xref: /openbmc/linux/drivers/gpu/drm/drm_vblank.c (revision 98ddec80)
1 /*
2  * drm_irq.c IRQ and vblank support
3  *
4  * \author Rickard E. (Rik) Faith <faith@valinux.com>
5  * \author Gareth Hughes <gareth@valinux.com>
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the next
15  * paragraph) shall be included in all copies or substantial portions of the
16  * Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24  * OTHER DEALINGS IN THE SOFTWARE.
25  */
26 
27 #include <drm/drm_vblank.h>
28 #include <drm/drmP.h>
29 #include <linux/export.h>
30 
31 #include "drm_trace.h"
32 #include "drm_internal.h"
33 
34 /**
35  * DOC: vblank handling
36  *
37  * Vertical blanking plays a major role in graphics rendering. To achieve
38  * tear-free display, users must synchronize page flips and/or rendering to
39  * vertical blanking. The DRM API offers ioctls to perform page flips
40  * synchronized to vertical blanking and wait for vertical blanking.
41  *
42  * The DRM core handles most of the vertical blanking management logic, which
43  * involves filtering out spurious interrupts, keeping race-free blanking
44  * counters, coping with counter wrap-around and resets and keeping use counts.
45  * It relies on the driver to generate vertical blanking interrupts and
46  * optionally provide a hardware vertical blanking counter.
47  *
48  * Drivers must initialize the vertical blanking handling core with a call to
49  * drm_vblank_init(). Minimally, a driver needs to implement
50  * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
51  * drm_crtc_handle_vblank() in it's vblank interrupt handler for working vblank
52  * support.
53  *
54  * Vertical blanking interrupts can be enabled by the DRM core or by drivers
55  * themselves (for instance to handle page flipping operations).  The DRM core
56  * maintains a vertical blanking use count to ensure that the interrupts are not
57  * disabled while a user still needs them. To increment the use count, drivers
58  * call drm_crtc_vblank_get() and release the vblank reference again with
59  * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
60  * guaranteed to be enabled.
61  *
62  * On many hardware disabling the vblank interrupt cannot be done in a race-free
63  * manner, see &drm_driver.vblank_disable_immediate and
64  * &drm_driver.max_vblank_count. In that case the vblank core only disables the
65  * vblanks after a timer has expired, which can be configured through the
66  * ``vblankoffdelay`` module parameter.
67  */
68 
69 /* Retry timestamp calculation up to 3 times to satisfy
70  * drm_timestamp_precision before giving up.
71  */
72 #define DRM_TIMESTAMP_MAXRETRIES 3
73 
74 /* Threshold in nanoseconds for detection of redundant
75  * vblank irq in drm_handle_vblank(). 1 msec should be ok.
76  */
77 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
78 
79 static bool
80 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
81 			  ktime_t *tvblank, bool in_vblank_irq);
82 
83 static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
84 
85 static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
86 
87 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
88 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
89 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
90 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
91 
92 static void store_vblank(struct drm_device *dev, unsigned int pipe,
93 			 u32 vblank_count_inc,
94 			 ktime_t t_vblank, u32 last)
95 {
96 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
97 
98 	assert_spin_locked(&dev->vblank_time_lock);
99 
100 	vblank->last = last;
101 
102 	write_seqlock(&vblank->seqlock);
103 	vblank->time = t_vblank;
104 	vblank->count += vblank_count_inc;
105 	write_sequnlock(&vblank->seqlock);
106 }
107 
108 /*
109  * "No hw counter" fallback implementation of .get_vblank_counter() hook,
110  * if there is no useable hardware frame counter available.
111  */
112 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
113 {
114 	WARN_ON_ONCE(dev->max_vblank_count != 0);
115 	return 0;
116 }
117 
118 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
119 {
120 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
121 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
122 
123 		if (WARN_ON(!crtc))
124 			return 0;
125 
126 		if (crtc->funcs->get_vblank_counter)
127 			return crtc->funcs->get_vblank_counter(crtc);
128 	}
129 
130 	if (dev->driver->get_vblank_counter)
131 		return dev->driver->get_vblank_counter(dev, pipe);
132 
133 	return drm_vblank_no_hw_counter(dev, pipe);
134 }
135 
136 /*
137  * Reset the stored timestamp for the current vblank count to correspond
138  * to the last vblank occurred.
139  *
140  * Only to be called from drm_crtc_vblank_on().
141  *
142  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
143  * device vblank fields.
144  */
145 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
146 {
147 	u32 cur_vblank;
148 	bool rc;
149 	ktime_t t_vblank;
150 	int count = DRM_TIMESTAMP_MAXRETRIES;
151 
152 	spin_lock(&dev->vblank_time_lock);
153 
154 	/*
155 	 * sample the current counter to avoid random jumps
156 	 * when drm_vblank_enable() applies the diff
157 	 */
158 	do {
159 		cur_vblank = __get_vblank_counter(dev, pipe);
160 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
161 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
162 
163 	/*
164 	 * Only reinitialize corresponding vblank timestamp if high-precision query
165 	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
166 	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
167 	 */
168 	if (!rc)
169 		t_vblank = 0;
170 
171 	/*
172 	 * +1 to make sure user will never see the same
173 	 * vblank counter value before and after a modeset
174 	 */
175 	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
176 
177 	spin_unlock(&dev->vblank_time_lock);
178 }
179 
180 /*
181  * Call back into the driver to update the appropriate vblank counter
182  * (specified by @pipe).  Deal with wraparound, if it occurred, and
183  * update the last read value so we can deal with wraparound on the next
184  * call if necessary.
185  *
186  * Only necessary when going from off->on, to account for frames we
187  * didn't get an interrupt for.
188  *
189  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
190  * device vblank fields.
191  */
192 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
193 				    bool in_vblank_irq)
194 {
195 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
196 	u32 cur_vblank, diff;
197 	bool rc;
198 	ktime_t t_vblank;
199 	int count = DRM_TIMESTAMP_MAXRETRIES;
200 	int framedur_ns = vblank->framedur_ns;
201 
202 	/*
203 	 * Interrupts were disabled prior to this call, so deal with counter
204 	 * wrap if needed.
205 	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
206 	 * here if the register is small or we had vblank interrupts off for
207 	 * a long time.
208 	 *
209 	 * We repeat the hardware vblank counter & timestamp query until
210 	 * we get consistent results. This to prevent races between gpu
211 	 * updating its hardware counter while we are retrieving the
212 	 * corresponding vblank timestamp.
213 	 */
214 	do {
215 		cur_vblank = __get_vblank_counter(dev, pipe);
216 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
217 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
218 
219 	if (dev->max_vblank_count != 0) {
220 		/* trust the hw counter when it's around */
221 		diff = (cur_vblank - vblank->last) & dev->max_vblank_count;
222 	} else if (rc && framedur_ns) {
223 		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
224 
225 		/*
226 		 * Figure out how many vblanks we've missed based
227 		 * on the difference in the timestamps and the
228 		 * frame/field duration.
229 		 */
230 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
231 
232 		if (diff == 0 && in_vblank_irq)
233 			DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored."
234 				      " diff_ns = %lld, framedur_ns = %d)\n",
235 				      pipe, (long long) diff_ns, framedur_ns);
236 	} else {
237 		/* some kind of default for drivers w/o accurate vbl timestamping */
238 		diff = in_vblank_irq ? 1 : 0;
239 	}
240 
241 	/*
242 	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
243 	 * interval? If so then vblank irqs keep running and it will likely
244 	 * happen that the hardware vblank counter is not trustworthy as it
245 	 * might reset at some point in that interval and vblank timestamps
246 	 * are not trustworthy either in that interval. Iow. this can result
247 	 * in a bogus diff >> 1 which must be avoided as it would cause
248 	 * random large forward jumps of the software vblank counter.
249 	 */
250 	if (diff > 1 && (vblank->inmodeset & 0x2)) {
251 		DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u"
252 			      " due to pre-modeset.\n", pipe, diff);
253 		diff = 1;
254 	}
255 
256 	DRM_DEBUG_VBL("updating vblank count on crtc %u:"
257 		      " current=%llu, diff=%u, hw=%u hw_last=%u\n",
258 		      pipe, vblank->count, diff, cur_vblank, vblank->last);
259 
260 	if (diff == 0) {
261 		WARN_ON_ONCE(cur_vblank != vblank->last);
262 		return;
263 	}
264 
265 	/*
266 	 * Only reinitialize corresponding vblank timestamp if high-precision query
267 	 * available and didn't fail, or we were called from the vblank interrupt.
268 	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
269 	 * for now, to mark the vblanktimestamp as invalid.
270 	 */
271 	if (!rc && !in_vblank_irq)
272 		t_vblank = 0;
273 
274 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
275 }
276 
277 static u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
278 {
279 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
280 
281 	if (WARN_ON(pipe >= dev->num_crtcs))
282 		return 0;
283 
284 	return vblank->count;
285 }
286 
287 /**
288  * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
289  * @crtc: which counter to retrieve
290  *
291  * This function is similar to drm_crtc_vblank_count() but this function
292  * interpolates to handle a race with vblank interrupts using the high precision
293  * timestamping support.
294  *
295  * This is mostly useful for hardware that can obtain the scanout position, but
296  * doesn't have a hardware frame counter.
297  */
298 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
299 {
300 	struct drm_device *dev = crtc->dev;
301 	unsigned int pipe = drm_crtc_index(crtc);
302 	u64 vblank;
303 	unsigned long flags;
304 
305 	WARN_ONCE(drm_debug & DRM_UT_VBL && !dev->driver->get_vblank_timestamp,
306 		  "This function requires support for accurate vblank timestamps.");
307 
308 	spin_lock_irqsave(&dev->vblank_time_lock, flags);
309 
310 	drm_update_vblank_count(dev, pipe, false);
311 	vblank = drm_vblank_count(dev, pipe);
312 
313 	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
314 
315 	return vblank;
316 }
317 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
318 
319 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
320 {
321 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
322 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
323 
324 		if (WARN_ON(!crtc))
325 			return;
326 
327 		if (crtc->funcs->disable_vblank) {
328 			crtc->funcs->disable_vblank(crtc);
329 			return;
330 		}
331 	}
332 
333 	dev->driver->disable_vblank(dev, pipe);
334 }
335 
336 /*
337  * Disable vblank irq's on crtc, make sure that last vblank count
338  * of hardware and corresponding consistent software vblank counter
339  * are preserved, even if there are any spurious vblank irq's after
340  * disable.
341  */
342 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
343 {
344 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
345 	unsigned long irqflags;
346 
347 	assert_spin_locked(&dev->vbl_lock);
348 
349 	/* Prevent vblank irq processing while disabling vblank irqs,
350 	 * so no updates of timestamps or count can happen after we've
351 	 * disabled. Needed to prevent races in case of delayed irq's.
352 	 */
353 	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
354 
355 	/*
356 	 * Update vblank count and disable vblank interrupts only if the
357 	 * interrupts were enabled. This avoids calling the ->disable_vblank()
358 	 * operation in atomic context with the hardware potentially runtime
359 	 * suspended.
360 	 */
361 	if (!vblank->enabled)
362 		goto out;
363 
364 	/*
365 	 * Update the count and timestamp to maintain the
366 	 * appearance that the counter has been ticking all along until
367 	 * this time. This makes the count account for the entire time
368 	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
369 	 */
370 	drm_update_vblank_count(dev, pipe, false);
371 	__disable_vblank(dev, pipe);
372 	vblank->enabled = false;
373 
374 out:
375 	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
376 }
377 
378 static void vblank_disable_fn(struct timer_list *t)
379 {
380 	struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
381 	struct drm_device *dev = vblank->dev;
382 	unsigned int pipe = vblank->pipe;
383 	unsigned long irqflags;
384 
385 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
386 	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
387 		DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
388 		drm_vblank_disable_and_save(dev, pipe);
389 	}
390 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
391 }
392 
393 void drm_vblank_cleanup(struct drm_device *dev)
394 {
395 	unsigned int pipe;
396 
397 	/* Bail if the driver didn't call drm_vblank_init() */
398 	if (dev->num_crtcs == 0)
399 		return;
400 
401 	for (pipe = 0; pipe < dev->num_crtcs; pipe++) {
402 		struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
403 
404 		WARN_ON(READ_ONCE(vblank->enabled) &&
405 			drm_core_check_feature(dev, DRIVER_MODESET));
406 
407 		del_timer_sync(&vblank->disable_timer);
408 	}
409 
410 	kfree(dev->vblank);
411 
412 	dev->num_crtcs = 0;
413 }
414 
415 /**
416  * drm_vblank_init - initialize vblank support
417  * @dev: DRM device
418  * @num_crtcs: number of CRTCs supported by @dev
419  *
420  * This function initializes vblank support for @num_crtcs display pipelines.
421  * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for
422  * drivers with a &drm_driver.release callback.
423  *
424  * Returns:
425  * Zero on success or a negative error code on failure.
426  */
427 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
428 {
429 	int ret = -ENOMEM;
430 	unsigned int i;
431 
432 	spin_lock_init(&dev->vbl_lock);
433 	spin_lock_init(&dev->vblank_time_lock);
434 
435 	dev->num_crtcs = num_crtcs;
436 
437 	dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
438 	if (!dev->vblank)
439 		goto err;
440 
441 	for (i = 0; i < num_crtcs; i++) {
442 		struct drm_vblank_crtc *vblank = &dev->vblank[i];
443 
444 		vblank->dev = dev;
445 		vblank->pipe = i;
446 		init_waitqueue_head(&vblank->queue);
447 		timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
448 		seqlock_init(&vblank->seqlock);
449 	}
450 
451 	DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n");
452 
453 	/* Driver specific high-precision vblank timestamping supported? */
454 	if (dev->driver->get_vblank_timestamp)
455 		DRM_INFO("Driver supports precise vblank timestamp query.\n");
456 	else
457 		DRM_INFO("No driver support for vblank timestamp query.\n");
458 
459 	/* Must have precise timestamping for reliable vblank instant disable */
460 	if (dev->vblank_disable_immediate && !dev->driver->get_vblank_timestamp) {
461 		dev->vblank_disable_immediate = false;
462 		DRM_INFO("Setting vblank_disable_immediate to false because "
463 			 "get_vblank_timestamp == NULL\n");
464 	}
465 
466 	return 0;
467 
468 err:
469 	dev->num_crtcs = 0;
470 	return ret;
471 }
472 EXPORT_SYMBOL(drm_vblank_init);
473 
474 /**
475  * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
476  * @crtc: which CRTC's vblank waitqueue to retrieve
477  *
478  * This function returns a pointer to the vblank waitqueue for the CRTC.
479  * Drivers can use this to implement vblank waits using wait_event() and related
480  * functions.
481  */
482 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
483 {
484 	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
485 }
486 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
487 
488 
489 /**
490  * drm_calc_timestamping_constants - calculate vblank timestamp constants
491  * @crtc: drm_crtc whose timestamp constants should be updated.
492  * @mode: display mode containing the scanout timings
493  *
494  * Calculate and store various constants which are later needed by vblank and
495  * swap-completion timestamping, e.g, by
496  * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true
497  * scanout timing, so they take things like panel scaling or other adjustments
498  * into account.
499  */
500 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
501 				     const struct drm_display_mode *mode)
502 {
503 	struct drm_device *dev = crtc->dev;
504 	unsigned int pipe = drm_crtc_index(crtc);
505 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
506 	int linedur_ns = 0, framedur_ns = 0;
507 	int dotclock = mode->crtc_clock;
508 
509 	if (!dev->num_crtcs)
510 		return;
511 
512 	if (WARN_ON(pipe >= dev->num_crtcs))
513 		return;
514 
515 	/* Valid dotclock? */
516 	if (dotclock > 0) {
517 		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
518 
519 		/*
520 		 * Convert scanline length in pixels and video
521 		 * dot clock to line duration and frame duration
522 		 * in nanoseconds:
523 		 */
524 		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
525 		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
526 
527 		/*
528 		 * Fields of interlaced scanout modes are only half a frame duration.
529 		 */
530 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
531 			framedur_ns /= 2;
532 	} else
533 		DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n",
534 			  crtc->base.id);
535 
536 	vblank->linedur_ns  = linedur_ns;
537 	vblank->framedur_ns = framedur_ns;
538 	vblank->hwmode = *mode;
539 
540 	DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
541 		  crtc->base.id, mode->crtc_htotal,
542 		  mode->crtc_vtotal, mode->crtc_vdisplay);
543 	DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n",
544 		  crtc->base.id, dotclock, framedur_ns, linedur_ns);
545 }
546 EXPORT_SYMBOL(drm_calc_timestamping_constants);
547 
548 /**
549  * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper
550  * @dev: DRM device
551  * @pipe: index of CRTC whose vblank timestamp to retrieve
552  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
553  *             On return contains true maximum error of timestamp
554  * @vblank_time: Pointer to time which should receive the timestamp
555  * @in_vblank_irq:
556  *     True when called from drm_crtc_handle_vblank().  Some drivers
557  *     need to apply some workarounds for gpu-specific vblank irq quirks
558  *     if flag is set.
559  *
560  * Implements calculation of exact vblank timestamps from given drm_display_mode
561  * timings and current video scanout position of a CRTC. This can be directly
562  * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver
563  * if &drm_driver.get_scanout_position is implemented.
564  *
565  * The current implementation only handles standard video modes. For double scan
566  * and interlaced modes the driver is supposed to adjust the hardware mode
567  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
568  * match the scanout position reported.
569  *
570  * Note that atomic drivers must call drm_calc_timestamping_constants() before
571  * enabling a CRTC. The atomic helpers already take care of that in
572  * drm_atomic_helper_update_legacy_modeset_state().
573  *
574  * Returns:
575  *
576  * Returns true on success, and false on failure, i.e. when no accurate
577  * timestamp could be acquired.
578  */
579 bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev,
580 					   unsigned int pipe,
581 					   int *max_error,
582 					   ktime_t *vblank_time,
583 					   bool in_vblank_irq)
584 {
585 	struct timespec64 ts_etime, ts_vblank_time;
586 	ktime_t stime, etime;
587 	bool vbl_status;
588 	struct drm_crtc *crtc;
589 	const struct drm_display_mode *mode;
590 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
591 	int vpos, hpos, i;
592 	int delta_ns, duration_ns;
593 
594 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
595 		return false;
596 
597 	crtc = drm_crtc_from_index(dev, pipe);
598 
599 	if (pipe >= dev->num_crtcs || !crtc) {
600 		DRM_ERROR("Invalid crtc %u\n", pipe);
601 		return false;
602 	}
603 
604 	/* Scanout position query not supported? Should not happen. */
605 	if (!dev->driver->get_scanout_position) {
606 		DRM_ERROR("Called from driver w/o get_scanout_position()!?\n");
607 		return false;
608 	}
609 
610 	if (drm_drv_uses_atomic_modeset(dev))
611 		mode = &vblank->hwmode;
612 	else
613 		mode = &crtc->hwmode;
614 
615 	/* If mode timing undefined, just return as no-op:
616 	 * Happens during initial modesetting of a crtc.
617 	 */
618 	if (mode->crtc_clock == 0) {
619 		DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe);
620 		WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev));
621 
622 		return false;
623 	}
624 
625 	/* Get current scanout position with system timestamp.
626 	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
627 	 * if single query takes longer than max_error nanoseconds.
628 	 *
629 	 * This guarantees a tight bound on maximum error if
630 	 * code gets preempted or delayed for some reason.
631 	 */
632 	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
633 		/*
634 		 * Get vertical and horizontal scanout position vpos, hpos,
635 		 * and bounding timestamps stime, etime, pre/post query.
636 		 */
637 		vbl_status = dev->driver->get_scanout_position(dev, pipe,
638 							       in_vblank_irq,
639 							       &vpos, &hpos,
640 							       &stime, &etime,
641 							       mode);
642 
643 		/* Return as no-op if scanout query unsupported or failed. */
644 		if (!vbl_status) {
645 			DRM_DEBUG("crtc %u : scanoutpos query failed.\n",
646 				  pipe);
647 			return false;
648 		}
649 
650 		/* Compute uncertainty in timestamp of scanout position query. */
651 		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
652 
653 		/* Accept result with <  max_error nsecs timing uncertainty. */
654 		if (duration_ns <= *max_error)
655 			break;
656 	}
657 
658 	/* Noisy system timing? */
659 	if (i == DRM_TIMESTAMP_MAXRETRIES) {
660 		DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
661 			  pipe, duration_ns/1000, *max_error/1000, i);
662 	}
663 
664 	/* Return upper bound of timestamp precision error. */
665 	*max_error = duration_ns;
666 
667 	/* Convert scanout position into elapsed time at raw_time query
668 	 * since start of scanout at first display scanline. delta_ns
669 	 * can be negative if start of scanout hasn't happened yet.
670 	 */
671 	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
672 			   mode->crtc_clock);
673 
674 	/* Subtract time delta from raw timestamp to get final
675 	 * vblank_time timestamp for end of vblank.
676 	 */
677 	*vblank_time = ktime_sub_ns(etime, delta_ns);
678 
679 	if ((drm_debug & DRM_UT_VBL) == 0)
680 		return true;
681 
682 	ts_etime = ktime_to_timespec64(etime);
683 	ts_vblank_time = ktime_to_timespec64(*vblank_time);
684 
685 	DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
686 		      pipe, hpos, vpos,
687 		      (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
688 		      (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
689 		      duration_ns / 1000, i);
690 
691 	return true;
692 }
693 EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos);
694 
695 /**
696  * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
697  *                             vblank interval
698  * @dev: DRM device
699  * @pipe: index of CRTC whose vblank timestamp to retrieve
700  * @tvblank: Pointer to target time which should receive the timestamp
701  * @in_vblank_irq:
702  *     True when called from drm_crtc_handle_vblank().  Some drivers
703  *     need to apply some workarounds for gpu-specific vblank irq quirks
704  *     if flag is set.
705  *
706  * Fetches the system timestamp corresponding to the time of the most recent
707  * vblank interval on specified CRTC. May call into kms-driver to
708  * compute the timestamp with a high-precision GPU specific method.
709  *
710  * Returns zero if timestamp originates from uncorrected do_gettimeofday()
711  * call, i.e., it isn't very precisely locked to the true vblank.
712  *
713  * Returns:
714  * True if timestamp is considered to be very precise, false otherwise.
715  */
716 static bool
717 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
718 			  ktime_t *tvblank, bool in_vblank_irq)
719 {
720 	bool ret = false;
721 
722 	/* Define requested maximum error on timestamps (nanoseconds). */
723 	int max_error = (int) drm_timestamp_precision * 1000;
724 
725 	/* Query driver if possible and precision timestamping enabled. */
726 	if (dev->driver->get_vblank_timestamp && (max_error > 0))
727 		ret = dev->driver->get_vblank_timestamp(dev, pipe, &max_error,
728 							tvblank, in_vblank_irq);
729 
730 	/* GPU high precision timestamp query unsupported or failed.
731 	 * Return current monotonic/gettimeofday timestamp as best estimate.
732 	 */
733 	if (!ret)
734 		*tvblank = ktime_get();
735 
736 	return ret;
737 }
738 
739 /**
740  * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
741  * @crtc: which counter to retrieve
742  *
743  * Fetches the "cooked" vblank count value that represents the number of
744  * vblank events since the system was booted, including lost events due to
745  * modesetting activity. Note that this timer isn't correct against a racing
746  * vblank interrupt (since it only reports the software vblank counter), see
747  * drm_crtc_accurate_vblank_count() for such use-cases.
748  *
749  * Returns:
750  * The software vblank counter.
751  */
752 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
753 {
754 	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
755 }
756 EXPORT_SYMBOL(drm_crtc_vblank_count);
757 
758 /**
759  * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
760  *     system timestamp corresponding to that vblank counter value.
761  * @dev: DRM device
762  * @pipe: index of CRTC whose counter to retrieve
763  * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
764  *
765  * Fetches the "cooked" vblank count value that represents the number of
766  * vblank events since the system was booted, including lost events due to
767  * modesetting activity. Returns corresponding system timestamp of the time
768  * of the vblank interval that corresponds to the current vblank counter value.
769  *
770  * This is the legacy version of drm_crtc_vblank_count_and_time().
771  */
772 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
773 				     ktime_t *vblanktime)
774 {
775 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
776 	u64 vblank_count;
777 	unsigned int seq;
778 
779 	if (WARN_ON(pipe >= dev->num_crtcs)) {
780 		*vblanktime = 0;
781 		return 0;
782 	}
783 
784 	do {
785 		seq = read_seqbegin(&vblank->seqlock);
786 		vblank_count = vblank->count;
787 		*vblanktime = vblank->time;
788 	} while (read_seqretry(&vblank->seqlock, seq));
789 
790 	return vblank_count;
791 }
792 
793 /**
794  * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
795  *     and the system timestamp corresponding to that vblank counter value
796  * @crtc: which counter to retrieve
797  * @vblanktime: Pointer to time to receive the vblank timestamp.
798  *
799  * Fetches the "cooked" vblank count value that represents the number of
800  * vblank events since the system was booted, including lost events due to
801  * modesetting activity. Returns corresponding system timestamp of the time
802  * of the vblank interval that corresponds to the current vblank counter value.
803  */
804 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
805 				   ktime_t *vblanktime)
806 {
807 	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
808 					 vblanktime);
809 }
810 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
811 
812 static void send_vblank_event(struct drm_device *dev,
813 		struct drm_pending_vblank_event *e,
814 		u64 seq, ktime_t now)
815 {
816 	struct timespec64 tv;
817 
818 	switch (e->event.base.type) {
819 	case DRM_EVENT_VBLANK:
820 	case DRM_EVENT_FLIP_COMPLETE:
821 		tv = ktime_to_timespec64(now);
822 		e->event.vbl.sequence = seq;
823 		/*
824 		 * e->event is a user space structure, with hardcoded unsigned
825 		 * 32-bit seconds/microseconds. This is safe as we always use
826 		 * monotonic timestamps since linux-4.15
827 		 */
828 		e->event.vbl.tv_sec = tv.tv_sec;
829 		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
830 		break;
831 	case DRM_EVENT_CRTC_SEQUENCE:
832 		if (seq)
833 			e->event.seq.sequence = seq;
834 		e->event.seq.time_ns = ktime_to_ns(now);
835 		break;
836 	}
837 	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
838 	drm_send_event_locked(dev, &e->base);
839 }
840 
841 /**
842  * drm_crtc_arm_vblank_event - arm vblank event after pageflip
843  * @crtc: the source CRTC of the vblank event
844  * @e: the event to send
845  *
846  * A lot of drivers need to generate vblank events for the very next vblank
847  * interrupt. For example when the page flip interrupt happens when the page
848  * flip gets armed, but not when it actually executes within the next vblank
849  * period. This helper function implements exactly the required vblank arming
850  * behaviour.
851  *
852  * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
853  * atomic commit must ensure that the next vblank happens at exactly the same
854  * time as the atomic commit is committed to the hardware. This function itself
855  * does **not** protect against the next vblank interrupt racing with either this
856  * function call or the atomic commit operation. A possible sequence could be:
857  *
858  * 1. Driver commits new hardware state into vblank-synchronized registers.
859  * 2. A vblank happens, committing the hardware state. Also the corresponding
860  *    vblank interrupt is fired off and fully processed by the interrupt
861  *    handler.
862  * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
863  * 4. The event is only send out for the next vblank, which is wrong.
864  *
865  * An equivalent race can happen when the driver calls
866  * drm_crtc_arm_vblank_event() before writing out the new hardware state.
867  *
868  * The only way to make this work safely is to prevent the vblank from firing
869  * (and the hardware from committing anything else) until the entire atomic
870  * commit sequence has run to completion. If the hardware does not have such a
871  * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
872  * Instead drivers need to manually send out the event from their interrupt
873  * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
874  * possible race with the hardware committing the atomic update.
875  *
876  * Caller must hold a vblank reference for the event @e, which will be dropped
877  * when the next vblank arrives.
878  */
879 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
880 			       struct drm_pending_vblank_event *e)
881 {
882 	struct drm_device *dev = crtc->dev;
883 	unsigned int pipe = drm_crtc_index(crtc);
884 
885 	assert_spin_locked(&dev->event_lock);
886 
887 	e->pipe = pipe;
888 	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
889 	list_add_tail(&e->base.link, &dev->vblank_event_list);
890 }
891 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
892 
893 /**
894  * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
895  * @crtc: the source CRTC of the vblank event
896  * @e: the event to send
897  *
898  * Updates sequence # and timestamp on event for the most recently processed
899  * vblank, and sends it to userspace.  Caller must hold event lock.
900  *
901  * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
902  * situation, especially to send out events for atomic commit operations.
903  */
904 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
905 				struct drm_pending_vblank_event *e)
906 {
907 	struct drm_device *dev = crtc->dev;
908 	u64 seq;
909 	unsigned int pipe = drm_crtc_index(crtc);
910 	ktime_t now;
911 
912 	if (dev->num_crtcs > 0) {
913 		seq = drm_vblank_count_and_time(dev, pipe, &now);
914 	} else {
915 		seq = 0;
916 
917 		now = ktime_get();
918 	}
919 	e->pipe = pipe;
920 	send_vblank_event(dev, e, seq, now);
921 }
922 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
923 
924 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
925 {
926 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
927 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
928 
929 		if (WARN_ON(!crtc))
930 			return 0;
931 
932 		if (crtc->funcs->enable_vblank)
933 			return crtc->funcs->enable_vblank(crtc);
934 	}
935 
936 	return dev->driver->enable_vblank(dev, pipe);
937 }
938 
939 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
940 {
941 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
942 	int ret = 0;
943 
944 	assert_spin_locked(&dev->vbl_lock);
945 
946 	spin_lock(&dev->vblank_time_lock);
947 
948 	if (!vblank->enabled) {
949 		/*
950 		 * Enable vblank irqs under vblank_time_lock protection.
951 		 * All vblank count & timestamp updates are held off
952 		 * until we are done reinitializing master counter and
953 		 * timestamps. Filtercode in drm_handle_vblank() will
954 		 * prevent double-accounting of same vblank interval.
955 		 */
956 		ret = __enable_vblank(dev, pipe);
957 		DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret);
958 		if (ret) {
959 			atomic_dec(&vblank->refcount);
960 		} else {
961 			drm_update_vblank_count(dev, pipe, 0);
962 			/* drm_update_vblank_count() includes a wmb so we just
963 			 * need to ensure that the compiler emits the write
964 			 * to mark the vblank as enabled after the call
965 			 * to drm_update_vblank_count().
966 			 */
967 			WRITE_ONCE(vblank->enabled, true);
968 		}
969 	}
970 
971 	spin_unlock(&dev->vblank_time_lock);
972 
973 	return ret;
974 }
975 
976 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
977 {
978 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
979 	unsigned long irqflags;
980 	int ret = 0;
981 
982 	if (!dev->num_crtcs)
983 		return -EINVAL;
984 
985 	if (WARN_ON(pipe >= dev->num_crtcs))
986 		return -EINVAL;
987 
988 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
989 	/* Going from 0->1 means we have to enable interrupts again */
990 	if (atomic_add_return(1, &vblank->refcount) == 1) {
991 		ret = drm_vblank_enable(dev, pipe);
992 	} else {
993 		if (!vblank->enabled) {
994 			atomic_dec(&vblank->refcount);
995 			ret = -EINVAL;
996 		}
997 	}
998 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
999 
1000 	return ret;
1001 }
1002 
1003 /**
1004  * drm_crtc_vblank_get - get a reference count on vblank events
1005  * @crtc: which CRTC to own
1006  *
1007  * Acquire a reference count on vblank events to avoid having them disabled
1008  * while in use.
1009  *
1010  * Returns:
1011  * Zero on success or a negative error code on failure.
1012  */
1013 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1014 {
1015 	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1016 }
1017 EXPORT_SYMBOL(drm_crtc_vblank_get);
1018 
1019 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1020 {
1021 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1022 
1023 	if (WARN_ON(pipe >= dev->num_crtcs))
1024 		return;
1025 
1026 	if (WARN_ON(atomic_read(&vblank->refcount) == 0))
1027 		return;
1028 
1029 	/* Last user schedules interrupt disable */
1030 	if (atomic_dec_and_test(&vblank->refcount)) {
1031 		if (drm_vblank_offdelay == 0)
1032 			return;
1033 		else if (drm_vblank_offdelay < 0)
1034 			vblank_disable_fn(&vblank->disable_timer);
1035 		else if (!dev->vblank_disable_immediate)
1036 			mod_timer(&vblank->disable_timer,
1037 				  jiffies + ((drm_vblank_offdelay * HZ)/1000));
1038 	}
1039 }
1040 
1041 /**
1042  * drm_crtc_vblank_put - give up ownership of vblank events
1043  * @crtc: which counter to give up
1044  *
1045  * Release ownership of a given vblank counter, turning off interrupts
1046  * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1047  */
1048 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1049 {
1050 	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1051 }
1052 EXPORT_SYMBOL(drm_crtc_vblank_put);
1053 
1054 /**
1055  * drm_wait_one_vblank - wait for one vblank
1056  * @dev: DRM device
1057  * @pipe: CRTC index
1058  *
1059  * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1060  * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1061  * due to lack of driver support or because the crtc is off.
1062  *
1063  * This is the legacy version of drm_crtc_wait_one_vblank().
1064  */
1065 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1066 {
1067 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1068 	int ret;
1069 	u64 last;
1070 
1071 	if (WARN_ON(pipe >= dev->num_crtcs))
1072 		return;
1073 
1074 	ret = drm_vblank_get(dev, pipe);
1075 	if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret))
1076 		return;
1077 
1078 	last = drm_vblank_count(dev, pipe);
1079 
1080 	ret = wait_event_timeout(vblank->queue,
1081 				 last != drm_vblank_count(dev, pipe),
1082 				 msecs_to_jiffies(100));
1083 
1084 	WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1085 
1086 	drm_vblank_put(dev, pipe);
1087 }
1088 EXPORT_SYMBOL(drm_wait_one_vblank);
1089 
1090 /**
1091  * drm_crtc_wait_one_vblank - wait for one vblank
1092  * @crtc: DRM crtc
1093  *
1094  * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1095  * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1096  * due to lack of driver support or because the crtc is off.
1097  */
1098 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1099 {
1100 	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1101 }
1102 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1103 
1104 /**
1105  * drm_crtc_vblank_off - disable vblank events on a CRTC
1106  * @crtc: CRTC in question
1107  *
1108  * Drivers can use this function to shut down the vblank interrupt handling when
1109  * disabling a crtc. This function ensures that the latest vblank frame count is
1110  * stored so that drm_vblank_on can restore it again.
1111  *
1112  * Drivers must use this function when the hardware vblank counter can get
1113  * reset, e.g. when suspending or disabling the @crtc in general.
1114  */
1115 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1116 {
1117 	struct drm_device *dev = crtc->dev;
1118 	unsigned int pipe = drm_crtc_index(crtc);
1119 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1120 	struct drm_pending_vblank_event *e, *t;
1121 
1122 	ktime_t now;
1123 	unsigned long irqflags;
1124 	u64 seq;
1125 
1126 	if (WARN_ON(pipe >= dev->num_crtcs))
1127 		return;
1128 
1129 	spin_lock_irqsave(&dev->event_lock, irqflags);
1130 
1131 	spin_lock(&dev->vbl_lock);
1132 	DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1133 		      pipe, vblank->enabled, vblank->inmodeset);
1134 
1135 	/* Avoid redundant vblank disables without previous
1136 	 * drm_crtc_vblank_on(). */
1137 	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1138 		drm_vblank_disable_and_save(dev, pipe);
1139 
1140 	wake_up(&vblank->queue);
1141 
1142 	/*
1143 	 * Prevent subsequent drm_vblank_get() from re-enabling
1144 	 * the vblank interrupt by bumping the refcount.
1145 	 */
1146 	if (!vblank->inmodeset) {
1147 		atomic_inc(&vblank->refcount);
1148 		vblank->inmodeset = 1;
1149 	}
1150 	spin_unlock(&dev->vbl_lock);
1151 
1152 	/* Send any queued vblank events, lest the natives grow disquiet */
1153 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1154 
1155 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1156 		if (e->pipe != pipe)
1157 			continue;
1158 		DRM_DEBUG("Sending premature vblank event on disable: "
1159 			  "wanted %llu, current %llu\n",
1160 			  e->sequence, seq);
1161 		list_del(&e->base.link);
1162 		drm_vblank_put(dev, pipe);
1163 		send_vblank_event(dev, e, seq, now);
1164 	}
1165 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1166 
1167 	/* Will be reset by the modeset helpers when re-enabling the crtc by
1168 	 * calling drm_calc_timestamping_constants(). */
1169 	vblank->hwmode.crtc_clock = 0;
1170 }
1171 EXPORT_SYMBOL(drm_crtc_vblank_off);
1172 
1173 /**
1174  * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1175  * @crtc: CRTC in question
1176  *
1177  * Drivers can use this function to reset the vblank state to off at load time.
1178  * Drivers should use this together with the drm_crtc_vblank_off() and
1179  * drm_crtc_vblank_on() functions. The difference compared to
1180  * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1181  * and hence doesn't need to call any driver hooks.
1182  *
1183  * This is useful for recovering driver state e.g. on driver load, or on resume.
1184  */
1185 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1186 {
1187 	struct drm_device *dev = crtc->dev;
1188 	unsigned long irqflags;
1189 	unsigned int pipe = drm_crtc_index(crtc);
1190 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1191 
1192 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1193 	/*
1194 	 * Prevent subsequent drm_vblank_get() from enabling the vblank
1195 	 * interrupt by bumping the refcount.
1196 	 */
1197 	if (!vblank->inmodeset) {
1198 		atomic_inc(&vblank->refcount);
1199 		vblank->inmodeset = 1;
1200 	}
1201 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1202 
1203 	WARN_ON(!list_empty(&dev->vblank_event_list));
1204 }
1205 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1206 
1207 /**
1208  * drm_crtc_vblank_on - enable vblank events on a CRTC
1209  * @crtc: CRTC in question
1210  *
1211  * This functions restores the vblank interrupt state captured with
1212  * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1213  * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1214  * unbalanced and so can also be unconditionally called in driver load code to
1215  * reflect the current hardware state of the crtc.
1216  */
1217 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1218 {
1219 	struct drm_device *dev = crtc->dev;
1220 	unsigned int pipe = drm_crtc_index(crtc);
1221 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1222 	unsigned long irqflags;
1223 
1224 	if (WARN_ON(pipe >= dev->num_crtcs))
1225 		return;
1226 
1227 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1228 	DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1229 		      pipe, vblank->enabled, vblank->inmodeset);
1230 
1231 	/* Drop our private "prevent drm_vblank_get" refcount */
1232 	if (vblank->inmodeset) {
1233 		atomic_dec(&vblank->refcount);
1234 		vblank->inmodeset = 0;
1235 	}
1236 
1237 	drm_reset_vblank_timestamp(dev, pipe);
1238 
1239 	/*
1240 	 * re-enable interrupts if there are users left, or the
1241 	 * user wishes vblank interrupts to be enabled all the time.
1242 	 */
1243 	if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1244 		WARN_ON(drm_vblank_enable(dev, pipe));
1245 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1246 }
1247 EXPORT_SYMBOL(drm_crtc_vblank_on);
1248 
1249 /**
1250  * drm_vblank_restore - estimate missed vblanks and update vblank count.
1251  * @dev: DRM device
1252  * @pipe: CRTC index
1253  *
1254  * Power manamement features can cause frame counter resets between vblank
1255  * disable and enable. Drivers can use this function in their
1256  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1257  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1258  * vblank counter.
1259  *
1260  * This function is the legacy version of drm_crtc_vblank_restore().
1261  */
1262 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1263 {
1264 	ktime_t t_vblank;
1265 	struct drm_vblank_crtc *vblank;
1266 	int framedur_ns;
1267 	u64 diff_ns;
1268 	u32 cur_vblank, diff = 1;
1269 	int count = DRM_TIMESTAMP_MAXRETRIES;
1270 
1271 	if (WARN_ON(pipe >= dev->num_crtcs))
1272 		return;
1273 
1274 	assert_spin_locked(&dev->vbl_lock);
1275 	assert_spin_locked(&dev->vblank_time_lock);
1276 
1277 	vblank = &dev->vblank[pipe];
1278 	WARN_ONCE((drm_debug & DRM_UT_VBL) && !vblank->framedur_ns,
1279 		  "Cannot compute missed vblanks without frame duration\n");
1280 	framedur_ns = vblank->framedur_ns;
1281 
1282 	do {
1283 		cur_vblank = __get_vblank_counter(dev, pipe);
1284 		drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1285 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1286 
1287 	diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1288 	if (framedur_ns)
1289 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1290 
1291 
1292 	DRM_DEBUG_VBL("missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
1293 		      diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1294 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
1295 }
1296 EXPORT_SYMBOL(drm_vblank_restore);
1297 
1298 /**
1299  * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1300  * @crtc: CRTC in question
1301  *
1302  * Power manamement features can cause frame counter resets between vblank
1303  * disable and enable. Drivers can use this function in their
1304  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1305  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1306  * vblank counter.
1307  */
1308 void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1309 {
1310 	drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1311 }
1312 EXPORT_SYMBOL(drm_crtc_vblank_restore);
1313 
1314 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1315 					  unsigned int pipe)
1316 {
1317 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1318 
1319 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1320 	if (!dev->num_crtcs)
1321 		return;
1322 
1323 	if (WARN_ON(pipe >= dev->num_crtcs))
1324 		return;
1325 
1326 	/*
1327 	 * To avoid all the problems that might happen if interrupts
1328 	 * were enabled/disabled around or between these calls, we just
1329 	 * have the kernel take a reference on the CRTC (just once though
1330 	 * to avoid corrupting the count if multiple, mismatch calls occur),
1331 	 * so that interrupts remain enabled in the interim.
1332 	 */
1333 	if (!vblank->inmodeset) {
1334 		vblank->inmodeset = 0x1;
1335 		if (drm_vblank_get(dev, pipe) == 0)
1336 			vblank->inmodeset |= 0x2;
1337 	}
1338 }
1339 
1340 static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1341 					   unsigned int pipe)
1342 {
1343 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1344 	unsigned long irqflags;
1345 
1346 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1347 	if (!dev->num_crtcs)
1348 		return;
1349 
1350 	if (WARN_ON(pipe >= dev->num_crtcs))
1351 		return;
1352 
1353 	if (vblank->inmodeset) {
1354 		spin_lock_irqsave(&dev->vbl_lock, irqflags);
1355 		drm_reset_vblank_timestamp(dev, pipe);
1356 		spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1357 
1358 		if (vblank->inmodeset & 0x2)
1359 			drm_vblank_put(dev, pipe);
1360 
1361 		vblank->inmodeset = 0;
1362 	}
1363 }
1364 
1365 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1366 				 struct drm_file *file_priv)
1367 {
1368 	struct drm_modeset_ctl *modeset = data;
1369 	unsigned int pipe;
1370 
1371 	/* If drm_vblank_init() hasn't been called yet, just no-op */
1372 	if (!dev->num_crtcs)
1373 		return 0;
1374 
1375 	/* KMS drivers handle this internally */
1376 	if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1377 		return 0;
1378 
1379 	pipe = modeset->crtc;
1380 	if (pipe >= dev->num_crtcs)
1381 		return -EINVAL;
1382 
1383 	switch (modeset->cmd) {
1384 	case _DRM_PRE_MODESET:
1385 		drm_legacy_vblank_pre_modeset(dev, pipe);
1386 		break;
1387 	case _DRM_POST_MODESET:
1388 		drm_legacy_vblank_post_modeset(dev, pipe);
1389 		break;
1390 	default:
1391 		return -EINVAL;
1392 	}
1393 
1394 	return 0;
1395 }
1396 
1397 static inline bool vblank_passed(u64 seq, u64 ref)
1398 {
1399 	return (seq - ref) <= (1 << 23);
1400 }
1401 
1402 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1403 				  u64 req_seq,
1404 				  union drm_wait_vblank *vblwait,
1405 				  struct drm_file *file_priv)
1406 {
1407 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1408 	struct drm_pending_vblank_event *e;
1409 	ktime_t now;
1410 	unsigned long flags;
1411 	u64 seq;
1412 	int ret;
1413 
1414 	e = kzalloc(sizeof(*e), GFP_KERNEL);
1415 	if (e == NULL) {
1416 		ret = -ENOMEM;
1417 		goto err_put;
1418 	}
1419 
1420 	e->pipe = pipe;
1421 	e->event.base.type = DRM_EVENT_VBLANK;
1422 	e->event.base.length = sizeof(e->event.vbl);
1423 	e->event.vbl.user_data = vblwait->request.signal;
1424 	e->event.vbl.crtc_id = 0;
1425 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1426 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1427 		if (crtc)
1428 			e->event.vbl.crtc_id = crtc->base.id;
1429 	}
1430 
1431 	spin_lock_irqsave(&dev->event_lock, flags);
1432 
1433 	/*
1434 	 * drm_crtc_vblank_off() might have been called after we called
1435 	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1436 	 * vblank disable, so no need for further locking.  The reference from
1437 	 * drm_vblank_get() protects against vblank disable from another source.
1438 	 */
1439 	if (!READ_ONCE(vblank->enabled)) {
1440 		ret = -EINVAL;
1441 		goto err_unlock;
1442 	}
1443 
1444 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1445 					    &e->event.base);
1446 
1447 	if (ret)
1448 		goto err_unlock;
1449 
1450 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1451 
1452 	DRM_DEBUG("event on vblank count %llu, current %llu, crtc %u\n",
1453 		  req_seq, seq, pipe);
1454 
1455 	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1456 
1457 	e->sequence = req_seq;
1458 	if (vblank_passed(seq, req_seq)) {
1459 		drm_vblank_put(dev, pipe);
1460 		send_vblank_event(dev, e, seq, now);
1461 		vblwait->reply.sequence = seq;
1462 	} else {
1463 		/* drm_handle_vblank_events will call drm_vblank_put */
1464 		list_add_tail(&e->base.link, &dev->vblank_event_list);
1465 		vblwait->reply.sequence = req_seq;
1466 	}
1467 
1468 	spin_unlock_irqrestore(&dev->event_lock, flags);
1469 
1470 	return 0;
1471 
1472 err_unlock:
1473 	spin_unlock_irqrestore(&dev->event_lock, flags);
1474 	kfree(e);
1475 err_put:
1476 	drm_vblank_put(dev, pipe);
1477 	return ret;
1478 }
1479 
1480 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1481 {
1482 	if (vblwait->request.sequence)
1483 		return false;
1484 
1485 	return _DRM_VBLANK_RELATIVE ==
1486 		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1487 					  _DRM_VBLANK_EVENT |
1488 					  _DRM_VBLANK_NEXTONMISS));
1489 }
1490 
1491 /*
1492  * Widen a 32-bit param to 64-bits.
1493  *
1494  * \param narrow 32-bit value (missing upper 32 bits)
1495  * \param near 64-bit value that should be 'close' to near
1496  *
1497  * This function returns a 64-bit value using the lower 32-bits from
1498  * 'narrow' and constructing the upper 32-bits so that the result is
1499  * as close as possible to 'near'.
1500  */
1501 
1502 static u64 widen_32_to_64(u32 narrow, u64 near)
1503 {
1504 	return near + (s32) (narrow - near);
1505 }
1506 
1507 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1508 				  struct drm_wait_vblank_reply *reply)
1509 {
1510 	ktime_t now;
1511 	struct timespec64 ts;
1512 
1513 	/*
1514 	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1515 	 * to store the seconds. This is safe as we always use monotonic
1516 	 * timestamps since linux-4.15.
1517 	 */
1518 	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1519 	ts = ktime_to_timespec64(now);
1520 	reply->tval_sec = (u32)ts.tv_sec;
1521 	reply->tval_usec = ts.tv_nsec / 1000;
1522 }
1523 
1524 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1525 			  struct drm_file *file_priv)
1526 {
1527 	struct drm_crtc *crtc;
1528 	struct drm_vblank_crtc *vblank;
1529 	union drm_wait_vblank *vblwait = data;
1530 	int ret;
1531 	u64 req_seq, seq;
1532 	unsigned int pipe_index;
1533 	unsigned int flags, pipe, high_pipe;
1534 
1535 	if (!dev->irq_enabled)
1536 		return -EINVAL;
1537 
1538 	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1539 		return -EINVAL;
1540 
1541 	if (vblwait->request.type &
1542 	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1543 	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
1544 		DRM_ERROR("Unsupported type value 0x%x, supported mask 0x%x\n",
1545 			  vblwait->request.type,
1546 			  (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1547 			   _DRM_VBLANK_HIGH_CRTC_MASK));
1548 		return -EINVAL;
1549 	}
1550 
1551 	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1552 	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1553 	if (high_pipe)
1554 		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1555 	else
1556 		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1557 
1558 	/* Convert lease-relative crtc index into global crtc index */
1559 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1560 		pipe = 0;
1561 		drm_for_each_crtc(crtc, dev) {
1562 			if (drm_lease_held(file_priv, crtc->base.id)) {
1563 				if (pipe_index == 0)
1564 					break;
1565 				pipe_index--;
1566 			}
1567 			pipe++;
1568 		}
1569 	} else {
1570 		pipe = pipe_index;
1571 	}
1572 
1573 	if (pipe >= dev->num_crtcs)
1574 		return -EINVAL;
1575 
1576 	vblank = &dev->vblank[pipe];
1577 
1578 	/* If the counter is currently enabled and accurate, short-circuit
1579 	 * queries to return the cached timestamp of the last vblank.
1580 	 */
1581 	if (dev->vblank_disable_immediate &&
1582 	    drm_wait_vblank_is_query(vblwait) &&
1583 	    READ_ONCE(vblank->enabled)) {
1584 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1585 		return 0;
1586 	}
1587 
1588 	ret = drm_vblank_get(dev, pipe);
1589 	if (ret) {
1590 		DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1591 		return ret;
1592 	}
1593 	seq = drm_vblank_count(dev, pipe);
1594 
1595 	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1596 	case _DRM_VBLANK_RELATIVE:
1597 		req_seq = seq + vblwait->request.sequence;
1598 		vblwait->request.sequence = req_seq;
1599 		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1600 		break;
1601 	case _DRM_VBLANK_ABSOLUTE:
1602 		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1603 		break;
1604 	default:
1605 		ret = -EINVAL;
1606 		goto done;
1607 	}
1608 
1609 	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1610 	    vblank_passed(seq, req_seq)) {
1611 		req_seq = seq + 1;
1612 		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1613 		vblwait->request.sequence = req_seq;
1614 	}
1615 
1616 	if (flags & _DRM_VBLANK_EVENT) {
1617 		/* must hold on to the vblank ref until the event fires
1618 		 * drm_vblank_put will be called asynchronously
1619 		 */
1620 		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1621 	}
1622 
1623 	if (req_seq != seq) {
1624 		DRM_DEBUG("waiting on vblank count %llu, crtc %u\n",
1625 			  req_seq, pipe);
1626 		DRM_WAIT_ON(ret, vblank->queue, 3 * HZ,
1627 			    vblank_passed(drm_vblank_count(dev, pipe),
1628 					  req_seq) ||
1629 			    !READ_ONCE(vblank->enabled));
1630 	}
1631 
1632 	if (ret != -EINTR) {
1633 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1634 
1635 		DRM_DEBUG("crtc %d returning %u to client\n",
1636 			  pipe, vblwait->reply.sequence);
1637 	} else {
1638 		DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe);
1639 	}
1640 
1641 done:
1642 	drm_vblank_put(dev, pipe);
1643 	return ret;
1644 }
1645 
1646 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1647 {
1648 	struct drm_pending_vblank_event *e, *t;
1649 	ktime_t now;
1650 	u64 seq;
1651 
1652 	assert_spin_locked(&dev->event_lock);
1653 
1654 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1655 
1656 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1657 		if (e->pipe != pipe)
1658 			continue;
1659 		if (!vblank_passed(seq, e->sequence))
1660 			continue;
1661 
1662 		DRM_DEBUG("vblank event on %llu, current %llu\n",
1663 			  e->sequence, seq);
1664 
1665 		list_del(&e->base.link);
1666 		drm_vblank_put(dev, pipe);
1667 		send_vblank_event(dev, e, seq, now);
1668 	}
1669 
1670 	trace_drm_vblank_event(pipe, seq);
1671 }
1672 
1673 /**
1674  * drm_handle_vblank - handle a vblank event
1675  * @dev: DRM device
1676  * @pipe: index of CRTC where this event occurred
1677  *
1678  * Drivers should call this routine in their vblank interrupt handlers to
1679  * update the vblank counter and send any signals that may be pending.
1680  *
1681  * This is the legacy version of drm_crtc_handle_vblank().
1682  */
1683 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1684 {
1685 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1686 	unsigned long irqflags;
1687 	bool disable_irq;
1688 
1689 	if (WARN_ON_ONCE(!dev->num_crtcs))
1690 		return false;
1691 
1692 	if (WARN_ON(pipe >= dev->num_crtcs))
1693 		return false;
1694 
1695 	spin_lock_irqsave(&dev->event_lock, irqflags);
1696 
1697 	/* Need timestamp lock to prevent concurrent execution with
1698 	 * vblank enable/disable, as this would cause inconsistent
1699 	 * or corrupted timestamps and vblank counts.
1700 	 */
1701 	spin_lock(&dev->vblank_time_lock);
1702 
1703 	/* Vblank irq handling disabled. Nothing to do. */
1704 	if (!vblank->enabled) {
1705 		spin_unlock(&dev->vblank_time_lock);
1706 		spin_unlock_irqrestore(&dev->event_lock, irqflags);
1707 		return false;
1708 	}
1709 
1710 	drm_update_vblank_count(dev, pipe, true);
1711 
1712 	spin_unlock(&dev->vblank_time_lock);
1713 
1714 	wake_up(&vblank->queue);
1715 
1716 	/* With instant-off, we defer disabling the interrupt until after
1717 	 * we finish processing the following vblank after all events have
1718 	 * been signaled. The disable has to be last (after
1719 	 * drm_handle_vblank_events) so that the timestamp is always accurate.
1720 	 */
1721 	disable_irq = (dev->vblank_disable_immediate &&
1722 		       drm_vblank_offdelay > 0 &&
1723 		       !atomic_read(&vblank->refcount));
1724 
1725 	drm_handle_vblank_events(dev, pipe);
1726 
1727 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1728 
1729 	if (disable_irq)
1730 		vblank_disable_fn(&vblank->disable_timer);
1731 
1732 	return true;
1733 }
1734 EXPORT_SYMBOL(drm_handle_vblank);
1735 
1736 /**
1737  * drm_crtc_handle_vblank - handle a vblank event
1738  * @crtc: where this event occurred
1739  *
1740  * Drivers should call this routine in their vblank interrupt handlers to
1741  * update the vblank counter and send any signals that may be pending.
1742  *
1743  * This is the native KMS version of drm_handle_vblank().
1744  *
1745  * Returns:
1746  * True if the event was successfully handled, false on failure.
1747  */
1748 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1749 {
1750 	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1751 }
1752 EXPORT_SYMBOL(drm_crtc_handle_vblank);
1753 
1754 /*
1755  * Get crtc VBLANK count.
1756  *
1757  * \param dev DRM device
1758  * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
1759  * \param file_priv drm file private for the user's open file descriptor
1760  */
1761 
1762 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
1763 				struct drm_file *file_priv)
1764 {
1765 	struct drm_crtc *crtc;
1766 	struct drm_vblank_crtc *vblank;
1767 	int pipe;
1768 	struct drm_crtc_get_sequence *get_seq = data;
1769 	ktime_t now;
1770 	bool vblank_enabled;
1771 	int ret;
1772 
1773 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
1774 		return -EINVAL;
1775 
1776 	if (!dev->irq_enabled)
1777 		return -EINVAL;
1778 
1779 	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
1780 	if (!crtc)
1781 		return -ENOENT;
1782 
1783 	pipe = drm_crtc_index(crtc);
1784 
1785 	vblank = &dev->vblank[pipe];
1786 	vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
1787 
1788 	if (!vblank_enabled) {
1789 		ret = drm_crtc_vblank_get(crtc);
1790 		if (ret) {
1791 			DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1792 			return ret;
1793 		}
1794 	}
1795 	drm_modeset_lock(&crtc->mutex, NULL);
1796 	if (crtc->state)
1797 		get_seq->active = crtc->state->enable;
1798 	else
1799 		get_seq->active = crtc->enabled;
1800 	drm_modeset_unlock(&crtc->mutex);
1801 	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1802 	get_seq->sequence_ns = ktime_to_ns(now);
1803 	if (!vblank_enabled)
1804 		drm_crtc_vblank_put(crtc);
1805 	return 0;
1806 }
1807 
1808 /*
1809  * Queue a event for VBLANK sequence
1810  *
1811  * \param dev DRM device
1812  * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
1813  * \param file_priv drm file private for the user's open file descriptor
1814  */
1815 
1816 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
1817 				  struct drm_file *file_priv)
1818 {
1819 	struct drm_crtc *crtc;
1820 	struct drm_vblank_crtc *vblank;
1821 	int pipe;
1822 	struct drm_crtc_queue_sequence *queue_seq = data;
1823 	ktime_t now;
1824 	struct drm_pending_vblank_event *e;
1825 	u32 flags;
1826 	u64 seq;
1827 	u64 req_seq;
1828 	int ret;
1829 	unsigned long spin_flags;
1830 
1831 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
1832 		return -EINVAL;
1833 
1834 	if (!dev->irq_enabled)
1835 		return -EINVAL;
1836 
1837 	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
1838 	if (!crtc)
1839 		return -ENOENT;
1840 
1841 	flags = queue_seq->flags;
1842 	/* Check valid flag bits */
1843 	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
1844 		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
1845 		return -EINVAL;
1846 
1847 	pipe = drm_crtc_index(crtc);
1848 
1849 	vblank = &dev->vblank[pipe];
1850 
1851 	e = kzalloc(sizeof(*e), GFP_KERNEL);
1852 	if (e == NULL)
1853 		return -ENOMEM;
1854 
1855 	ret = drm_crtc_vblank_get(crtc);
1856 	if (ret) {
1857 		DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1858 		goto err_free;
1859 	}
1860 
1861 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1862 	req_seq = queue_seq->sequence;
1863 
1864 	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
1865 		req_seq += seq;
1866 
1867 	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq))
1868 		req_seq = seq + 1;
1869 
1870 	e->pipe = pipe;
1871 	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
1872 	e->event.base.length = sizeof(e->event.seq);
1873 	e->event.seq.user_data = queue_seq->user_data;
1874 
1875 	spin_lock_irqsave(&dev->event_lock, spin_flags);
1876 
1877 	/*
1878 	 * drm_crtc_vblank_off() might have been called after we called
1879 	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1880 	 * vblank disable, so no need for further locking.  The reference from
1881 	 * drm_crtc_vblank_get() protects against vblank disable from another source.
1882 	 */
1883 	if (!READ_ONCE(vblank->enabled)) {
1884 		ret = -EINVAL;
1885 		goto err_unlock;
1886 	}
1887 
1888 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1889 					    &e->event.base);
1890 
1891 	if (ret)
1892 		goto err_unlock;
1893 
1894 	e->sequence = req_seq;
1895 
1896 	if (vblank_passed(seq, req_seq)) {
1897 		drm_crtc_vblank_put(crtc);
1898 		send_vblank_event(dev, e, seq, now);
1899 		queue_seq->sequence = seq;
1900 	} else {
1901 		/* drm_handle_vblank_events will call drm_vblank_put */
1902 		list_add_tail(&e->base.link, &dev->vblank_event_list);
1903 		queue_seq->sequence = req_seq;
1904 	}
1905 
1906 	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
1907 	return 0;
1908 
1909 err_unlock:
1910 	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
1911 	drm_crtc_vblank_put(crtc);
1912 err_free:
1913 	kfree(e);
1914 	return ret;
1915 }
1916