1 /* 2 * drm_irq.c IRQ and vblank support 3 * 4 * \author Rickard E. (Rik) Faith <faith@valinux.com> 5 * \author Gareth Hughes <gareth@valinux.com> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 24 * OTHER DEALINGS IN THE SOFTWARE. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kthread.h> 29 #include <linux/moduleparam.h> 30 31 #include <drm/drm_crtc.h> 32 #include <drm/drm_drv.h> 33 #include <drm/drm_framebuffer.h> 34 #include <drm/drm_managed.h> 35 #include <drm/drm_modeset_helper_vtables.h> 36 #include <drm/drm_print.h> 37 #include <drm/drm_vblank.h> 38 39 #include "drm_internal.h" 40 #include "drm_trace.h" 41 42 /** 43 * DOC: vblank handling 44 * 45 * From the computer's perspective, every time the monitor displays 46 * a new frame the scanout engine has "scanned out" the display image 47 * from top to bottom, one row of pixels at a time. The current row 48 * of pixels is referred to as the current scanline. 49 * 50 * In addition to the display's visible area, there's usually a couple of 51 * extra scanlines which aren't actually displayed on the screen. 52 * These extra scanlines don't contain image data and are occasionally used 53 * for features like audio and infoframes. The region made up of these 54 * scanlines is referred to as the vertical blanking region, or vblank for 55 * short. 56 * 57 * For historical reference, the vertical blanking period was designed to 58 * give the electron gun (on CRTs) enough time to move back to the top of 59 * the screen to start scanning out the next frame. Similar for horizontal 60 * blanking periods. They were designed to give the electron gun enough 61 * time to move back to the other side of the screen to start scanning the 62 * next scanline. 63 * 64 * :: 65 * 66 * 67 * physical → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 68 * top of | | 69 * display | | 70 * | New frame | 71 * | | 72 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| 73 * |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline, 74 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| updates the 75 * | | frame as it 76 * | | travels down 77 * | | ("scan out") 78 * | Old frame | 79 * | | 80 * | | 81 * | | 82 * | | physical 83 * | | bottom of 84 * vertical |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display 85 * blanking ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 86 * region → ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 87 * ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 88 * start of → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 89 * new frame 90 * 91 * "Physical top of display" is the reference point for the high-precision/ 92 * corrected timestamp. 93 * 94 * On a lot of display hardware, programming needs to take effect during the 95 * vertical blanking period so that settings like gamma, the image buffer 96 * buffer to be scanned out, etc. can safely be changed without showing 97 * any visual artifacts on the screen. In some unforgiving hardware, some of 98 * this programming has to both start and end in the same vblank. To help 99 * with the timing of the hardware programming, an interrupt is usually 100 * available to notify the driver when it can start the updating of registers. 101 * The interrupt is in this context named the vblank interrupt. 102 * 103 * The vblank interrupt may be fired at different points depending on the 104 * hardware. Some hardware implementations will fire the interrupt when the 105 * new frame start, other implementations will fire the interrupt at different 106 * points in time. 107 * 108 * Vertical blanking plays a major role in graphics rendering. To achieve 109 * tear-free display, users must synchronize page flips and/or rendering to 110 * vertical blanking. The DRM API offers ioctls to perform page flips 111 * synchronized to vertical blanking and wait for vertical blanking. 112 * 113 * The DRM core handles most of the vertical blanking management logic, which 114 * involves filtering out spurious interrupts, keeping race-free blanking 115 * counters, coping with counter wrap-around and resets and keeping use counts. 116 * It relies on the driver to generate vertical blanking interrupts and 117 * optionally provide a hardware vertical blanking counter. 118 * 119 * Drivers must initialize the vertical blanking handling core with a call to 120 * drm_vblank_init(). Minimally, a driver needs to implement 121 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call 122 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank 123 * support. 124 * 125 * Vertical blanking interrupts can be enabled by the DRM core or by drivers 126 * themselves (for instance to handle page flipping operations). The DRM core 127 * maintains a vertical blanking use count to ensure that the interrupts are not 128 * disabled while a user still needs them. To increment the use count, drivers 129 * call drm_crtc_vblank_get() and release the vblank reference again with 130 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are 131 * guaranteed to be enabled. 132 * 133 * On many hardware disabling the vblank interrupt cannot be done in a race-free 134 * manner, see &drm_driver.vblank_disable_immediate and 135 * &drm_driver.max_vblank_count. In that case the vblank core only disables the 136 * vblanks after a timer has expired, which can be configured through the 137 * ``vblankoffdelay`` module parameter. 138 * 139 * Drivers for hardware without support for vertical-blanking interrupts 140 * must not call drm_vblank_init(). For such drivers, atomic helpers will 141 * automatically generate fake vblank events as part of the display update. 142 * This functionality also can be controlled by the driver by enabling and 143 * disabling struct drm_crtc_state.no_vblank. 144 */ 145 146 /* Retry timestamp calculation up to 3 times to satisfy 147 * drm_timestamp_precision before giving up. 148 */ 149 #define DRM_TIMESTAMP_MAXRETRIES 3 150 151 /* Threshold in nanoseconds for detection of redundant 152 * vblank irq in drm_handle_vblank(). 1 msec should be ok. 153 */ 154 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 155 156 static bool 157 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 158 ktime_t *tvblank, bool in_vblank_irq); 159 160 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */ 161 162 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */ 163 164 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600); 165 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600); 166 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)"); 167 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]"); 168 169 static void store_vblank(struct drm_device *dev, unsigned int pipe, 170 u32 vblank_count_inc, 171 ktime_t t_vblank, u32 last) 172 { 173 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 174 175 assert_spin_locked(&dev->vblank_time_lock); 176 177 vblank->last = last; 178 179 write_seqlock(&vblank->seqlock); 180 vblank->time = t_vblank; 181 atomic64_add(vblank_count_inc, &vblank->count); 182 write_sequnlock(&vblank->seqlock); 183 } 184 185 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe) 186 { 187 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 188 189 return vblank->max_vblank_count ?: dev->max_vblank_count; 190 } 191 192 /* 193 * "No hw counter" fallback implementation of .get_vblank_counter() hook, 194 * if there is no useable hardware frame counter available. 195 */ 196 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe) 197 { 198 drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0); 199 return 0; 200 } 201 202 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe) 203 { 204 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 205 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 206 207 if (drm_WARN_ON(dev, !crtc)) 208 return 0; 209 210 if (crtc->funcs->get_vblank_counter) 211 return crtc->funcs->get_vblank_counter(crtc); 212 } 213 #ifdef CONFIG_DRM_LEGACY 214 else if (dev->driver->get_vblank_counter) { 215 return dev->driver->get_vblank_counter(dev, pipe); 216 } 217 #endif 218 219 return drm_vblank_no_hw_counter(dev, pipe); 220 } 221 222 /* 223 * Reset the stored timestamp for the current vblank count to correspond 224 * to the last vblank occurred. 225 * 226 * Only to be called from drm_crtc_vblank_on(). 227 * 228 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 229 * device vblank fields. 230 */ 231 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe) 232 { 233 u32 cur_vblank; 234 bool rc; 235 ktime_t t_vblank; 236 int count = DRM_TIMESTAMP_MAXRETRIES; 237 238 spin_lock(&dev->vblank_time_lock); 239 240 /* 241 * sample the current counter to avoid random jumps 242 * when drm_vblank_enable() applies the diff 243 */ 244 do { 245 cur_vblank = __get_vblank_counter(dev, pipe); 246 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 247 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 248 249 /* 250 * Only reinitialize corresponding vblank timestamp if high-precision query 251 * available and didn't fail. Otherwise reinitialize delayed at next vblank 252 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid. 253 */ 254 if (!rc) 255 t_vblank = 0; 256 257 /* 258 * +1 to make sure user will never see the same 259 * vblank counter value before and after a modeset 260 */ 261 store_vblank(dev, pipe, 1, t_vblank, cur_vblank); 262 263 spin_unlock(&dev->vblank_time_lock); 264 } 265 266 /* 267 * Call back into the driver to update the appropriate vblank counter 268 * (specified by @pipe). Deal with wraparound, if it occurred, and 269 * update the last read value so we can deal with wraparound on the next 270 * call if necessary. 271 * 272 * Only necessary when going from off->on, to account for frames we 273 * didn't get an interrupt for. 274 * 275 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 276 * device vblank fields. 277 */ 278 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe, 279 bool in_vblank_irq) 280 { 281 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 282 u32 cur_vblank, diff; 283 bool rc; 284 ktime_t t_vblank; 285 int count = DRM_TIMESTAMP_MAXRETRIES; 286 int framedur_ns = vblank->framedur_ns; 287 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 288 289 /* 290 * Interrupts were disabled prior to this call, so deal with counter 291 * wrap if needed. 292 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events 293 * here if the register is small or we had vblank interrupts off for 294 * a long time. 295 * 296 * We repeat the hardware vblank counter & timestamp query until 297 * we get consistent results. This to prevent races between gpu 298 * updating its hardware counter while we are retrieving the 299 * corresponding vblank timestamp. 300 */ 301 do { 302 cur_vblank = __get_vblank_counter(dev, pipe); 303 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq); 304 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 305 306 if (max_vblank_count) { 307 /* trust the hw counter when it's around */ 308 diff = (cur_vblank - vblank->last) & max_vblank_count; 309 } else if (rc && framedur_ns) { 310 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 311 312 /* 313 * Figure out how many vblanks we've missed based 314 * on the difference in the timestamps and the 315 * frame/field duration. 316 */ 317 318 drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks." 319 " diff_ns = %lld, framedur_ns = %d)\n", 320 pipe, (long long)diff_ns, framedur_ns); 321 322 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 323 324 if (diff == 0 && in_vblank_irq) 325 drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n", 326 pipe); 327 } else { 328 /* some kind of default for drivers w/o accurate vbl timestamping */ 329 diff = in_vblank_irq ? 1 : 0; 330 } 331 332 /* 333 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset 334 * interval? If so then vblank irqs keep running and it will likely 335 * happen that the hardware vblank counter is not trustworthy as it 336 * might reset at some point in that interval and vblank timestamps 337 * are not trustworthy either in that interval. Iow. this can result 338 * in a bogus diff >> 1 which must be avoided as it would cause 339 * random large forward jumps of the software vblank counter. 340 */ 341 if (diff > 1 && (vblank->inmodeset & 0x2)) { 342 drm_dbg_vbl(dev, 343 "clamping vblank bump to 1 on crtc %u: diffr=%u" 344 " due to pre-modeset.\n", pipe, diff); 345 diff = 1; 346 } 347 348 drm_dbg_vbl(dev, "updating vblank count on crtc %u:" 349 " current=%llu, diff=%u, hw=%u hw_last=%u\n", 350 pipe, (unsigned long long)atomic64_read(&vblank->count), 351 diff, cur_vblank, vblank->last); 352 353 if (diff == 0) { 354 drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last); 355 return; 356 } 357 358 /* 359 * Only reinitialize corresponding vblank timestamp if high-precision query 360 * available and didn't fail, or we were called from the vblank interrupt. 361 * Otherwise reinitialize delayed at next vblank interrupt and assign 0 362 * for now, to mark the vblanktimestamp as invalid. 363 */ 364 if (!rc && !in_vblank_irq) 365 t_vblank = 0; 366 367 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 368 } 369 370 u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe) 371 { 372 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 373 u64 count; 374 375 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 376 return 0; 377 378 count = atomic64_read(&vblank->count); 379 380 /* 381 * This read barrier corresponds to the implicit write barrier of the 382 * write seqlock in store_vblank(). Note that this is the only place 383 * where we need an explicit barrier, since all other access goes 384 * through drm_vblank_count_and_time(), which already has the required 385 * read barrier curtesy of the read seqlock. 386 */ 387 smp_rmb(); 388 389 return count; 390 } 391 392 /** 393 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter 394 * @crtc: which counter to retrieve 395 * 396 * This function is similar to drm_crtc_vblank_count() but this function 397 * interpolates to handle a race with vblank interrupts using the high precision 398 * timestamping support. 399 * 400 * This is mostly useful for hardware that can obtain the scanout position, but 401 * doesn't have a hardware frame counter. 402 */ 403 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc) 404 { 405 struct drm_device *dev = crtc->dev; 406 unsigned int pipe = drm_crtc_index(crtc); 407 u64 vblank; 408 unsigned long flags; 409 410 drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) && 411 !crtc->funcs->get_vblank_timestamp, 412 "This function requires support for accurate vblank timestamps."); 413 414 spin_lock_irqsave(&dev->vblank_time_lock, flags); 415 416 drm_update_vblank_count(dev, pipe, false); 417 vblank = drm_vblank_count(dev, pipe); 418 419 spin_unlock_irqrestore(&dev->vblank_time_lock, flags); 420 421 return vblank; 422 } 423 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count); 424 425 static void __disable_vblank(struct drm_device *dev, unsigned int pipe) 426 { 427 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 428 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 429 430 if (drm_WARN_ON(dev, !crtc)) 431 return; 432 433 if (crtc->funcs->disable_vblank) 434 crtc->funcs->disable_vblank(crtc); 435 } 436 #ifdef CONFIG_DRM_LEGACY 437 else { 438 dev->driver->disable_vblank(dev, pipe); 439 } 440 #endif 441 } 442 443 /* 444 * Disable vblank irq's on crtc, make sure that last vblank count 445 * of hardware and corresponding consistent software vblank counter 446 * are preserved, even if there are any spurious vblank irq's after 447 * disable. 448 */ 449 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe) 450 { 451 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 452 unsigned long irqflags; 453 454 assert_spin_locked(&dev->vbl_lock); 455 456 /* Prevent vblank irq processing while disabling vblank irqs, 457 * so no updates of timestamps or count can happen after we've 458 * disabled. Needed to prevent races in case of delayed irq's. 459 */ 460 spin_lock_irqsave(&dev->vblank_time_lock, irqflags); 461 462 /* 463 * Update vblank count and disable vblank interrupts only if the 464 * interrupts were enabled. This avoids calling the ->disable_vblank() 465 * operation in atomic context with the hardware potentially runtime 466 * suspended. 467 */ 468 if (!vblank->enabled) 469 goto out; 470 471 /* 472 * Update the count and timestamp to maintain the 473 * appearance that the counter has been ticking all along until 474 * this time. This makes the count account for the entire time 475 * between drm_crtc_vblank_on() and drm_crtc_vblank_off(). 476 */ 477 drm_update_vblank_count(dev, pipe, false); 478 __disable_vblank(dev, pipe); 479 vblank->enabled = false; 480 481 out: 482 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 483 } 484 485 static void vblank_disable_fn(struct timer_list *t) 486 { 487 struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer); 488 struct drm_device *dev = vblank->dev; 489 unsigned int pipe = vblank->pipe; 490 unsigned long irqflags; 491 492 spin_lock_irqsave(&dev->vbl_lock, irqflags); 493 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) { 494 drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe); 495 drm_vblank_disable_and_save(dev, pipe); 496 } 497 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 498 } 499 500 static void drm_vblank_init_release(struct drm_device *dev, void *ptr) 501 { 502 struct drm_vblank_crtc *vblank = ptr; 503 504 drm_WARN_ON(dev, READ_ONCE(vblank->enabled) && 505 drm_core_check_feature(dev, DRIVER_MODESET)); 506 507 drm_vblank_destroy_worker(vblank); 508 del_timer_sync(&vblank->disable_timer); 509 } 510 511 /** 512 * drm_vblank_init - initialize vblank support 513 * @dev: DRM device 514 * @num_crtcs: number of CRTCs supported by @dev 515 * 516 * This function initializes vblank support for @num_crtcs display pipelines. 517 * Cleanup is handled automatically through a cleanup function added with 518 * drmm_add_action_or_reset(). 519 * 520 * Returns: 521 * Zero on success or a negative error code on failure. 522 */ 523 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs) 524 { 525 int ret; 526 unsigned int i; 527 528 spin_lock_init(&dev->vbl_lock); 529 spin_lock_init(&dev->vblank_time_lock); 530 531 dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL); 532 if (!dev->vblank) 533 return -ENOMEM; 534 535 dev->num_crtcs = num_crtcs; 536 537 for (i = 0; i < num_crtcs; i++) { 538 struct drm_vblank_crtc *vblank = &dev->vblank[i]; 539 540 vblank->dev = dev; 541 vblank->pipe = i; 542 init_waitqueue_head(&vblank->queue); 543 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0); 544 seqlock_init(&vblank->seqlock); 545 546 ret = drmm_add_action_or_reset(dev, drm_vblank_init_release, 547 vblank); 548 if (ret) 549 return ret; 550 551 ret = drm_vblank_worker_init(vblank); 552 if (ret) 553 return ret; 554 } 555 556 return 0; 557 } 558 EXPORT_SYMBOL(drm_vblank_init); 559 560 /** 561 * drm_dev_has_vblank - test if vblanking has been initialized for 562 * a device 563 * @dev: the device 564 * 565 * Drivers may call this function to test if vblank support is 566 * initialized for a device. For most hardware this means that vblanking 567 * can also be enabled. 568 * 569 * Atomic helpers use this function to initialize 570 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset(). 571 * 572 * Returns: 573 * True if vblanking has been initialized for the given device, false 574 * otherwise. 575 */ 576 bool drm_dev_has_vblank(const struct drm_device *dev) 577 { 578 return dev->num_crtcs != 0; 579 } 580 EXPORT_SYMBOL(drm_dev_has_vblank); 581 582 /** 583 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC 584 * @crtc: which CRTC's vblank waitqueue to retrieve 585 * 586 * This function returns a pointer to the vblank waitqueue for the CRTC. 587 * Drivers can use this to implement vblank waits using wait_event() and related 588 * functions. 589 */ 590 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc) 591 { 592 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue; 593 } 594 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue); 595 596 597 /** 598 * drm_calc_timestamping_constants - calculate vblank timestamp constants 599 * @crtc: drm_crtc whose timestamp constants should be updated. 600 * @mode: display mode containing the scanout timings 601 * 602 * Calculate and store various constants which are later needed by vblank and 603 * swap-completion timestamping, e.g, by 604 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from 605 * CRTC's true scanout timing, so they take things like panel scaling or 606 * other adjustments into account. 607 */ 608 void drm_calc_timestamping_constants(struct drm_crtc *crtc, 609 const struct drm_display_mode *mode) 610 { 611 struct drm_device *dev = crtc->dev; 612 unsigned int pipe = drm_crtc_index(crtc); 613 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 614 int linedur_ns = 0, framedur_ns = 0; 615 int dotclock = mode->crtc_clock; 616 617 if (!drm_dev_has_vblank(dev)) 618 return; 619 620 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 621 return; 622 623 /* Valid dotclock? */ 624 if (dotclock > 0) { 625 int frame_size = mode->crtc_htotal * mode->crtc_vtotal; 626 627 /* 628 * Convert scanline length in pixels and video 629 * dot clock to line duration and frame duration 630 * in nanoseconds: 631 */ 632 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock); 633 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock); 634 635 /* 636 * Fields of interlaced scanout modes are only half a frame duration. 637 */ 638 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 639 framedur_ns /= 2; 640 } else { 641 drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n", 642 crtc->base.id); 643 } 644 645 vblank->linedur_ns = linedur_ns; 646 vblank->framedur_ns = framedur_ns; 647 vblank->hwmode = *mode; 648 649 drm_dbg_core(dev, 650 "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n", 651 crtc->base.id, mode->crtc_htotal, 652 mode->crtc_vtotal, mode->crtc_vdisplay); 653 drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n", 654 crtc->base.id, dotclock, framedur_ns, linedur_ns); 655 } 656 EXPORT_SYMBOL(drm_calc_timestamping_constants); 657 658 /** 659 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank 660 * timestamp helper 661 * @crtc: CRTC whose vblank timestamp to retrieve 662 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 663 * On return contains true maximum error of timestamp 664 * @vblank_time: Pointer to time which should receive the timestamp 665 * @in_vblank_irq: 666 * True when called from drm_crtc_handle_vblank(). Some drivers 667 * need to apply some workarounds for gpu-specific vblank irq quirks 668 * if flag is set. 669 * @get_scanout_position: 670 * Callback function to retrieve the scanout position. See 671 * @struct drm_crtc_helper_funcs.get_scanout_position. 672 * 673 * Implements calculation of exact vblank timestamps from given drm_display_mode 674 * timings and current video scanout position of a CRTC. 675 * 676 * The current implementation only handles standard video modes. For double scan 677 * and interlaced modes the driver is supposed to adjust the hardware mode 678 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 679 * match the scanout position reported. 680 * 681 * Note that atomic drivers must call drm_calc_timestamping_constants() before 682 * enabling a CRTC. The atomic helpers already take care of that in 683 * drm_atomic_helper_calc_timestamping_constants(). 684 * 685 * Returns: 686 * 687 * Returns true on success, and false on failure, i.e. when no accurate 688 * timestamp could be acquired. 689 */ 690 bool 691 drm_crtc_vblank_helper_get_vblank_timestamp_internal( 692 struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time, 693 bool in_vblank_irq, 694 drm_vblank_get_scanout_position_func get_scanout_position) 695 { 696 struct drm_device *dev = crtc->dev; 697 unsigned int pipe = crtc->index; 698 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 699 struct timespec64 ts_etime, ts_vblank_time; 700 ktime_t stime, etime; 701 bool vbl_status; 702 const struct drm_display_mode *mode; 703 int vpos, hpos, i; 704 int delta_ns, duration_ns; 705 706 if (pipe >= dev->num_crtcs) { 707 drm_err(dev, "Invalid crtc %u\n", pipe); 708 return false; 709 } 710 711 /* Scanout position query not supported? Should not happen. */ 712 if (!get_scanout_position) { 713 drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n"); 714 return false; 715 } 716 717 if (drm_drv_uses_atomic_modeset(dev)) 718 mode = &vblank->hwmode; 719 else 720 mode = &crtc->hwmode; 721 722 /* If mode timing undefined, just return as no-op: 723 * Happens during initial modesetting of a crtc. 724 */ 725 if (mode->crtc_clock == 0) { 726 drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n", 727 pipe); 728 drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev)); 729 return false; 730 } 731 732 /* Get current scanout position with system timestamp. 733 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times 734 * if single query takes longer than max_error nanoseconds. 735 * 736 * This guarantees a tight bound on maximum error if 737 * code gets preempted or delayed for some reason. 738 */ 739 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { 740 /* 741 * Get vertical and horizontal scanout position vpos, hpos, 742 * and bounding timestamps stime, etime, pre/post query. 743 */ 744 vbl_status = get_scanout_position(crtc, in_vblank_irq, 745 &vpos, &hpos, 746 &stime, &etime, 747 mode); 748 749 /* Return as no-op if scanout query unsupported or failed. */ 750 if (!vbl_status) { 751 drm_dbg_core(dev, 752 "crtc %u : scanoutpos query failed.\n", 753 pipe); 754 return false; 755 } 756 757 /* Compute uncertainty in timestamp of scanout position query. */ 758 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime); 759 760 /* Accept result with < max_error nsecs timing uncertainty. */ 761 if (duration_ns <= *max_error) 762 break; 763 } 764 765 /* Noisy system timing? */ 766 if (i == DRM_TIMESTAMP_MAXRETRIES) { 767 drm_dbg_core(dev, 768 "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n", 769 pipe, duration_ns / 1000, *max_error / 1000, i); 770 } 771 772 /* Return upper bound of timestamp precision error. */ 773 *max_error = duration_ns; 774 775 /* Convert scanout position into elapsed time at raw_time query 776 * since start of scanout at first display scanline. delta_ns 777 * can be negative if start of scanout hasn't happened yet. 778 */ 779 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos), 780 mode->crtc_clock); 781 782 /* Subtract time delta from raw timestamp to get final 783 * vblank_time timestamp for end of vblank. 784 */ 785 *vblank_time = ktime_sub_ns(etime, delta_ns); 786 787 if (!drm_debug_enabled(DRM_UT_VBL)) 788 return true; 789 790 ts_etime = ktime_to_timespec64(etime); 791 ts_vblank_time = ktime_to_timespec64(*vblank_time); 792 793 drm_dbg_vbl(dev, 794 "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n", 795 pipe, hpos, vpos, 796 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000, 797 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000, 798 duration_ns / 1000, i); 799 800 return true; 801 } 802 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal); 803 804 /** 805 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp 806 * helper 807 * @crtc: CRTC whose vblank timestamp to retrieve 808 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 809 * On return contains true maximum error of timestamp 810 * @vblank_time: Pointer to time which should receive the timestamp 811 * @in_vblank_irq: 812 * True when called from drm_crtc_handle_vblank(). Some drivers 813 * need to apply some workarounds for gpu-specific vblank irq quirks 814 * if flag is set. 815 * 816 * Implements calculation of exact vblank timestamps from given drm_display_mode 817 * timings and current video scanout position of a CRTC. This can be directly 818 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms 819 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented. 820 * 821 * The current implementation only handles standard video modes. For double scan 822 * and interlaced modes the driver is supposed to adjust the hardware mode 823 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 824 * match the scanout position reported. 825 * 826 * Note that atomic drivers must call drm_calc_timestamping_constants() before 827 * enabling a CRTC. The atomic helpers already take care of that in 828 * drm_atomic_helper_calc_timestamping_constants(). 829 * 830 * Returns: 831 * 832 * Returns true on success, and false on failure, i.e. when no accurate 833 * timestamp could be acquired. 834 */ 835 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc, 836 int *max_error, 837 ktime_t *vblank_time, 838 bool in_vblank_irq) 839 { 840 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 841 crtc, max_error, vblank_time, in_vblank_irq, 842 crtc->helper_private->get_scanout_position); 843 } 844 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp); 845 846 /** 847 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent 848 * vblank interval 849 * @dev: DRM device 850 * @pipe: index of CRTC whose vblank timestamp to retrieve 851 * @tvblank: Pointer to target time which should receive the timestamp 852 * @in_vblank_irq: 853 * True when called from drm_crtc_handle_vblank(). Some drivers 854 * need to apply some workarounds for gpu-specific vblank irq quirks 855 * if flag is set. 856 * 857 * Fetches the system timestamp corresponding to the time of the most recent 858 * vblank interval on specified CRTC. May call into kms-driver to 859 * compute the timestamp with a high-precision GPU specific method. 860 * 861 * Returns zero if timestamp originates from uncorrected do_gettimeofday() 862 * call, i.e., it isn't very precisely locked to the true vblank. 863 * 864 * Returns: 865 * True if timestamp is considered to be very precise, false otherwise. 866 */ 867 static bool 868 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 869 ktime_t *tvblank, bool in_vblank_irq) 870 { 871 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 872 bool ret = false; 873 874 /* Define requested maximum error on timestamps (nanoseconds). */ 875 int max_error = (int) drm_timestamp_precision * 1000; 876 877 /* Query driver if possible and precision timestamping enabled. */ 878 if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) { 879 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 880 881 ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error, 882 tvblank, in_vblank_irq); 883 } 884 885 /* GPU high precision timestamp query unsupported or failed. 886 * Return current monotonic/gettimeofday timestamp as best estimate. 887 */ 888 if (!ret) 889 *tvblank = ktime_get(); 890 891 return ret; 892 } 893 894 /** 895 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value 896 * @crtc: which counter to retrieve 897 * 898 * Fetches the "cooked" vblank count value that represents the number of 899 * vblank events since the system was booted, including lost events due to 900 * modesetting activity. Note that this timer isn't correct against a racing 901 * vblank interrupt (since it only reports the software vblank counter), see 902 * drm_crtc_accurate_vblank_count() for such use-cases. 903 * 904 * Note that for a given vblank counter value drm_crtc_handle_vblank() 905 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 906 * provide a barrier: Any writes done before calling 907 * drm_crtc_handle_vblank() will be visible to callers of the later 908 * functions, iff the vblank count is the same or a later one. 909 * 910 * See also &drm_vblank_crtc.count. 911 * 912 * Returns: 913 * The software vblank counter. 914 */ 915 u64 drm_crtc_vblank_count(struct drm_crtc *crtc) 916 { 917 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc)); 918 } 919 EXPORT_SYMBOL(drm_crtc_vblank_count); 920 921 /** 922 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the 923 * system timestamp corresponding to that vblank counter value. 924 * @dev: DRM device 925 * @pipe: index of CRTC whose counter to retrieve 926 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp. 927 * 928 * Fetches the "cooked" vblank count value that represents the number of 929 * vblank events since the system was booted, including lost events due to 930 * modesetting activity. Returns corresponding system timestamp of the time 931 * of the vblank interval that corresponds to the current vblank counter value. 932 * 933 * This is the legacy version of drm_crtc_vblank_count_and_time(). 934 */ 935 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe, 936 ktime_t *vblanktime) 937 { 938 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 939 u64 vblank_count; 940 unsigned int seq; 941 942 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) { 943 *vblanktime = 0; 944 return 0; 945 } 946 947 do { 948 seq = read_seqbegin(&vblank->seqlock); 949 vblank_count = atomic64_read(&vblank->count); 950 *vblanktime = vblank->time; 951 } while (read_seqretry(&vblank->seqlock, seq)); 952 953 return vblank_count; 954 } 955 956 /** 957 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value 958 * and the system timestamp corresponding to that vblank counter value 959 * @crtc: which counter to retrieve 960 * @vblanktime: Pointer to time to receive the vblank timestamp. 961 * 962 * Fetches the "cooked" vblank count value that represents the number of 963 * vblank events since the system was booted, including lost events due to 964 * modesetting activity. Returns corresponding system timestamp of the time 965 * of the vblank interval that corresponds to the current vblank counter value. 966 * 967 * Note that for a given vblank counter value drm_crtc_handle_vblank() 968 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 969 * provide a barrier: Any writes done before calling 970 * drm_crtc_handle_vblank() will be visible to callers of the later 971 * functions, iff the vblank count is the same or a later one. 972 * 973 * See also &drm_vblank_crtc.count. 974 */ 975 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc, 976 ktime_t *vblanktime) 977 { 978 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc), 979 vblanktime); 980 } 981 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time); 982 983 static void send_vblank_event(struct drm_device *dev, 984 struct drm_pending_vblank_event *e, 985 u64 seq, ktime_t now) 986 { 987 struct timespec64 tv; 988 989 switch (e->event.base.type) { 990 case DRM_EVENT_VBLANK: 991 case DRM_EVENT_FLIP_COMPLETE: 992 tv = ktime_to_timespec64(now); 993 e->event.vbl.sequence = seq; 994 /* 995 * e->event is a user space structure, with hardcoded unsigned 996 * 32-bit seconds/microseconds. This is safe as we always use 997 * monotonic timestamps since linux-4.15 998 */ 999 e->event.vbl.tv_sec = tv.tv_sec; 1000 e->event.vbl.tv_usec = tv.tv_nsec / 1000; 1001 break; 1002 case DRM_EVENT_CRTC_SEQUENCE: 1003 if (seq) 1004 e->event.seq.sequence = seq; 1005 e->event.seq.time_ns = ktime_to_ns(now); 1006 break; 1007 } 1008 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq); 1009 /* 1010 * Use the same timestamp for any associated fence signal to avoid 1011 * mismatch in timestamps for vsync & fence events triggered by the 1012 * same HW event. Frameworks like SurfaceFlinger in Android expects the 1013 * retire-fence timestamp to match exactly with HW vsync as it uses it 1014 * for its software vsync modeling. 1015 */ 1016 drm_send_event_timestamp_locked(dev, &e->base, now); 1017 } 1018 1019 /** 1020 * drm_crtc_arm_vblank_event - arm vblank event after pageflip 1021 * @crtc: the source CRTC of the vblank event 1022 * @e: the event to send 1023 * 1024 * A lot of drivers need to generate vblank events for the very next vblank 1025 * interrupt. For example when the page flip interrupt happens when the page 1026 * flip gets armed, but not when it actually executes within the next vblank 1027 * period. This helper function implements exactly the required vblank arming 1028 * behaviour. 1029 * 1030 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an 1031 * atomic commit must ensure that the next vblank happens at exactly the same 1032 * time as the atomic commit is committed to the hardware. This function itself 1033 * does **not** protect against the next vblank interrupt racing with either this 1034 * function call or the atomic commit operation. A possible sequence could be: 1035 * 1036 * 1. Driver commits new hardware state into vblank-synchronized registers. 1037 * 2. A vblank happens, committing the hardware state. Also the corresponding 1038 * vblank interrupt is fired off and fully processed by the interrupt 1039 * handler. 1040 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event(). 1041 * 4. The event is only send out for the next vblank, which is wrong. 1042 * 1043 * An equivalent race can happen when the driver calls 1044 * drm_crtc_arm_vblank_event() before writing out the new hardware state. 1045 * 1046 * The only way to make this work safely is to prevent the vblank from firing 1047 * (and the hardware from committing anything else) until the entire atomic 1048 * commit sequence has run to completion. If the hardware does not have such a 1049 * feature (e.g. using a "go" bit), then it is unsafe to use this functions. 1050 * Instead drivers need to manually send out the event from their interrupt 1051 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no 1052 * possible race with the hardware committing the atomic update. 1053 * 1054 * Caller must hold a vblank reference for the event @e acquired by a 1055 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives. 1056 */ 1057 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc, 1058 struct drm_pending_vblank_event *e) 1059 { 1060 struct drm_device *dev = crtc->dev; 1061 unsigned int pipe = drm_crtc_index(crtc); 1062 1063 assert_spin_locked(&dev->event_lock); 1064 1065 e->pipe = pipe; 1066 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1; 1067 list_add_tail(&e->base.link, &dev->vblank_event_list); 1068 } 1069 EXPORT_SYMBOL(drm_crtc_arm_vblank_event); 1070 1071 /** 1072 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip 1073 * @crtc: the source CRTC of the vblank event 1074 * @e: the event to send 1075 * 1076 * Updates sequence # and timestamp on event for the most recently processed 1077 * vblank, and sends it to userspace. Caller must hold event lock. 1078 * 1079 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain 1080 * situation, especially to send out events for atomic commit operations. 1081 */ 1082 void drm_crtc_send_vblank_event(struct drm_crtc *crtc, 1083 struct drm_pending_vblank_event *e) 1084 { 1085 struct drm_device *dev = crtc->dev; 1086 u64 seq; 1087 unsigned int pipe = drm_crtc_index(crtc); 1088 ktime_t now; 1089 1090 if (drm_dev_has_vblank(dev)) { 1091 seq = drm_vblank_count_and_time(dev, pipe, &now); 1092 } else { 1093 seq = 0; 1094 1095 now = ktime_get(); 1096 } 1097 e->pipe = pipe; 1098 send_vblank_event(dev, e, seq, now); 1099 } 1100 EXPORT_SYMBOL(drm_crtc_send_vblank_event); 1101 1102 static int __enable_vblank(struct drm_device *dev, unsigned int pipe) 1103 { 1104 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1105 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1106 1107 if (drm_WARN_ON(dev, !crtc)) 1108 return 0; 1109 1110 if (crtc->funcs->enable_vblank) 1111 return crtc->funcs->enable_vblank(crtc); 1112 } 1113 #ifdef CONFIG_DRM_LEGACY 1114 else if (dev->driver->enable_vblank) { 1115 return dev->driver->enable_vblank(dev, pipe); 1116 } 1117 #endif 1118 1119 return -EINVAL; 1120 } 1121 1122 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe) 1123 { 1124 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1125 int ret = 0; 1126 1127 assert_spin_locked(&dev->vbl_lock); 1128 1129 spin_lock(&dev->vblank_time_lock); 1130 1131 if (!vblank->enabled) { 1132 /* 1133 * Enable vblank irqs under vblank_time_lock protection. 1134 * All vblank count & timestamp updates are held off 1135 * until we are done reinitializing master counter and 1136 * timestamps. Filtercode in drm_handle_vblank() will 1137 * prevent double-accounting of same vblank interval. 1138 */ 1139 ret = __enable_vblank(dev, pipe); 1140 drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n", 1141 pipe, ret); 1142 if (ret) { 1143 atomic_dec(&vblank->refcount); 1144 } else { 1145 drm_update_vblank_count(dev, pipe, 0); 1146 /* drm_update_vblank_count() includes a wmb so we just 1147 * need to ensure that the compiler emits the write 1148 * to mark the vblank as enabled after the call 1149 * to drm_update_vblank_count(). 1150 */ 1151 WRITE_ONCE(vblank->enabled, true); 1152 } 1153 } 1154 1155 spin_unlock(&dev->vblank_time_lock); 1156 1157 return ret; 1158 } 1159 1160 int drm_vblank_get(struct drm_device *dev, unsigned int pipe) 1161 { 1162 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1163 unsigned long irqflags; 1164 int ret = 0; 1165 1166 if (!drm_dev_has_vblank(dev)) 1167 return -EINVAL; 1168 1169 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1170 return -EINVAL; 1171 1172 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1173 /* Going from 0->1 means we have to enable interrupts again */ 1174 if (atomic_add_return(1, &vblank->refcount) == 1) { 1175 ret = drm_vblank_enable(dev, pipe); 1176 } else { 1177 if (!vblank->enabled) { 1178 atomic_dec(&vblank->refcount); 1179 ret = -EINVAL; 1180 } 1181 } 1182 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1183 1184 return ret; 1185 } 1186 1187 /** 1188 * drm_crtc_vblank_get - get a reference count on vblank events 1189 * @crtc: which CRTC to own 1190 * 1191 * Acquire a reference count on vblank events to avoid having them disabled 1192 * while in use. 1193 * 1194 * Returns: 1195 * Zero on success or a negative error code on failure. 1196 */ 1197 int drm_crtc_vblank_get(struct drm_crtc *crtc) 1198 { 1199 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc)); 1200 } 1201 EXPORT_SYMBOL(drm_crtc_vblank_get); 1202 1203 void drm_vblank_put(struct drm_device *dev, unsigned int pipe) 1204 { 1205 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1206 1207 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1208 return; 1209 1210 if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0)) 1211 return; 1212 1213 /* Last user schedules interrupt disable */ 1214 if (atomic_dec_and_test(&vblank->refcount)) { 1215 if (drm_vblank_offdelay == 0) 1216 return; 1217 else if (drm_vblank_offdelay < 0) 1218 vblank_disable_fn(&vblank->disable_timer); 1219 else if (!dev->vblank_disable_immediate) 1220 mod_timer(&vblank->disable_timer, 1221 jiffies + ((drm_vblank_offdelay * HZ)/1000)); 1222 } 1223 } 1224 1225 /** 1226 * drm_crtc_vblank_put - give up ownership of vblank events 1227 * @crtc: which counter to give up 1228 * 1229 * Release ownership of a given vblank counter, turning off interrupts 1230 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds. 1231 */ 1232 void drm_crtc_vblank_put(struct drm_crtc *crtc) 1233 { 1234 drm_vblank_put(crtc->dev, drm_crtc_index(crtc)); 1235 } 1236 EXPORT_SYMBOL(drm_crtc_vblank_put); 1237 1238 /** 1239 * drm_wait_one_vblank - wait for one vblank 1240 * @dev: DRM device 1241 * @pipe: CRTC index 1242 * 1243 * This waits for one vblank to pass on @pipe, using the irq driver interfaces. 1244 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g. 1245 * due to lack of driver support or because the crtc is off. 1246 * 1247 * This is the legacy version of drm_crtc_wait_one_vblank(). 1248 */ 1249 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe) 1250 { 1251 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1252 int ret; 1253 u64 last; 1254 1255 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1256 return; 1257 1258 ret = drm_vblank_get(dev, pipe); 1259 if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n", 1260 pipe, ret)) 1261 return; 1262 1263 last = drm_vblank_count(dev, pipe); 1264 1265 ret = wait_event_timeout(vblank->queue, 1266 last != drm_vblank_count(dev, pipe), 1267 msecs_to_jiffies(100)); 1268 1269 drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe); 1270 1271 drm_vblank_put(dev, pipe); 1272 } 1273 EXPORT_SYMBOL(drm_wait_one_vblank); 1274 1275 /** 1276 * drm_crtc_wait_one_vblank - wait for one vblank 1277 * @crtc: DRM crtc 1278 * 1279 * This waits for one vblank to pass on @crtc, using the irq driver interfaces. 1280 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g. 1281 * due to lack of driver support or because the crtc is off. 1282 */ 1283 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc) 1284 { 1285 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc)); 1286 } 1287 EXPORT_SYMBOL(drm_crtc_wait_one_vblank); 1288 1289 /** 1290 * drm_crtc_vblank_off - disable vblank events on a CRTC 1291 * @crtc: CRTC in question 1292 * 1293 * Drivers can use this function to shut down the vblank interrupt handling when 1294 * disabling a crtc. This function ensures that the latest vblank frame count is 1295 * stored so that drm_vblank_on can restore it again. 1296 * 1297 * Drivers must use this function when the hardware vblank counter can get 1298 * reset, e.g. when suspending or disabling the @crtc in general. 1299 */ 1300 void drm_crtc_vblank_off(struct drm_crtc *crtc) 1301 { 1302 struct drm_device *dev = crtc->dev; 1303 unsigned int pipe = drm_crtc_index(crtc); 1304 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1305 struct drm_pending_vblank_event *e, *t; 1306 ktime_t now; 1307 u64 seq; 1308 1309 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1310 return; 1311 1312 /* 1313 * Grab event_lock early to prevent vblank work from being scheduled 1314 * while we're in the middle of shutting down vblank interrupts 1315 */ 1316 spin_lock_irq(&dev->event_lock); 1317 1318 spin_lock(&dev->vbl_lock); 1319 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n", 1320 pipe, vblank->enabled, vblank->inmodeset); 1321 1322 /* Avoid redundant vblank disables without previous 1323 * drm_crtc_vblank_on(). */ 1324 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset) 1325 drm_vblank_disable_and_save(dev, pipe); 1326 1327 wake_up(&vblank->queue); 1328 1329 /* 1330 * Prevent subsequent drm_vblank_get() from re-enabling 1331 * the vblank interrupt by bumping the refcount. 1332 */ 1333 if (!vblank->inmodeset) { 1334 atomic_inc(&vblank->refcount); 1335 vblank->inmodeset = 1; 1336 } 1337 spin_unlock(&dev->vbl_lock); 1338 1339 /* Send any queued vblank events, lest the natives grow disquiet */ 1340 seq = drm_vblank_count_and_time(dev, pipe, &now); 1341 1342 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1343 if (e->pipe != pipe) 1344 continue; 1345 drm_dbg_core(dev, "Sending premature vblank event on disable: " 1346 "wanted %llu, current %llu\n", 1347 e->sequence, seq); 1348 list_del(&e->base.link); 1349 drm_vblank_put(dev, pipe); 1350 send_vblank_event(dev, e, seq, now); 1351 } 1352 1353 /* Cancel any leftover pending vblank work */ 1354 drm_vblank_cancel_pending_works(vblank); 1355 1356 spin_unlock_irq(&dev->event_lock); 1357 1358 /* Will be reset by the modeset helpers when re-enabling the crtc by 1359 * calling drm_calc_timestamping_constants(). */ 1360 vblank->hwmode.crtc_clock = 0; 1361 1362 /* Wait for any vblank work that's still executing to finish */ 1363 drm_vblank_flush_worker(vblank); 1364 } 1365 EXPORT_SYMBOL(drm_crtc_vblank_off); 1366 1367 /** 1368 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC 1369 * @crtc: CRTC in question 1370 * 1371 * Drivers can use this function to reset the vblank state to off at load time. 1372 * Drivers should use this together with the drm_crtc_vblank_off() and 1373 * drm_crtc_vblank_on() functions. The difference compared to 1374 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter 1375 * and hence doesn't need to call any driver hooks. 1376 * 1377 * This is useful for recovering driver state e.g. on driver load, or on resume. 1378 */ 1379 void drm_crtc_vblank_reset(struct drm_crtc *crtc) 1380 { 1381 struct drm_device *dev = crtc->dev; 1382 unsigned int pipe = drm_crtc_index(crtc); 1383 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1384 1385 spin_lock_irq(&dev->vbl_lock); 1386 /* 1387 * Prevent subsequent drm_vblank_get() from enabling the vblank 1388 * interrupt by bumping the refcount. 1389 */ 1390 if (!vblank->inmodeset) { 1391 atomic_inc(&vblank->refcount); 1392 vblank->inmodeset = 1; 1393 } 1394 spin_unlock_irq(&dev->vbl_lock); 1395 1396 drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list)); 1397 drm_WARN_ON(dev, !list_empty(&vblank->pending_work)); 1398 } 1399 EXPORT_SYMBOL(drm_crtc_vblank_reset); 1400 1401 /** 1402 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value 1403 * @crtc: CRTC in question 1404 * @max_vblank_count: max hardware vblank counter value 1405 * 1406 * Update the maximum hardware vblank counter value for @crtc 1407 * at runtime. Useful for hardware where the operation of the 1408 * hardware vblank counter depends on the currently active 1409 * display configuration. 1410 * 1411 * For example, if the hardware vblank counter does not work 1412 * when a specific connector is active the maximum can be set 1413 * to zero. And when that specific connector isn't active the 1414 * maximum can again be set to the appropriate non-zero value. 1415 * 1416 * If used, must be called before drm_vblank_on(). 1417 */ 1418 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc, 1419 u32 max_vblank_count) 1420 { 1421 struct drm_device *dev = crtc->dev; 1422 unsigned int pipe = drm_crtc_index(crtc); 1423 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1424 1425 drm_WARN_ON(dev, dev->max_vblank_count); 1426 drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset)); 1427 1428 vblank->max_vblank_count = max_vblank_count; 1429 } 1430 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count); 1431 1432 /** 1433 * drm_crtc_vblank_on - enable vblank events on a CRTC 1434 * @crtc: CRTC in question 1435 * 1436 * This functions restores the vblank interrupt state captured with 1437 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note 1438 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be 1439 * unbalanced and so can also be unconditionally called in driver load code to 1440 * reflect the current hardware state of the crtc. 1441 */ 1442 void drm_crtc_vblank_on(struct drm_crtc *crtc) 1443 { 1444 struct drm_device *dev = crtc->dev; 1445 unsigned int pipe = drm_crtc_index(crtc); 1446 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1447 1448 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1449 return; 1450 1451 spin_lock_irq(&dev->vbl_lock); 1452 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n", 1453 pipe, vblank->enabled, vblank->inmodeset); 1454 1455 /* Drop our private "prevent drm_vblank_get" refcount */ 1456 if (vblank->inmodeset) { 1457 atomic_dec(&vblank->refcount); 1458 vblank->inmodeset = 0; 1459 } 1460 1461 drm_reset_vblank_timestamp(dev, pipe); 1462 1463 /* 1464 * re-enable interrupts if there are users left, or the 1465 * user wishes vblank interrupts to be enabled all the time. 1466 */ 1467 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0) 1468 drm_WARN_ON(dev, drm_vblank_enable(dev, pipe)); 1469 spin_unlock_irq(&dev->vbl_lock); 1470 } 1471 EXPORT_SYMBOL(drm_crtc_vblank_on); 1472 1473 static void drm_vblank_restore(struct drm_device *dev, unsigned int pipe) 1474 { 1475 ktime_t t_vblank; 1476 struct drm_vblank_crtc *vblank; 1477 int framedur_ns; 1478 u64 diff_ns; 1479 u32 cur_vblank, diff = 1; 1480 int count = DRM_TIMESTAMP_MAXRETRIES; 1481 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 1482 1483 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1484 return; 1485 1486 assert_spin_locked(&dev->vbl_lock); 1487 assert_spin_locked(&dev->vblank_time_lock); 1488 1489 vblank = &dev->vblank[pipe]; 1490 drm_WARN_ONCE(dev, 1491 drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns, 1492 "Cannot compute missed vblanks without frame duration\n"); 1493 framedur_ns = vblank->framedur_ns; 1494 1495 do { 1496 cur_vblank = __get_vblank_counter(dev, pipe); 1497 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 1498 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 1499 1500 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 1501 if (framedur_ns) 1502 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 1503 1504 1505 drm_dbg_vbl(dev, 1506 "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n", 1507 diff, diff_ns, framedur_ns, cur_vblank - vblank->last); 1508 vblank->last = (cur_vblank - diff) & max_vblank_count; 1509 } 1510 1511 /** 1512 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count. 1513 * @crtc: CRTC in question 1514 * 1515 * Power manamement features can cause frame counter resets between vblank 1516 * disable and enable. Drivers can use this function in their 1517 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1518 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1519 * vblank counter. 1520 * 1521 * Note that drivers must have race-free high-precision timestamping support, 1522 * i.e. &drm_crtc_funcs.get_vblank_timestamp must be hooked up and 1523 * &drm_driver.vblank_disable_immediate must be set to indicate the 1524 * time-stamping functions are race-free against vblank hardware counter 1525 * increments. 1526 */ 1527 void drm_crtc_vblank_restore(struct drm_crtc *crtc) 1528 { 1529 WARN_ON_ONCE(!crtc->funcs->get_vblank_timestamp); 1530 WARN_ON_ONCE(!crtc->dev->vblank_disable_immediate); 1531 1532 drm_vblank_restore(crtc->dev, drm_crtc_index(crtc)); 1533 } 1534 EXPORT_SYMBOL(drm_crtc_vblank_restore); 1535 1536 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev, 1537 unsigned int pipe) 1538 { 1539 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1540 1541 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1542 if (!drm_dev_has_vblank(dev)) 1543 return; 1544 1545 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1546 return; 1547 1548 /* 1549 * To avoid all the problems that might happen if interrupts 1550 * were enabled/disabled around or between these calls, we just 1551 * have the kernel take a reference on the CRTC (just once though 1552 * to avoid corrupting the count if multiple, mismatch calls occur), 1553 * so that interrupts remain enabled in the interim. 1554 */ 1555 if (!vblank->inmodeset) { 1556 vblank->inmodeset = 0x1; 1557 if (drm_vblank_get(dev, pipe) == 0) 1558 vblank->inmodeset |= 0x2; 1559 } 1560 } 1561 1562 static void drm_legacy_vblank_post_modeset(struct drm_device *dev, 1563 unsigned int pipe) 1564 { 1565 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1566 1567 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1568 if (!drm_dev_has_vblank(dev)) 1569 return; 1570 1571 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1572 return; 1573 1574 if (vblank->inmodeset) { 1575 spin_lock_irq(&dev->vbl_lock); 1576 drm_reset_vblank_timestamp(dev, pipe); 1577 spin_unlock_irq(&dev->vbl_lock); 1578 1579 if (vblank->inmodeset & 0x2) 1580 drm_vblank_put(dev, pipe); 1581 1582 vblank->inmodeset = 0; 1583 } 1584 } 1585 1586 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data, 1587 struct drm_file *file_priv) 1588 { 1589 struct drm_modeset_ctl *modeset = data; 1590 unsigned int pipe; 1591 1592 /* If drm_vblank_init() hasn't been called yet, just no-op */ 1593 if (!drm_dev_has_vblank(dev)) 1594 return 0; 1595 1596 /* KMS drivers handle this internally */ 1597 if (!drm_core_check_feature(dev, DRIVER_LEGACY)) 1598 return 0; 1599 1600 pipe = modeset->crtc; 1601 if (pipe >= dev->num_crtcs) 1602 return -EINVAL; 1603 1604 switch (modeset->cmd) { 1605 case _DRM_PRE_MODESET: 1606 drm_legacy_vblank_pre_modeset(dev, pipe); 1607 break; 1608 case _DRM_POST_MODESET: 1609 drm_legacy_vblank_post_modeset(dev, pipe); 1610 break; 1611 default: 1612 return -EINVAL; 1613 } 1614 1615 return 0; 1616 } 1617 1618 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe, 1619 u64 req_seq, 1620 union drm_wait_vblank *vblwait, 1621 struct drm_file *file_priv) 1622 { 1623 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1624 struct drm_pending_vblank_event *e; 1625 ktime_t now; 1626 u64 seq; 1627 int ret; 1628 1629 e = kzalloc(sizeof(*e), GFP_KERNEL); 1630 if (e == NULL) { 1631 ret = -ENOMEM; 1632 goto err_put; 1633 } 1634 1635 e->pipe = pipe; 1636 e->event.base.type = DRM_EVENT_VBLANK; 1637 e->event.base.length = sizeof(e->event.vbl); 1638 e->event.vbl.user_data = vblwait->request.signal; 1639 e->event.vbl.crtc_id = 0; 1640 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1641 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1642 1643 if (crtc) 1644 e->event.vbl.crtc_id = crtc->base.id; 1645 } 1646 1647 spin_lock_irq(&dev->event_lock); 1648 1649 /* 1650 * drm_crtc_vblank_off() might have been called after we called 1651 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1652 * vblank disable, so no need for further locking. The reference from 1653 * drm_vblank_get() protects against vblank disable from another source. 1654 */ 1655 if (!READ_ONCE(vblank->enabled)) { 1656 ret = -EINVAL; 1657 goto err_unlock; 1658 } 1659 1660 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1661 &e->event.base); 1662 1663 if (ret) 1664 goto err_unlock; 1665 1666 seq = drm_vblank_count_and_time(dev, pipe, &now); 1667 1668 drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n", 1669 req_seq, seq, pipe); 1670 1671 trace_drm_vblank_event_queued(file_priv, pipe, req_seq); 1672 1673 e->sequence = req_seq; 1674 if (drm_vblank_passed(seq, req_seq)) { 1675 drm_vblank_put(dev, pipe); 1676 send_vblank_event(dev, e, seq, now); 1677 vblwait->reply.sequence = seq; 1678 } else { 1679 /* drm_handle_vblank_events will call drm_vblank_put */ 1680 list_add_tail(&e->base.link, &dev->vblank_event_list); 1681 vblwait->reply.sequence = req_seq; 1682 } 1683 1684 spin_unlock_irq(&dev->event_lock); 1685 1686 return 0; 1687 1688 err_unlock: 1689 spin_unlock_irq(&dev->event_lock); 1690 kfree(e); 1691 err_put: 1692 drm_vblank_put(dev, pipe); 1693 return ret; 1694 } 1695 1696 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait) 1697 { 1698 if (vblwait->request.sequence) 1699 return false; 1700 1701 return _DRM_VBLANK_RELATIVE == 1702 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK | 1703 _DRM_VBLANK_EVENT | 1704 _DRM_VBLANK_NEXTONMISS)); 1705 } 1706 1707 /* 1708 * Widen a 32-bit param to 64-bits. 1709 * 1710 * \param narrow 32-bit value (missing upper 32 bits) 1711 * \param near 64-bit value that should be 'close' to near 1712 * 1713 * This function returns a 64-bit value using the lower 32-bits from 1714 * 'narrow' and constructing the upper 32-bits so that the result is 1715 * as close as possible to 'near'. 1716 */ 1717 1718 static u64 widen_32_to_64(u32 narrow, u64 near) 1719 { 1720 return near + (s32) (narrow - near); 1721 } 1722 1723 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe, 1724 struct drm_wait_vblank_reply *reply) 1725 { 1726 ktime_t now; 1727 struct timespec64 ts; 1728 1729 /* 1730 * drm_wait_vblank_reply is a UAPI structure that uses 'long' 1731 * to store the seconds. This is safe as we always use monotonic 1732 * timestamps since linux-4.15. 1733 */ 1734 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1735 ts = ktime_to_timespec64(now); 1736 reply->tval_sec = (u32)ts.tv_sec; 1737 reply->tval_usec = ts.tv_nsec / 1000; 1738 } 1739 1740 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data, 1741 struct drm_file *file_priv) 1742 { 1743 struct drm_crtc *crtc; 1744 struct drm_vblank_crtc *vblank; 1745 union drm_wait_vblank *vblwait = data; 1746 int ret; 1747 u64 req_seq, seq; 1748 unsigned int pipe_index; 1749 unsigned int flags, pipe, high_pipe; 1750 1751 if (!dev->irq_enabled) 1752 return -EOPNOTSUPP; 1753 1754 if (vblwait->request.type & _DRM_VBLANK_SIGNAL) 1755 return -EINVAL; 1756 1757 if (vblwait->request.type & 1758 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1759 _DRM_VBLANK_HIGH_CRTC_MASK)) { 1760 drm_dbg_core(dev, 1761 "Unsupported type value 0x%x, supported mask 0x%x\n", 1762 vblwait->request.type, 1763 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1764 _DRM_VBLANK_HIGH_CRTC_MASK)); 1765 return -EINVAL; 1766 } 1767 1768 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; 1769 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); 1770 if (high_pipe) 1771 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT; 1772 else 1773 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; 1774 1775 /* Convert lease-relative crtc index into global crtc index */ 1776 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1777 pipe = 0; 1778 drm_for_each_crtc(crtc, dev) { 1779 if (drm_lease_held(file_priv, crtc->base.id)) { 1780 if (pipe_index == 0) 1781 break; 1782 pipe_index--; 1783 } 1784 pipe++; 1785 } 1786 } else { 1787 pipe = pipe_index; 1788 } 1789 1790 if (pipe >= dev->num_crtcs) 1791 return -EINVAL; 1792 1793 vblank = &dev->vblank[pipe]; 1794 1795 /* If the counter is currently enabled and accurate, short-circuit 1796 * queries to return the cached timestamp of the last vblank. 1797 */ 1798 if (dev->vblank_disable_immediate && 1799 drm_wait_vblank_is_query(vblwait) && 1800 READ_ONCE(vblank->enabled)) { 1801 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1802 return 0; 1803 } 1804 1805 ret = drm_vblank_get(dev, pipe); 1806 if (ret) { 1807 drm_dbg_core(dev, 1808 "crtc %d failed to acquire vblank counter, %d\n", 1809 pipe, ret); 1810 return ret; 1811 } 1812 seq = drm_vblank_count(dev, pipe); 1813 1814 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { 1815 case _DRM_VBLANK_RELATIVE: 1816 req_seq = seq + vblwait->request.sequence; 1817 vblwait->request.sequence = req_seq; 1818 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; 1819 break; 1820 case _DRM_VBLANK_ABSOLUTE: 1821 req_seq = widen_32_to_64(vblwait->request.sequence, seq); 1822 break; 1823 default: 1824 ret = -EINVAL; 1825 goto done; 1826 } 1827 1828 if ((flags & _DRM_VBLANK_NEXTONMISS) && 1829 drm_vblank_passed(seq, req_seq)) { 1830 req_seq = seq + 1; 1831 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS; 1832 vblwait->request.sequence = req_seq; 1833 } 1834 1835 if (flags & _DRM_VBLANK_EVENT) { 1836 /* must hold on to the vblank ref until the event fires 1837 * drm_vblank_put will be called asynchronously 1838 */ 1839 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv); 1840 } 1841 1842 if (req_seq != seq) { 1843 int wait; 1844 1845 drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n", 1846 req_seq, pipe); 1847 wait = wait_event_interruptible_timeout(vblank->queue, 1848 drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) || 1849 !READ_ONCE(vblank->enabled), 1850 msecs_to_jiffies(3000)); 1851 1852 switch (wait) { 1853 case 0: 1854 /* timeout */ 1855 ret = -EBUSY; 1856 break; 1857 case -ERESTARTSYS: 1858 /* interrupted by signal */ 1859 ret = -EINTR; 1860 break; 1861 default: 1862 ret = 0; 1863 break; 1864 } 1865 } 1866 1867 if (ret != -EINTR) { 1868 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1869 1870 drm_dbg_core(dev, "crtc %d returning %u to client\n", 1871 pipe, vblwait->reply.sequence); 1872 } else { 1873 drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n", 1874 pipe); 1875 } 1876 1877 done: 1878 drm_vblank_put(dev, pipe); 1879 return ret; 1880 } 1881 1882 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe) 1883 { 1884 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1885 bool high_prec = false; 1886 struct drm_pending_vblank_event *e, *t; 1887 ktime_t now; 1888 u64 seq; 1889 1890 assert_spin_locked(&dev->event_lock); 1891 1892 seq = drm_vblank_count_and_time(dev, pipe, &now); 1893 1894 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1895 if (e->pipe != pipe) 1896 continue; 1897 if (!drm_vblank_passed(seq, e->sequence)) 1898 continue; 1899 1900 drm_dbg_core(dev, "vblank event on %llu, current %llu\n", 1901 e->sequence, seq); 1902 1903 list_del(&e->base.link); 1904 drm_vblank_put(dev, pipe); 1905 send_vblank_event(dev, e, seq, now); 1906 } 1907 1908 if (crtc && crtc->funcs->get_vblank_timestamp) 1909 high_prec = true; 1910 1911 trace_drm_vblank_event(pipe, seq, now, high_prec); 1912 } 1913 1914 /** 1915 * drm_handle_vblank - handle a vblank event 1916 * @dev: DRM device 1917 * @pipe: index of CRTC where this event occurred 1918 * 1919 * Drivers should call this routine in their vblank interrupt handlers to 1920 * update the vblank counter and send any signals that may be pending. 1921 * 1922 * This is the legacy version of drm_crtc_handle_vblank(). 1923 */ 1924 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe) 1925 { 1926 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1927 unsigned long irqflags; 1928 bool disable_irq; 1929 1930 if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev))) 1931 return false; 1932 1933 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1934 return false; 1935 1936 spin_lock_irqsave(&dev->event_lock, irqflags); 1937 1938 /* Need timestamp lock to prevent concurrent execution with 1939 * vblank enable/disable, as this would cause inconsistent 1940 * or corrupted timestamps and vblank counts. 1941 */ 1942 spin_lock(&dev->vblank_time_lock); 1943 1944 /* Vblank irq handling disabled. Nothing to do. */ 1945 if (!vblank->enabled) { 1946 spin_unlock(&dev->vblank_time_lock); 1947 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1948 return false; 1949 } 1950 1951 drm_update_vblank_count(dev, pipe, true); 1952 1953 spin_unlock(&dev->vblank_time_lock); 1954 1955 wake_up(&vblank->queue); 1956 1957 /* With instant-off, we defer disabling the interrupt until after 1958 * we finish processing the following vblank after all events have 1959 * been signaled. The disable has to be last (after 1960 * drm_handle_vblank_events) so that the timestamp is always accurate. 1961 */ 1962 disable_irq = (dev->vblank_disable_immediate && 1963 drm_vblank_offdelay > 0 && 1964 !atomic_read(&vblank->refcount)); 1965 1966 drm_handle_vblank_events(dev, pipe); 1967 drm_handle_vblank_works(vblank); 1968 1969 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1970 1971 if (disable_irq) 1972 vblank_disable_fn(&vblank->disable_timer); 1973 1974 return true; 1975 } 1976 EXPORT_SYMBOL(drm_handle_vblank); 1977 1978 /** 1979 * drm_crtc_handle_vblank - handle a vblank event 1980 * @crtc: where this event occurred 1981 * 1982 * Drivers should call this routine in their vblank interrupt handlers to 1983 * update the vblank counter and send any signals that may be pending. 1984 * 1985 * This is the native KMS version of drm_handle_vblank(). 1986 * 1987 * Note that for a given vblank counter value drm_crtc_handle_vblank() 1988 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 1989 * provide a barrier: Any writes done before calling 1990 * drm_crtc_handle_vblank() will be visible to callers of the later 1991 * functions, iff the vblank count is the same or a later one. 1992 * 1993 * See also &drm_vblank_crtc.count. 1994 * 1995 * Returns: 1996 * True if the event was successfully handled, false on failure. 1997 */ 1998 bool drm_crtc_handle_vblank(struct drm_crtc *crtc) 1999 { 2000 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc)); 2001 } 2002 EXPORT_SYMBOL(drm_crtc_handle_vblank); 2003 2004 /* 2005 * Get crtc VBLANK count. 2006 * 2007 * \param dev DRM device 2008 * \param data user arguement, pointing to a drm_crtc_get_sequence structure. 2009 * \param file_priv drm file private for the user's open file descriptor 2010 */ 2011 2012 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data, 2013 struct drm_file *file_priv) 2014 { 2015 struct drm_crtc *crtc; 2016 struct drm_vblank_crtc *vblank; 2017 int pipe; 2018 struct drm_crtc_get_sequence *get_seq = data; 2019 ktime_t now; 2020 bool vblank_enabled; 2021 int ret; 2022 2023 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2024 return -EOPNOTSUPP; 2025 2026 if (!dev->irq_enabled) 2027 return -EOPNOTSUPP; 2028 2029 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id); 2030 if (!crtc) 2031 return -ENOENT; 2032 2033 pipe = drm_crtc_index(crtc); 2034 2035 vblank = &dev->vblank[pipe]; 2036 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled); 2037 2038 if (!vblank_enabled) { 2039 ret = drm_crtc_vblank_get(crtc); 2040 if (ret) { 2041 drm_dbg_core(dev, 2042 "crtc %d failed to acquire vblank counter, %d\n", 2043 pipe, ret); 2044 return ret; 2045 } 2046 } 2047 drm_modeset_lock(&crtc->mutex, NULL); 2048 if (crtc->state) 2049 get_seq->active = crtc->state->enable; 2050 else 2051 get_seq->active = crtc->enabled; 2052 drm_modeset_unlock(&crtc->mutex); 2053 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now); 2054 get_seq->sequence_ns = ktime_to_ns(now); 2055 if (!vblank_enabled) 2056 drm_crtc_vblank_put(crtc); 2057 return 0; 2058 } 2059 2060 /* 2061 * Queue a event for VBLANK sequence 2062 * 2063 * \param dev DRM device 2064 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure. 2065 * \param file_priv drm file private for the user's open file descriptor 2066 */ 2067 2068 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data, 2069 struct drm_file *file_priv) 2070 { 2071 struct drm_crtc *crtc; 2072 struct drm_vblank_crtc *vblank; 2073 int pipe; 2074 struct drm_crtc_queue_sequence *queue_seq = data; 2075 ktime_t now; 2076 struct drm_pending_vblank_event *e; 2077 u32 flags; 2078 u64 seq; 2079 u64 req_seq; 2080 int ret; 2081 2082 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2083 return -EOPNOTSUPP; 2084 2085 if (!dev->irq_enabled) 2086 return -EOPNOTSUPP; 2087 2088 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id); 2089 if (!crtc) 2090 return -ENOENT; 2091 2092 flags = queue_seq->flags; 2093 /* Check valid flag bits */ 2094 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE| 2095 DRM_CRTC_SEQUENCE_NEXT_ON_MISS)) 2096 return -EINVAL; 2097 2098 pipe = drm_crtc_index(crtc); 2099 2100 vblank = &dev->vblank[pipe]; 2101 2102 e = kzalloc(sizeof(*e), GFP_KERNEL); 2103 if (e == NULL) 2104 return -ENOMEM; 2105 2106 ret = drm_crtc_vblank_get(crtc); 2107 if (ret) { 2108 drm_dbg_core(dev, 2109 "crtc %d failed to acquire vblank counter, %d\n", 2110 pipe, ret); 2111 goto err_free; 2112 } 2113 2114 seq = drm_vblank_count_and_time(dev, pipe, &now); 2115 req_seq = queue_seq->sequence; 2116 2117 if (flags & DRM_CRTC_SEQUENCE_RELATIVE) 2118 req_seq += seq; 2119 2120 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq)) 2121 req_seq = seq + 1; 2122 2123 e->pipe = pipe; 2124 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE; 2125 e->event.base.length = sizeof(e->event.seq); 2126 e->event.seq.user_data = queue_seq->user_data; 2127 2128 spin_lock_irq(&dev->event_lock); 2129 2130 /* 2131 * drm_crtc_vblank_off() might have been called after we called 2132 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 2133 * vblank disable, so no need for further locking. The reference from 2134 * drm_crtc_vblank_get() protects against vblank disable from another source. 2135 */ 2136 if (!READ_ONCE(vblank->enabled)) { 2137 ret = -EINVAL; 2138 goto err_unlock; 2139 } 2140 2141 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 2142 &e->event.base); 2143 2144 if (ret) 2145 goto err_unlock; 2146 2147 e->sequence = req_seq; 2148 2149 if (drm_vblank_passed(seq, req_seq)) { 2150 drm_crtc_vblank_put(crtc); 2151 send_vblank_event(dev, e, seq, now); 2152 queue_seq->sequence = seq; 2153 } else { 2154 /* drm_handle_vblank_events will call drm_vblank_put */ 2155 list_add_tail(&e->base.link, &dev->vblank_event_list); 2156 queue_seq->sequence = req_seq; 2157 } 2158 2159 spin_unlock_irq(&dev->event_lock); 2160 return 0; 2161 2162 err_unlock: 2163 spin_unlock_irq(&dev->event_lock); 2164 drm_crtc_vblank_put(crtc); 2165 err_free: 2166 kfree(e); 2167 return ret; 2168 } 2169 2170