns; 585 586 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 587 return false; 588 589 crtc = drm_crtc_from_index(dev, pipe); 590 591 if (pipe >= dev->num_crtcs || !crtc) { 592 DRM_ERROR("Invalid crtc %u\n", pipe); 593 return false; 594 } 595 596 /* Scanout position query not supported? Should not happen. */ 597 if (!dev->driver->get_scanout_position) { 598 DRM_ERROR("Called from driver w/o get_scanout_position()!?\n"); 599 return false; 600 } 601 602 if (drm_drv_uses_atomic_modeset(dev)) 603 mode = &vblank->hwmode; 604 else 605 mode = &crtc->hwmode; 606 607 /* If mode timing undefined, just return as no-op: 608 * Happens during initial modesetting of a crtc. 609 */ 610 if (mode->crtc_clock == 0) { 611 DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe); 612 WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev)); 613 614 return false; 615 } 616 617 /* Get current scanout position with system timestamp. 618 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times 619 * if single query takes longer than max_error nanoseconds. 620 * 621 * This guarantees a tight bound on maximum error if 622 * code gets preempted or delayed for some reason. 623 */ 624 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { 625 /* 626 * Get vertical and horizontal scanout position vpos, hpos, 627 * and bounding timestamps stime, etime, pre/post query. 628 */ 629 vbl_status = dev->driver->get_scanout_position(dev, pipe, 630 in_vblank_irq, 631 &vpos, &hpos, 632 &stime, &etime, 633 mode); 634 635 /* Return as no-op if scanout query unsupported or failed. */ 636 if (!vbl_status) { 637 DRM_DEBUG("crtc %u : scanoutpos query failed.\n", 638 pipe); 639 return false; 640 } 641 642 /* Compute uncertainty in timestamp of scanout position query. */ 643 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime); 644 645 /* Accept result with < max_error nsecs timing uncertainty. */ 646 if (duration_ns <= *max_error) 647 break; 648 } 649 650 /* Noisy system timing? */ 651 if (i == DRM_TIMESTAMP_MAXRETRIES) { 652 DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n", 653 pipe, duration_ns/1000, *max_error/1000, i); 654 } 655 656 /* Return upper bound of timestamp precision error. */ 657 *max_error = duration_ns; 658 659 /* Convert scanout position into elapsed time at raw_time query 660 * since start of scanout at first display scanline. delta_ns 661 * can be negative if start of scanout hasn't happened yet. 662 */ 663 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos), 664 mode->crtc_clock); 665 666 /* Subtract time delta from raw timestamp to get final 667 * vblank_time timestamp for end of vblank. 668 */ 669 *vblank_time = ktime_sub_ns(etime, delta_ns); 670 671 if ((drm_debug & DRM_UT_VBL) == 0) 672 return true; 673 674 ts_etime = ktime_to_timespec64(etime); 675 ts_vblank_time = ktime_to_timespec64(*vblank_time); 676 677 DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n", 678 pipe, hpos, vpos, 679 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000, 680 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000, 681 duration_ns / 1000, i); 682 683 return true; 684 } 685 EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos); 686 687 /** 688 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent 689 * vblank interval 690 * @dev: DRM device 691 * @pipe: index of CRTC whose vblank timestamp to retrieve 692 * @tvblank: Pointer to target time which should receive the timestamp 693 * @in_vblank_irq: 694 * True when called from drm_crtc_handle_vblank(). Some drivers 695 * need to apply some workarounds for gpu-specific vblank irq quirks 696 * if flag is set. 697 * 698 * Fetches the system timestamp corresponding to the time of the most recent 699 * vblank interval on specified CRTC. May call into kms-driver to 700 * compute the timestamp with a high-precision GPU specific method. 701 * 702 * Returns zero if timestamp originates from uncorrected do_gettimeofday() 703 * call, i.e., it isn't very precisely locked to the true vblank. 704 * 705 * Returns: 706 * True if timestamp is considered to be very precise, false otherwise. 707 */ 708 static bool 709 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 710 ktime_t *tvblank, bool in_vblank_irq) 711 { 712 bool ret = false; 713 714 /* Define requested maximum error on timestamps (nanoseconds). */ 715 int max_error = (int) drm_timestamp_precision * 1000; 716 717 /* Query driver if possible and precision timestamping enabled. */ 718 if (dev->driver->get_vblank_timestamp && (max_error > 0)) 719 ret = dev->driver->get_vblank_timestamp(dev, pipe, &max_error, 720 tvblank, in_vblank_irq); 721 722 /* GPU high precision timestamp query unsupported or failed. 723 * Return current monotonic/gettimeofday timestamp as best estimate. 724 */ 725 if (!ret) 726 *tvblank = ktime_get(); 727 728 return ret; 729 } 730 731 /** 732 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value 733 * @crtc: which counter to retrieve 734 * 735 * Fetches the "cooked" vblank count value that represents the number of 736 * vblank events since the system was booted, including lost events due to 737 * modesetting activity. Note that this timer isn't correct against a racing 738 * vblank interrupt (since it only reports the software vblank counter), see 739 * drm_crtc_accurate_vblank_count() for such use-cases. 740 * 741 * Returns: 742 * The software vblank counter. 743 */ 744 u64 drm_crtc_vblank_count(struct drm_crtc *crtc) 745 { 746 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc)); 747 } 748 EXPORT_SYMBOL(drm_crtc_vblank_count); 749 750 /** 751 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the 752 * system timestamp corresponding to that vblank counter value. 753 * @dev: DRM device 754 * @pipe: index of CRTC whose counter to retrieve 755 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp. 756 * 757 * Fetches the "cooked" vblank count value that represents the number of 758 * vblank events since the system was booted, including lost events due to 759 * modesetting activity. Returns corresponding system timestamp of the time 760 * of the vblank interval that corresponds to the current vblank counter value. 761 * 762 * This is the legacy version of drm_crtc_vblank_count_and_time(). 763 */ 764 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe, 765 ktime_t *vblanktime) 766 { 767 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 768 u64 vblank_count; 769 unsigned int seq; 770 771 if (WARN_ON(pipe >= dev->num_crtcs)) { 772 *vblanktime = 0; 773 return 0; 774 } 775 776 do { 777 seq = read_seqbegin(&vblank->seqlock); 778 vblank_count = vblank->count; 779 *vblanktime = vblank->time; 780 } while (read_seqretry(&vblank->seqlock, seq)); 781 782 return vblank_count; 783 } 784 785 /** 786 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value 787 * and the system timestamp corresponding to that vblank counter value 788 * @crtc: which counter to retrieve 789 * @vblanktime: Pointer to time to receive the vblank timestamp. 790 * 791 * Fetches the "cooked" vblank count value that represents the number of 792 * vblank events since the system was booted, including lost events due to 793 * modesetting activity. Returns corresponding system timestamp of the time 794 * of the vblank interval that corresponds to the current vblank counter value. 795 */ 796 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc, 797 ktime_t *vblanktime) 798 { 799 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc), 800 vblanktime); 801 } 802 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time); 803 804 static void send_vblank_event(struct drm_device *dev, 805 struct drm_pending_vblank_event *e, 806 u64 seq, ktime_t now) 807 { 808 struct timespec64 tv; 809 810 switch (e->event.base.type) { 811 case DRM_EVENT_VBLANK: 812 case DRM_EVENT_FLIP_COMPLETE: 813 tv = ktime_to_timespec64(now); 814 e->event.vbl.sequence = seq; 815 /* 816 * e->event is a user space structure, with hardcoded unsigned 817 * 32-bit seconds/microseconds. This is safe as we always use 818 * monotonic timestamps since linux-4.15 819 */ 820 e->event.vbl.tv_sec = tv.tv_sec; 821 e->event.vbl.tv_usec = tv.tv_nsec / 1000; 822 break; 823 case DRM_EVENT_CRTC_SEQUENCE: 824 if (seq) 825 e->event.seq.sequence = seq; 826 e->event.seq.time_ns = ktime_to_ns(now); 827 break; 828 } 829 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq); 830 drm_send_event_locked(dev, &e->base); 831 } 832 833 /** 834 * drm_crtc_arm_vblank_event - arm vblank event after pageflip 835 * @crtc: the source CRTC of the vblank event 836 * @e: the event to send 837 * 838 * A lot of drivers need to generate vblank events for the very next vblank 839 * interrupt. For example when the page flip interrupt happens when the page 840 * flip gets armed, but not when it actually executes within the next vblank 841 * period. This helper function implements exactly the required vblank arming 842 * behaviour. 843 * 844 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an 845 * atomic commit must ensure that the next vblank happens at exactly the same 846 * time as the atomic commit is committed to the hardware. This function itself 847 * does **not** protect against the next vblank interrupt racing with either this 848 * function call or the atomic commit operation. A possible sequence could be: 849 * 850 * 1. Driver commits new hardware state into vblank-synchronized registers. 851 * 2. A vblank happens, committing the hardware state. Also the corresponding 852 * vblank interrupt is fired off and fully processed by the interrupt 853 * handler. 854 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event(). 855 * 4. The event is only send out for the next vblank, which is wrong. 856 * 857 * An equivalent race can happen when the driver calls 858 * drm_crtc_arm_vblank_event() before writing out the new hardware state. 859 * 860 * The only way to make this work safely is to prevent the vblank from firing 861 * (and the hardware from committing anything else) until the entire atomic 862 * commit sequence has run to completion. If the hardware does not have such a 863 * feature (e.g. using a "go" bit), then it is unsafe to use this functions. 864 * Instead drivers need to manually send out the event from their interrupt 865 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no 866 * possible race with the hardware committing the atomic update. 867 * 868 * Caller must hold a vblank reference for the event @e, which will be dropped 869 * when the next vblank arrives. 870 */ 871 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc, 872 struct drm_pending_vblank_event *e) 873 { 874 struct drm_device *dev = crtc->dev; 875 unsigned int pipe = drm_crtc_index(crtc); 876 877 assert_spin_locked(&dev->event_lock); 878 879 e->pipe = pipe; 880 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1; 881 list_add_tail(&e->base.link, &dev->vblank_event_list); 882 } 883 EXPORT_SYMBOL(drm_crtc_arm_vblank_event); 884 885 /** 886 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip 887 * @crtc: the source CRTC of the vblank event 888 * @e: the event to send 889 * 890 * Updates sequence # and timestamp on event for the most recently processed 891 * vblank, and sends it to userspace. Caller must hold event lock. 892 * 893 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain 894 * situation, especially to send out events for atomic commit operations. 895 */ 896 void drm_crtc_send_vblank_event(struct drm_crtc *crtc, 897 struct drm_pending_vblank_event *e) 898 { 899 struct drm_device *dev = crtc->dev; 900 u64 seq; 901 unsigned int pipe = drm_crtc_index(crtc); 902 ktime_t now; 903 904 if (dev->num_crtcs > 0) { 905 seq = drm_vblank_count_and_time(dev, pipe, &now); 906 } else { 907 seq = 0; 908 909 now = ktime_get(); 910 } 911 e->pipe = pipe; 912 send_vblank_event(dev, e, seq, now); 913 } 914 EXPORT_SYMBOL(drm_crtc_send_vblank_event); 915 916 static int __enable_vblank(struct drm_device *dev, unsigned int pipe) 917 { 918 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 919 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 920 921 if (crtc->funcs->enable_vblank) 922 return crtc->funcs->enable_vblank(crtc); 923 } 924 925 return dev->driver->enable_vblank(dev, pipe); 926 } 927 928 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe) 929 { 930 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 931 int ret = 0; 932 933 assert_spin_locked(&dev->vbl_lock); 934 935 spin_lock(&dev->vblank_time_lock); 936 937 if (!vblank->enabled) { 938 /* 939 * Enable vblank irqs under vblank_time_lock protection. 940 * All vblank count & timestamp updates are held off 941 * until we are done reinitializing master counter and 942 * timestamps. Filtercode in drm_handle_vblank() will 943 * prevent double-accounting of same vblank interval. 944 */ 945 ret = __enable_vblank(dev, pipe); 946 DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret); 947 if (ret) { 948 atomic_dec(&vblank->refcount); 949 } else { 950 drm_update_vblank_count(dev, pipe, 0); 951 /* drm_update_vblank_count() includes a wmb so we just 952 * need to ensure that the compiler emits the write 953 * to mark the vblank as enabled after the call 954 * to drm_update_vblank_count(). 955 */ 956 WRITE_ONCE(vblank->enabled, true); 957 } 958 } 959 960 spin_unlock(&dev->vblank_time_lock); 961 962 return ret; 963 } 964 965 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe) 966 { 967 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 968 unsigned long irqflags; 969 int ret = 0; 970 971 if (!dev->num_crtcs) 972 return -EINVAL; 973 974 if (WARN_ON(pipe >= dev->num_crtcs)) 975 return -EINVAL; 976 977 spin_lock_irqsave(&dev->vbl_lock, irqflags); 978 /* Going from 0->1 means we have to enable interrupts again */ 979 if (atomic_add_return(1, &vblank->refcount) == 1) { 980 ret = drm_vblank_enable(dev, pipe); 981 } else { 982 if (!vblank->enabled) { 983 atomic_dec(&vblank->refcount); 984 ret = -EINVAL; 985 } 986 } 987 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 988 989 return ret; 990 } 991 992 /** 993 * drm_crtc_vblank_get - get a reference count on vblank events 994 * @crtc: which CRTC to own 995 * 996 * Acquire a reference count on vblank events to avoid having them disabled 997 * while in use. 998 * 999 * Returns: 1000 * Zero on success or a negative error code on failure. 1001 */ 1002 int drm_crtc_vblank_get(struct drm_crtc *crtc) 1003 { 1004 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc)); 1005 } 1006 EXPORT_SYMBOL(drm_crtc_vblank_get); 1007 1008 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe) 1009 { 1010 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1011 1012 if (WARN_ON(pipe >= dev->num_crtcs)) 1013 return; 1014 1015 if (WARN_ON(atomic_read(&vblank->refcount) == 0)) 1016 return; 1017 1018 /* Last user schedules interrupt disable */ 1019 if (atomic_dec_and_test(&vblank->refcount)) { 1020 if (drm_vblank_offdelay == 0) 1021 return; 1022 else if (drm_vblank_offdelay < 0) 1023 vblank_disable_fn(&vblank->disable_timer); 1024 else if (!dev->vblank_disable_immediate) 1025 mod_timer(&vblank->disable_timer, 1026 jiffies + ((drm_vblank_offdelay * HZ)/1000)); 1027 } 1028 } 1029 1030 /** 1031 * drm_crtc_vblank_put - give up ownership of vblank events 1032 * @crtc: which counter to give up 1033 * 1034 * Release ownership of a given vblank counter, turning off interrupts 1035 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds. 1036 */ 1037 void drm_crtc_vblank_put(struct drm_crtc *crtc) 1038 { 1039 drm_vblank_put(crtc->dev, drm_crtc_index(crtc)); 1040 } 1041 EXPORT_SYMBOL(drm_crtc_vblank_put); 1042 1043 /** 1044 * drm_wait_one_vblank - wait for one vblank 1045 * @dev: DRM device 1046 * @pipe: CRTC index 1047 * 1048 * This waits for one vblank to pass on @pipe, using the irq driver interfaces. 1049 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g. 1050 * due to lack of driver support or because the crtc is off. 1051 * 1052 * This is the legacy version of drm_crtc_wait_one_vblank(). 1053 */ 1054 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe) 1055 { 1056 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1057 int ret; 1058 u32 last; 1059 1060 if (WARN_ON(pipe >= dev->num_crtcs)) 1061 return; 1062 1063 ret = drm_vblank_get(dev, pipe); 1064 if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret)) 1065 return; 1066 1067 last = drm_vblank_count(dev, pipe); 1068 1069 ret = wait_event_timeout(vblank->queue, 1070 last != drm_vblank_count(dev, pipe), 1071 msecs_to_jiffies(100)); 1072 1073 WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe); 1074 1075 drm_vblank_put(dev, pipe); 1076 } 1077 EXPORT_SYMBOL(drm_wait_one_vblank); 1078 1079 /** 1080 * drm_crtc_wait_one_vblank - wait for one vblank 1081 * @crtc: DRM crtc 1082 * 1083 * This waits for one vblank to pass on @crtc, using the irq driver interfaces. 1084 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g. 1085 * due to lack of driver support or because the crtc is off. 1086 */ 1087 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc) 1088 { 1089 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc)); 1090 } 1091 EXPORT_SYMBOL(drm_crtc_wait_one_vblank); 1092 1093 /** 1094 * drm_crtc_vblank_off - disable vblank events on a CRTC 1095 * @crtc: CRTC in question 1096 * 1097 * Drivers can use this function to shut down the vblank interrupt handling when 1098 * disabling a crtc. This function ensures that the latest vblank frame count is 1099 * stored so that drm_vblank_on can restore it again. 1100 * 1101 * Drivers must use this function when the hardware vblank counter can get 1102 * reset, e.g. when suspending or disabling the @crtc in general. 1103 */ 1104 void drm_crtc_vblank_off(struct drm_crtc *crtc) 1105 { 1106 struct drm_device *dev = crtc->dev; 1107 unsigned int pipe = drm_crtc_index(crtc); 1108 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1109 struct drm_pending_vblank_event *e, *t; 1110 1111 ktime_t now; 1112 unsigned long irqflags; 1113 u64 seq; 1114 1115 if (WARN_ON(pipe >= dev->num_crtcs)) 1116 return; 1117 1118 spin_lock_irqsave(&dev->event_lock, irqflags); 1119 1120 spin_lock(&dev->vbl_lock); 1121 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n", 1122 pipe, vblank->enabled, vblank->inmodeset); 1123 1124 /* Avoid redundant vblank disables without previous 1125 * drm_crtc_vblank_on(). */ 1126 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset) 1127 drm_vblank_disable_and_save(dev, pipe); 1128 1129 wake_up(&vblank->queue); 1130 1131 /* 1132 * Prevent subsequent drm_vblank_get() from re-enabling 1133 * the vblank interrupt by bumping the refcount. 1134 */ 1135 if (!vblank->inmodeset) { 1136 atomic_inc(&vblank->refcount); 1137 vblank->inmodeset = 1; 1138 } 1139 spin_unlock(&dev->vbl_lock); 1140 1141 /* Send any queued vblank events, lest the natives grow disquiet */ 1142 seq = drm_vblank_count_and_time(dev, pipe, &now); 1143 1144 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1145 if (e->pipe != pipe) 1146 continue; 1147 DRM_DEBUG("Sending premature vblank event on disable: " 1148 "wanted %llu, current %llu\n", 1149 e->sequence, seq); 1150 list_del(&e->base.link); 1151 drm_vblank_put(dev, pipe); 1152 send_vblank_event(dev, e, seq, now); 1153 } 1154 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1155 1156 /* Will be reset by the modeset helpers when re-enabling the crtc by 1157 * calling drm_calc_timestamping_constants(). */ 1158 vblank->hwmode.crtc_clock = 0; 1159 } 1160 EXPORT_SYMBOL(drm_crtc_vblank_off); 1161 1162 /** 1163 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC 1164 * @crtc: CRTC in question 1165 * 1166 * Drivers can use this function to reset the vblank state to off at load time. 1167 * Drivers should use this together with the drm_crtc_vblank_off() and 1168 * drm_crtc_vblank_on() functions. The difference compared to 1169 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter 1170 * and hence doesn't need to call any driver hooks. 1171 * 1172 * This is useful for recovering driver state e.g. on driver load, or on resume. 1173 */ 1174 void drm_crtc_vblank_reset(struct drm_crtc *crtc) 1175 { 1176 struct drm_device *dev = crtc->dev; 1177 unsigned long irqflags; 1178 unsigned int pipe = drm_crtc_index(crtc); 1179 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1180 1181 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1182 /* 1183 * Prevent subsequent drm_vblank_get() from enabling the vblank 1184 * interrupt by bumping the refcount. 1185 */ 1186 if (!vblank->inmodeset) { 1187 atomic_inc(&vblank->refcount); 1188 vblank->inmodeset = 1; 1189 } 1190 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1191 1192 WARN_ON(!list_empty(&dev->vblank_event_list)); 1193 } 1194 EXPORT_SYMBOL(drm_crtc_vblank_reset); 1195 1196 /** 1197 * drm_crtc_vblank_on - enable vblank events on a CRTC 1198 * @crtc: CRTC in question 1199 * 1200 * This functions restores the vblank interrupt state captured with 1201 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note 1202 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be 1203 * unbalanced and so can also be unconditionally called in driver load code to 1204 * reflect the current hardware state of the crtc. 1205 */ 1206 void drm_crtc_vblank_on(struct drm_crtc *crtc) 1207 { 1208 struct drm_device *dev = crtc->dev; 1209 unsigned int pipe = drm_crtc_index(crtc); 1210 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1211 unsigned long irqflags; 1212 1213 if (WARN_ON(pipe >= dev->num_crtcs)) 1214 return; 1215 1216 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1217 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n", 1218 pipe, vblank->enabled, vblank->inmodeset); 1219 1220 /* Drop our private "prevent drm_vblank_get" refcount */ 1221 if (vblank->inmodeset) { 1222 atomic_dec(&vblank->refcount); 1223 vblank->inmodeset = 0; 1224 } 1225 1226 drm_reset_vblank_timestamp(dev, pipe); 1227 1228 /* 1229 * re-enable interrupts if there are users left, or the 1230 * user wishes vblank interrupts to be enabled all the time. 1231 */ 1232 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0) 1233 WARN_ON(drm_vblank_enable(dev, pipe)); 1234 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1235 } 1236 EXPORT_SYMBOL(drm_crtc_vblank_on); 1237 1238 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev, 1239 unsigned int pipe) 1240 { 1241 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1242 1243 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1244 if (!dev->num_crtcs) 1245 return; 1246 1247 if (WARN_ON(pipe >= dev->num_crtcs)) 1248 return; 1249 1250 /* 1251 * To avoid all the problems that might happen if interrupts 1252 * were enabled/disabled around or between these calls, we just 1253 * have the kernel take a reference on the CRTC (just once though 1254 * to avoid corrupting the count if multiple, mismatch calls occur), 1255 * so that interrupts remain enabled in the interim. 1256 */ 1257 if (!vblank->inmodeset) { 1258 vblank->inmodeset = 0x1; 1259 if (drm_vblank_get(dev, pipe) == 0) 1260 vblank->inmodeset |= 0x2; 1261 } 1262 } 1263 1264 static void drm_legacy_vblank_post_modeset(struct drm_device *dev, 1265 unsigned int pipe) 1266 { 1267 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1268 unsigned long irqflags; 1269 1270 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1271 if (!dev->num_crtcs) 1272 return; 1273 1274 if (WARN_ON(pipe >= dev->num_crtcs)) 1275 return; 1276 1277 if (vblank->inmodeset) { 1278 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1279 drm_reset_vblank_timestamp(dev, pipe); 1280 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1281 1282 if (vblank->inmodeset & 0x2) 1283 drm_vblank_put(dev, pipe); 1284 1285 vblank->inmodeset = 0; 1286 } 1287 } 1288 1289 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data, 1290 struct drm_file *file_priv) 1291 { 1292 struct drm_modeset_ctl *modeset = data; 1293 unsigned int pipe; 1294 1295 /* If drm_vblank_init() hasn't been called yet, just no-op */ 1296 if (!dev->num_crtcs) 1297 return 0; 1298 1299 /* KMS drivers handle this internally */ 1300 if (!drm_core_check_feature(dev, DRIVER_LEGACY)) 1301 return 0; 1302 1303 pipe = modeset->crtc; 1304 if (pipe >= dev->num_crtcs) 1305 return -EINVAL; 1306 1307 switch (modeset->cmd) { 1308 case _DRM_PRE_MODESET: 1309 drm_legacy_vblank_pre_modeset(dev, pipe); 1310 break; 1311 case _DRM_POST_MODESET: 1312 drm_legacy_vblank_post_modeset(dev, pipe); 1313 break; 1314 default: 1315 return -EINVAL; 1316 } 1317 1318 return 0; 1319 } 1320 1321 static inline bool vblank_passed(u64 seq, u64 ref) 1322 { 1323 return (seq - ref) <= (1 << 23); 1324 } 1325 1326 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe, 1327 u64 req_seq, 1328 union drm_wait_vblank *vblwait, 1329 struct drm_file *file_priv) 1330 { 1331 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1332 struct drm_pending_vblank_event *e; 1333 ktime_t now; 1334 unsigned long flags; 1335 u64 seq; 1336 int ret; 1337 1338 e = kzalloc(sizeof(*e), GFP_KERNEL); 1339 if (e == NULL) { 1340 ret = -ENOMEM; 1341 goto err_put; 1342 } 1343 1344 e->pipe = pipe; 1345 e->event.base.type = DRM_EVENT_VBLANK; 1346 e->event.base.length = sizeof(e->event.vbl); 1347 e->event.vbl.user_data = vblwait->request.signal; 1348 e->event.vbl.crtc_id = 0; 1349 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1350 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1351 if (crtc) 1352 e->event.vbl.crtc_id = crtc->base.id; 1353 } 1354 1355 spin_lock_irqsave(&dev->event_lock, flags); 1356 1357 /* 1358 * drm_crtc_vblank_off() might have been called after we called 1359 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1360 * vblank disable, so no need for further locking. The reference from 1361 * drm_vblank_get() protects against vblank disable from another source. 1362 */ 1363 if (!READ_ONCE(vblank->enabled)) { 1364 ret = -EINVAL; 1365 goto err_unlock; 1366 } 1367 1368 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1369 &e->event.base); 1370 1371 if (ret) 1372 goto err_unlock; 1373 1374 seq = drm_vblank_count_and_time(dev, pipe, &now); 1375 1376 DRM_DEBUG("event on vblank count %llu, current %llu, crtc %u\n", 1377 req_seq, seq, pipe); 1378 1379 trace_drm_vblank_event_queued(file_priv, pipe, req_seq); 1380 1381 e->sequence = req_seq; 1382 if (vblank_passed(seq, req_seq)) { 1383 drm_vblank_put(dev, pipe); 1384 send_vblank_event(dev, e, seq, now); 1385 vblwait->reply.sequence = seq; 1386 } else { 1387 /* drm_handle_vblank_events will call drm_vblank_put */ 1388 list_add_tail(&e->base.link, &dev->vblank_event_list); 1389 vblwait->reply.sequence = req_seq; 1390 } 1391 1392 spin_unlock_irqrestore(&dev->event_lock, flags); 1393 1394 return 0; 1395 1396 err_unlock: 1397 spin_unlock_irqrestore(&dev->event_lock, flags); 1398 kfree(e); 1399 err_put: 1400 drm_vblank_put(dev, pipe); 1401 return ret; 1402 } 1403 1404 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait) 1405 { 1406 if (vblwait->request.sequence) 1407 return false; 1408 1409 return _DRM_VBLANK_RELATIVE == 1410 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK | 1411 _DRM_VBLANK_EVENT | 1412 _DRM_VBLANK_NEXTONMISS)); 1413 } 1414 1415 /* 1416 * Widen a 32-bit param to 64-bits. 1417 * 1418 * \param narrow 32-bit value (missing upper 32 bits) 1419 * \param near 64-bit value that should be 'close' to near 1420 * 1421 * This function returns a 64-bit value using the lower 32-bits from 1422 * 'narrow' and constructing the upper 32-bits so that the result is 1423 * as close as possible to 'near'. 1424 */ 1425 1426 static u64 widen_32_to_64(u32 narrow, u64 near) 1427 { 1428 return near + (s32) (narrow - near); 1429 } 1430 1431 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe, 1432 struct drm_wait_vblank_reply *reply) 1433 { 1434 ktime_t now; 1435 struct timespec64 ts; 1436 1437 /* 1438 * drm_wait_vblank_reply is a UAPI structure that uses 'long' 1439 * to store the seconds. This is safe as we always use monotonic 1440 * timestamps since linux-4.15. 1441 */ 1442 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1443 ts = ktime_to_timespec64(now); 1444 reply->tval_sec = (u32)ts.tv_sec; 1445 reply->tval_usec = ts.tv_nsec / 1000; 1446 } 1447 1448 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data, 1449 struct drm_file *file_priv) 1450 { 1451 struct drm_crtc *crtc; 1452 struct drm_vblank_crtc *vblank; 1453 union drm_wait_vblank *vblwait = data; 1454 int ret; 1455 u64 req_seq, seq; 1456 unsigned int pipe_index; 1457 unsigned int flags, pipe, high_pipe; 1458 1459 if (!dev->irq_enabled) 1460 return -EINVAL; 1461 1462 if (vblwait->request.type & _DRM_VBLANK_SIGNAL) 1463 return -EINVAL; 1464 1465 if (vblwait->request.type & 1466 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1467 _DRM_VBLANK_HIGH_CRTC_MASK)) { 1468 DRM_ERROR("Unsupported type value 0x%x, supported mask 0x%x\n", 1469 vblwait->request.type, 1470 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1471 _DRM_VBLANK_HIGH_CRTC_MASK)); 1472 return -EINVAL; 1473 } 1474 1475 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; 1476 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); 1477 if (high_pipe) 1478 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT; 1479 else 1480 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; 1481 1482 /* Convert lease-relative crtc index into global crtc index */ 1483 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1484 pipe = 0; 1485 drm_for_each_crtc(crtc, dev) { 1486 if (drm_lease_held(file_priv, crtc->base.id)) { 1487 if (pipe_index == 0) 1488 break; 1489 pipe_index--; 1490 } 1491 pipe++; 1492 } 1493 } else { 1494 pipe = pipe_index; 1495 } 1496 1497 if (pipe >= dev->num_crtcs) 1498 return -EINVAL; 1499 1500 vblank = &dev->vblank[pipe]; 1501 1502 /* If the counter is currently enabled and accurate, short-circuit 1503 * queries to return the cached timestamp of the last vblank. 1504 */ 1505 if (dev->vblank_disable_immediate && 1506 drm_wait_vblank_is_query(vblwait) && 1507 READ_ONCE(vblank->enabled)) { 1508 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1509 return 0; 1510 } 1511 1512 ret = drm_vblank_get(dev, pipe); 1513 if (ret) { 1514 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 1515 return ret; 1516 } 1517 seq = drm_vblank_count(dev, pipe); 1518 1519 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { 1520 case _DRM_VBLANK_RELATIVE: 1521 req_seq = seq + vblwait->request.sequence; 1522 vblwait->request.sequence = req_seq; 1523 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; 1524 break; 1525 case _DRM_VBLANK_ABSOLUTE: 1526 req_seq = widen_32_to_64(vblwait->request.sequence, seq); 1527 break; 1528 default: 1529 ret = -EINVAL; 1530 goto done; 1531 } 1532 1533 if ((flags & _DRM_VBLANK_NEXTONMISS) && 1534 vblank_passed(seq, req_seq)) { 1535 req_seq = seq + 1; 1536 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS; 1537 vblwait->request.sequence = req_seq; 1538 } 1539 1540 if (flags & _DRM_VBLANK_EVENT) { 1541 /* must hold on to the vblank ref until the event fires 1542 * drm_vblank_put will be called asynchronously 1543 */ 1544 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv); 1545 } 1546 1547 if (req_seq != seq) { 1548 DRM_DEBUG("waiting on vblank count %llu, crtc %u\n", 1549 req_seq, pipe); 1550 DRM_WAIT_ON(ret, vblank->queue, 3 * HZ, 1551 vblank_passed(drm_vblank_count(dev, pipe), 1552 req_seq) || 1553 !READ_ONCE(vblank->enabled)); 1554 } 1555 1556 if (ret != -EINTR) { 1557 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1558 1559 DRM_DEBUG("crtc %d returning %u to client\n", 1560 pipe, vblwait->reply.sequence); 1561 } else { 1562 DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe); 1563 } 1564 1565 done: 1566 drm_vblank_put(dev, pipe); 1567 return ret; 1568 } 1569 1570 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe) 1571 { 1572 struct drm_pending_vblank_event *e, *t; 1573 ktime_t now; 1574 u64 seq; 1575 1576 assert_spin_locked(&dev->event_lock); 1577 1578 seq = drm_vblank_count_and_time(dev, pipe, &now); 1579 1580 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1581 if (e->pipe != pipe) 1582 continue; 1583 if (!vblank_passed(seq, e->sequence)) 1584 continue; 1585 1586 DRM_DEBUG("vblank event on %llu, current %llu\n", 1587 e->sequence, seq); 1588 1589 list_del(&e->base.link); 1590 drm_vblank_put(dev, pipe); 1591 send_vblank_event(dev, e, seq, now); 1592 } 1593 1594 trace_drm_vblank_event(pipe, seq); 1595 } 1596 1597 /** 1598 * drm_handle_vblank - handle a vblank event 1599 * @dev: DRM device 1600 * @pipe: index of CRTC where this event occurred 1601 * 1602 * Drivers should call this routine in their vblank interrupt handlers to 1603 * update the vblank counter and send any signals that may be pending. 1604 * 1605 * This is the legacy version of drm_crtc_handle_vblank(). 1606 */ 1607 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe) 1608 { 1609 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1610 unsigned long irqflags; 1611 bool disable_irq; 1612 1613 if (WARN_ON_ONCE(!dev->num_crtcs)) 1614 return false; 1615 1616 if (WARN_ON(pipe >= dev->num_crtcs)) 1617 return false; 1618 1619 spin_lock_irqsave(&dev->event_lock, irqflags); 1620 1621 /* Need timestamp lock to prevent concurrent execution with 1622 * vblank enable/disable, as this would cause inconsistent 1623 * or corrupted timestamps and vblank counts. 1624 */ 1625 spin_lock(&dev->vblank_time_lock); 1626 1627 /* Vblank irq handling disabled. Nothing to do. */ 1628 if (!vblank->enabled) { 1629 spin_unlock(&dev->vblank_time_lock); 1630 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1631 return false; 1632 } 1633 1634 drm_update_vblank_count(dev, pipe, true); 1635 1636 spin_unlock(&dev->vblank_time_lock); 1637 1638 wake_up(&vblank->queue); 1639 1640 /* With instant-off, we defer disabling the interrupt until after 1641 * we finish processing the following vblank after all events have 1642 * been signaled. The disable has to be last (after 1643 * drm_handle_vblank_events) so that the timestamp is always accurate. 1644 */ 1645 disable_irq = (dev->vblank_disable_immediate && 1646 drm_vblank_offdelay > 0 && 1647 !atomic_read(&vblank->refcount)); 1648 1649 drm_handle_vblank_events(dev, pipe); 1650 1651 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1652 1653 if (disable_irq) 1654 vblank_disable_fn(&vblank->disable_timer); 1655 1656 return true; 1657 } 1658 EXPORT_SYMBOL(drm_handle_vblank); 1659 1660 /** 1661 * drm_crtc_handle_vblank - handle a vblank event 1662 * @crtc: where this event occurred 1663 * 1664 * Drivers should call this routine in their vblank interrupt handlers to 1665 * update the vblank counter and send any signals that may be pending. 1666 * 1667 * This is the native KMS version of drm_handle_vblank(). 1668 * 1669 * Returns: 1670 * True if the event was successfully handled, false on failure. 1671 */ 1672 bool drm_crtc_handle_vblank(struct drm_crtc *crtc) 1673 { 1674 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc)); 1675 } 1676 EXPORT_SYMBOL(drm_crtc_handle_vblank); 1677 1678 /* 1679 * Get crtc VBLANK count. 1680 * 1681 * \param dev DRM device 1682 * \param data user arguement, pointing to a drm_crtc_get_sequence structure. 1683 * \param file_priv drm file private for the user's open file descriptor 1684 */ 1685 1686 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data, 1687 struct drm_file *file_priv) 1688 { 1689 struct drm_crtc *crtc; 1690 struct drm_vblank_crtc *vblank; 1691 int pipe; 1692 struct drm_crtc_get_sequence *get_seq = data; 1693 ktime_t now; 1694 bool vblank_enabled; 1695 int ret; 1696 1697 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 1698 return -EINVAL; 1699 1700 if (!dev->irq_enabled) 1701 return -EINVAL; 1702 1703 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id); 1704 if (!crtc) 1705 return -ENOENT; 1706 1707 pipe = drm_crtc_index(crtc); 1708 1709 vblank = &dev->vblank[pipe]; 1710 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled); 1711 1712 if (!vblank_enabled) { 1713 ret = drm_crtc_vblank_get(crtc); 1714 if (ret) { 1715 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 1716 return ret; 1717 } 1718 } 1719 drm_modeset_lock(&crtc->mutex, NULL); 1720 if (crtc->state) 1721 get_seq->active = crtc->state->enable; 1722 else 1723 get_seq->active = crtc->enabled; 1724 drm_modeset_unlock(&crtc->mutex); 1725 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1726 get_seq->sequence_ns = ktime_to_ns(now); 1727 if (!vblank_enabled) 1728 drm_crtc_vblank_put(crtc); 1729 return 0; 1730 } 1731 1732 /* 1733 * Queue a event for VBLANK sequence 1734 * 1735 * \param dev DRM device 1736 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure. 1737 * \param file_priv drm file private for the user's open file descriptor 1738 */ 1739 1740 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data, 1741 struct drm_file *file_priv) 1742 { 1743 struct drm_crtc *crtc; 1744 struct drm_vblank_crtc *vblank; 1745 int pipe; 1746 struct drm_crtc_queue_sequence *queue_seq = data; 1747 ktime_t now; 1748 struct drm_pending_vblank_event *e; 1749 u32 flags; 1750 u64 seq; 1751 u64 req_seq; 1752 int ret; 1753 unsigned long spin_flags; 1754 1755 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 1756 return -EINVAL; 1757 1758 if (!dev->irq_enabled) 1759 return -EINVAL; 1760 1761 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id); 1762 if (!crtc) 1763 return -ENOENT; 1764 1765 flags = queue_seq->flags; 1766 /* Check valid flag bits */ 1767 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE| 1768 DRM_CRTC_SEQUENCE_NEXT_ON_MISS)) 1769 return -EINVAL; 1770 1771 pipe = drm_crtc_index(crtc); 1772 1773 vblank = &dev->vblank[pipe]; 1774 1775 e = kzalloc(sizeof(*e), GFP_KERNEL); 1776 if (e == NULL) 1777 return -ENOMEM; 1778 1779 ret = drm_crtc_vblank_get(crtc); 1780 if (ret) { 1781 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 1782 goto err_free; 1783 } 1784 1785 seq = drm_vblank_count_and_time(dev, pipe, &now); 1786 req_seq = queue_seq->sequence; 1787 1788 if (flags & DRM_CRTC_SEQUENCE_RELATIVE) 1789 req_seq += seq; 1790 1791 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq)) 1792 req_seq = seq + 1; 1793 1794 e->pipe = pipe; 1795 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE; 1796 e->event.base.length = sizeof(e->event.seq); 1797 e->event.seq.user_data = queue_seq->user_data; 1798 1799 spin_lock_irqsave(&dev->event_lock, spin_flags); 1800 1801 /* 1802 * drm_crtc_vblank_off() might have been called after we called 1803 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1804 * vblank disable, so no need for further locking. The reference from 1805 * drm_crtc_vblank_get() protects against vblank disable from another source. 1806 */ 1807 if (!READ_ONCE(vblank->enabled)) { 1808 ret = -EINVAL; 1809 goto err_unlock; 1810 } 1811 1812 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1813 &e->event.base); 1814 1815 if (ret) 1816 goto err_unlock; 1817 1818 e->sequence = req_seq; 1819 1820 if (vblank_passed(seq, req_seq)) { 1821 drm_crtc_vblank_put(crtc); 1822 send_vblank_event(dev, e, seq, now); 1823 queue_seq->sequence = seq; 1824 } else { 1825 /* drm_handle_vblank_events will call drm_vblank_put */ 1826 list_add_tail(&e->base.link, &dev->vblank_event_list); 1827 queue_seq->sequence = req_seq; 1828 } 1829 1830 spin_unlock_irqrestore(&dev->event_lock, spin_flags); 1831 return 0; 1832 1833 err_unlock: 1834 spin_unlock_irqrestore(&dev->event_lock, spin_flags); 1835 drm_crtc_vblank_put(crtc); 1836 err_free: 1837 kfree(e); 1838 return ret; 1839 } 1840