1 /* 2 * drm_irq.c IRQ and vblank support 3 * 4 * \author Rickard E. (Rik) Faith <faith@valinux.com> 5 * \author Gareth Hughes <gareth@valinux.com> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 24 * OTHER DEALINGS IN THE SOFTWARE. 25 */ 26 27 #include <drm/drm_vblank.h> 28 #include <drm/drmP.h> 29 #include <linux/export.h> 30 31 #include "drm_trace.h" 32 #include "drm_internal.h" 33 34 /** 35 * DOC: vblank handling 36 * 37 * Vertical blanking plays a major role in graphics rendering. To achieve 38 * tear-free display, users must synchronize page flips and/or rendering to 39 * vertical blanking. The DRM API offers ioctls to perform page flips 40 * synchronized to vertical blanking and wait for vertical blanking. 41 * 42 * The DRM core handles most of the vertical blanking management logic, which 43 * involves filtering out spurious interrupts, keeping race-free blanking 44 * counters, coping with counter wrap-around and resets and keeping use counts. 45 * It relies on the driver to generate vertical blanking interrupts and 46 * optionally provide a hardware vertical blanking counter. 47 * 48 * Drivers must initialize the vertical blanking handling core with a call to 49 * drm_vblank_init(). Minimally, a driver needs to implement 50 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call 51 * drm_crtc_handle_vblank() in it's vblank interrupt handler for working vblank 52 * support. 53 * 54 * Vertical blanking interrupts can be enabled by the DRM core or by drivers 55 * themselves (for instance to handle page flipping operations). The DRM core 56 * maintains a vertical blanking use count to ensure that the interrupts are not 57 * disabled while a user still needs them. To increment the use count, drivers 58 * call drm_crtc_vblank_get() and release the vblank reference again with 59 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are 60 * guaranteed to be enabled. 61 * 62 * On many hardware disabling the vblank interrupt cannot be done in a race-free 63 * manner, see &drm_driver.vblank_disable_immediate and 64 * &drm_driver.max_vblank_count. In that case the vblank core only disables the 65 * vblanks after a timer has expired, which can be configured through the 66 * ``vblankoffdelay`` module parameter. 67 */ 68 69 /* Retry timestamp calculation up to 3 times to satisfy 70 * drm_timestamp_precision before giving up. 71 */ 72 #define DRM_TIMESTAMP_MAXRETRIES 3 73 74 /* Threshold in nanoseconds for detection of redundant 75 * vblank irq in drm_handle_vblank(). 1 msec should be ok. 76 */ 77 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 78 79 static bool 80 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 81 struct timeval *tvblank, bool in_vblank_irq); 82 83 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */ 84 85 /* 86 * Default to use monotonic timestamps for wait-for-vblank and page-flip 87 * complete events. 88 */ 89 unsigned int drm_timestamp_monotonic = 1; 90 91 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */ 92 93 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600); 94 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600); 95 module_param_named(timestamp_monotonic, drm_timestamp_monotonic, int, 0600); 96 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)"); 97 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]"); 98 MODULE_PARM_DESC(timestamp_monotonic, "Use monotonic timestamps"); 99 100 static void store_vblank(struct drm_device *dev, unsigned int pipe, 101 u32 vblank_count_inc, 102 struct timeval *t_vblank, u32 last) 103 { 104 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 105 106 assert_spin_locked(&dev->vblank_time_lock); 107 108 vblank->last = last; 109 110 write_seqlock(&vblank->seqlock); 111 vblank->time = *t_vblank; 112 vblank->count += vblank_count_inc; 113 write_sequnlock(&vblank->seqlock); 114 } 115 116 /* 117 * "No hw counter" fallback implementation of .get_vblank_counter() hook, 118 * if there is no useable hardware frame counter available. 119 */ 120 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe) 121 { 122 WARN_ON_ONCE(dev->max_vblank_count != 0); 123 return 0; 124 } 125 126 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe) 127 { 128 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 129 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 130 131 if (crtc->funcs->get_vblank_counter) 132 return crtc->funcs->get_vblank_counter(crtc); 133 } 134 135 if (dev->driver->get_vblank_counter) 136 return dev->driver->get_vblank_counter(dev, pipe); 137 138 return drm_vblank_no_hw_counter(dev, pipe); 139 } 140 141 /* 142 * Reset the stored timestamp for the current vblank count to correspond 143 * to the last vblank occurred. 144 * 145 * Only to be called from drm_crtc_vblank_on(). 146 * 147 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 148 * device vblank fields. 149 */ 150 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe) 151 { 152 u32 cur_vblank; 153 bool rc; 154 struct timeval t_vblank; 155 int count = DRM_TIMESTAMP_MAXRETRIES; 156 157 spin_lock(&dev->vblank_time_lock); 158 159 /* 160 * sample the current counter to avoid random jumps 161 * when drm_vblank_enable() applies the diff 162 */ 163 do { 164 cur_vblank = __get_vblank_counter(dev, pipe); 165 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 166 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 167 168 /* 169 * Only reinitialize corresponding vblank timestamp if high-precision query 170 * available and didn't fail. Otherwise reinitialize delayed at next vblank 171 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid. 172 */ 173 if (!rc) 174 t_vblank = (struct timeval) {0, 0}; 175 176 /* 177 * +1 to make sure user will never see the same 178 * vblank counter value before and after a modeset 179 */ 180 store_vblank(dev, pipe, 1, &t_vblank, cur_vblank); 181 182 spin_unlock(&dev->vblank_time_lock); 183 } 184 185 /* 186 * Call back into the driver to update the appropriate vblank counter 187 * (specified by @pipe). Deal with wraparound, if it occurred, and 188 * update the last read value so we can deal with wraparound on the next 189 * call if necessary. 190 * 191 * Only necessary when going from off->on, to account for frames we 192 * didn't get an interrupt for. 193 * 194 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 195 * device vblank fields. 196 */ 197 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe, 198 bool in_vblank_irq) 199 { 200 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 201 u32 cur_vblank, diff; 202 bool rc; 203 struct timeval t_vblank; 204 int count = DRM_TIMESTAMP_MAXRETRIES; 205 int framedur_ns = vblank->framedur_ns; 206 207 /* 208 * Interrupts were disabled prior to this call, so deal with counter 209 * wrap if needed. 210 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events 211 * here if the register is small or we had vblank interrupts off for 212 * a long time. 213 * 214 * We repeat the hardware vblank counter & timestamp query until 215 * we get consistent results. This to prevent races between gpu 216 * updating its hardware counter while we are retrieving the 217 * corresponding vblank timestamp. 218 */ 219 do { 220 cur_vblank = __get_vblank_counter(dev, pipe); 221 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq); 222 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 223 224 if (dev->max_vblank_count != 0) { 225 /* trust the hw counter when it's around */ 226 diff = (cur_vblank - vblank->last) & dev->max_vblank_count; 227 } else if (rc && framedur_ns) { 228 const struct timeval *t_old; 229 u64 diff_ns; 230 231 t_old = &vblank->time; 232 diff_ns = timeval_to_ns(&t_vblank) - timeval_to_ns(t_old); 233 234 /* 235 * Figure out how many vblanks we've missed based 236 * on the difference in the timestamps and the 237 * frame/field duration. 238 */ 239 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 240 241 if (diff == 0 && in_vblank_irq) 242 DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored." 243 " diff_ns = %lld, framedur_ns = %d)\n", 244 pipe, (long long) diff_ns, framedur_ns); 245 } else { 246 /* some kind of default for drivers w/o accurate vbl timestamping */ 247 diff = in_vblank_irq ? 1 : 0; 248 } 249 250 /* 251 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset 252 * interval? If so then vblank irqs keep running and it will likely 253 * happen that the hardware vblank counter is not trustworthy as it 254 * might reset at some point in that interval and vblank timestamps 255 * are not trustworthy either in that interval. Iow. this can result 256 * in a bogus diff >> 1 which must be avoided as it would cause 257 * random large forward jumps of the software vblank counter. 258 */ 259 if (diff > 1 && (vblank->inmodeset & 0x2)) { 260 DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u" 261 " due to pre-modeset.\n", pipe, diff); 262 diff = 1; 263 } 264 265 DRM_DEBUG_VBL("updating vblank count on crtc %u:" 266 " current=%u, diff=%u, hw=%u hw_last=%u\n", 267 pipe, vblank->count, diff, cur_vblank, vblank->last); 268 269 if (diff == 0) { 270 WARN_ON_ONCE(cur_vblank != vblank->last); 271 return; 272 } 273 274 /* 275 * Only reinitialize corresponding vblank timestamp if high-precision query 276 * available and didn't fail, or we were called from the vblank interrupt. 277 * Otherwise reinitialize delayed at next vblank interrupt and assign 0 278 * for now, to mark the vblanktimestamp as invalid. 279 */ 280 if (!rc && !in_vblank_irq) 281 t_vblank = (struct timeval) {0, 0}; 282 283 store_vblank(dev, pipe, diff, &t_vblank, cur_vblank); 284 } 285 286 static u32 drm_vblank_count(struct drm_device *dev, unsigned int pipe) 287 { 288 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 289 290 if (WARN_ON(pipe >= dev->num_crtcs)) 291 return 0; 292 293 return vblank->count; 294 } 295 296 /** 297 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter 298 * @crtc: which counter to retrieve 299 * 300 * This function is similar to drm_crtc_vblank_count() but this function 301 * interpolates to handle a race with vblank interrupts using the high precision 302 * timestamping support. 303 * 304 * This is mostly useful for hardware that can obtain the scanout position, but 305 * doesn't have a hardware frame counter. 306 */ 307 u32 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc) 308 { 309 struct drm_device *dev = crtc->dev; 310 unsigned int pipe = drm_crtc_index(crtc); 311 u32 vblank; 312 unsigned long flags; 313 314 WARN(!dev->driver->get_vblank_timestamp, 315 "This function requires support for accurate vblank timestamps."); 316 317 spin_lock_irqsave(&dev->vblank_time_lock, flags); 318 319 drm_update_vblank_count(dev, pipe, false); 320 vblank = drm_vblank_count(dev, pipe); 321 322 spin_unlock_irqrestore(&dev->vblank_time_lock, flags); 323 324 return vblank; 325 } 326 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count); 327 328 static void __disable_vblank(struct drm_device *dev, unsigned int pipe) 329 { 330 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 331 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 332 333 if (crtc->funcs->disable_vblank) { 334 crtc->funcs->disable_vblank(crtc); 335 return; 336 } 337 } 338 339 dev->driver->disable_vblank(dev, pipe); 340 } 341 342 /* 343 * Disable vblank irq's on crtc, make sure that last vblank count 344 * of hardware and corresponding consistent software vblank counter 345 * are preserved, even if there are any spurious vblank irq's after 346 * disable. 347 */ 348 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe) 349 { 350 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 351 unsigned long irqflags; 352 353 assert_spin_locked(&dev->vbl_lock); 354 355 /* Prevent vblank irq processing while disabling vblank irqs, 356 * so no updates of timestamps or count can happen after we've 357 * disabled. Needed to prevent races in case of delayed irq's. 358 */ 359 spin_lock_irqsave(&dev->vblank_time_lock, irqflags); 360 361 /* 362 * Only disable vblank interrupts if they're enabled. This avoids 363 * calling the ->disable_vblank() operation in atomic context with the 364 * hardware potentially runtime suspended. 365 */ 366 if (vblank->enabled) { 367 __disable_vblank(dev, pipe); 368 vblank->enabled = false; 369 } 370 371 /* 372 * Always update the count and timestamp to maintain the 373 * appearance that the counter has been ticking all along until 374 * this time. This makes the count account for the entire time 375 * between drm_crtc_vblank_on() and drm_crtc_vblank_off(). 376 */ 377 drm_update_vblank_count(dev, pipe, false); 378 379 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 380 } 381 382 static void vblank_disable_fn(unsigned long arg) 383 { 384 struct drm_vblank_crtc *vblank = (void *)arg; 385 struct drm_device *dev = vblank->dev; 386 unsigned int pipe = vblank->pipe; 387 unsigned long irqflags; 388 389 spin_lock_irqsave(&dev->vbl_lock, irqflags); 390 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) { 391 DRM_DEBUG("disabling vblank on crtc %u\n", pipe); 392 drm_vblank_disable_and_save(dev, pipe); 393 } 394 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 395 } 396 397 void drm_vblank_cleanup(struct drm_device *dev) 398 { 399 unsigned int pipe; 400 401 /* Bail if the driver didn't call drm_vblank_init() */ 402 if (dev->num_crtcs == 0) 403 return; 404 405 for (pipe = 0; pipe < dev->num_crtcs; pipe++) { 406 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 407 408 WARN_ON(READ_ONCE(vblank->enabled) && 409 drm_core_check_feature(dev, DRIVER_MODESET)); 410 411 del_timer_sync(&vblank->disable_timer); 412 } 413 414 kfree(dev->vblank); 415 416 dev->num_crtcs = 0; 417 } 418 419 /** 420 * drm_vblank_init - initialize vblank support 421 * @dev: DRM device 422 * @num_crtcs: number of CRTCs supported by @dev 423 * 424 * This function initializes vblank support for @num_crtcs display pipelines. 425 * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for 426 * drivers with a &drm_driver.release callback. 427 * 428 * Returns: 429 * Zero on success or a negative error code on failure. 430 */ 431 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs) 432 { 433 int ret = -ENOMEM; 434 unsigned int i; 435 436 spin_lock_init(&dev->vbl_lock); 437 spin_lock_init(&dev->vblank_time_lock); 438 439 dev->num_crtcs = num_crtcs; 440 441 dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL); 442 if (!dev->vblank) 443 goto err; 444 445 for (i = 0; i < num_crtcs; i++) { 446 struct drm_vblank_crtc *vblank = &dev->vblank[i]; 447 448 vblank->dev = dev; 449 vblank->pipe = i; 450 init_waitqueue_head(&vblank->queue); 451 setup_timer(&vblank->disable_timer, vblank_disable_fn, 452 (unsigned long)vblank); 453 seqlock_init(&vblank->seqlock); 454 } 455 456 DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n"); 457 458 /* Driver specific high-precision vblank timestamping supported? */ 459 if (dev->driver->get_vblank_timestamp) 460 DRM_INFO("Driver supports precise vblank timestamp query.\n"); 461 else 462 DRM_INFO("No driver support for vblank timestamp query.\n"); 463 464 /* Must have precise timestamping for reliable vblank instant disable */ 465 if (dev->vblank_disable_immediate && !dev->driver->get_vblank_timestamp) { 466 dev->vblank_disable_immediate = false; 467 DRM_INFO("Setting vblank_disable_immediate to false because " 468 "get_vblank_timestamp == NULL\n"); 469 } 470 471 return 0; 472 473 err: 474 dev->num_crtcs = 0; 475 return ret; 476 } 477 EXPORT_SYMBOL(drm_vblank_init); 478 479 /** 480 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC 481 * @crtc: which CRTC's vblank waitqueue to retrieve 482 * 483 * This function returns a pointer to the vblank waitqueue for the CRTC. 484 * Drivers can use this to implement vblank waits using wait_event() and related 485 * functions. 486 */ 487 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc) 488 { 489 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue; 490 } 491 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue); 492 493 494 /** 495 * drm_calc_timestamping_constants - calculate vblank timestamp constants 496 * @crtc: drm_crtc whose timestamp constants should be updated. 497 * @mode: display mode containing the scanout timings 498 * 499 * Calculate and store various constants which are later needed by vblank and 500 * swap-completion timestamping, e.g, by 501 * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true 502 * scanout timing, so they take things like panel scaling or other adjustments 503 * into account. 504 */ 505 void drm_calc_timestamping_constants(struct drm_crtc *crtc, 506 const struct drm_display_mode *mode) 507 { 508 struct drm_device *dev = crtc->dev; 509 unsigned int pipe = drm_crtc_index(crtc); 510 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 511 int linedur_ns = 0, framedur_ns = 0; 512 int dotclock = mode->crtc_clock; 513 514 if (!dev->num_crtcs) 515 return; 516 517 if (WARN_ON(pipe >= dev->num_crtcs)) 518 return; 519 520 /* Valid dotclock? */ 521 if (dotclock > 0) { 522 int frame_size = mode->crtc_htotal * mode->crtc_vtotal; 523 524 /* 525 * Convert scanline length in pixels and video 526 * dot clock to line duration and frame duration 527 * in nanoseconds: 528 */ 529 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock); 530 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock); 531 532 /* 533 * Fields of interlaced scanout modes are only half a frame duration. 534 */ 535 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 536 framedur_ns /= 2; 537 } else 538 DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n", 539 crtc->base.id); 540 541 vblank->linedur_ns = linedur_ns; 542 vblank->framedur_ns = framedur_ns; 543 vblank->hwmode = *mode; 544 545 DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n", 546 crtc->base.id, mode->crtc_htotal, 547 mode->crtc_vtotal, mode->crtc_vdisplay); 548 DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n", 549 crtc->base.id, dotclock, framedur_ns, linedur_ns); 550 } 551 EXPORT_SYMBOL(drm_calc_timestamping_constants); 552 553 /** 554 * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper 555 * @dev: DRM device 556 * @pipe: index of CRTC whose vblank timestamp to retrieve 557 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 558 * On return contains true maximum error of timestamp 559 * @vblank_time: Pointer to struct timeval which should receive the timestamp 560 * @in_vblank_irq: 561 * True when called from drm_crtc_handle_vblank(). Some drivers 562 * need to apply some workarounds for gpu-specific vblank irq quirks 563 * if flag is set. 564 * 565 * Implements calculation of exact vblank timestamps from given drm_display_mode 566 * timings and current video scanout position of a CRTC. This can be directly 567 * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver 568 * if &drm_driver.get_scanout_position is implemented. 569 * 570 * The current implementation only handles standard video modes. For double scan 571 * and interlaced modes the driver is supposed to adjust the hardware mode 572 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 573 * match the scanout position reported. 574 * 575 * Note that atomic drivers must call drm_calc_timestamping_constants() before 576 * enabling a CRTC. The atomic helpers already take care of that in 577 * drm_atomic_helper_update_legacy_modeset_state(). 578 * 579 * Returns: 580 * 581 * Returns true on success, and false on failure, i.e. when no accurate 582 * timestamp could be acquired. 583 */ 584 bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev, 585 unsigned int pipe, 586 int *max_error, 587 struct timeval *vblank_time, 588 bool in_vblank_irq) 589 { 590 struct timeval tv_etime; 591 ktime_t stime, etime; 592 bool vbl_status; 593 struct drm_crtc *crtc; 594 const struct drm_display_mode *mode; 595 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 596 int vpos, hpos, i; 597 int delta_ns, duration_ns; 598 599 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 600 return false; 601 602 crtc = drm_crtc_from_index(dev, pipe); 603 604 if (pipe >= dev->num_crtcs || !crtc) { 605 DRM_ERROR("Invalid crtc %u\n", pipe); 606 return false; 607 } 608 609 /* Scanout position query not supported? Should not happen. */ 610 if (!dev->driver->get_scanout_position) { 611 DRM_ERROR("Called from driver w/o get_scanout_position()!?\n"); 612 return false; 613 } 614 615 if (drm_drv_uses_atomic_modeset(dev)) 616 mode = &vblank->hwmode; 617 else 618 mode = &crtc->hwmode; 619 620 /* If mode timing undefined, just return as no-op: 621 * Happens during initial modesetting of a crtc. 622 */ 623 if (mode->crtc_clock == 0) { 624 DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe); 625 WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev)); 626 627 return false; 628 } 629 630 /* Get current scanout position with system timestamp. 631 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times 632 * if single query takes longer than max_error nanoseconds. 633 * 634 * This guarantees a tight bound on maximum error if 635 * code gets preempted or delayed for some reason. 636 */ 637 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { 638 /* 639 * Get vertical and horizontal scanout position vpos, hpos, 640 * and bounding timestamps stime, etime, pre/post query. 641 */ 642 vbl_status = dev->driver->get_scanout_position(dev, pipe, 643 in_vblank_irq, 644 &vpos, &hpos, 645 &stime, &etime, 646 mode); 647 648 /* Return as no-op if scanout query unsupported or failed. */ 649 if (!vbl_status) { 650 DRM_DEBUG("crtc %u : scanoutpos query failed.\n", 651 pipe); 652 return false; 653 } 654 655 /* Compute uncertainty in timestamp of scanout position query. */ 656 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime); 657 658 /* Accept result with < max_error nsecs timing uncertainty. */ 659 if (duration_ns <= *max_error) 660 break; 661 } 662 663 /* Noisy system timing? */ 664 if (i == DRM_TIMESTAMP_MAXRETRIES) { 665 DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n", 666 pipe, duration_ns/1000, *max_error/1000, i); 667 } 668 669 /* Return upper bound of timestamp precision error. */ 670 *max_error = duration_ns; 671 672 /* Convert scanout position into elapsed time at raw_time query 673 * since start of scanout at first display scanline. delta_ns 674 * can be negative if start of scanout hasn't happened yet. 675 */ 676 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos), 677 mode->crtc_clock); 678 679 if (!drm_timestamp_monotonic) 680 etime = ktime_mono_to_real(etime); 681 682 /* save this only for debugging purposes */ 683 tv_etime = ktime_to_timeval(etime); 684 /* Subtract time delta from raw timestamp to get final 685 * vblank_time timestamp for end of vblank. 686 */ 687 etime = ktime_sub_ns(etime, delta_ns); 688 *vblank_time = ktime_to_timeval(etime); 689 690 DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %ld.%ld -> %ld.%ld [e %d us, %d rep]\n", 691 pipe, hpos, vpos, 692 (long)tv_etime.tv_sec, (long)tv_etime.tv_usec, 693 (long)vblank_time->tv_sec, (long)vblank_time->tv_usec, 694 duration_ns/1000, i); 695 696 return true; 697 } 698 EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos); 699 700 static struct timeval get_drm_timestamp(void) 701 { 702 ktime_t now; 703 704 now = drm_timestamp_monotonic ? ktime_get() : ktime_get_real(); 705 return ktime_to_timeval(now); 706 } 707 708 /** 709 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent 710 * vblank interval 711 * @dev: DRM device 712 * @pipe: index of CRTC whose vblank timestamp to retrieve 713 * @tvblank: Pointer to target struct timeval which should receive the timestamp 714 * @in_vblank_irq: 715 * True when called from drm_crtc_handle_vblank(). Some drivers 716 * need to apply some workarounds for gpu-specific vblank irq quirks 717 * if flag is set. 718 * 719 * Fetches the system timestamp corresponding to the time of the most recent 720 * vblank interval on specified CRTC. May call into kms-driver to 721 * compute the timestamp with a high-precision GPU specific method. 722 * 723 * Returns zero if timestamp originates from uncorrected do_gettimeofday() 724 * call, i.e., it isn't very precisely locked to the true vblank. 725 * 726 * Returns: 727 * True if timestamp is considered to be very precise, false otherwise. 728 */ 729 static bool 730 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 731 struct timeval *tvblank, bool in_vblank_irq) 732 { 733 bool ret = false; 734 735 /* Define requested maximum error on timestamps (nanoseconds). */ 736 int max_error = (int) drm_timestamp_precision * 1000; 737 738 /* Query driver if possible and precision timestamping enabled. */ 739 if (dev->driver->get_vblank_timestamp && (max_error > 0)) 740 ret = dev->driver->get_vblank_timestamp(dev, pipe, &max_error, 741 tvblank, in_vblank_irq); 742 743 /* GPU high precision timestamp query unsupported or failed. 744 * Return current monotonic/gettimeofday timestamp as best estimate. 745 */ 746 if (!ret) 747 *tvblank = get_drm_timestamp(); 748 749 return ret; 750 } 751 752 /** 753 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value 754 * @crtc: which counter to retrieve 755 * 756 * Fetches the "cooked" vblank count value that represents the number of 757 * vblank events since the system was booted, including lost events due to 758 * modesetting activity. Note that this timer isn't correct against a racing 759 * vblank interrupt (since it only reports the software vblank counter), see 760 * drm_crtc_accurate_vblank_count() for such use-cases. 761 * 762 * Returns: 763 * The software vblank counter. 764 */ 765 u32 drm_crtc_vblank_count(struct drm_crtc *crtc) 766 { 767 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc)); 768 } 769 EXPORT_SYMBOL(drm_crtc_vblank_count); 770 771 static u32 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe, 772 struct timeval *vblanktime) 773 { 774 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 775 u32 vblank_count; 776 unsigned int seq; 777 778 if (WARN_ON(pipe >= dev->num_crtcs)) { 779 *vblanktime = (struct timeval) { 0 }; 780 return 0; 781 } 782 783 do { 784 seq = read_seqbegin(&vblank->seqlock); 785 vblank_count = vblank->count; 786 *vblanktime = vblank->time; 787 } while (read_seqretry(&vblank->seqlock, seq)); 788 789 return vblank_count; 790 } 791 792 /** 793 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value 794 * and the system timestamp corresponding to that vblank counter value 795 * @crtc: which counter to retrieve 796 * @vblanktime: Pointer to struct timeval to receive the vblank timestamp. 797 * 798 * Fetches the "cooked" vblank count value that represents the number of 799 * vblank events since the system was booted, including lost events due to 800 * modesetting activity. Returns corresponding system timestamp of the time 801 * of the vblank interval that corresponds to the current vblank counter value. 802 */ 803 u32 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc, 804 struct timeval *vblanktime) 805 { 806 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc), 807 vblanktime); 808 } 809 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time); 810 811 static void send_vblank_event(struct drm_device *dev, 812 struct drm_pending_vblank_event *e, 813 unsigned long seq, struct timeval *now) 814 { 815 e->event.sequence = seq; 816 e->event.tv_sec = now->tv_sec; 817 e->event.tv_usec = now->tv_usec; 818 819 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, 820 e->event.sequence); 821 822 drm_send_event_locked(dev, &e->base); 823 } 824 825 /** 826 * drm_crtc_arm_vblank_event - arm vblank event after pageflip 827 * @crtc: the source CRTC of the vblank event 828 * @e: the event to send 829 * 830 * A lot of drivers need to generate vblank events for the very next vblank 831 * interrupt. For example when the page flip interrupt happens when the page 832 * flip gets armed, but not when it actually executes within the next vblank 833 * period. This helper function implements exactly the required vblank arming 834 * behaviour. 835 * 836 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an 837 * atomic commit must ensure that the next vblank happens at exactly the same 838 * time as the atomic commit is committed to the hardware. This function itself 839 * does **not** protect against the next vblank interrupt racing with either this 840 * function call or the atomic commit operation. A possible sequence could be: 841 * 842 * 1. Driver commits new hardware state into vblank-synchronized registers. 843 * 2. A vblank happens, committing the hardware state. Also the corresponding 844 * vblank interrupt is fired off and fully processed by the interrupt 845 * handler. 846 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event(). 847 * 4. The event is only send out for the next vblank, which is wrong. 848 * 849 * An equivalent race can happen when the driver calls 850 * drm_crtc_arm_vblank_event() before writing out the new hardware state. 851 * 852 * The only way to make this work safely is to prevent the vblank from firing 853 * (and the hardware from committing anything else) until the entire atomic 854 * commit sequence has run to completion. If the hardware does not have such a 855 * feature (e.g. using a "go" bit), then it is unsafe to use this functions. 856 * Instead drivers need to manually send out the event from their interrupt 857 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no 858 * possible race with the hardware committing the atomic update. 859 * 860 * Caller must hold a vblank reference for the event @e, which will be dropped 861 * when the next vblank arrives. 862 */ 863 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc, 864 struct drm_pending_vblank_event *e) 865 { 866 struct drm_device *dev = crtc->dev; 867 unsigned int pipe = drm_crtc_index(crtc); 868 869 assert_spin_locked(&dev->event_lock); 870 871 e->pipe = pipe; 872 e->event.sequence = drm_vblank_count(dev, pipe); 873 e->event.crtc_id = crtc->base.id; 874 list_add_tail(&e->base.link, &dev->vblank_event_list); 875 } 876 EXPORT_SYMBOL(drm_crtc_arm_vblank_event); 877 878 /** 879 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip 880 * @crtc: the source CRTC of the vblank event 881 * @e: the event to send 882 * 883 * Updates sequence # and timestamp on event for the most recently processed 884 * vblank, and sends it to userspace. Caller must hold event lock. 885 * 886 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain 887 * situation, especially to send out events for atomic commit operations. 888 */ 889 void drm_crtc_send_vblank_event(struct drm_crtc *crtc, 890 struct drm_pending_vblank_event *e) 891 { 892 struct drm_device *dev = crtc->dev; 893 unsigned int seq, pipe = drm_crtc_index(crtc); 894 struct timeval now; 895 896 if (dev->num_crtcs > 0) { 897 seq = drm_vblank_count_and_time(dev, pipe, &now); 898 } else { 899 seq = 0; 900 901 now = get_drm_timestamp(); 902 } 903 e->pipe = pipe; 904 e->event.crtc_id = crtc->base.id; 905 send_vblank_event(dev, e, seq, &now); 906 } 907 EXPORT_SYMBOL(drm_crtc_send_vblank_event); 908 909 static int __enable_vblank(struct drm_device *dev, unsigned int pipe) 910 { 911 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 912 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 913 914 if (crtc->funcs->enable_vblank) 915 return crtc->funcs->enable_vblank(crtc); 916 } 917 918 return dev->driver->enable_vblank(dev, pipe); 919 } 920 921 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe) 922 { 923 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 924 int ret = 0; 925 926 assert_spin_locked(&dev->vbl_lock); 927 928 spin_lock(&dev->vblank_time_lock); 929 930 if (!vblank->enabled) { 931 /* 932 * Enable vblank irqs under vblank_time_lock protection. 933 * All vblank count & timestamp updates are held off 934 * until we are done reinitializing master counter and 935 * timestamps. Filtercode in drm_handle_vblank() will 936 * prevent double-accounting of same vblank interval. 937 */ 938 ret = __enable_vblank(dev, pipe); 939 DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret); 940 if (ret) { 941 atomic_dec(&vblank->refcount); 942 } else { 943 drm_update_vblank_count(dev, pipe, 0); 944 /* drm_update_vblank_count() includes a wmb so we just 945 * need to ensure that the compiler emits the write 946 * to mark the vblank as enabled after the call 947 * to drm_update_vblank_count(). 948 */ 949 WRITE_ONCE(vblank->enabled, true); 950 } 951 } 952 953 spin_unlock(&dev->vblank_time_lock); 954 955 return ret; 956 } 957 958 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe) 959 { 960 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 961 unsigned long irqflags; 962 int ret = 0; 963 964 if (!dev->num_crtcs) 965 return -EINVAL; 966 967 if (WARN_ON(pipe >= dev->num_crtcs)) 968 return -EINVAL; 969 970 spin_lock_irqsave(&dev->vbl_lock, irqflags); 971 /* Going from 0->1 means we have to enable interrupts again */ 972 if (atomic_add_return(1, &vblank->refcount) == 1) { 973 ret = drm_vblank_enable(dev, pipe); 974 } else { 975 if (!vblank->enabled) { 976 atomic_dec(&vblank->refcount); 977 ret = -EINVAL; 978 } 979 } 980 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 981 982 return ret; 983 } 984 985 /** 986 * drm_crtc_vblank_get - get a reference count on vblank events 987 * @crtc: which CRTC to own 988 * 989 * Acquire a reference count on vblank events to avoid having them disabled 990 * while in use. 991 * 992 * Returns: 993 * Zero on success or a negative error code on failure. 994 */ 995 int drm_crtc_vblank_get(struct drm_crtc *crtc) 996 { 997 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc)); 998 } 999 EXPORT_SYMBOL(drm_crtc_vblank_get); 1000 1001 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe) 1002 { 1003 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1004 1005 if (WARN_ON(pipe >= dev->num_crtcs)) 1006 return; 1007 1008 if (WARN_ON(atomic_read(&vblank->refcount) == 0)) 1009 return; 1010 1011 /* Last user schedules interrupt disable */ 1012 if (atomic_dec_and_test(&vblank->refcount)) { 1013 if (drm_vblank_offdelay == 0) 1014 return; 1015 else if (drm_vblank_offdelay < 0) 1016 vblank_disable_fn((unsigned long)vblank); 1017 else if (!dev->vblank_disable_immediate) 1018 mod_timer(&vblank->disable_timer, 1019 jiffies + ((drm_vblank_offdelay * HZ)/1000)); 1020 } 1021 } 1022 1023 /** 1024 * drm_crtc_vblank_put - give up ownership of vblank events 1025 * @crtc: which counter to give up 1026 * 1027 * Release ownership of a given vblank counter, turning off interrupts 1028 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds. 1029 */ 1030 void drm_crtc_vblank_put(struct drm_crtc *crtc) 1031 { 1032 drm_vblank_put(crtc->dev, drm_crtc_index(crtc)); 1033 } 1034 EXPORT_SYMBOL(drm_crtc_vblank_put); 1035 1036 /** 1037 * drm_wait_one_vblank - wait for one vblank 1038 * @dev: DRM device 1039 * @pipe: CRTC index 1040 * 1041 * This waits for one vblank to pass on @pipe, using the irq driver interfaces. 1042 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g. 1043 * due to lack of driver support or because the crtc is off. 1044 * 1045 * This is the legacy version of drm_crtc_wait_one_vblank(). 1046 */ 1047 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe) 1048 { 1049 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1050 int ret; 1051 u32 last; 1052 1053 if (WARN_ON(pipe >= dev->num_crtcs)) 1054 return; 1055 1056 ret = drm_vblank_get(dev, pipe); 1057 if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret)) 1058 return; 1059 1060 last = drm_vblank_count(dev, pipe); 1061 1062 ret = wait_event_timeout(vblank->queue, 1063 last != drm_vblank_count(dev, pipe), 1064 msecs_to_jiffies(100)); 1065 1066 WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe); 1067 1068 drm_vblank_put(dev, pipe); 1069 } 1070 EXPORT_SYMBOL(drm_wait_one_vblank); 1071 1072 /** 1073 * drm_crtc_wait_one_vblank - wait for one vblank 1074 * @crtc: DRM crtc 1075 * 1076 * This waits for one vblank to pass on @crtc, using the irq driver interfaces. 1077 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g. 1078 * due to lack of driver support or because the crtc is off. 1079 */ 1080 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc) 1081 { 1082 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc)); 1083 } 1084 EXPORT_SYMBOL(drm_crtc_wait_one_vblank); 1085 1086 /** 1087 * drm_crtc_vblank_off - disable vblank events on a CRTC 1088 * @crtc: CRTC in question 1089 * 1090 * Drivers can use this function to shut down the vblank interrupt handling when 1091 * disabling a crtc. This function ensures that the latest vblank frame count is 1092 * stored so that drm_vblank_on can restore it again. 1093 * 1094 * Drivers must use this function when the hardware vblank counter can get 1095 * reset, e.g. when suspending or disabling the @crtc in general. 1096 */ 1097 void drm_crtc_vblank_off(struct drm_crtc *crtc) 1098 { 1099 struct drm_device *dev = crtc->dev; 1100 unsigned int pipe = drm_crtc_index(crtc); 1101 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1102 struct drm_pending_vblank_event *e, *t; 1103 struct timeval now; 1104 unsigned long irqflags; 1105 unsigned int seq; 1106 1107 if (WARN_ON(pipe >= dev->num_crtcs)) 1108 return; 1109 1110 spin_lock_irqsave(&dev->event_lock, irqflags); 1111 1112 spin_lock(&dev->vbl_lock); 1113 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n", 1114 pipe, vblank->enabled, vblank->inmodeset); 1115 1116 /* Avoid redundant vblank disables without previous 1117 * drm_crtc_vblank_on(). */ 1118 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset) 1119 drm_vblank_disable_and_save(dev, pipe); 1120 1121 wake_up(&vblank->queue); 1122 1123 /* 1124 * Prevent subsequent drm_vblank_get() from re-enabling 1125 * the vblank interrupt by bumping the refcount. 1126 */ 1127 if (!vblank->inmodeset) { 1128 atomic_inc(&vblank->refcount); 1129 vblank->inmodeset = 1; 1130 } 1131 spin_unlock(&dev->vbl_lock); 1132 1133 /* Send any queued vblank events, lest the natives grow disquiet */ 1134 seq = drm_vblank_count_and_time(dev, pipe, &now); 1135 1136 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1137 if (e->pipe != pipe) 1138 continue; 1139 DRM_DEBUG("Sending premature vblank event on disable: " 1140 "wanted %u, current %u\n", 1141 e->event.sequence, seq); 1142 list_del(&e->base.link); 1143 drm_vblank_put(dev, pipe); 1144 send_vblank_event(dev, e, seq, &now); 1145 } 1146 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1147 1148 /* Will be reset by the modeset helpers when re-enabling the crtc by 1149 * calling drm_calc_timestamping_constants(). */ 1150 vblank->hwmode.crtc_clock = 0; 1151 } 1152 EXPORT_SYMBOL(drm_crtc_vblank_off); 1153 1154 /** 1155 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC 1156 * @crtc: CRTC in question 1157 * 1158 * Drivers can use this function to reset the vblank state to off at load time. 1159 * Drivers should use this together with the drm_crtc_vblank_off() and 1160 * drm_crtc_vblank_on() functions. The difference compared to 1161 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter 1162 * and hence doesn't need to call any driver hooks. 1163 * 1164 * This is useful for recovering driver state e.g. on driver load, or on resume. 1165 */ 1166 void drm_crtc_vblank_reset(struct drm_crtc *crtc) 1167 { 1168 struct drm_device *dev = crtc->dev; 1169 unsigned long irqflags; 1170 unsigned int pipe = drm_crtc_index(crtc); 1171 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1172 1173 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1174 /* 1175 * Prevent subsequent drm_vblank_get() from enabling the vblank 1176 * interrupt by bumping the refcount. 1177 */ 1178 if (!vblank->inmodeset) { 1179 atomic_inc(&vblank->refcount); 1180 vblank->inmodeset = 1; 1181 } 1182 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1183 1184 WARN_ON(!list_empty(&dev->vblank_event_list)); 1185 } 1186 EXPORT_SYMBOL(drm_crtc_vblank_reset); 1187 1188 /** 1189 * drm_crtc_vblank_on - enable vblank events on a CRTC 1190 * @crtc: CRTC in question 1191 * 1192 * This functions restores the vblank interrupt state captured with 1193 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note 1194 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be 1195 * unbalanced and so can also be unconditionally called in driver load code to 1196 * reflect the current hardware state of the crtc. 1197 */ 1198 void drm_crtc_vblank_on(struct drm_crtc *crtc) 1199 { 1200 struct drm_device *dev = crtc->dev; 1201 unsigned int pipe = drm_crtc_index(crtc); 1202 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1203 unsigned long irqflags; 1204 1205 if (WARN_ON(pipe >= dev->num_crtcs)) 1206 return; 1207 1208 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1209 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n", 1210 pipe, vblank->enabled, vblank->inmodeset); 1211 1212 /* Drop our private "prevent drm_vblank_get" refcount */ 1213 if (vblank->inmodeset) { 1214 atomic_dec(&vblank->refcount); 1215 vblank->inmodeset = 0; 1216 } 1217 1218 drm_reset_vblank_timestamp(dev, pipe); 1219 1220 /* 1221 * re-enable interrupts if there are users left, or the 1222 * user wishes vblank interrupts to be enabled all the time. 1223 */ 1224 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0) 1225 WARN_ON(drm_vblank_enable(dev, pipe)); 1226 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1227 } 1228 EXPORT_SYMBOL(drm_crtc_vblank_on); 1229 1230 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev, 1231 unsigned int pipe) 1232 { 1233 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1234 1235 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1236 if (!dev->num_crtcs) 1237 return; 1238 1239 if (WARN_ON(pipe >= dev->num_crtcs)) 1240 return; 1241 1242 /* 1243 * To avoid all the problems that might happen if interrupts 1244 * were enabled/disabled around or between these calls, we just 1245 * have the kernel take a reference on the CRTC (just once though 1246 * to avoid corrupting the count if multiple, mismatch calls occur), 1247 * so that interrupts remain enabled in the interim. 1248 */ 1249 if (!vblank->inmodeset) { 1250 vblank->inmodeset = 0x1; 1251 if (drm_vblank_get(dev, pipe) == 0) 1252 vblank->inmodeset |= 0x2; 1253 } 1254 } 1255 1256 static void drm_legacy_vblank_post_modeset(struct drm_device *dev, 1257 unsigned int pipe) 1258 { 1259 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1260 unsigned long irqflags; 1261 1262 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1263 if (!dev->num_crtcs) 1264 return; 1265 1266 if (WARN_ON(pipe >= dev->num_crtcs)) 1267 return; 1268 1269 if (vblank->inmodeset) { 1270 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1271 drm_reset_vblank_timestamp(dev, pipe); 1272 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1273 1274 if (vblank->inmodeset & 0x2) 1275 drm_vblank_put(dev, pipe); 1276 1277 vblank->inmodeset = 0; 1278 } 1279 } 1280 1281 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data, 1282 struct drm_file *file_priv) 1283 { 1284 struct drm_modeset_ctl *modeset = data; 1285 unsigned int pipe; 1286 1287 /* If drm_vblank_init() hasn't been called yet, just no-op */ 1288 if (!dev->num_crtcs) 1289 return 0; 1290 1291 /* KMS drivers handle this internally */ 1292 if (!drm_core_check_feature(dev, DRIVER_LEGACY)) 1293 return 0; 1294 1295 pipe = modeset->crtc; 1296 if (pipe >= dev->num_crtcs) 1297 return -EINVAL; 1298 1299 switch (modeset->cmd) { 1300 case _DRM_PRE_MODESET: 1301 drm_legacy_vblank_pre_modeset(dev, pipe); 1302 break; 1303 case _DRM_POST_MODESET: 1304 drm_legacy_vblank_post_modeset(dev, pipe); 1305 break; 1306 default: 1307 return -EINVAL; 1308 } 1309 1310 return 0; 1311 } 1312 1313 static inline bool vblank_passed(u32 seq, u32 ref) 1314 { 1315 return (seq - ref) <= (1 << 23); 1316 } 1317 1318 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe, 1319 union drm_wait_vblank *vblwait, 1320 struct drm_file *file_priv) 1321 { 1322 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1323 struct drm_pending_vblank_event *e; 1324 struct timeval now; 1325 unsigned long flags; 1326 unsigned int seq; 1327 int ret; 1328 1329 e = kzalloc(sizeof(*e), GFP_KERNEL); 1330 if (e == NULL) { 1331 ret = -ENOMEM; 1332 goto err_put; 1333 } 1334 1335 e->pipe = pipe; 1336 e->event.base.type = DRM_EVENT_VBLANK; 1337 e->event.base.length = sizeof(e->event); 1338 e->event.user_data = vblwait->request.signal; 1339 1340 spin_lock_irqsave(&dev->event_lock, flags); 1341 1342 /* 1343 * drm_crtc_vblank_off() might have been called after we called 1344 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1345 * vblank disable, so no need for further locking. The reference from 1346 * drm_vblank_get() protects against vblank disable from another source. 1347 */ 1348 if (!READ_ONCE(vblank->enabled)) { 1349 ret = -EINVAL; 1350 goto err_unlock; 1351 } 1352 1353 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1354 &e->event.base); 1355 1356 if (ret) 1357 goto err_unlock; 1358 1359 seq = drm_vblank_count_and_time(dev, pipe, &now); 1360 1361 DRM_DEBUG("event on vblank count %u, current %u, crtc %u\n", 1362 vblwait->request.sequence, seq, pipe); 1363 1364 trace_drm_vblank_event_queued(file_priv, pipe, 1365 vblwait->request.sequence); 1366 1367 e->event.sequence = vblwait->request.sequence; 1368 if (vblank_passed(seq, vblwait->request.sequence)) { 1369 drm_vblank_put(dev, pipe); 1370 send_vblank_event(dev, e, seq, &now); 1371 vblwait->reply.sequence = seq; 1372 } else { 1373 /* drm_handle_vblank_events will call drm_vblank_put */ 1374 list_add_tail(&e->base.link, &dev->vblank_event_list); 1375 vblwait->reply.sequence = vblwait->request.sequence; 1376 } 1377 1378 spin_unlock_irqrestore(&dev->event_lock, flags); 1379 1380 return 0; 1381 1382 err_unlock: 1383 spin_unlock_irqrestore(&dev->event_lock, flags); 1384 kfree(e); 1385 err_put: 1386 drm_vblank_put(dev, pipe); 1387 return ret; 1388 } 1389 1390 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait) 1391 { 1392 if (vblwait->request.sequence) 1393 return false; 1394 1395 return _DRM_VBLANK_RELATIVE == 1396 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK | 1397 _DRM_VBLANK_EVENT | 1398 _DRM_VBLANK_NEXTONMISS)); 1399 } 1400 1401 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data, 1402 struct drm_file *file_priv) 1403 { 1404 struct drm_vblank_crtc *vblank; 1405 union drm_wait_vblank *vblwait = data; 1406 int ret; 1407 unsigned int flags, seq, pipe, high_pipe; 1408 1409 if (!dev->irq_enabled) 1410 return -EINVAL; 1411 1412 if (vblwait->request.type & _DRM_VBLANK_SIGNAL) 1413 return -EINVAL; 1414 1415 if (vblwait->request.type & 1416 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1417 _DRM_VBLANK_HIGH_CRTC_MASK)) { 1418 DRM_ERROR("Unsupported type value 0x%x, supported mask 0x%x\n", 1419 vblwait->request.type, 1420 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1421 _DRM_VBLANK_HIGH_CRTC_MASK)); 1422 return -EINVAL; 1423 } 1424 1425 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; 1426 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); 1427 if (high_pipe) 1428 pipe = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT; 1429 else 1430 pipe = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; 1431 if (pipe >= dev->num_crtcs) 1432 return -EINVAL; 1433 1434 vblank = &dev->vblank[pipe]; 1435 1436 /* If the counter is currently enabled and accurate, short-circuit 1437 * queries to return the cached timestamp of the last vblank. 1438 */ 1439 if (dev->vblank_disable_immediate && 1440 drm_wait_vblank_is_query(vblwait) && 1441 READ_ONCE(vblank->enabled)) { 1442 struct timeval now; 1443 1444 vblwait->reply.sequence = 1445 drm_vblank_count_and_time(dev, pipe, &now); 1446 vblwait->reply.tval_sec = now.tv_sec; 1447 vblwait->reply.tval_usec = now.tv_usec; 1448 return 0; 1449 } 1450 1451 ret = drm_vblank_get(dev, pipe); 1452 if (ret) { 1453 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 1454 return ret; 1455 } 1456 seq = drm_vblank_count(dev, pipe); 1457 1458 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { 1459 case _DRM_VBLANK_RELATIVE: 1460 vblwait->request.sequence += seq; 1461 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; 1462 case _DRM_VBLANK_ABSOLUTE: 1463 break; 1464 default: 1465 ret = -EINVAL; 1466 goto done; 1467 } 1468 1469 if ((flags & _DRM_VBLANK_NEXTONMISS) && 1470 vblank_passed(seq, vblwait->request.sequence)) 1471 vblwait->request.sequence = seq + 1; 1472 1473 if (flags & _DRM_VBLANK_EVENT) { 1474 /* must hold on to the vblank ref until the event fires 1475 * drm_vblank_put will be called asynchronously 1476 */ 1477 return drm_queue_vblank_event(dev, pipe, vblwait, file_priv); 1478 } 1479 1480 if (vblwait->request.sequence != seq) { 1481 DRM_DEBUG("waiting on vblank count %u, crtc %u\n", 1482 vblwait->request.sequence, pipe); 1483 DRM_WAIT_ON(ret, vblank->queue, 3 * HZ, 1484 vblank_passed(drm_vblank_count(dev, pipe), 1485 vblwait->request.sequence) || 1486 !READ_ONCE(vblank->enabled)); 1487 } 1488 1489 if (ret != -EINTR) { 1490 struct timeval now; 1491 1492 vblwait->reply.sequence = drm_vblank_count_and_time(dev, pipe, &now); 1493 vblwait->reply.tval_sec = now.tv_sec; 1494 vblwait->reply.tval_usec = now.tv_usec; 1495 1496 DRM_DEBUG("crtc %d returning %u to client\n", 1497 pipe, vblwait->reply.sequence); 1498 } else { 1499 DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe); 1500 } 1501 1502 done: 1503 drm_vblank_put(dev, pipe); 1504 return ret; 1505 } 1506 1507 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe) 1508 { 1509 struct drm_pending_vblank_event *e, *t; 1510 struct timeval now; 1511 unsigned int seq; 1512 1513 assert_spin_locked(&dev->event_lock); 1514 1515 seq = drm_vblank_count_and_time(dev, pipe, &now); 1516 1517 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1518 if (e->pipe != pipe) 1519 continue; 1520 if (!vblank_passed(seq, e->event.sequence)) 1521 continue; 1522 1523 DRM_DEBUG("vblank event on %u, current %u\n", 1524 e->event.sequence, seq); 1525 1526 list_del(&e->base.link); 1527 drm_vblank_put(dev, pipe); 1528 send_vblank_event(dev, e, seq, &now); 1529 } 1530 1531 trace_drm_vblank_event(pipe, seq); 1532 } 1533 1534 /** 1535 * drm_handle_vblank - handle a vblank event 1536 * @dev: DRM device 1537 * @pipe: index of CRTC where this event occurred 1538 * 1539 * Drivers should call this routine in their vblank interrupt handlers to 1540 * update the vblank counter and send any signals that may be pending. 1541 * 1542 * This is the legacy version of drm_crtc_handle_vblank(). 1543 */ 1544 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe) 1545 { 1546 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1547 unsigned long irqflags; 1548 bool disable_irq; 1549 1550 if (WARN_ON_ONCE(!dev->num_crtcs)) 1551 return false; 1552 1553 if (WARN_ON(pipe >= dev->num_crtcs)) 1554 return false; 1555 1556 spin_lock_irqsave(&dev->event_lock, irqflags); 1557 1558 /* Need timestamp lock to prevent concurrent execution with 1559 * vblank enable/disable, as this would cause inconsistent 1560 * or corrupted timestamps and vblank counts. 1561 */ 1562 spin_lock(&dev->vblank_time_lock); 1563 1564 /* Vblank irq handling disabled. Nothing to do. */ 1565 if (!vblank->enabled) { 1566 spin_unlock(&dev->vblank_time_lock); 1567 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1568 return false; 1569 } 1570 1571 drm_update_vblank_count(dev, pipe, true); 1572 1573 spin_unlock(&dev->vblank_time_lock); 1574 1575 wake_up(&vblank->queue); 1576 1577 /* With instant-off, we defer disabling the interrupt until after 1578 * we finish processing the following vblank after all events have 1579 * been signaled. The disable has to be last (after 1580 * drm_handle_vblank_events) so that the timestamp is always accurate. 1581 */ 1582 disable_irq = (dev->vblank_disable_immediate && 1583 drm_vblank_offdelay > 0 && 1584 !atomic_read(&vblank->refcount)); 1585 1586 drm_handle_vblank_events(dev, pipe); 1587 1588 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1589 1590 if (disable_irq) 1591 vblank_disable_fn((unsigned long)vblank); 1592 1593 return true; 1594 } 1595 EXPORT_SYMBOL(drm_handle_vblank); 1596 1597 /** 1598 * drm_crtc_handle_vblank - handle a vblank event 1599 * @crtc: where this event occurred 1600 * 1601 * Drivers should call this routine in their vblank interrupt handlers to 1602 * update the vblank counter and send any signals that may be pending. 1603 * 1604 * This is the native KMS version of drm_handle_vblank(). 1605 * 1606 * Returns: 1607 * True if the event was successfully handled, false on failure. 1608 */ 1609 bool drm_crtc_handle_vblank(struct drm_crtc *crtc) 1610 { 1611 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc)); 1612 } 1613 EXPORT_SYMBOL(drm_crtc_handle_vblank); 1614