1 /* 2 * drm_irq.c IRQ and vblank support 3 * 4 * \author Rickard E. (Rik) Faith <faith@valinux.com> 5 * \author Gareth Hughes <gareth@valinux.com> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 24 * OTHER DEALINGS IN THE SOFTWARE. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kthread.h> 29 #include <linux/moduleparam.h> 30 31 #include <drm/drm_crtc.h> 32 #include <drm/drm_drv.h> 33 #include <drm/drm_framebuffer.h> 34 #include <drm/drm_managed.h> 35 #include <drm/drm_modeset_helper_vtables.h> 36 #include <drm/drm_print.h> 37 #include <drm/drm_vblank.h> 38 39 #include "drm_internal.h" 40 #include "drm_trace.h" 41 42 /** 43 * DOC: vblank handling 44 * 45 * From the computer's perspective, every time the monitor displays 46 * a new frame the scanout engine has "scanned out" the display image 47 * from top to bottom, one row of pixels at a time. The current row 48 * of pixels is referred to as the current scanline. 49 * 50 * In addition to the display's visible area, there's usually a couple of 51 * extra scanlines which aren't actually displayed on the screen. 52 * These extra scanlines don't contain image data and are occasionally used 53 * for features like audio and infoframes. The region made up of these 54 * scanlines is referred to as the vertical blanking region, or vblank for 55 * short. 56 * 57 * For historical reference, the vertical blanking period was designed to 58 * give the electron gun (on CRTs) enough time to move back to the top of 59 * the screen to start scanning out the next frame. Similar for horizontal 60 * blanking periods. They were designed to give the electron gun enough 61 * time to move back to the other side of the screen to start scanning the 62 * next scanline. 63 * 64 * :: 65 * 66 * 67 * physical → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 68 * top of | | 69 * display | | 70 * | New frame | 71 * | | 72 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| 73 * |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline, 74 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| updates the 75 * | | frame as it 76 * | | travels down 77 * | | ("sacn out") 78 * | Old frame | 79 * | | 80 * | | 81 * | | 82 * | | physical 83 * | | bottom of 84 * vertical |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display 85 * blanking ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 86 * region → ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 87 * ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 88 * start of → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 89 * new frame 90 * 91 * "Physical top of display" is the reference point for the high-precision/ 92 * corrected timestamp. 93 * 94 * On a lot of display hardware, programming needs to take effect during the 95 * vertical blanking period so that settings like gamma, the image buffer 96 * buffer to be scanned out, etc. can safely be changed without showing 97 * any visual artifacts on the screen. In some unforgiving hardware, some of 98 * this programming has to both start and end in the same vblank. To help 99 * with the timing of the hardware programming, an interrupt is usually 100 * available to notify the driver when it can start the updating of registers. 101 * The interrupt is in this context named the vblank interrupt. 102 * 103 * The vblank interrupt may be fired at different points depending on the 104 * hardware. Some hardware implementations will fire the interrupt when the 105 * new frame start, other implementations will fire the interrupt at different 106 * points in time. 107 * 108 * Vertical blanking plays a major role in graphics rendering. To achieve 109 * tear-free display, users must synchronize page flips and/or rendering to 110 * vertical blanking. The DRM API offers ioctls to perform page flips 111 * synchronized to vertical blanking and wait for vertical blanking. 112 * 113 * The DRM core handles most of the vertical blanking management logic, which 114 * involves filtering out spurious interrupts, keeping race-free blanking 115 * counters, coping with counter wrap-around and resets and keeping use counts. 116 * It relies on the driver to generate vertical blanking interrupts and 117 * optionally provide a hardware vertical blanking counter. 118 * 119 * Drivers must initialize the vertical blanking handling core with a call to 120 * drm_vblank_init(). Minimally, a driver needs to implement 121 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call 122 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank 123 * support. 124 * 125 * Vertical blanking interrupts can be enabled by the DRM core or by drivers 126 * themselves (for instance to handle page flipping operations). The DRM core 127 * maintains a vertical blanking use count to ensure that the interrupts are not 128 * disabled while a user still needs them. To increment the use count, drivers 129 * call drm_crtc_vblank_get() and release the vblank reference again with 130 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are 131 * guaranteed to be enabled. 132 * 133 * On many hardware disabling the vblank interrupt cannot be done in a race-free 134 * manner, see &drm_driver.vblank_disable_immediate and 135 * &drm_driver.max_vblank_count. In that case the vblank core only disables the 136 * vblanks after a timer has expired, which can be configured through the 137 * ``vblankoffdelay`` module parameter. 138 * 139 * Drivers for hardware without support for vertical-blanking interrupts 140 * must not call drm_vblank_init(). For such drivers, atomic helpers will 141 * automatically generate fake vblank events as part of the display update. 142 * This functionality also can be controlled by the driver by enabling and 143 * disabling struct drm_crtc_state.no_vblank. 144 */ 145 146 /* Retry timestamp calculation up to 3 times to satisfy 147 * drm_timestamp_precision before giving up. 148 */ 149 #define DRM_TIMESTAMP_MAXRETRIES 3 150 151 /* Threshold in nanoseconds for detection of redundant 152 * vblank irq in drm_handle_vblank(). 1 msec should be ok. 153 */ 154 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 155 156 static bool 157 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 158 ktime_t *tvblank, bool in_vblank_irq); 159 160 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */ 161 162 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */ 163 164 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600); 165 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600); 166 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)"); 167 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]"); 168 169 static void store_vblank(struct drm_device *dev, unsigned int pipe, 170 u32 vblank_count_inc, 171 ktime_t t_vblank, u32 last) 172 { 173 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 174 175 assert_spin_locked(&dev->vblank_time_lock); 176 177 vblank->last = last; 178 179 write_seqlock(&vblank->seqlock); 180 vblank->time = t_vblank; 181 atomic64_add(vblank_count_inc, &vblank->count); 182 write_sequnlock(&vblank->seqlock); 183 } 184 185 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe) 186 { 187 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 188 189 return vblank->max_vblank_count ?: dev->max_vblank_count; 190 } 191 192 /* 193 * "No hw counter" fallback implementation of .get_vblank_counter() hook, 194 * if there is no useable hardware frame counter available. 195 */ 196 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe) 197 { 198 drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0); 199 return 0; 200 } 201 202 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe) 203 { 204 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 205 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 206 207 if (drm_WARN_ON(dev, !crtc)) 208 return 0; 209 210 if (crtc->funcs->get_vblank_counter) 211 return crtc->funcs->get_vblank_counter(crtc); 212 } else if (dev->driver->get_vblank_counter) { 213 return dev->driver->get_vblank_counter(dev, pipe); 214 } 215 216 return drm_vblank_no_hw_counter(dev, pipe); 217 } 218 219 /* 220 * Reset the stored timestamp for the current vblank count to correspond 221 * to the last vblank occurred. 222 * 223 * Only to be called from drm_crtc_vblank_on(). 224 * 225 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 226 * device vblank fields. 227 */ 228 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe) 229 { 230 u32 cur_vblank; 231 bool rc; 232 ktime_t t_vblank; 233 int count = DRM_TIMESTAMP_MAXRETRIES; 234 235 spin_lock(&dev->vblank_time_lock); 236 237 /* 238 * sample the current counter to avoid random jumps 239 * when drm_vblank_enable() applies the diff 240 */ 241 do { 242 cur_vblank = __get_vblank_counter(dev, pipe); 243 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 244 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 245 246 /* 247 * Only reinitialize corresponding vblank timestamp if high-precision query 248 * available and didn't fail. Otherwise reinitialize delayed at next vblank 249 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid. 250 */ 251 if (!rc) 252 t_vblank = 0; 253 254 /* 255 * +1 to make sure user will never see the same 256 * vblank counter value before and after a modeset 257 */ 258 store_vblank(dev, pipe, 1, t_vblank, cur_vblank); 259 260 spin_unlock(&dev->vblank_time_lock); 261 } 262 263 /* 264 * Call back into the driver to update the appropriate vblank counter 265 * (specified by @pipe). Deal with wraparound, if it occurred, and 266 * update the last read value so we can deal with wraparound on the next 267 * call if necessary. 268 * 269 * Only necessary when going from off->on, to account for frames we 270 * didn't get an interrupt for. 271 * 272 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 273 * device vblank fields. 274 */ 275 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe, 276 bool in_vblank_irq) 277 { 278 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 279 u32 cur_vblank, diff; 280 bool rc; 281 ktime_t t_vblank; 282 int count = DRM_TIMESTAMP_MAXRETRIES; 283 int framedur_ns = vblank->framedur_ns; 284 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 285 286 /* 287 * Interrupts were disabled prior to this call, so deal with counter 288 * wrap if needed. 289 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events 290 * here if the register is small or we had vblank interrupts off for 291 * a long time. 292 * 293 * We repeat the hardware vblank counter & timestamp query until 294 * we get consistent results. This to prevent races between gpu 295 * updating its hardware counter while we are retrieving the 296 * corresponding vblank timestamp. 297 */ 298 do { 299 cur_vblank = __get_vblank_counter(dev, pipe); 300 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq); 301 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 302 303 if (max_vblank_count) { 304 /* trust the hw counter when it's around */ 305 diff = (cur_vblank - vblank->last) & max_vblank_count; 306 } else if (rc && framedur_ns) { 307 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 308 309 /* 310 * Figure out how many vblanks we've missed based 311 * on the difference in the timestamps and the 312 * frame/field duration. 313 */ 314 315 drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks." 316 " diff_ns = %lld, framedur_ns = %d)\n", 317 pipe, (long long)diff_ns, framedur_ns); 318 319 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 320 321 if (diff == 0 && in_vblank_irq) 322 drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n", 323 pipe); 324 } else { 325 /* some kind of default for drivers w/o accurate vbl timestamping */ 326 diff = in_vblank_irq ? 1 : 0; 327 } 328 329 /* 330 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset 331 * interval? If so then vblank irqs keep running and it will likely 332 * happen that the hardware vblank counter is not trustworthy as it 333 * might reset at some point in that interval and vblank timestamps 334 * are not trustworthy either in that interval. Iow. this can result 335 * in a bogus diff >> 1 which must be avoided as it would cause 336 * random large forward jumps of the software vblank counter. 337 */ 338 if (diff > 1 && (vblank->inmodeset & 0x2)) { 339 drm_dbg_vbl(dev, 340 "clamping vblank bump to 1 on crtc %u: diffr=%u" 341 " due to pre-modeset.\n", pipe, diff); 342 diff = 1; 343 } 344 345 drm_dbg_vbl(dev, "updating vblank count on crtc %u:" 346 " current=%llu, diff=%u, hw=%u hw_last=%u\n", 347 pipe, (unsigned long long)atomic64_read(&vblank->count), 348 diff, cur_vblank, vblank->last); 349 350 if (diff == 0) { 351 drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last); 352 return; 353 } 354 355 /* 356 * Only reinitialize corresponding vblank timestamp if high-precision query 357 * available and didn't fail, or we were called from the vblank interrupt. 358 * Otherwise reinitialize delayed at next vblank interrupt and assign 0 359 * for now, to mark the vblanktimestamp as invalid. 360 */ 361 if (!rc && !in_vblank_irq) 362 t_vblank = 0; 363 364 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 365 } 366 367 u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe) 368 { 369 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 370 u64 count; 371 372 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 373 return 0; 374 375 count = atomic64_read(&vblank->count); 376 377 /* 378 * This read barrier corresponds to the implicit write barrier of the 379 * write seqlock in store_vblank(). Note that this is the only place 380 * where we need an explicit barrier, since all other access goes 381 * through drm_vblank_count_and_time(), which already has the required 382 * read barrier curtesy of the read seqlock. 383 */ 384 smp_rmb(); 385 386 return count; 387 } 388 389 /** 390 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter 391 * @crtc: which counter to retrieve 392 * 393 * This function is similar to drm_crtc_vblank_count() but this function 394 * interpolates to handle a race with vblank interrupts using the high precision 395 * timestamping support. 396 * 397 * This is mostly useful for hardware that can obtain the scanout position, but 398 * doesn't have a hardware frame counter. 399 */ 400 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc) 401 { 402 struct drm_device *dev = crtc->dev; 403 unsigned int pipe = drm_crtc_index(crtc); 404 u64 vblank; 405 unsigned long flags; 406 407 drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) && 408 !crtc->funcs->get_vblank_timestamp, 409 "This function requires support for accurate vblank timestamps."); 410 411 spin_lock_irqsave(&dev->vblank_time_lock, flags); 412 413 drm_update_vblank_count(dev, pipe, false); 414 vblank = drm_vblank_count(dev, pipe); 415 416 spin_unlock_irqrestore(&dev->vblank_time_lock, flags); 417 418 return vblank; 419 } 420 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count); 421 422 static void __disable_vblank(struct drm_device *dev, unsigned int pipe) 423 { 424 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 425 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 426 427 if (drm_WARN_ON(dev, !crtc)) 428 return; 429 430 if (crtc->funcs->disable_vblank) 431 crtc->funcs->disable_vblank(crtc); 432 } else { 433 dev->driver->disable_vblank(dev, pipe); 434 } 435 } 436 437 /* 438 * Disable vblank irq's on crtc, make sure that last vblank count 439 * of hardware and corresponding consistent software vblank counter 440 * are preserved, even if there are any spurious vblank irq's after 441 * disable. 442 */ 443 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe) 444 { 445 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 446 unsigned long irqflags; 447 448 assert_spin_locked(&dev->vbl_lock); 449 450 /* Prevent vblank irq processing while disabling vblank irqs, 451 * so no updates of timestamps or count can happen after we've 452 * disabled. Needed to prevent races in case of delayed irq's. 453 */ 454 spin_lock_irqsave(&dev->vblank_time_lock, irqflags); 455 456 /* 457 * Update vblank count and disable vblank interrupts only if the 458 * interrupts were enabled. This avoids calling the ->disable_vblank() 459 * operation in atomic context with the hardware potentially runtime 460 * suspended. 461 */ 462 if (!vblank->enabled) 463 goto out; 464 465 /* 466 * Update the count and timestamp to maintain the 467 * appearance that the counter has been ticking all along until 468 * this time. This makes the count account for the entire time 469 * between drm_crtc_vblank_on() and drm_crtc_vblank_off(). 470 */ 471 drm_update_vblank_count(dev, pipe, false); 472 __disable_vblank(dev, pipe); 473 vblank->enabled = false; 474 475 out: 476 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 477 } 478 479 static void vblank_disable_fn(struct timer_list *t) 480 { 481 struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer); 482 struct drm_device *dev = vblank->dev; 483 unsigned int pipe = vblank->pipe; 484 unsigned long irqflags; 485 486 spin_lock_irqsave(&dev->vbl_lock, irqflags); 487 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) { 488 drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe); 489 drm_vblank_disable_and_save(dev, pipe); 490 } 491 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 492 } 493 494 static void drm_vblank_init_release(struct drm_device *dev, void *ptr) 495 { 496 struct drm_vblank_crtc *vblank = ptr; 497 498 drm_WARN_ON(dev, READ_ONCE(vblank->enabled) && 499 drm_core_check_feature(dev, DRIVER_MODESET)); 500 501 drm_vblank_destroy_worker(vblank); 502 del_timer_sync(&vblank->disable_timer); 503 } 504 505 /** 506 * drm_vblank_init - initialize vblank support 507 * @dev: DRM device 508 * @num_crtcs: number of CRTCs supported by @dev 509 * 510 * This function initializes vblank support for @num_crtcs display pipelines. 511 * Cleanup is handled automatically through a cleanup function added with 512 * drmm_add_action_or_reset(). 513 * 514 * Returns: 515 * Zero on success or a negative error code on failure. 516 */ 517 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs) 518 { 519 int ret; 520 unsigned int i; 521 522 spin_lock_init(&dev->vbl_lock); 523 spin_lock_init(&dev->vblank_time_lock); 524 525 dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL); 526 if (!dev->vblank) 527 return -ENOMEM; 528 529 dev->num_crtcs = num_crtcs; 530 531 for (i = 0; i < num_crtcs; i++) { 532 struct drm_vblank_crtc *vblank = &dev->vblank[i]; 533 534 vblank->dev = dev; 535 vblank->pipe = i; 536 init_waitqueue_head(&vblank->queue); 537 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0); 538 seqlock_init(&vblank->seqlock); 539 540 ret = drmm_add_action_or_reset(dev, drm_vblank_init_release, 541 vblank); 542 if (ret) 543 return ret; 544 545 ret = drm_vblank_worker_init(vblank); 546 if (ret) 547 return ret; 548 } 549 550 return 0; 551 } 552 EXPORT_SYMBOL(drm_vblank_init); 553 554 /** 555 * drm_dev_has_vblank - test if vblanking has been initialized for 556 * a device 557 * @dev: the device 558 * 559 * Drivers may call this function to test if vblank support is 560 * initialized for a device. For most hardware this means that vblanking 561 * can also be enabled. 562 * 563 * Atomic helpers use this function to initialize 564 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset(). 565 * 566 * Returns: 567 * True if vblanking has been initialized for the given device, false 568 * otherwise. 569 */ 570 bool drm_dev_has_vblank(const struct drm_device *dev) 571 { 572 return dev->num_crtcs != 0; 573 } 574 EXPORT_SYMBOL(drm_dev_has_vblank); 575 576 /** 577 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC 578 * @crtc: which CRTC's vblank waitqueue to retrieve 579 * 580 * This function returns a pointer to the vblank waitqueue for the CRTC. 581 * Drivers can use this to implement vblank waits using wait_event() and related 582 * functions. 583 */ 584 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc) 585 { 586 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue; 587 } 588 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue); 589 590 591 /** 592 * drm_calc_timestamping_constants - calculate vblank timestamp constants 593 * @crtc: drm_crtc whose timestamp constants should be updated. 594 * @mode: display mode containing the scanout timings 595 * 596 * Calculate and store various constants which are later needed by vblank and 597 * swap-completion timestamping, e.g, by 598 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from 599 * CRTC's true scanout timing, so they take things like panel scaling or 600 * other adjustments into account. 601 */ 602 void drm_calc_timestamping_constants(struct drm_crtc *crtc, 603 const struct drm_display_mode *mode) 604 { 605 struct drm_device *dev = crtc->dev; 606 unsigned int pipe = drm_crtc_index(crtc); 607 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 608 int linedur_ns = 0, framedur_ns = 0; 609 int dotclock = mode->crtc_clock; 610 611 if (!drm_dev_has_vblank(dev)) 612 return; 613 614 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 615 return; 616 617 /* Valid dotclock? */ 618 if (dotclock > 0) { 619 int frame_size = mode->crtc_htotal * mode->crtc_vtotal; 620 621 /* 622 * Convert scanline length in pixels and video 623 * dot clock to line duration and frame duration 624 * in nanoseconds: 625 */ 626 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock); 627 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock); 628 629 /* 630 * Fields of interlaced scanout modes are only half a frame duration. 631 */ 632 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 633 framedur_ns /= 2; 634 } else { 635 drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n", 636 crtc->base.id); 637 } 638 639 vblank->linedur_ns = linedur_ns; 640 vblank->framedur_ns = framedur_ns; 641 vblank->hwmode = *mode; 642 643 drm_dbg_core(dev, 644 "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n", 645 crtc->base.id, mode->crtc_htotal, 646 mode->crtc_vtotal, mode->crtc_vdisplay); 647 drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n", 648 crtc->base.id, dotclock, framedur_ns, linedur_ns); 649 } 650 EXPORT_SYMBOL(drm_calc_timestamping_constants); 651 652 /** 653 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank 654 * timestamp helper 655 * @crtc: CRTC whose vblank timestamp to retrieve 656 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 657 * On return contains true maximum error of timestamp 658 * @vblank_time: Pointer to time which should receive the timestamp 659 * @in_vblank_irq: 660 * True when called from drm_crtc_handle_vblank(). Some drivers 661 * need to apply some workarounds for gpu-specific vblank irq quirks 662 * if flag is set. 663 * @get_scanout_position: 664 * Callback function to retrieve the scanout position. See 665 * @struct drm_crtc_helper_funcs.get_scanout_position. 666 * 667 * Implements calculation of exact vblank timestamps from given drm_display_mode 668 * timings and current video scanout position of a CRTC. 669 * 670 * The current implementation only handles standard video modes. For double scan 671 * and interlaced modes the driver is supposed to adjust the hardware mode 672 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 673 * match the scanout position reported. 674 * 675 * Note that atomic drivers must call drm_calc_timestamping_constants() before 676 * enabling a CRTC. The atomic helpers already take care of that in 677 * drm_atomic_helper_update_legacy_modeset_state(). 678 * 679 * Returns: 680 * 681 * Returns true on success, and false on failure, i.e. when no accurate 682 * timestamp could be acquired. 683 */ 684 bool 685 drm_crtc_vblank_helper_get_vblank_timestamp_internal( 686 struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time, 687 bool in_vblank_irq, 688 drm_vblank_get_scanout_position_func get_scanout_position) 689 { 690 struct drm_device *dev = crtc->dev; 691 unsigned int pipe = crtc->index; 692 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 693 struct timespec64 ts_etime, ts_vblank_time; 694 ktime_t stime, etime; 695 bool vbl_status; 696 const struct drm_display_mode *mode; 697 int vpos, hpos, i; 698 int delta_ns, duration_ns; 699 700 if (pipe >= dev->num_crtcs) { 701 drm_err(dev, "Invalid crtc %u\n", pipe); 702 return false; 703 } 704 705 /* Scanout position query not supported? Should not happen. */ 706 if (!get_scanout_position) { 707 drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n"); 708 return false; 709 } 710 711 if (drm_drv_uses_atomic_modeset(dev)) 712 mode = &vblank->hwmode; 713 else 714 mode = &crtc->hwmode; 715 716 /* If mode timing undefined, just return as no-op: 717 * Happens during initial modesetting of a crtc. 718 */ 719 if (mode->crtc_clock == 0) { 720 drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n", 721 pipe); 722 drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev)); 723 return false; 724 } 725 726 /* Get current scanout position with system timestamp. 727 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times 728 * if single query takes longer than max_error nanoseconds. 729 * 730 * This guarantees a tight bound on maximum error if 731 * code gets preempted or delayed for some reason. 732 */ 733 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { 734 /* 735 * Get vertical and horizontal scanout position vpos, hpos, 736 * and bounding timestamps stime, etime, pre/post query. 737 */ 738 vbl_status = get_scanout_position(crtc, in_vblank_irq, 739 &vpos, &hpos, 740 &stime, &etime, 741 mode); 742 743 /* Return as no-op if scanout query unsupported or failed. */ 744 if (!vbl_status) { 745 drm_dbg_core(dev, 746 "crtc %u : scanoutpos query failed.\n", 747 pipe); 748 return false; 749 } 750 751 /* Compute uncertainty in timestamp of scanout position query. */ 752 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime); 753 754 /* Accept result with < max_error nsecs timing uncertainty. */ 755 if (duration_ns <= *max_error) 756 break; 757 } 758 759 /* Noisy system timing? */ 760 if (i == DRM_TIMESTAMP_MAXRETRIES) { 761 drm_dbg_core(dev, 762 "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n", 763 pipe, duration_ns / 1000, *max_error / 1000, i); 764 } 765 766 /* Return upper bound of timestamp precision error. */ 767 *max_error = duration_ns; 768 769 /* Convert scanout position into elapsed time at raw_time query 770 * since start of scanout at first display scanline. delta_ns 771 * can be negative if start of scanout hasn't happened yet. 772 */ 773 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos), 774 mode->crtc_clock); 775 776 /* Subtract time delta from raw timestamp to get final 777 * vblank_time timestamp for end of vblank. 778 */ 779 *vblank_time = ktime_sub_ns(etime, delta_ns); 780 781 if (!drm_debug_enabled(DRM_UT_VBL)) 782 return true; 783 784 ts_etime = ktime_to_timespec64(etime); 785 ts_vblank_time = ktime_to_timespec64(*vblank_time); 786 787 drm_dbg_vbl(dev, 788 "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n", 789 pipe, hpos, vpos, 790 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000, 791 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000, 792 duration_ns / 1000, i); 793 794 return true; 795 } 796 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal); 797 798 /** 799 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp 800 * helper 801 * @crtc: CRTC whose vblank timestamp to retrieve 802 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 803 * On return contains true maximum error of timestamp 804 * @vblank_time: Pointer to time which should receive the timestamp 805 * @in_vblank_irq: 806 * True when called from drm_crtc_handle_vblank(). Some drivers 807 * need to apply some workarounds for gpu-specific vblank irq quirks 808 * if flag is set. 809 * 810 * Implements calculation of exact vblank timestamps from given drm_display_mode 811 * timings and current video scanout position of a CRTC. This can be directly 812 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms 813 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented. 814 * 815 * The current implementation only handles standard video modes. For double scan 816 * and interlaced modes the driver is supposed to adjust the hardware mode 817 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 818 * match the scanout position reported. 819 * 820 * Note that atomic drivers must call drm_calc_timestamping_constants() before 821 * enabling a CRTC. The atomic helpers already take care of that in 822 * drm_atomic_helper_update_legacy_modeset_state(). 823 * 824 * Returns: 825 * 826 * Returns true on success, and false on failure, i.e. when no accurate 827 * timestamp could be acquired. 828 */ 829 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc, 830 int *max_error, 831 ktime_t *vblank_time, 832 bool in_vblank_irq) 833 { 834 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 835 crtc, max_error, vblank_time, in_vblank_irq, 836 crtc->helper_private->get_scanout_position); 837 } 838 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp); 839 840 /** 841 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent 842 * vblank interval 843 * @dev: DRM device 844 * @pipe: index of CRTC whose vblank timestamp to retrieve 845 * @tvblank: Pointer to target time which should receive the timestamp 846 * @in_vblank_irq: 847 * True when called from drm_crtc_handle_vblank(). Some drivers 848 * need to apply some workarounds for gpu-specific vblank irq quirks 849 * if flag is set. 850 * 851 * Fetches the system timestamp corresponding to the time of the most recent 852 * vblank interval on specified CRTC. May call into kms-driver to 853 * compute the timestamp with a high-precision GPU specific method. 854 * 855 * Returns zero if timestamp originates from uncorrected do_gettimeofday() 856 * call, i.e., it isn't very precisely locked to the true vblank. 857 * 858 * Returns: 859 * True if timestamp is considered to be very precise, false otherwise. 860 */ 861 static bool 862 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 863 ktime_t *tvblank, bool in_vblank_irq) 864 { 865 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 866 bool ret = false; 867 868 /* Define requested maximum error on timestamps (nanoseconds). */ 869 int max_error = (int) drm_timestamp_precision * 1000; 870 871 /* Query driver if possible and precision timestamping enabled. */ 872 if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) { 873 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 874 875 ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error, 876 tvblank, in_vblank_irq); 877 } 878 879 /* GPU high precision timestamp query unsupported or failed. 880 * Return current monotonic/gettimeofday timestamp as best estimate. 881 */ 882 if (!ret) 883 *tvblank = ktime_get(); 884 885 return ret; 886 } 887 888 /** 889 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value 890 * @crtc: which counter to retrieve 891 * 892 * Fetches the "cooked" vblank count value that represents the number of 893 * vblank events since the system was booted, including lost events due to 894 * modesetting activity. Note that this timer isn't correct against a racing 895 * vblank interrupt (since it only reports the software vblank counter), see 896 * drm_crtc_accurate_vblank_count() for such use-cases. 897 * 898 * Note that for a given vblank counter value drm_crtc_handle_vblank() 899 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 900 * provide a barrier: Any writes done before calling 901 * drm_crtc_handle_vblank() will be visible to callers of the later 902 * functions, iff the vblank count is the same or a later one. 903 * 904 * See also &drm_vblank_crtc.count. 905 * 906 * Returns: 907 * The software vblank counter. 908 */ 909 u64 drm_crtc_vblank_count(struct drm_crtc *crtc) 910 { 911 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc)); 912 } 913 EXPORT_SYMBOL(drm_crtc_vblank_count); 914 915 /** 916 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the 917 * system timestamp corresponding to that vblank counter value. 918 * @dev: DRM device 919 * @pipe: index of CRTC whose counter to retrieve 920 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp. 921 * 922 * Fetches the "cooked" vblank count value that represents the number of 923 * vblank events since the system was booted, including lost events due to 924 * modesetting activity. Returns corresponding system timestamp of the time 925 * of the vblank interval that corresponds to the current vblank counter value. 926 * 927 * This is the legacy version of drm_crtc_vblank_count_and_time(). 928 */ 929 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe, 930 ktime_t *vblanktime) 931 { 932 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 933 u64 vblank_count; 934 unsigned int seq; 935 936 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) { 937 *vblanktime = 0; 938 return 0; 939 } 940 941 do { 942 seq = read_seqbegin(&vblank->seqlock); 943 vblank_count = atomic64_read(&vblank->count); 944 *vblanktime = vblank->time; 945 } while (read_seqretry(&vblank->seqlock, seq)); 946 947 return vblank_count; 948 } 949 950 /** 951 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value 952 * and the system timestamp corresponding to that vblank counter value 953 * @crtc: which counter to retrieve 954 * @vblanktime: Pointer to time to receive the vblank timestamp. 955 * 956 * Fetches the "cooked" vblank count value that represents the number of 957 * vblank events since the system was booted, including lost events due to 958 * modesetting activity. Returns corresponding system timestamp of the time 959 * of the vblank interval that corresponds to the current vblank counter value. 960 * 961 * Note that for a given vblank counter value drm_crtc_handle_vblank() 962 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 963 * provide a barrier: Any writes done before calling 964 * drm_crtc_handle_vblank() will be visible to callers of the later 965 * functions, iff the vblank count is the same or a later one. 966 * 967 * See also &drm_vblank_crtc.count. 968 */ 969 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc, 970 ktime_t *vblanktime) 971 { 972 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc), 973 vblanktime); 974 } 975 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time); 976 977 static void send_vblank_event(struct drm_device *dev, 978 struct drm_pending_vblank_event *e, 979 u64 seq, ktime_t now) 980 { 981 struct timespec64 tv; 982 983 switch (e->event.base.type) { 984 case DRM_EVENT_VBLANK: 985 case DRM_EVENT_FLIP_COMPLETE: 986 tv = ktime_to_timespec64(now); 987 e->event.vbl.sequence = seq; 988 /* 989 * e->event is a user space structure, with hardcoded unsigned 990 * 32-bit seconds/microseconds. This is safe as we always use 991 * monotonic timestamps since linux-4.15 992 */ 993 e->event.vbl.tv_sec = tv.tv_sec; 994 e->event.vbl.tv_usec = tv.tv_nsec / 1000; 995 break; 996 case DRM_EVENT_CRTC_SEQUENCE: 997 if (seq) 998 e->event.seq.sequence = seq; 999 e->event.seq.time_ns = ktime_to_ns(now); 1000 break; 1001 } 1002 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq); 1003 drm_send_event_locked(dev, &e->base); 1004 } 1005 1006 /** 1007 * drm_crtc_arm_vblank_event - arm vblank event after pageflip 1008 * @crtc: the source CRTC of the vblank event 1009 * @e: the event to send 1010 * 1011 * A lot of drivers need to generate vblank events for the very next vblank 1012 * interrupt. For example when the page flip interrupt happens when the page 1013 * flip gets armed, but not when it actually executes within the next vblank 1014 * period. This helper function implements exactly the required vblank arming 1015 * behaviour. 1016 * 1017 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an 1018 * atomic commit must ensure that the next vblank happens at exactly the same 1019 * time as the atomic commit is committed to the hardware. This function itself 1020 * does **not** protect against the next vblank interrupt racing with either this 1021 * function call or the atomic commit operation. A possible sequence could be: 1022 * 1023 * 1. Driver commits new hardware state into vblank-synchronized registers. 1024 * 2. A vblank happens, committing the hardware state. Also the corresponding 1025 * vblank interrupt is fired off and fully processed by the interrupt 1026 * handler. 1027 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event(). 1028 * 4. The event is only send out for the next vblank, which is wrong. 1029 * 1030 * An equivalent race can happen when the driver calls 1031 * drm_crtc_arm_vblank_event() before writing out the new hardware state. 1032 * 1033 * The only way to make this work safely is to prevent the vblank from firing 1034 * (and the hardware from committing anything else) until the entire atomic 1035 * commit sequence has run to completion. If the hardware does not have such a 1036 * feature (e.g. using a "go" bit), then it is unsafe to use this functions. 1037 * Instead drivers need to manually send out the event from their interrupt 1038 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no 1039 * possible race with the hardware committing the atomic update. 1040 * 1041 * Caller must hold a vblank reference for the event @e acquired by a 1042 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives. 1043 */ 1044 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc, 1045 struct drm_pending_vblank_event *e) 1046 { 1047 struct drm_device *dev = crtc->dev; 1048 unsigned int pipe = drm_crtc_index(crtc); 1049 1050 assert_spin_locked(&dev->event_lock); 1051 1052 e->pipe = pipe; 1053 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1; 1054 list_add_tail(&e->base.link, &dev->vblank_event_list); 1055 } 1056 EXPORT_SYMBOL(drm_crtc_arm_vblank_event); 1057 1058 /** 1059 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip 1060 * @crtc: the source CRTC of the vblank event 1061 * @e: the event to send 1062 * 1063 * Updates sequence # and timestamp on event for the most recently processed 1064 * vblank, and sends it to userspace. Caller must hold event lock. 1065 * 1066 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain 1067 * situation, especially to send out events for atomic commit operations. 1068 */ 1069 void drm_crtc_send_vblank_event(struct drm_crtc *crtc, 1070 struct drm_pending_vblank_event *e) 1071 { 1072 struct drm_device *dev = crtc->dev; 1073 u64 seq; 1074 unsigned int pipe = drm_crtc_index(crtc); 1075 ktime_t now; 1076 1077 if (drm_dev_has_vblank(dev)) { 1078 seq = drm_vblank_count_and_time(dev, pipe, &now); 1079 } else { 1080 seq = 0; 1081 1082 now = ktime_get(); 1083 } 1084 e->pipe = pipe; 1085 send_vblank_event(dev, e, seq, now); 1086 } 1087 EXPORT_SYMBOL(drm_crtc_send_vblank_event); 1088 1089 static int __enable_vblank(struct drm_device *dev, unsigned int pipe) 1090 { 1091 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1092 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1093 1094 if (drm_WARN_ON(dev, !crtc)) 1095 return 0; 1096 1097 if (crtc->funcs->enable_vblank) 1098 return crtc->funcs->enable_vblank(crtc); 1099 } else if (dev->driver->enable_vblank) { 1100 return dev->driver->enable_vblank(dev, pipe); 1101 } 1102 1103 return -EINVAL; 1104 } 1105 1106 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe) 1107 { 1108 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1109 int ret = 0; 1110 1111 assert_spin_locked(&dev->vbl_lock); 1112 1113 spin_lock(&dev->vblank_time_lock); 1114 1115 if (!vblank->enabled) { 1116 /* 1117 * Enable vblank irqs under vblank_time_lock protection. 1118 * All vblank count & timestamp updates are held off 1119 * until we are done reinitializing master counter and 1120 * timestamps. Filtercode in drm_handle_vblank() will 1121 * prevent double-accounting of same vblank interval. 1122 */ 1123 ret = __enable_vblank(dev, pipe); 1124 drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n", 1125 pipe, ret); 1126 if (ret) { 1127 atomic_dec(&vblank->refcount); 1128 } else { 1129 drm_update_vblank_count(dev, pipe, 0); 1130 /* drm_update_vblank_count() includes a wmb so we just 1131 * need to ensure that the compiler emits the write 1132 * to mark the vblank as enabled after the call 1133 * to drm_update_vblank_count(). 1134 */ 1135 WRITE_ONCE(vblank->enabled, true); 1136 } 1137 } 1138 1139 spin_unlock(&dev->vblank_time_lock); 1140 1141 return ret; 1142 } 1143 1144 int drm_vblank_get(struct drm_device *dev, unsigned int pipe) 1145 { 1146 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1147 unsigned long irqflags; 1148 int ret = 0; 1149 1150 if (!drm_dev_has_vblank(dev)) 1151 return -EINVAL; 1152 1153 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1154 return -EINVAL; 1155 1156 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1157 /* Going from 0->1 means we have to enable interrupts again */ 1158 if (atomic_add_return(1, &vblank->refcount) == 1) { 1159 ret = drm_vblank_enable(dev, pipe); 1160 } else { 1161 if (!vblank->enabled) { 1162 atomic_dec(&vblank->refcount); 1163 ret = -EINVAL; 1164 } 1165 } 1166 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1167 1168 return ret; 1169 } 1170 1171 /** 1172 * drm_crtc_vblank_get - get a reference count on vblank events 1173 * @crtc: which CRTC to own 1174 * 1175 * Acquire a reference count on vblank events to avoid having them disabled 1176 * while in use. 1177 * 1178 * Returns: 1179 * Zero on success or a negative error code on failure. 1180 */ 1181 int drm_crtc_vblank_get(struct drm_crtc *crtc) 1182 { 1183 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc)); 1184 } 1185 EXPORT_SYMBOL(drm_crtc_vblank_get); 1186 1187 void drm_vblank_put(struct drm_device *dev, unsigned int pipe) 1188 { 1189 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1190 1191 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1192 return; 1193 1194 if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0)) 1195 return; 1196 1197 /* Last user schedules interrupt disable */ 1198 if (atomic_dec_and_test(&vblank->refcount)) { 1199 if (drm_vblank_offdelay == 0) 1200 return; 1201 else if (drm_vblank_offdelay < 0) 1202 vblank_disable_fn(&vblank->disable_timer); 1203 else if (!dev->vblank_disable_immediate) 1204 mod_timer(&vblank->disable_timer, 1205 jiffies + ((drm_vblank_offdelay * HZ)/1000)); 1206 } 1207 } 1208 1209 /** 1210 * drm_crtc_vblank_put - give up ownership of vblank events 1211 * @crtc: which counter to give up 1212 * 1213 * Release ownership of a given vblank counter, turning off interrupts 1214 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds. 1215 */ 1216 void drm_crtc_vblank_put(struct drm_crtc *crtc) 1217 { 1218 drm_vblank_put(crtc->dev, drm_crtc_index(crtc)); 1219 } 1220 EXPORT_SYMBOL(drm_crtc_vblank_put); 1221 1222 /** 1223 * drm_wait_one_vblank - wait for one vblank 1224 * @dev: DRM device 1225 * @pipe: CRTC index 1226 * 1227 * This waits for one vblank to pass on @pipe, using the irq driver interfaces. 1228 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g. 1229 * due to lack of driver support or because the crtc is off. 1230 * 1231 * This is the legacy version of drm_crtc_wait_one_vblank(). 1232 */ 1233 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe) 1234 { 1235 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1236 int ret; 1237 u64 last; 1238 1239 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1240 return; 1241 1242 ret = drm_vblank_get(dev, pipe); 1243 if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n", 1244 pipe, ret)) 1245 return; 1246 1247 last = drm_vblank_count(dev, pipe); 1248 1249 ret = wait_event_timeout(vblank->queue, 1250 last != drm_vblank_count(dev, pipe), 1251 msecs_to_jiffies(100)); 1252 1253 drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe); 1254 1255 drm_vblank_put(dev, pipe); 1256 } 1257 EXPORT_SYMBOL(drm_wait_one_vblank); 1258 1259 /** 1260 * drm_crtc_wait_one_vblank - wait for one vblank 1261 * @crtc: DRM crtc 1262 * 1263 * This waits for one vblank to pass on @crtc, using the irq driver interfaces. 1264 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g. 1265 * due to lack of driver support or because the crtc is off. 1266 */ 1267 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc) 1268 { 1269 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc)); 1270 } 1271 EXPORT_SYMBOL(drm_crtc_wait_one_vblank); 1272 1273 /** 1274 * drm_crtc_vblank_off - disable vblank events on a CRTC 1275 * @crtc: CRTC in question 1276 * 1277 * Drivers can use this function to shut down the vblank interrupt handling when 1278 * disabling a crtc. This function ensures that the latest vblank frame count is 1279 * stored so that drm_vblank_on can restore it again. 1280 * 1281 * Drivers must use this function when the hardware vblank counter can get 1282 * reset, e.g. when suspending or disabling the @crtc in general. 1283 */ 1284 void drm_crtc_vblank_off(struct drm_crtc *crtc) 1285 { 1286 struct drm_device *dev = crtc->dev; 1287 unsigned int pipe = drm_crtc_index(crtc); 1288 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1289 struct drm_pending_vblank_event *e, *t; 1290 ktime_t now; 1291 u64 seq; 1292 1293 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1294 return; 1295 1296 /* 1297 * Grab event_lock early to prevent vblank work from being scheduled 1298 * while we're in the middle of shutting down vblank interrupts 1299 */ 1300 spin_lock_irq(&dev->event_lock); 1301 1302 spin_lock(&dev->vbl_lock); 1303 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n", 1304 pipe, vblank->enabled, vblank->inmodeset); 1305 1306 /* Avoid redundant vblank disables without previous 1307 * drm_crtc_vblank_on(). */ 1308 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset) 1309 drm_vblank_disable_and_save(dev, pipe); 1310 1311 wake_up(&vblank->queue); 1312 1313 /* 1314 * Prevent subsequent drm_vblank_get() from re-enabling 1315 * the vblank interrupt by bumping the refcount. 1316 */ 1317 if (!vblank->inmodeset) { 1318 atomic_inc(&vblank->refcount); 1319 vblank->inmodeset = 1; 1320 } 1321 spin_unlock(&dev->vbl_lock); 1322 1323 /* Send any queued vblank events, lest the natives grow disquiet */ 1324 seq = drm_vblank_count_and_time(dev, pipe, &now); 1325 1326 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1327 if (e->pipe != pipe) 1328 continue; 1329 drm_dbg_core(dev, "Sending premature vblank event on disable: " 1330 "wanted %llu, current %llu\n", 1331 e->sequence, seq); 1332 list_del(&e->base.link); 1333 drm_vblank_put(dev, pipe); 1334 send_vblank_event(dev, e, seq, now); 1335 } 1336 1337 /* Cancel any leftover pending vblank work */ 1338 drm_vblank_cancel_pending_works(vblank); 1339 1340 spin_unlock_irq(&dev->event_lock); 1341 1342 /* Will be reset by the modeset helpers when re-enabling the crtc by 1343 * calling drm_calc_timestamping_constants(). */ 1344 vblank->hwmode.crtc_clock = 0; 1345 1346 /* Wait for any vblank work that's still executing to finish */ 1347 drm_vblank_flush_worker(vblank); 1348 } 1349 EXPORT_SYMBOL(drm_crtc_vblank_off); 1350 1351 /** 1352 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC 1353 * @crtc: CRTC in question 1354 * 1355 * Drivers can use this function to reset the vblank state to off at load time. 1356 * Drivers should use this together with the drm_crtc_vblank_off() and 1357 * drm_crtc_vblank_on() functions. The difference compared to 1358 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter 1359 * and hence doesn't need to call any driver hooks. 1360 * 1361 * This is useful for recovering driver state e.g. on driver load, or on resume. 1362 */ 1363 void drm_crtc_vblank_reset(struct drm_crtc *crtc) 1364 { 1365 struct drm_device *dev = crtc->dev; 1366 unsigned int pipe = drm_crtc_index(crtc); 1367 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1368 1369 spin_lock_irq(&dev->vbl_lock); 1370 /* 1371 * Prevent subsequent drm_vblank_get() from enabling the vblank 1372 * interrupt by bumping the refcount. 1373 */ 1374 if (!vblank->inmodeset) { 1375 atomic_inc(&vblank->refcount); 1376 vblank->inmodeset = 1; 1377 } 1378 spin_unlock_irq(&dev->vbl_lock); 1379 1380 drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list)); 1381 drm_WARN_ON(dev, !list_empty(&vblank->pending_work)); 1382 } 1383 EXPORT_SYMBOL(drm_crtc_vblank_reset); 1384 1385 /** 1386 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value 1387 * @crtc: CRTC in question 1388 * @max_vblank_count: max hardware vblank counter value 1389 * 1390 * Update the maximum hardware vblank counter value for @crtc 1391 * at runtime. Useful for hardware where the operation of the 1392 * hardware vblank counter depends on the currently active 1393 * display configuration. 1394 * 1395 * For example, if the hardware vblank counter does not work 1396 * when a specific connector is active the maximum can be set 1397 * to zero. And when that specific connector isn't active the 1398 * maximum can again be set to the appropriate non-zero value. 1399 * 1400 * If used, must be called before drm_vblank_on(). 1401 */ 1402 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc, 1403 u32 max_vblank_count) 1404 { 1405 struct drm_device *dev = crtc->dev; 1406 unsigned int pipe = drm_crtc_index(crtc); 1407 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1408 1409 drm_WARN_ON(dev, dev->max_vblank_count); 1410 drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset)); 1411 1412 vblank->max_vblank_count = max_vblank_count; 1413 } 1414 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count); 1415 1416 /** 1417 * drm_crtc_vblank_on - enable vblank events on a CRTC 1418 * @crtc: CRTC in question 1419 * 1420 * This functions restores the vblank interrupt state captured with 1421 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note 1422 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be 1423 * unbalanced and so can also be unconditionally called in driver load code to 1424 * reflect the current hardware state of the crtc. 1425 */ 1426 void drm_crtc_vblank_on(struct drm_crtc *crtc) 1427 { 1428 struct drm_device *dev = crtc->dev; 1429 unsigned int pipe = drm_crtc_index(crtc); 1430 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1431 1432 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1433 return; 1434 1435 spin_lock_irq(&dev->vbl_lock); 1436 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n", 1437 pipe, vblank->enabled, vblank->inmodeset); 1438 1439 /* Drop our private "prevent drm_vblank_get" refcount */ 1440 if (vblank->inmodeset) { 1441 atomic_dec(&vblank->refcount); 1442 vblank->inmodeset = 0; 1443 } 1444 1445 drm_reset_vblank_timestamp(dev, pipe); 1446 1447 /* 1448 * re-enable interrupts if there are users left, or the 1449 * user wishes vblank interrupts to be enabled all the time. 1450 */ 1451 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0) 1452 drm_WARN_ON(dev, drm_vblank_enable(dev, pipe)); 1453 spin_unlock_irq(&dev->vbl_lock); 1454 } 1455 EXPORT_SYMBOL(drm_crtc_vblank_on); 1456 1457 /** 1458 * drm_vblank_restore - estimate missed vblanks and update vblank count. 1459 * @dev: DRM device 1460 * @pipe: CRTC index 1461 * 1462 * Power manamement features can cause frame counter resets between vblank 1463 * disable and enable. Drivers can use this function in their 1464 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1465 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1466 * vblank counter. 1467 * 1468 * This function is the legacy version of drm_crtc_vblank_restore(). 1469 */ 1470 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe) 1471 { 1472 ktime_t t_vblank; 1473 struct drm_vblank_crtc *vblank; 1474 int framedur_ns; 1475 u64 diff_ns; 1476 u32 cur_vblank, diff = 1; 1477 int count = DRM_TIMESTAMP_MAXRETRIES; 1478 1479 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1480 return; 1481 1482 assert_spin_locked(&dev->vbl_lock); 1483 assert_spin_locked(&dev->vblank_time_lock); 1484 1485 vblank = &dev->vblank[pipe]; 1486 drm_WARN_ONCE(dev, 1487 drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns, 1488 "Cannot compute missed vblanks without frame duration\n"); 1489 framedur_ns = vblank->framedur_ns; 1490 1491 do { 1492 cur_vblank = __get_vblank_counter(dev, pipe); 1493 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 1494 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 1495 1496 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 1497 if (framedur_ns) 1498 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 1499 1500 1501 drm_dbg_vbl(dev, 1502 "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n", 1503 diff, diff_ns, framedur_ns, cur_vblank - vblank->last); 1504 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 1505 } 1506 EXPORT_SYMBOL(drm_vblank_restore); 1507 1508 /** 1509 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count. 1510 * @crtc: CRTC in question 1511 * 1512 * Power manamement features can cause frame counter resets between vblank 1513 * disable and enable. Drivers can use this function in their 1514 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1515 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1516 * vblank counter. 1517 */ 1518 void drm_crtc_vblank_restore(struct drm_crtc *crtc) 1519 { 1520 drm_vblank_restore(crtc->dev, drm_crtc_index(crtc)); 1521 } 1522 EXPORT_SYMBOL(drm_crtc_vblank_restore); 1523 1524 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev, 1525 unsigned int pipe) 1526 { 1527 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1528 1529 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1530 if (!drm_dev_has_vblank(dev)) 1531 return; 1532 1533 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1534 return; 1535 1536 /* 1537 * To avoid all the problems that might happen if interrupts 1538 * were enabled/disabled around or between these calls, we just 1539 * have the kernel take a reference on the CRTC (just once though 1540 * to avoid corrupting the count if multiple, mismatch calls occur), 1541 * so that interrupts remain enabled in the interim. 1542 */ 1543 if (!vblank->inmodeset) { 1544 vblank->inmodeset = 0x1; 1545 if (drm_vblank_get(dev, pipe) == 0) 1546 vblank->inmodeset |= 0x2; 1547 } 1548 } 1549 1550 static void drm_legacy_vblank_post_modeset(struct drm_device *dev, 1551 unsigned int pipe) 1552 { 1553 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1554 1555 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1556 if (!drm_dev_has_vblank(dev)) 1557 return; 1558 1559 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1560 return; 1561 1562 if (vblank->inmodeset) { 1563 spin_lock_irq(&dev->vbl_lock); 1564 drm_reset_vblank_timestamp(dev, pipe); 1565 spin_unlock_irq(&dev->vbl_lock); 1566 1567 if (vblank->inmodeset & 0x2) 1568 drm_vblank_put(dev, pipe); 1569 1570 vblank->inmodeset = 0; 1571 } 1572 } 1573 1574 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data, 1575 struct drm_file *file_priv) 1576 { 1577 struct drm_modeset_ctl *modeset = data; 1578 unsigned int pipe; 1579 1580 /* If drm_vblank_init() hasn't been called yet, just no-op */ 1581 if (!drm_dev_has_vblank(dev)) 1582 return 0; 1583 1584 /* KMS drivers handle this internally */ 1585 if (!drm_core_check_feature(dev, DRIVER_LEGACY)) 1586 return 0; 1587 1588 pipe = modeset->crtc; 1589 if (pipe >= dev->num_crtcs) 1590 return -EINVAL; 1591 1592 switch (modeset->cmd) { 1593 case _DRM_PRE_MODESET: 1594 drm_legacy_vblank_pre_modeset(dev, pipe); 1595 break; 1596 case _DRM_POST_MODESET: 1597 drm_legacy_vblank_post_modeset(dev, pipe); 1598 break; 1599 default: 1600 return -EINVAL; 1601 } 1602 1603 return 0; 1604 } 1605 1606 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe, 1607 u64 req_seq, 1608 union drm_wait_vblank *vblwait, 1609 struct drm_file *file_priv) 1610 { 1611 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1612 struct drm_pending_vblank_event *e; 1613 ktime_t now; 1614 u64 seq; 1615 int ret; 1616 1617 e = kzalloc(sizeof(*e), GFP_KERNEL); 1618 if (e == NULL) { 1619 ret = -ENOMEM; 1620 goto err_put; 1621 } 1622 1623 e->pipe = pipe; 1624 e->event.base.type = DRM_EVENT_VBLANK; 1625 e->event.base.length = sizeof(e->event.vbl); 1626 e->event.vbl.user_data = vblwait->request.signal; 1627 e->event.vbl.crtc_id = 0; 1628 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1629 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1630 1631 if (crtc) 1632 e->event.vbl.crtc_id = crtc->base.id; 1633 } 1634 1635 spin_lock_irq(&dev->event_lock); 1636 1637 /* 1638 * drm_crtc_vblank_off() might have been called after we called 1639 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1640 * vblank disable, so no need for further locking. The reference from 1641 * drm_vblank_get() protects against vblank disable from another source. 1642 */ 1643 if (!READ_ONCE(vblank->enabled)) { 1644 ret = -EINVAL; 1645 goto err_unlock; 1646 } 1647 1648 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1649 &e->event.base); 1650 1651 if (ret) 1652 goto err_unlock; 1653 1654 seq = drm_vblank_count_and_time(dev, pipe, &now); 1655 1656 drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n", 1657 req_seq, seq, pipe); 1658 1659 trace_drm_vblank_event_queued(file_priv, pipe, req_seq); 1660 1661 e->sequence = req_seq; 1662 if (drm_vblank_passed(seq, req_seq)) { 1663 drm_vblank_put(dev, pipe); 1664 send_vblank_event(dev, e, seq, now); 1665 vblwait->reply.sequence = seq; 1666 } else { 1667 /* drm_handle_vblank_events will call drm_vblank_put */ 1668 list_add_tail(&e->base.link, &dev->vblank_event_list); 1669 vblwait->reply.sequence = req_seq; 1670 } 1671 1672 spin_unlock_irq(&dev->event_lock); 1673 1674 return 0; 1675 1676 err_unlock: 1677 spin_unlock_irq(&dev->event_lock); 1678 kfree(e); 1679 err_put: 1680 drm_vblank_put(dev, pipe); 1681 return ret; 1682 } 1683 1684 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait) 1685 { 1686 if (vblwait->request.sequence) 1687 return false; 1688 1689 return _DRM_VBLANK_RELATIVE == 1690 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK | 1691 _DRM_VBLANK_EVENT | 1692 _DRM_VBLANK_NEXTONMISS)); 1693 } 1694 1695 /* 1696 * Widen a 32-bit param to 64-bits. 1697 * 1698 * \param narrow 32-bit value (missing upper 32 bits) 1699 * \param near 64-bit value that should be 'close' to near 1700 * 1701 * This function returns a 64-bit value using the lower 32-bits from 1702 * 'narrow' and constructing the upper 32-bits so that the result is 1703 * as close as possible to 'near'. 1704 */ 1705 1706 static u64 widen_32_to_64(u32 narrow, u64 near) 1707 { 1708 return near + (s32) (narrow - near); 1709 } 1710 1711 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe, 1712 struct drm_wait_vblank_reply *reply) 1713 { 1714 ktime_t now; 1715 struct timespec64 ts; 1716 1717 /* 1718 * drm_wait_vblank_reply is a UAPI structure that uses 'long' 1719 * to store the seconds. This is safe as we always use monotonic 1720 * timestamps since linux-4.15. 1721 */ 1722 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1723 ts = ktime_to_timespec64(now); 1724 reply->tval_sec = (u32)ts.tv_sec; 1725 reply->tval_usec = ts.tv_nsec / 1000; 1726 } 1727 1728 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data, 1729 struct drm_file *file_priv) 1730 { 1731 struct drm_crtc *crtc; 1732 struct drm_vblank_crtc *vblank; 1733 union drm_wait_vblank *vblwait = data; 1734 int ret; 1735 u64 req_seq, seq; 1736 unsigned int pipe_index; 1737 unsigned int flags, pipe, high_pipe; 1738 1739 if (!dev->irq_enabled) 1740 return -EOPNOTSUPP; 1741 1742 if (vblwait->request.type & _DRM_VBLANK_SIGNAL) 1743 return -EINVAL; 1744 1745 if (vblwait->request.type & 1746 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1747 _DRM_VBLANK_HIGH_CRTC_MASK)) { 1748 drm_dbg_core(dev, 1749 "Unsupported type value 0x%x, supported mask 0x%x\n", 1750 vblwait->request.type, 1751 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1752 _DRM_VBLANK_HIGH_CRTC_MASK)); 1753 return -EINVAL; 1754 } 1755 1756 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; 1757 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); 1758 if (high_pipe) 1759 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT; 1760 else 1761 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; 1762 1763 /* Convert lease-relative crtc index into global crtc index */ 1764 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1765 pipe = 0; 1766 drm_for_each_crtc(crtc, dev) { 1767 if (drm_lease_held(file_priv, crtc->base.id)) { 1768 if (pipe_index == 0) 1769 break; 1770 pipe_index--; 1771 } 1772 pipe++; 1773 } 1774 } else { 1775 pipe = pipe_index; 1776 } 1777 1778 if (pipe >= dev->num_crtcs) 1779 return -EINVAL; 1780 1781 vblank = &dev->vblank[pipe]; 1782 1783 /* If the counter is currently enabled and accurate, short-circuit 1784 * queries to return the cached timestamp of the last vblank. 1785 */ 1786 if (dev->vblank_disable_immediate && 1787 drm_wait_vblank_is_query(vblwait) && 1788 READ_ONCE(vblank->enabled)) { 1789 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1790 return 0; 1791 } 1792 1793 ret = drm_vblank_get(dev, pipe); 1794 if (ret) { 1795 drm_dbg_core(dev, 1796 "crtc %d failed to acquire vblank counter, %d\n", 1797 pipe, ret); 1798 return ret; 1799 } 1800 seq = drm_vblank_count(dev, pipe); 1801 1802 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { 1803 case _DRM_VBLANK_RELATIVE: 1804 req_seq = seq + vblwait->request.sequence; 1805 vblwait->request.sequence = req_seq; 1806 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; 1807 break; 1808 case _DRM_VBLANK_ABSOLUTE: 1809 req_seq = widen_32_to_64(vblwait->request.sequence, seq); 1810 break; 1811 default: 1812 ret = -EINVAL; 1813 goto done; 1814 } 1815 1816 if ((flags & _DRM_VBLANK_NEXTONMISS) && 1817 drm_vblank_passed(seq, req_seq)) { 1818 req_seq = seq + 1; 1819 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS; 1820 vblwait->request.sequence = req_seq; 1821 } 1822 1823 if (flags & _DRM_VBLANK_EVENT) { 1824 /* must hold on to the vblank ref until the event fires 1825 * drm_vblank_put will be called asynchronously 1826 */ 1827 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv); 1828 } 1829 1830 if (req_seq != seq) { 1831 int wait; 1832 1833 drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n", 1834 req_seq, pipe); 1835 wait = wait_event_interruptible_timeout(vblank->queue, 1836 drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) || 1837 !READ_ONCE(vblank->enabled), 1838 msecs_to_jiffies(3000)); 1839 1840 switch (wait) { 1841 case 0: 1842 /* timeout */ 1843 ret = -EBUSY; 1844 break; 1845 case -ERESTARTSYS: 1846 /* interrupted by signal */ 1847 ret = -EINTR; 1848 break; 1849 default: 1850 ret = 0; 1851 break; 1852 } 1853 } 1854 1855 if (ret != -EINTR) { 1856 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1857 1858 drm_dbg_core(dev, "crtc %d returning %u to client\n", 1859 pipe, vblwait->reply.sequence); 1860 } else { 1861 drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n", 1862 pipe); 1863 } 1864 1865 done: 1866 drm_vblank_put(dev, pipe); 1867 return ret; 1868 } 1869 1870 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe) 1871 { 1872 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1873 bool high_prec = false; 1874 struct drm_pending_vblank_event *e, *t; 1875 ktime_t now; 1876 u64 seq; 1877 1878 assert_spin_locked(&dev->event_lock); 1879 1880 seq = drm_vblank_count_and_time(dev, pipe, &now); 1881 1882 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1883 if (e->pipe != pipe) 1884 continue; 1885 if (!drm_vblank_passed(seq, e->sequence)) 1886 continue; 1887 1888 drm_dbg_core(dev, "vblank event on %llu, current %llu\n", 1889 e->sequence, seq); 1890 1891 list_del(&e->base.link); 1892 drm_vblank_put(dev, pipe); 1893 send_vblank_event(dev, e, seq, now); 1894 } 1895 1896 if (crtc && crtc->funcs->get_vblank_timestamp) 1897 high_prec = true; 1898 1899 trace_drm_vblank_event(pipe, seq, now, high_prec); 1900 } 1901 1902 /** 1903 * drm_handle_vblank - handle a vblank event 1904 * @dev: DRM device 1905 * @pipe: index of CRTC where this event occurred 1906 * 1907 * Drivers should call this routine in their vblank interrupt handlers to 1908 * update the vblank counter and send any signals that may be pending. 1909 * 1910 * This is the legacy version of drm_crtc_handle_vblank(). 1911 */ 1912 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe) 1913 { 1914 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1915 unsigned long irqflags; 1916 bool disable_irq; 1917 1918 if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev))) 1919 return false; 1920 1921 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1922 return false; 1923 1924 spin_lock_irqsave(&dev->event_lock, irqflags); 1925 1926 /* Need timestamp lock to prevent concurrent execution with 1927 * vblank enable/disable, as this would cause inconsistent 1928 * or corrupted timestamps and vblank counts. 1929 */ 1930 spin_lock(&dev->vblank_time_lock); 1931 1932 /* Vblank irq handling disabled. Nothing to do. */ 1933 if (!vblank->enabled) { 1934 spin_unlock(&dev->vblank_time_lock); 1935 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1936 return false; 1937 } 1938 1939 drm_update_vblank_count(dev, pipe, true); 1940 1941 spin_unlock(&dev->vblank_time_lock); 1942 1943 wake_up(&vblank->queue); 1944 1945 /* With instant-off, we defer disabling the interrupt until after 1946 * we finish processing the following vblank after all events have 1947 * been signaled. The disable has to be last (after 1948 * drm_handle_vblank_events) so that the timestamp is always accurate. 1949 */ 1950 disable_irq = (dev->vblank_disable_immediate && 1951 drm_vblank_offdelay > 0 && 1952 !atomic_read(&vblank->refcount)); 1953 1954 drm_handle_vblank_events(dev, pipe); 1955 drm_handle_vblank_works(vblank); 1956 1957 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1958 1959 if (disable_irq) 1960 vblank_disable_fn(&vblank->disable_timer); 1961 1962 return true; 1963 } 1964 EXPORT_SYMBOL(drm_handle_vblank); 1965 1966 /** 1967 * drm_crtc_handle_vblank - handle a vblank event 1968 * @crtc: where this event occurred 1969 * 1970 * Drivers should call this routine in their vblank interrupt handlers to 1971 * update the vblank counter and send any signals that may be pending. 1972 * 1973 * This is the native KMS version of drm_handle_vblank(). 1974 * 1975 * Note that for a given vblank counter value drm_crtc_handle_vblank() 1976 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 1977 * provide a barrier: Any writes done before calling 1978 * drm_crtc_handle_vblank() will be visible to callers of the later 1979 * functions, iff the vblank count is the same or a later one. 1980 * 1981 * See also &drm_vblank_crtc.count. 1982 * 1983 * Returns: 1984 * True if the event was successfully handled, false on failure. 1985 */ 1986 bool drm_crtc_handle_vblank(struct drm_crtc *crtc) 1987 { 1988 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc)); 1989 } 1990 EXPORT_SYMBOL(drm_crtc_handle_vblank); 1991 1992 /* 1993 * Get crtc VBLANK count. 1994 * 1995 * \param dev DRM device 1996 * \param data user arguement, pointing to a drm_crtc_get_sequence structure. 1997 * \param file_priv drm file private for the user's open file descriptor 1998 */ 1999 2000 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data, 2001 struct drm_file *file_priv) 2002 { 2003 struct drm_crtc *crtc; 2004 struct drm_vblank_crtc *vblank; 2005 int pipe; 2006 struct drm_crtc_get_sequence *get_seq = data; 2007 ktime_t now; 2008 bool vblank_enabled; 2009 int ret; 2010 2011 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2012 return -EOPNOTSUPP; 2013 2014 if (!dev->irq_enabled) 2015 return -EOPNOTSUPP; 2016 2017 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id); 2018 if (!crtc) 2019 return -ENOENT; 2020 2021 pipe = drm_crtc_index(crtc); 2022 2023 vblank = &dev->vblank[pipe]; 2024 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled); 2025 2026 if (!vblank_enabled) { 2027 ret = drm_crtc_vblank_get(crtc); 2028 if (ret) { 2029 drm_dbg_core(dev, 2030 "crtc %d failed to acquire vblank counter, %d\n", 2031 pipe, ret); 2032 return ret; 2033 } 2034 } 2035 drm_modeset_lock(&crtc->mutex, NULL); 2036 if (crtc->state) 2037 get_seq->active = crtc->state->enable; 2038 else 2039 get_seq->active = crtc->enabled; 2040 drm_modeset_unlock(&crtc->mutex); 2041 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now); 2042 get_seq->sequence_ns = ktime_to_ns(now); 2043 if (!vblank_enabled) 2044 drm_crtc_vblank_put(crtc); 2045 return 0; 2046 } 2047 2048 /* 2049 * Queue a event for VBLANK sequence 2050 * 2051 * \param dev DRM device 2052 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure. 2053 * \param file_priv drm file private for the user's open file descriptor 2054 */ 2055 2056 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data, 2057 struct drm_file *file_priv) 2058 { 2059 struct drm_crtc *crtc; 2060 struct drm_vblank_crtc *vblank; 2061 int pipe; 2062 struct drm_crtc_queue_sequence *queue_seq = data; 2063 ktime_t now; 2064 struct drm_pending_vblank_event *e; 2065 u32 flags; 2066 u64 seq; 2067 u64 req_seq; 2068 int ret; 2069 2070 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2071 return -EOPNOTSUPP; 2072 2073 if (!dev->irq_enabled) 2074 return -EOPNOTSUPP; 2075 2076 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id); 2077 if (!crtc) 2078 return -ENOENT; 2079 2080 flags = queue_seq->flags; 2081 /* Check valid flag bits */ 2082 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE| 2083 DRM_CRTC_SEQUENCE_NEXT_ON_MISS)) 2084 return -EINVAL; 2085 2086 pipe = drm_crtc_index(crtc); 2087 2088 vblank = &dev->vblank[pipe]; 2089 2090 e = kzalloc(sizeof(*e), GFP_KERNEL); 2091 if (e == NULL) 2092 return -ENOMEM; 2093 2094 ret = drm_crtc_vblank_get(crtc); 2095 if (ret) { 2096 drm_dbg_core(dev, 2097 "crtc %d failed to acquire vblank counter, %d\n", 2098 pipe, ret); 2099 goto err_free; 2100 } 2101 2102 seq = drm_vblank_count_and_time(dev, pipe, &now); 2103 req_seq = queue_seq->sequence; 2104 2105 if (flags & DRM_CRTC_SEQUENCE_RELATIVE) 2106 req_seq += seq; 2107 2108 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq)) 2109 req_seq = seq + 1; 2110 2111 e->pipe = pipe; 2112 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE; 2113 e->event.base.length = sizeof(e->event.seq); 2114 e->event.seq.user_data = queue_seq->user_data; 2115 2116 spin_lock_irq(&dev->event_lock); 2117 2118 /* 2119 * drm_crtc_vblank_off() might have been called after we called 2120 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 2121 * vblank disable, so no need for further locking. The reference from 2122 * drm_crtc_vblank_get() protects against vblank disable from another source. 2123 */ 2124 if (!READ_ONCE(vblank->enabled)) { 2125 ret = -EINVAL; 2126 goto err_unlock; 2127 } 2128 2129 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 2130 &e->event.base); 2131 2132 if (ret) 2133 goto err_unlock; 2134 2135 e->sequence = req_seq; 2136 2137 if (drm_vblank_passed(seq, req_seq)) { 2138 drm_crtc_vblank_put(crtc); 2139 send_vblank_event(dev, e, seq, now); 2140 queue_seq->sequence = seq; 2141 } else { 2142 /* drm_handle_vblank_events will call drm_vblank_put */ 2143 list_add_tail(&e->base.link, &dev->vblank_event_list); 2144 queue_seq->sequence = req_seq; 2145 } 2146 2147 spin_unlock_irq(&dev->event_lock); 2148 return 0; 2149 2150 err_unlock: 2151 spin_unlock_irq(&dev->event_lock); 2152 drm_crtc_vblank_put(crtc); 2153 err_free: 2154 kfree(e); 2155 return ret; 2156 } 2157 2158