xref: /openbmc/linux/drivers/gpu/drm/drm_vblank.c (revision 1dd89152)
1 /*
2  * drm_irq.c IRQ and vblank support
3  *
4  * \author Rickard E. (Rik) Faith <faith@valinux.com>
5  * \author Gareth Hughes <gareth@valinux.com>
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the next
15  * paragraph) shall be included in all copies or substantial portions of the
16  * Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24  * OTHER DEALINGS IN THE SOFTWARE.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/moduleparam.h>
29 
30 #include <drm/drm_crtc.h>
31 #include <drm/drm_drv.h>
32 #include <drm/drm_framebuffer.h>
33 #include <drm/drm_managed.h>
34 #include <drm/drm_modeset_helper_vtables.h>
35 #include <drm/drm_print.h>
36 #include <drm/drm_vblank.h>
37 
38 #include "drm_internal.h"
39 #include "drm_trace.h"
40 
41 /**
42  * DOC: vblank handling
43  *
44  * From the computer's perspective, every time the monitor displays
45  * a new frame the scanout engine has "scanned out" the display image
46  * from top to bottom, one row of pixels at a time. The current row
47  * of pixels is referred to as the current scanline.
48  *
49  * In addition to the display's visible area, there's usually a couple of
50  * extra scanlines which aren't actually displayed on the screen.
51  * These extra scanlines don't contain image data and are occasionally used
52  * for features like audio and infoframes. The region made up of these
53  * scanlines is referred to as the vertical blanking region, or vblank for
54  * short.
55  *
56  * For historical reference, the vertical blanking period was designed to
57  * give the electron gun (on CRTs) enough time to move back to the top of
58  * the screen to start scanning out the next frame. Similar for horizontal
59  * blanking periods. They were designed to give the electron gun enough
60  * time to move back to the other side of the screen to start scanning the
61  * next scanline.
62  *
63  * ::
64  *
65  *
66  *    physical →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
67  *    top of      |                                        |
68  *    display     |                                        |
69  *                |               New frame                |
70  *                |                                        |
71  *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|
72  *                |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline,
73  *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|   updates the
74  *                |                                        |   frame as it
75  *                |                                        |   travels down
76  *                |                                        |   ("sacn out")
77  *                |               Old frame                |
78  *                |                                        |
79  *                |                                        |
80  *                |                                        |
81  *                |                                        |   physical
82  *                |                                        |   bottom of
83  *    vertical    |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display
84  *    blanking    ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
85  *    region   →  ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
86  *                ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
87  *    start of →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
88  *    new frame
89  *
90  * "Physical top of display" is the reference point for the high-precision/
91  * corrected timestamp.
92  *
93  * On a lot of display hardware, programming needs to take effect during the
94  * vertical blanking period so that settings like gamma, the image buffer
95  * buffer to be scanned out, etc. can safely be changed without showing
96  * any visual artifacts on the screen. In some unforgiving hardware, some of
97  * this programming has to both start and end in the same vblank. To help
98  * with the timing of the hardware programming, an interrupt is usually
99  * available to notify the driver when it can start the updating of registers.
100  * The interrupt is in this context named the vblank interrupt.
101  *
102  * The vblank interrupt may be fired at different points depending on the
103  * hardware. Some hardware implementations will fire the interrupt when the
104  * new frame start, other implementations will fire the interrupt at different
105  * points in time.
106  *
107  * Vertical blanking plays a major role in graphics rendering. To achieve
108  * tear-free display, users must synchronize page flips and/or rendering to
109  * vertical blanking. The DRM API offers ioctls to perform page flips
110  * synchronized to vertical blanking and wait for vertical blanking.
111  *
112  * The DRM core handles most of the vertical blanking management logic, which
113  * involves filtering out spurious interrupts, keeping race-free blanking
114  * counters, coping with counter wrap-around and resets and keeping use counts.
115  * It relies on the driver to generate vertical blanking interrupts and
116  * optionally provide a hardware vertical blanking counter.
117  *
118  * Drivers must initialize the vertical blanking handling core with a call to
119  * drm_vblank_init(). Minimally, a driver needs to implement
120  * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
121  * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
122  * support.
123  *
124  * Vertical blanking interrupts can be enabled by the DRM core or by drivers
125  * themselves (for instance to handle page flipping operations).  The DRM core
126  * maintains a vertical blanking use count to ensure that the interrupts are not
127  * disabled while a user still needs them. To increment the use count, drivers
128  * call drm_crtc_vblank_get() and release the vblank reference again with
129  * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
130  * guaranteed to be enabled.
131  *
132  * On many hardware disabling the vblank interrupt cannot be done in a race-free
133  * manner, see &drm_driver.vblank_disable_immediate and
134  * &drm_driver.max_vblank_count. In that case the vblank core only disables the
135  * vblanks after a timer has expired, which can be configured through the
136  * ``vblankoffdelay`` module parameter.
137  *
138  * Drivers for hardware without support for vertical-blanking interrupts
139  * must not call drm_vblank_init(). For such drivers, atomic helpers will
140  * automatically generate fake vblank events as part of the display update.
141  * This functionality also can be controlled by the driver by enabling and
142  * disabling struct drm_crtc_state.no_vblank.
143  */
144 
145 /* Retry timestamp calculation up to 3 times to satisfy
146  * drm_timestamp_precision before giving up.
147  */
148 #define DRM_TIMESTAMP_MAXRETRIES 3
149 
150 /* Threshold in nanoseconds for detection of redundant
151  * vblank irq in drm_handle_vblank(). 1 msec should be ok.
152  */
153 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
154 
155 static bool
156 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
157 			  ktime_t *tvblank, bool in_vblank_irq);
158 
159 static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
160 
161 static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
162 
163 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
164 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
165 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
166 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
167 
168 static void store_vblank(struct drm_device *dev, unsigned int pipe,
169 			 u32 vblank_count_inc,
170 			 ktime_t t_vblank, u32 last)
171 {
172 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
173 
174 	assert_spin_locked(&dev->vblank_time_lock);
175 
176 	vblank->last = last;
177 
178 	write_seqlock(&vblank->seqlock);
179 	vblank->time = t_vblank;
180 	atomic64_add(vblank_count_inc, &vblank->count);
181 	write_sequnlock(&vblank->seqlock);
182 }
183 
184 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
185 {
186 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
187 
188 	return vblank->max_vblank_count ?: dev->max_vblank_count;
189 }
190 
191 /*
192  * "No hw counter" fallback implementation of .get_vblank_counter() hook,
193  * if there is no useable hardware frame counter available.
194  */
195 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
196 {
197 	drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0);
198 	return 0;
199 }
200 
201 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
202 {
203 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
204 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
205 
206 		if (drm_WARN_ON(dev, !crtc))
207 			return 0;
208 
209 		if (crtc->funcs->get_vblank_counter)
210 			return crtc->funcs->get_vblank_counter(crtc);
211 	} else if (dev->driver->get_vblank_counter) {
212 		return dev->driver->get_vblank_counter(dev, pipe);
213 	}
214 
215 	return drm_vblank_no_hw_counter(dev, pipe);
216 }
217 
218 /*
219  * Reset the stored timestamp for the current vblank count to correspond
220  * to the last vblank occurred.
221  *
222  * Only to be called from drm_crtc_vblank_on().
223  *
224  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
225  * device vblank fields.
226  */
227 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
228 {
229 	u32 cur_vblank;
230 	bool rc;
231 	ktime_t t_vblank;
232 	int count = DRM_TIMESTAMP_MAXRETRIES;
233 
234 	spin_lock(&dev->vblank_time_lock);
235 
236 	/*
237 	 * sample the current counter to avoid random jumps
238 	 * when drm_vblank_enable() applies the diff
239 	 */
240 	do {
241 		cur_vblank = __get_vblank_counter(dev, pipe);
242 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
243 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
244 
245 	/*
246 	 * Only reinitialize corresponding vblank timestamp if high-precision query
247 	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
248 	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
249 	 */
250 	if (!rc)
251 		t_vblank = 0;
252 
253 	/*
254 	 * +1 to make sure user will never see the same
255 	 * vblank counter value before and after a modeset
256 	 */
257 	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
258 
259 	spin_unlock(&dev->vblank_time_lock);
260 }
261 
262 /*
263  * Call back into the driver to update the appropriate vblank counter
264  * (specified by @pipe).  Deal with wraparound, if it occurred, and
265  * update the last read value so we can deal with wraparound on the next
266  * call if necessary.
267  *
268  * Only necessary when going from off->on, to account for frames we
269  * didn't get an interrupt for.
270  *
271  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
272  * device vblank fields.
273  */
274 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
275 				    bool in_vblank_irq)
276 {
277 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
278 	u32 cur_vblank, diff;
279 	bool rc;
280 	ktime_t t_vblank;
281 	int count = DRM_TIMESTAMP_MAXRETRIES;
282 	int framedur_ns = vblank->framedur_ns;
283 	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
284 
285 	/*
286 	 * Interrupts were disabled prior to this call, so deal with counter
287 	 * wrap if needed.
288 	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
289 	 * here if the register is small or we had vblank interrupts off for
290 	 * a long time.
291 	 *
292 	 * We repeat the hardware vblank counter & timestamp query until
293 	 * we get consistent results. This to prevent races between gpu
294 	 * updating its hardware counter while we are retrieving the
295 	 * corresponding vblank timestamp.
296 	 */
297 	do {
298 		cur_vblank = __get_vblank_counter(dev, pipe);
299 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
300 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
301 
302 	if (max_vblank_count) {
303 		/* trust the hw counter when it's around */
304 		diff = (cur_vblank - vblank->last) & max_vblank_count;
305 	} else if (rc && framedur_ns) {
306 		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
307 
308 		/*
309 		 * Figure out how many vblanks we've missed based
310 		 * on the difference in the timestamps and the
311 		 * frame/field duration.
312 		 */
313 
314 		drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks."
315 			    " diff_ns = %lld, framedur_ns = %d)\n",
316 			    pipe, (long long)diff_ns, framedur_ns);
317 
318 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
319 
320 		if (diff == 0 && in_vblank_irq)
321 			drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n",
322 				    pipe);
323 	} else {
324 		/* some kind of default for drivers w/o accurate vbl timestamping */
325 		diff = in_vblank_irq ? 1 : 0;
326 	}
327 
328 	/*
329 	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
330 	 * interval? If so then vblank irqs keep running and it will likely
331 	 * happen that the hardware vblank counter is not trustworthy as it
332 	 * might reset at some point in that interval and vblank timestamps
333 	 * are not trustworthy either in that interval. Iow. this can result
334 	 * in a bogus diff >> 1 which must be avoided as it would cause
335 	 * random large forward jumps of the software vblank counter.
336 	 */
337 	if (diff > 1 && (vblank->inmodeset & 0x2)) {
338 		drm_dbg_vbl(dev,
339 			    "clamping vblank bump to 1 on crtc %u: diffr=%u"
340 			    " due to pre-modeset.\n", pipe, diff);
341 		diff = 1;
342 	}
343 
344 	drm_dbg_vbl(dev, "updating vblank count on crtc %u:"
345 		    " current=%llu, diff=%u, hw=%u hw_last=%u\n",
346 		    pipe, (unsigned long long)atomic64_read(&vblank->count),
347 		    diff, cur_vblank, vblank->last);
348 
349 	if (diff == 0) {
350 		drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last);
351 		return;
352 	}
353 
354 	/*
355 	 * Only reinitialize corresponding vblank timestamp if high-precision query
356 	 * available and didn't fail, or we were called from the vblank interrupt.
357 	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
358 	 * for now, to mark the vblanktimestamp as invalid.
359 	 */
360 	if (!rc && !in_vblank_irq)
361 		t_vblank = 0;
362 
363 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
364 }
365 
366 static u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
367 {
368 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
369 	u64 count;
370 
371 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
372 		return 0;
373 
374 	count = atomic64_read(&vblank->count);
375 
376 	/*
377 	 * This read barrier corresponds to the implicit write barrier of the
378 	 * write seqlock in store_vblank(). Note that this is the only place
379 	 * where we need an explicit barrier, since all other access goes
380 	 * through drm_vblank_count_and_time(), which already has the required
381 	 * read barrier curtesy of the read seqlock.
382 	 */
383 	smp_rmb();
384 
385 	return count;
386 }
387 
388 /**
389  * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
390  * @crtc: which counter to retrieve
391  *
392  * This function is similar to drm_crtc_vblank_count() but this function
393  * interpolates to handle a race with vblank interrupts using the high precision
394  * timestamping support.
395  *
396  * This is mostly useful for hardware that can obtain the scanout position, but
397  * doesn't have a hardware frame counter.
398  */
399 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
400 {
401 	struct drm_device *dev = crtc->dev;
402 	unsigned int pipe = drm_crtc_index(crtc);
403 	u64 vblank;
404 	unsigned long flags;
405 
406 	drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) &&
407 		      !crtc->funcs->get_vblank_timestamp,
408 		      "This function requires support for accurate vblank timestamps.");
409 
410 	spin_lock_irqsave(&dev->vblank_time_lock, flags);
411 
412 	drm_update_vblank_count(dev, pipe, false);
413 	vblank = drm_vblank_count(dev, pipe);
414 
415 	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
416 
417 	return vblank;
418 }
419 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
420 
421 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
422 {
423 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
424 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
425 
426 		if (drm_WARN_ON(dev, !crtc))
427 			return;
428 
429 		if (crtc->funcs->disable_vblank)
430 			crtc->funcs->disable_vblank(crtc);
431 	} else {
432 		dev->driver->disable_vblank(dev, pipe);
433 	}
434 }
435 
436 /*
437  * Disable vblank irq's on crtc, make sure that last vblank count
438  * of hardware and corresponding consistent software vblank counter
439  * are preserved, even if there are any spurious vblank irq's after
440  * disable.
441  */
442 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
443 {
444 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
445 	unsigned long irqflags;
446 
447 	assert_spin_locked(&dev->vbl_lock);
448 
449 	/* Prevent vblank irq processing while disabling vblank irqs,
450 	 * so no updates of timestamps or count can happen after we've
451 	 * disabled. Needed to prevent races in case of delayed irq's.
452 	 */
453 	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
454 
455 	/*
456 	 * Update vblank count and disable vblank interrupts only if the
457 	 * interrupts were enabled. This avoids calling the ->disable_vblank()
458 	 * operation in atomic context with the hardware potentially runtime
459 	 * suspended.
460 	 */
461 	if (!vblank->enabled)
462 		goto out;
463 
464 	/*
465 	 * Update the count and timestamp to maintain the
466 	 * appearance that the counter has been ticking all along until
467 	 * this time. This makes the count account for the entire time
468 	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
469 	 */
470 	drm_update_vblank_count(dev, pipe, false);
471 	__disable_vblank(dev, pipe);
472 	vblank->enabled = false;
473 
474 out:
475 	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
476 }
477 
478 static void vblank_disable_fn(struct timer_list *t)
479 {
480 	struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
481 	struct drm_device *dev = vblank->dev;
482 	unsigned int pipe = vblank->pipe;
483 	unsigned long irqflags;
484 
485 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
486 	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
487 		drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe);
488 		drm_vblank_disable_and_save(dev, pipe);
489 	}
490 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
491 }
492 
493 static void drm_vblank_init_release(struct drm_device *dev, void *ptr)
494 {
495 	unsigned int pipe;
496 
497 	for (pipe = 0; pipe < dev->num_crtcs; pipe++) {
498 		struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
499 
500 		drm_WARN_ON(dev, READ_ONCE(vblank->enabled) &&
501 			    drm_core_check_feature(dev, DRIVER_MODESET));
502 
503 		del_timer_sync(&vblank->disable_timer);
504 	}
505 }
506 
507 /**
508  * drm_vblank_init - initialize vblank support
509  * @dev: DRM device
510  * @num_crtcs: number of CRTCs supported by @dev
511  *
512  * This function initializes vblank support for @num_crtcs display pipelines.
513  * Cleanup is handled automatically through a cleanup function added with
514  * drmm_add_action().
515  *
516  * Returns:
517  * Zero on success or a negative error code on failure.
518  */
519 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
520 {
521 	int ret;
522 	unsigned int i;
523 
524 	spin_lock_init(&dev->vbl_lock);
525 	spin_lock_init(&dev->vblank_time_lock);
526 
527 	dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
528 	if (!dev->vblank)
529 		return -ENOMEM;
530 
531 	dev->num_crtcs = num_crtcs;
532 
533 	ret = drmm_add_action(dev, drm_vblank_init_release, NULL);
534 	if (ret)
535 		return ret;
536 
537 	for (i = 0; i < num_crtcs; i++) {
538 		struct drm_vblank_crtc *vblank = &dev->vblank[i];
539 
540 		vblank->dev = dev;
541 		vblank->pipe = i;
542 		init_waitqueue_head(&vblank->queue);
543 		timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
544 		seqlock_init(&vblank->seqlock);
545 	}
546 
547 	return 0;
548 }
549 EXPORT_SYMBOL(drm_vblank_init);
550 
551 /**
552  * drm_dev_has_vblank - test if vblanking has been initialized for
553  *                      a device
554  * @dev: the device
555  *
556  * Drivers may call this function to test if vblank support is
557  * initialized for a device. For most hardware this means that vblanking
558  * can also be enabled.
559  *
560  * Atomic helpers use this function to initialize
561  * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset().
562  *
563  * Returns:
564  * True if vblanking has been initialized for the given device, false
565  * otherwise.
566  */
567 bool drm_dev_has_vblank(const struct drm_device *dev)
568 {
569 	return dev->num_crtcs != 0;
570 }
571 EXPORT_SYMBOL(drm_dev_has_vblank);
572 
573 /**
574  * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
575  * @crtc: which CRTC's vblank waitqueue to retrieve
576  *
577  * This function returns a pointer to the vblank waitqueue for the CRTC.
578  * Drivers can use this to implement vblank waits using wait_event() and related
579  * functions.
580  */
581 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
582 {
583 	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
584 }
585 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
586 
587 
588 /**
589  * drm_calc_timestamping_constants - calculate vblank timestamp constants
590  * @crtc: drm_crtc whose timestamp constants should be updated.
591  * @mode: display mode containing the scanout timings
592  *
593  * Calculate and store various constants which are later needed by vblank and
594  * swap-completion timestamping, e.g, by
595  * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from
596  * CRTC's true scanout timing, so they take things like panel scaling or
597  * other adjustments into account.
598  */
599 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
600 				     const struct drm_display_mode *mode)
601 {
602 	struct drm_device *dev = crtc->dev;
603 	unsigned int pipe = drm_crtc_index(crtc);
604 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
605 	int linedur_ns = 0, framedur_ns = 0;
606 	int dotclock = mode->crtc_clock;
607 
608 	if (!drm_dev_has_vblank(dev))
609 		return;
610 
611 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
612 		return;
613 
614 	/* Valid dotclock? */
615 	if (dotclock > 0) {
616 		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
617 
618 		/*
619 		 * Convert scanline length in pixels and video
620 		 * dot clock to line duration and frame duration
621 		 * in nanoseconds:
622 		 */
623 		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
624 		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
625 
626 		/*
627 		 * Fields of interlaced scanout modes are only half a frame duration.
628 		 */
629 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
630 			framedur_ns /= 2;
631 	} else {
632 		drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n",
633 			crtc->base.id);
634 	}
635 
636 	vblank->linedur_ns  = linedur_ns;
637 	vblank->framedur_ns = framedur_ns;
638 	vblank->hwmode = *mode;
639 
640 	drm_dbg_core(dev,
641 		     "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
642 		     crtc->base.id, mode->crtc_htotal,
643 		     mode->crtc_vtotal, mode->crtc_vdisplay);
644 	drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n",
645 		     crtc->base.id, dotclock, framedur_ns, linedur_ns);
646 }
647 EXPORT_SYMBOL(drm_calc_timestamping_constants);
648 
649 /**
650  * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank
651  *                                                        timestamp helper
652  * @crtc: CRTC whose vblank timestamp to retrieve
653  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
654  *             On return contains true maximum error of timestamp
655  * @vblank_time: Pointer to time which should receive the timestamp
656  * @in_vblank_irq:
657  *     True when called from drm_crtc_handle_vblank().  Some drivers
658  *     need to apply some workarounds for gpu-specific vblank irq quirks
659  *     if flag is set.
660  * @get_scanout_position:
661  *     Callback function to retrieve the scanout position. See
662  *     @struct drm_crtc_helper_funcs.get_scanout_position.
663  *
664  * Implements calculation of exact vblank timestamps from given drm_display_mode
665  * timings and current video scanout position of a CRTC.
666  *
667  * The current implementation only handles standard video modes. For double scan
668  * and interlaced modes the driver is supposed to adjust the hardware mode
669  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
670  * match the scanout position reported.
671  *
672  * Note that atomic drivers must call drm_calc_timestamping_constants() before
673  * enabling a CRTC. The atomic helpers already take care of that in
674  * drm_atomic_helper_update_legacy_modeset_state().
675  *
676  * Returns:
677  *
678  * Returns true on success, and false on failure, i.e. when no accurate
679  * timestamp could be acquired.
680  */
681 bool
682 drm_crtc_vblank_helper_get_vblank_timestamp_internal(
683 	struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time,
684 	bool in_vblank_irq,
685 	drm_vblank_get_scanout_position_func get_scanout_position)
686 {
687 	struct drm_device *dev = crtc->dev;
688 	unsigned int pipe = crtc->index;
689 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
690 	struct timespec64 ts_etime, ts_vblank_time;
691 	ktime_t stime, etime;
692 	bool vbl_status;
693 	const struct drm_display_mode *mode;
694 	int vpos, hpos, i;
695 	int delta_ns, duration_ns;
696 
697 	if (pipe >= dev->num_crtcs) {
698 		drm_err(dev, "Invalid crtc %u\n", pipe);
699 		return false;
700 	}
701 
702 	/* Scanout position query not supported? Should not happen. */
703 	if (!get_scanout_position) {
704 		drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n");
705 		return false;
706 	}
707 
708 	if (drm_drv_uses_atomic_modeset(dev))
709 		mode = &vblank->hwmode;
710 	else
711 		mode = &crtc->hwmode;
712 
713 	/* If mode timing undefined, just return as no-op:
714 	 * Happens during initial modesetting of a crtc.
715 	 */
716 	if (mode->crtc_clock == 0) {
717 		drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n",
718 			     pipe);
719 		drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev));
720 		return false;
721 	}
722 
723 	/* Get current scanout position with system timestamp.
724 	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
725 	 * if single query takes longer than max_error nanoseconds.
726 	 *
727 	 * This guarantees a tight bound on maximum error if
728 	 * code gets preempted or delayed for some reason.
729 	 */
730 	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
731 		/*
732 		 * Get vertical and horizontal scanout position vpos, hpos,
733 		 * and bounding timestamps stime, etime, pre/post query.
734 		 */
735 		vbl_status = get_scanout_position(crtc, in_vblank_irq,
736 						  &vpos, &hpos,
737 						  &stime, &etime,
738 						  mode);
739 
740 		/* Return as no-op if scanout query unsupported or failed. */
741 		if (!vbl_status) {
742 			drm_dbg_core(dev,
743 				     "crtc %u : scanoutpos query failed.\n",
744 				     pipe);
745 			return false;
746 		}
747 
748 		/* Compute uncertainty in timestamp of scanout position query. */
749 		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
750 
751 		/* Accept result with <  max_error nsecs timing uncertainty. */
752 		if (duration_ns <= *max_error)
753 			break;
754 	}
755 
756 	/* Noisy system timing? */
757 	if (i == DRM_TIMESTAMP_MAXRETRIES) {
758 		drm_dbg_core(dev,
759 			     "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
760 			     pipe, duration_ns / 1000, *max_error / 1000, i);
761 	}
762 
763 	/* Return upper bound of timestamp precision error. */
764 	*max_error = duration_ns;
765 
766 	/* Convert scanout position into elapsed time at raw_time query
767 	 * since start of scanout at first display scanline. delta_ns
768 	 * can be negative if start of scanout hasn't happened yet.
769 	 */
770 	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
771 			   mode->crtc_clock);
772 
773 	/* Subtract time delta from raw timestamp to get final
774 	 * vblank_time timestamp for end of vblank.
775 	 */
776 	*vblank_time = ktime_sub_ns(etime, delta_ns);
777 
778 	if (!drm_debug_enabled(DRM_UT_VBL))
779 		return true;
780 
781 	ts_etime = ktime_to_timespec64(etime);
782 	ts_vblank_time = ktime_to_timespec64(*vblank_time);
783 
784 	drm_dbg_vbl(dev,
785 		    "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
786 		    pipe, hpos, vpos,
787 		    (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
788 		    (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
789 		    duration_ns / 1000, i);
790 
791 	return true;
792 }
793 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal);
794 
795 /**
796  * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp
797  *                                               helper
798  * @crtc: CRTC whose vblank timestamp to retrieve
799  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
800  *             On return contains true maximum error of timestamp
801  * @vblank_time: Pointer to time which should receive the timestamp
802  * @in_vblank_irq:
803  *     True when called from drm_crtc_handle_vblank().  Some drivers
804  *     need to apply some workarounds for gpu-specific vblank irq quirks
805  *     if flag is set.
806  *
807  * Implements calculation of exact vblank timestamps from given drm_display_mode
808  * timings and current video scanout position of a CRTC. This can be directly
809  * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms
810  * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented.
811  *
812  * The current implementation only handles standard video modes. For double scan
813  * and interlaced modes the driver is supposed to adjust the hardware mode
814  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
815  * match the scanout position reported.
816  *
817  * Note that atomic drivers must call drm_calc_timestamping_constants() before
818  * enabling a CRTC. The atomic helpers already take care of that in
819  * drm_atomic_helper_update_legacy_modeset_state().
820  *
821  * Returns:
822  *
823  * Returns true on success, and false on failure, i.e. when no accurate
824  * timestamp could be acquired.
825  */
826 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc,
827 						 int *max_error,
828 						 ktime_t *vblank_time,
829 						 bool in_vblank_irq)
830 {
831 	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
832 		crtc, max_error, vblank_time, in_vblank_irq,
833 		crtc->helper_private->get_scanout_position);
834 }
835 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp);
836 
837 /**
838  * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
839  *                             vblank interval
840  * @dev: DRM device
841  * @pipe: index of CRTC whose vblank timestamp to retrieve
842  * @tvblank: Pointer to target time which should receive the timestamp
843  * @in_vblank_irq:
844  *     True when called from drm_crtc_handle_vblank().  Some drivers
845  *     need to apply some workarounds for gpu-specific vblank irq quirks
846  *     if flag is set.
847  *
848  * Fetches the system timestamp corresponding to the time of the most recent
849  * vblank interval on specified CRTC. May call into kms-driver to
850  * compute the timestamp with a high-precision GPU specific method.
851  *
852  * Returns zero if timestamp originates from uncorrected do_gettimeofday()
853  * call, i.e., it isn't very precisely locked to the true vblank.
854  *
855  * Returns:
856  * True if timestamp is considered to be very precise, false otherwise.
857  */
858 static bool
859 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
860 			  ktime_t *tvblank, bool in_vblank_irq)
861 {
862 	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
863 	bool ret = false;
864 
865 	/* Define requested maximum error on timestamps (nanoseconds). */
866 	int max_error = (int) drm_timestamp_precision * 1000;
867 
868 	/* Query driver if possible and precision timestamping enabled. */
869 	if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) {
870 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
871 
872 		ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error,
873 							tvblank, in_vblank_irq);
874 	}
875 
876 	/* GPU high precision timestamp query unsupported or failed.
877 	 * Return current monotonic/gettimeofday timestamp as best estimate.
878 	 */
879 	if (!ret)
880 		*tvblank = ktime_get();
881 
882 	return ret;
883 }
884 
885 /**
886  * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
887  * @crtc: which counter to retrieve
888  *
889  * Fetches the "cooked" vblank count value that represents the number of
890  * vblank events since the system was booted, including lost events due to
891  * modesetting activity. Note that this timer isn't correct against a racing
892  * vblank interrupt (since it only reports the software vblank counter), see
893  * drm_crtc_accurate_vblank_count() for such use-cases.
894  *
895  * Note that for a given vblank counter value drm_crtc_handle_vblank()
896  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
897  * provide a barrier: Any writes done before calling
898  * drm_crtc_handle_vblank() will be visible to callers of the later
899  * functions, iff the vblank count is the same or a later one.
900  *
901  * See also &drm_vblank_crtc.count.
902  *
903  * Returns:
904  * The software vblank counter.
905  */
906 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
907 {
908 	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
909 }
910 EXPORT_SYMBOL(drm_crtc_vblank_count);
911 
912 /**
913  * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
914  *     system timestamp corresponding to that vblank counter value.
915  * @dev: DRM device
916  * @pipe: index of CRTC whose counter to retrieve
917  * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
918  *
919  * Fetches the "cooked" vblank count value that represents the number of
920  * vblank events since the system was booted, including lost events due to
921  * modesetting activity. Returns corresponding system timestamp of the time
922  * of the vblank interval that corresponds to the current vblank counter value.
923  *
924  * This is the legacy version of drm_crtc_vblank_count_and_time().
925  */
926 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
927 				     ktime_t *vblanktime)
928 {
929 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
930 	u64 vblank_count;
931 	unsigned int seq;
932 
933 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) {
934 		*vblanktime = 0;
935 		return 0;
936 	}
937 
938 	do {
939 		seq = read_seqbegin(&vblank->seqlock);
940 		vblank_count = atomic64_read(&vblank->count);
941 		*vblanktime = vblank->time;
942 	} while (read_seqretry(&vblank->seqlock, seq));
943 
944 	return vblank_count;
945 }
946 
947 /**
948  * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
949  *     and the system timestamp corresponding to that vblank counter value
950  * @crtc: which counter to retrieve
951  * @vblanktime: Pointer to time to receive the vblank timestamp.
952  *
953  * Fetches the "cooked" vblank count value that represents the number of
954  * vblank events since the system was booted, including lost events due to
955  * modesetting activity. Returns corresponding system timestamp of the time
956  * of the vblank interval that corresponds to the current vblank counter value.
957  *
958  * Note that for a given vblank counter value drm_crtc_handle_vblank()
959  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
960  * provide a barrier: Any writes done before calling
961  * drm_crtc_handle_vblank() will be visible to callers of the later
962  * functions, iff the vblank count is the same or a later one.
963  *
964  * See also &drm_vblank_crtc.count.
965  */
966 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
967 				   ktime_t *vblanktime)
968 {
969 	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
970 					 vblanktime);
971 }
972 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
973 
974 static void send_vblank_event(struct drm_device *dev,
975 		struct drm_pending_vblank_event *e,
976 		u64 seq, ktime_t now)
977 {
978 	struct timespec64 tv;
979 
980 	switch (e->event.base.type) {
981 	case DRM_EVENT_VBLANK:
982 	case DRM_EVENT_FLIP_COMPLETE:
983 		tv = ktime_to_timespec64(now);
984 		e->event.vbl.sequence = seq;
985 		/*
986 		 * e->event is a user space structure, with hardcoded unsigned
987 		 * 32-bit seconds/microseconds. This is safe as we always use
988 		 * monotonic timestamps since linux-4.15
989 		 */
990 		e->event.vbl.tv_sec = tv.tv_sec;
991 		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
992 		break;
993 	case DRM_EVENT_CRTC_SEQUENCE:
994 		if (seq)
995 			e->event.seq.sequence = seq;
996 		e->event.seq.time_ns = ktime_to_ns(now);
997 		break;
998 	}
999 	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
1000 	drm_send_event_locked(dev, &e->base);
1001 }
1002 
1003 /**
1004  * drm_crtc_arm_vblank_event - arm vblank event after pageflip
1005  * @crtc: the source CRTC of the vblank event
1006  * @e: the event to send
1007  *
1008  * A lot of drivers need to generate vblank events for the very next vblank
1009  * interrupt. For example when the page flip interrupt happens when the page
1010  * flip gets armed, but not when it actually executes within the next vblank
1011  * period. This helper function implements exactly the required vblank arming
1012  * behaviour.
1013  *
1014  * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
1015  * atomic commit must ensure that the next vblank happens at exactly the same
1016  * time as the atomic commit is committed to the hardware. This function itself
1017  * does **not** protect against the next vblank interrupt racing with either this
1018  * function call or the atomic commit operation. A possible sequence could be:
1019  *
1020  * 1. Driver commits new hardware state into vblank-synchronized registers.
1021  * 2. A vblank happens, committing the hardware state. Also the corresponding
1022  *    vblank interrupt is fired off and fully processed by the interrupt
1023  *    handler.
1024  * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
1025  * 4. The event is only send out for the next vblank, which is wrong.
1026  *
1027  * An equivalent race can happen when the driver calls
1028  * drm_crtc_arm_vblank_event() before writing out the new hardware state.
1029  *
1030  * The only way to make this work safely is to prevent the vblank from firing
1031  * (and the hardware from committing anything else) until the entire atomic
1032  * commit sequence has run to completion. If the hardware does not have such a
1033  * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
1034  * Instead drivers need to manually send out the event from their interrupt
1035  * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
1036  * possible race with the hardware committing the atomic update.
1037  *
1038  * Caller must hold a vblank reference for the event @e acquired by a
1039  * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
1040  */
1041 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
1042 			       struct drm_pending_vblank_event *e)
1043 {
1044 	struct drm_device *dev = crtc->dev;
1045 	unsigned int pipe = drm_crtc_index(crtc);
1046 
1047 	assert_spin_locked(&dev->event_lock);
1048 
1049 	e->pipe = pipe;
1050 	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
1051 	list_add_tail(&e->base.link, &dev->vblank_event_list);
1052 }
1053 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
1054 
1055 /**
1056  * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
1057  * @crtc: the source CRTC of the vblank event
1058  * @e: the event to send
1059  *
1060  * Updates sequence # and timestamp on event for the most recently processed
1061  * vblank, and sends it to userspace.  Caller must hold event lock.
1062  *
1063  * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
1064  * situation, especially to send out events for atomic commit operations.
1065  */
1066 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
1067 				struct drm_pending_vblank_event *e)
1068 {
1069 	struct drm_device *dev = crtc->dev;
1070 	u64 seq;
1071 	unsigned int pipe = drm_crtc_index(crtc);
1072 	ktime_t now;
1073 
1074 	if (drm_dev_has_vblank(dev)) {
1075 		seq = drm_vblank_count_and_time(dev, pipe, &now);
1076 	} else {
1077 		seq = 0;
1078 
1079 		now = ktime_get();
1080 	}
1081 	e->pipe = pipe;
1082 	send_vblank_event(dev, e, seq, now);
1083 }
1084 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
1085 
1086 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
1087 {
1088 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1089 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1090 
1091 		if (drm_WARN_ON(dev, !crtc))
1092 			return 0;
1093 
1094 		if (crtc->funcs->enable_vblank)
1095 			return crtc->funcs->enable_vblank(crtc);
1096 	} else if (dev->driver->enable_vblank) {
1097 		return dev->driver->enable_vblank(dev, pipe);
1098 	}
1099 
1100 	return -EINVAL;
1101 }
1102 
1103 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1104 {
1105 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1106 	int ret = 0;
1107 
1108 	assert_spin_locked(&dev->vbl_lock);
1109 
1110 	spin_lock(&dev->vblank_time_lock);
1111 
1112 	if (!vblank->enabled) {
1113 		/*
1114 		 * Enable vblank irqs under vblank_time_lock protection.
1115 		 * All vblank count & timestamp updates are held off
1116 		 * until we are done reinitializing master counter and
1117 		 * timestamps. Filtercode in drm_handle_vblank() will
1118 		 * prevent double-accounting of same vblank interval.
1119 		 */
1120 		ret = __enable_vblank(dev, pipe);
1121 		drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n",
1122 			     pipe, ret);
1123 		if (ret) {
1124 			atomic_dec(&vblank->refcount);
1125 		} else {
1126 			drm_update_vblank_count(dev, pipe, 0);
1127 			/* drm_update_vblank_count() includes a wmb so we just
1128 			 * need to ensure that the compiler emits the write
1129 			 * to mark the vblank as enabled after the call
1130 			 * to drm_update_vblank_count().
1131 			 */
1132 			WRITE_ONCE(vblank->enabled, true);
1133 		}
1134 	}
1135 
1136 	spin_unlock(&dev->vblank_time_lock);
1137 
1138 	return ret;
1139 }
1140 
1141 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1142 {
1143 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1144 	unsigned long irqflags;
1145 	int ret = 0;
1146 
1147 	if (!drm_dev_has_vblank(dev))
1148 		return -EINVAL;
1149 
1150 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1151 		return -EINVAL;
1152 
1153 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1154 	/* Going from 0->1 means we have to enable interrupts again */
1155 	if (atomic_add_return(1, &vblank->refcount) == 1) {
1156 		ret = drm_vblank_enable(dev, pipe);
1157 	} else {
1158 		if (!vblank->enabled) {
1159 			atomic_dec(&vblank->refcount);
1160 			ret = -EINVAL;
1161 		}
1162 	}
1163 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1164 
1165 	return ret;
1166 }
1167 
1168 /**
1169  * drm_crtc_vblank_get - get a reference count on vblank events
1170  * @crtc: which CRTC to own
1171  *
1172  * Acquire a reference count on vblank events to avoid having them disabled
1173  * while in use.
1174  *
1175  * Returns:
1176  * Zero on success or a negative error code on failure.
1177  */
1178 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1179 {
1180 	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1181 }
1182 EXPORT_SYMBOL(drm_crtc_vblank_get);
1183 
1184 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1185 {
1186 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1187 
1188 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1189 		return;
1190 
1191 	if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0))
1192 		return;
1193 
1194 	/* Last user schedules interrupt disable */
1195 	if (atomic_dec_and_test(&vblank->refcount)) {
1196 		if (drm_vblank_offdelay == 0)
1197 			return;
1198 		else if (drm_vblank_offdelay < 0)
1199 			vblank_disable_fn(&vblank->disable_timer);
1200 		else if (!dev->vblank_disable_immediate)
1201 			mod_timer(&vblank->disable_timer,
1202 				  jiffies + ((drm_vblank_offdelay * HZ)/1000));
1203 	}
1204 }
1205 
1206 /**
1207  * drm_crtc_vblank_put - give up ownership of vblank events
1208  * @crtc: which counter to give up
1209  *
1210  * Release ownership of a given vblank counter, turning off interrupts
1211  * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1212  */
1213 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1214 {
1215 	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1216 }
1217 EXPORT_SYMBOL(drm_crtc_vblank_put);
1218 
1219 /**
1220  * drm_wait_one_vblank - wait for one vblank
1221  * @dev: DRM device
1222  * @pipe: CRTC index
1223  *
1224  * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1225  * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1226  * due to lack of driver support or because the crtc is off.
1227  *
1228  * This is the legacy version of drm_crtc_wait_one_vblank().
1229  */
1230 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1231 {
1232 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1233 	int ret;
1234 	u64 last;
1235 
1236 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1237 		return;
1238 
1239 	ret = drm_vblank_get(dev, pipe);
1240 	if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n",
1241 		     pipe, ret))
1242 		return;
1243 
1244 	last = drm_vblank_count(dev, pipe);
1245 
1246 	ret = wait_event_timeout(vblank->queue,
1247 				 last != drm_vblank_count(dev, pipe),
1248 				 msecs_to_jiffies(100));
1249 
1250 	drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1251 
1252 	drm_vblank_put(dev, pipe);
1253 }
1254 EXPORT_SYMBOL(drm_wait_one_vblank);
1255 
1256 /**
1257  * drm_crtc_wait_one_vblank - wait for one vblank
1258  * @crtc: DRM crtc
1259  *
1260  * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1261  * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1262  * due to lack of driver support or because the crtc is off.
1263  */
1264 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1265 {
1266 	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1267 }
1268 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1269 
1270 /**
1271  * drm_crtc_vblank_off - disable vblank events on a CRTC
1272  * @crtc: CRTC in question
1273  *
1274  * Drivers can use this function to shut down the vblank interrupt handling when
1275  * disabling a crtc. This function ensures that the latest vblank frame count is
1276  * stored so that drm_vblank_on can restore it again.
1277  *
1278  * Drivers must use this function when the hardware vblank counter can get
1279  * reset, e.g. when suspending or disabling the @crtc in general.
1280  */
1281 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1282 {
1283 	struct drm_device *dev = crtc->dev;
1284 	unsigned int pipe = drm_crtc_index(crtc);
1285 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1286 	struct drm_pending_vblank_event *e, *t;
1287 
1288 	ktime_t now;
1289 	unsigned long irqflags;
1290 	u64 seq;
1291 
1292 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1293 		return;
1294 
1295 	spin_lock_irqsave(&dev->event_lock, irqflags);
1296 
1297 	spin_lock(&dev->vbl_lock);
1298 	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1299 		    pipe, vblank->enabled, vblank->inmodeset);
1300 
1301 	/* Avoid redundant vblank disables without previous
1302 	 * drm_crtc_vblank_on(). */
1303 	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1304 		drm_vblank_disable_and_save(dev, pipe);
1305 
1306 	wake_up(&vblank->queue);
1307 
1308 	/*
1309 	 * Prevent subsequent drm_vblank_get() from re-enabling
1310 	 * the vblank interrupt by bumping the refcount.
1311 	 */
1312 	if (!vblank->inmodeset) {
1313 		atomic_inc(&vblank->refcount);
1314 		vblank->inmodeset = 1;
1315 	}
1316 	spin_unlock(&dev->vbl_lock);
1317 
1318 	/* Send any queued vblank events, lest the natives grow disquiet */
1319 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1320 
1321 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1322 		if (e->pipe != pipe)
1323 			continue;
1324 		drm_dbg_core(dev, "Sending premature vblank event on disable: "
1325 			     "wanted %llu, current %llu\n",
1326 			     e->sequence, seq);
1327 		list_del(&e->base.link);
1328 		drm_vblank_put(dev, pipe);
1329 		send_vblank_event(dev, e, seq, now);
1330 	}
1331 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1332 
1333 	/* Will be reset by the modeset helpers when re-enabling the crtc by
1334 	 * calling drm_calc_timestamping_constants(). */
1335 	vblank->hwmode.crtc_clock = 0;
1336 }
1337 EXPORT_SYMBOL(drm_crtc_vblank_off);
1338 
1339 /**
1340  * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1341  * @crtc: CRTC in question
1342  *
1343  * Drivers can use this function to reset the vblank state to off at load time.
1344  * Drivers should use this together with the drm_crtc_vblank_off() and
1345  * drm_crtc_vblank_on() functions. The difference compared to
1346  * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1347  * and hence doesn't need to call any driver hooks.
1348  *
1349  * This is useful for recovering driver state e.g. on driver load, or on resume.
1350  */
1351 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1352 {
1353 	struct drm_device *dev = crtc->dev;
1354 	unsigned long irqflags;
1355 	unsigned int pipe = drm_crtc_index(crtc);
1356 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1357 
1358 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1359 	/*
1360 	 * Prevent subsequent drm_vblank_get() from enabling the vblank
1361 	 * interrupt by bumping the refcount.
1362 	 */
1363 	if (!vblank->inmodeset) {
1364 		atomic_inc(&vblank->refcount);
1365 		vblank->inmodeset = 1;
1366 	}
1367 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1368 
1369 	drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list));
1370 }
1371 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1372 
1373 /**
1374  * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1375  * @crtc: CRTC in question
1376  * @max_vblank_count: max hardware vblank counter value
1377  *
1378  * Update the maximum hardware vblank counter value for @crtc
1379  * at runtime. Useful for hardware where the operation of the
1380  * hardware vblank counter depends on the currently active
1381  * display configuration.
1382  *
1383  * For example, if the hardware vblank counter does not work
1384  * when a specific connector is active the maximum can be set
1385  * to zero. And when that specific connector isn't active the
1386  * maximum can again be set to the appropriate non-zero value.
1387  *
1388  * If used, must be called before drm_vblank_on().
1389  */
1390 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1391 				   u32 max_vblank_count)
1392 {
1393 	struct drm_device *dev = crtc->dev;
1394 	unsigned int pipe = drm_crtc_index(crtc);
1395 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1396 
1397 	drm_WARN_ON(dev, dev->max_vblank_count);
1398 	drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset));
1399 
1400 	vblank->max_vblank_count = max_vblank_count;
1401 }
1402 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1403 
1404 /**
1405  * drm_crtc_vblank_on - enable vblank events on a CRTC
1406  * @crtc: CRTC in question
1407  *
1408  * This functions restores the vblank interrupt state captured with
1409  * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1410  * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1411  * unbalanced and so can also be unconditionally called in driver load code to
1412  * reflect the current hardware state of the crtc.
1413  */
1414 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1415 {
1416 	struct drm_device *dev = crtc->dev;
1417 	unsigned int pipe = drm_crtc_index(crtc);
1418 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1419 	unsigned long irqflags;
1420 
1421 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1422 		return;
1423 
1424 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1425 	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1426 		    pipe, vblank->enabled, vblank->inmodeset);
1427 
1428 	/* Drop our private "prevent drm_vblank_get" refcount */
1429 	if (vblank->inmodeset) {
1430 		atomic_dec(&vblank->refcount);
1431 		vblank->inmodeset = 0;
1432 	}
1433 
1434 	drm_reset_vblank_timestamp(dev, pipe);
1435 
1436 	/*
1437 	 * re-enable interrupts if there are users left, or the
1438 	 * user wishes vblank interrupts to be enabled all the time.
1439 	 */
1440 	if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1441 		drm_WARN_ON(dev, drm_vblank_enable(dev, pipe));
1442 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1443 }
1444 EXPORT_SYMBOL(drm_crtc_vblank_on);
1445 
1446 /**
1447  * drm_vblank_restore - estimate missed vblanks and update vblank count.
1448  * @dev: DRM device
1449  * @pipe: CRTC index
1450  *
1451  * Power manamement features can cause frame counter resets between vblank
1452  * disable and enable. Drivers can use this function in their
1453  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1454  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1455  * vblank counter.
1456  *
1457  * This function is the legacy version of drm_crtc_vblank_restore().
1458  */
1459 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1460 {
1461 	ktime_t t_vblank;
1462 	struct drm_vblank_crtc *vblank;
1463 	int framedur_ns;
1464 	u64 diff_ns;
1465 	u32 cur_vblank, diff = 1;
1466 	int count = DRM_TIMESTAMP_MAXRETRIES;
1467 
1468 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1469 		return;
1470 
1471 	assert_spin_locked(&dev->vbl_lock);
1472 	assert_spin_locked(&dev->vblank_time_lock);
1473 
1474 	vblank = &dev->vblank[pipe];
1475 	drm_WARN_ONCE(dev,
1476 		      drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1477 		      "Cannot compute missed vblanks without frame duration\n");
1478 	framedur_ns = vblank->framedur_ns;
1479 
1480 	do {
1481 		cur_vblank = __get_vblank_counter(dev, pipe);
1482 		drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1483 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1484 
1485 	diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1486 	if (framedur_ns)
1487 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1488 
1489 
1490 	drm_dbg_vbl(dev,
1491 		    "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
1492 		    diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1493 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
1494 }
1495 EXPORT_SYMBOL(drm_vblank_restore);
1496 
1497 /**
1498  * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1499  * @crtc: CRTC in question
1500  *
1501  * Power manamement features can cause frame counter resets between vblank
1502  * disable and enable. Drivers can use this function in their
1503  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1504  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1505  * vblank counter.
1506  */
1507 void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1508 {
1509 	drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1510 }
1511 EXPORT_SYMBOL(drm_crtc_vblank_restore);
1512 
1513 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1514 					  unsigned int pipe)
1515 {
1516 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1517 
1518 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1519 	if (!drm_dev_has_vblank(dev))
1520 		return;
1521 
1522 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1523 		return;
1524 
1525 	/*
1526 	 * To avoid all the problems that might happen if interrupts
1527 	 * were enabled/disabled around or between these calls, we just
1528 	 * have the kernel take a reference on the CRTC (just once though
1529 	 * to avoid corrupting the count if multiple, mismatch calls occur),
1530 	 * so that interrupts remain enabled in the interim.
1531 	 */
1532 	if (!vblank->inmodeset) {
1533 		vblank->inmodeset = 0x1;
1534 		if (drm_vblank_get(dev, pipe) == 0)
1535 			vblank->inmodeset |= 0x2;
1536 	}
1537 }
1538 
1539 static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1540 					   unsigned int pipe)
1541 {
1542 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1543 	unsigned long irqflags;
1544 
1545 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1546 	if (!drm_dev_has_vblank(dev))
1547 		return;
1548 
1549 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1550 		return;
1551 
1552 	if (vblank->inmodeset) {
1553 		spin_lock_irqsave(&dev->vbl_lock, irqflags);
1554 		drm_reset_vblank_timestamp(dev, pipe);
1555 		spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1556 
1557 		if (vblank->inmodeset & 0x2)
1558 			drm_vblank_put(dev, pipe);
1559 
1560 		vblank->inmodeset = 0;
1561 	}
1562 }
1563 
1564 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1565 				 struct drm_file *file_priv)
1566 {
1567 	struct drm_modeset_ctl *modeset = data;
1568 	unsigned int pipe;
1569 
1570 	/* If drm_vblank_init() hasn't been called yet, just no-op */
1571 	if (!drm_dev_has_vblank(dev))
1572 		return 0;
1573 
1574 	/* KMS drivers handle this internally */
1575 	if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1576 		return 0;
1577 
1578 	pipe = modeset->crtc;
1579 	if (pipe >= dev->num_crtcs)
1580 		return -EINVAL;
1581 
1582 	switch (modeset->cmd) {
1583 	case _DRM_PRE_MODESET:
1584 		drm_legacy_vblank_pre_modeset(dev, pipe);
1585 		break;
1586 	case _DRM_POST_MODESET:
1587 		drm_legacy_vblank_post_modeset(dev, pipe);
1588 		break;
1589 	default:
1590 		return -EINVAL;
1591 	}
1592 
1593 	return 0;
1594 }
1595 
1596 static inline bool vblank_passed(u64 seq, u64 ref)
1597 {
1598 	return (seq - ref) <= (1 << 23);
1599 }
1600 
1601 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1602 				  u64 req_seq,
1603 				  union drm_wait_vblank *vblwait,
1604 				  struct drm_file *file_priv)
1605 {
1606 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1607 	struct drm_pending_vblank_event *e;
1608 	ktime_t now;
1609 	unsigned long flags;
1610 	u64 seq;
1611 	int ret;
1612 
1613 	e = kzalloc(sizeof(*e), GFP_KERNEL);
1614 	if (e == NULL) {
1615 		ret = -ENOMEM;
1616 		goto err_put;
1617 	}
1618 
1619 	e->pipe = pipe;
1620 	e->event.base.type = DRM_EVENT_VBLANK;
1621 	e->event.base.length = sizeof(e->event.vbl);
1622 	e->event.vbl.user_data = vblwait->request.signal;
1623 	e->event.vbl.crtc_id = 0;
1624 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1625 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1626 		if (crtc)
1627 			e->event.vbl.crtc_id = crtc->base.id;
1628 	}
1629 
1630 	spin_lock_irqsave(&dev->event_lock, flags);
1631 
1632 	/*
1633 	 * drm_crtc_vblank_off() might have been called after we called
1634 	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1635 	 * vblank disable, so no need for further locking.  The reference from
1636 	 * drm_vblank_get() protects against vblank disable from another source.
1637 	 */
1638 	if (!READ_ONCE(vblank->enabled)) {
1639 		ret = -EINVAL;
1640 		goto err_unlock;
1641 	}
1642 
1643 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1644 					    &e->event.base);
1645 
1646 	if (ret)
1647 		goto err_unlock;
1648 
1649 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1650 
1651 	drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n",
1652 		     req_seq, seq, pipe);
1653 
1654 	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1655 
1656 	e->sequence = req_seq;
1657 	if (vblank_passed(seq, req_seq)) {
1658 		drm_vblank_put(dev, pipe);
1659 		send_vblank_event(dev, e, seq, now);
1660 		vblwait->reply.sequence = seq;
1661 	} else {
1662 		/* drm_handle_vblank_events will call drm_vblank_put */
1663 		list_add_tail(&e->base.link, &dev->vblank_event_list);
1664 		vblwait->reply.sequence = req_seq;
1665 	}
1666 
1667 	spin_unlock_irqrestore(&dev->event_lock, flags);
1668 
1669 	return 0;
1670 
1671 err_unlock:
1672 	spin_unlock_irqrestore(&dev->event_lock, flags);
1673 	kfree(e);
1674 err_put:
1675 	drm_vblank_put(dev, pipe);
1676 	return ret;
1677 }
1678 
1679 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1680 {
1681 	if (vblwait->request.sequence)
1682 		return false;
1683 
1684 	return _DRM_VBLANK_RELATIVE ==
1685 		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1686 					  _DRM_VBLANK_EVENT |
1687 					  _DRM_VBLANK_NEXTONMISS));
1688 }
1689 
1690 /*
1691  * Widen a 32-bit param to 64-bits.
1692  *
1693  * \param narrow 32-bit value (missing upper 32 bits)
1694  * \param near 64-bit value that should be 'close' to near
1695  *
1696  * This function returns a 64-bit value using the lower 32-bits from
1697  * 'narrow' and constructing the upper 32-bits so that the result is
1698  * as close as possible to 'near'.
1699  */
1700 
1701 static u64 widen_32_to_64(u32 narrow, u64 near)
1702 {
1703 	return near + (s32) (narrow - near);
1704 }
1705 
1706 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1707 				  struct drm_wait_vblank_reply *reply)
1708 {
1709 	ktime_t now;
1710 	struct timespec64 ts;
1711 
1712 	/*
1713 	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1714 	 * to store the seconds. This is safe as we always use monotonic
1715 	 * timestamps since linux-4.15.
1716 	 */
1717 	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1718 	ts = ktime_to_timespec64(now);
1719 	reply->tval_sec = (u32)ts.tv_sec;
1720 	reply->tval_usec = ts.tv_nsec / 1000;
1721 }
1722 
1723 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1724 			  struct drm_file *file_priv)
1725 {
1726 	struct drm_crtc *crtc;
1727 	struct drm_vblank_crtc *vblank;
1728 	union drm_wait_vblank *vblwait = data;
1729 	int ret;
1730 	u64 req_seq, seq;
1731 	unsigned int pipe_index;
1732 	unsigned int flags, pipe, high_pipe;
1733 
1734 	if (!dev->irq_enabled)
1735 		return -EOPNOTSUPP;
1736 
1737 	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1738 		return -EINVAL;
1739 
1740 	if (vblwait->request.type &
1741 	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1742 	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
1743 		drm_dbg_core(dev,
1744 			     "Unsupported type value 0x%x, supported mask 0x%x\n",
1745 			     vblwait->request.type,
1746 			     (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1747 			      _DRM_VBLANK_HIGH_CRTC_MASK));
1748 		return -EINVAL;
1749 	}
1750 
1751 	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1752 	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1753 	if (high_pipe)
1754 		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1755 	else
1756 		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1757 
1758 	/* Convert lease-relative crtc index into global crtc index */
1759 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1760 		pipe = 0;
1761 		drm_for_each_crtc(crtc, dev) {
1762 			if (drm_lease_held(file_priv, crtc->base.id)) {
1763 				if (pipe_index == 0)
1764 					break;
1765 				pipe_index--;
1766 			}
1767 			pipe++;
1768 		}
1769 	} else {
1770 		pipe = pipe_index;
1771 	}
1772 
1773 	if (pipe >= dev->num_crtcs)
1774 		return -EINVAL;
1775 
1776 	vblank = &dev->vblank[pipe];
1777 
1778 	/* If the counter is currently enabled and accurate, short-circuit
1779 	 * queries to return the cached timestamp of the last vblank.
1780 	 */
1781 	if (dev->vblank_disable_immediate &&
1782 	    drm_wait_vblank_is_query(vblwait) &&
1783 	    READ_ONCE(vblank->enabled)) {
1784 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1785 		return 0;
1786 	}
1787 
1788 	ret = drm_vblank_get(dev, pipe);
1789 	if (ret) {
1790 		drm_dbg_core(dev,
1791 			     "crtc %d failed to acquire vblank counter, %d\n",
1792 			     pipe, ret);
1793 		return ret;
1794 	}
1795 	seq = drm_vblank_count(dev, pipe);
1796 
1797 	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1798 	case _DRM_VBLANK_RELATIVE:
1799 		req_seq = seq + vblwait->request.sequence;
1800 		vblwait->request.sequence = req_seq;
1801 		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1802 		break;
1803 	case _DRM_VBLANK_ABSOLUTE:
1804 		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1805 		break;
1806 	default:
1807 		ret = -EINVAL;
1808 		goto done;
1809 	}
1810 
1811 	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1812 	    vblank_passed(seq, req_seq)) {
1813 		req_seq = seq + 1;
1814 		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1815 		vblwait->request.sequence = req_seq;
1816 	}
1817 
1818 	if (flags & _DRM_VBLANK_EVENT) {
1819 		/* must hold on to the vblank ref until the event fires
1820 		 * drm_vblank_put will be called asynchronously
1821 		 */
1822 		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1823 	}
1824 
1825 	if (req_seq != seq) {
1826 		int wait;
1827 
1828 		drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n",
1829 			     req_seq, pipe);
1830 		wait = wait_event_interruptible_timeout(vblank->queue,
1831 			vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1832 				      !READ_ONCE(vblank->enabled),
1833 			msecs_to_jiffies(3000));
1834 
1835 		switch (wait) {
1836 		case 0:
1837 			/* timeout */
1838 			ret = -EBUSY;
1839 			break;
1840 		case -ERESTARTSYS:
1841 			/* interrupted by signal */
1842 			ret = -EINTR;
1843 			break;
1844 		default:
1845 			ret = 0;
1846 			break;
1847 		}
1848 	}
1849 
1850 	if (ret != -EINTR) {
1851 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1852 
1853 		drm_dbg_core(dev, "crtc %d returning %u to client\n",
1854 			     pipe, vblwait->reply.sequence);
1855 	} else {
1856 		drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n",
1857 			     pipe);
1858 	}
1859 
1860 done:
1861 	drm_vblank_put(dev, pipe);
1862 	return ret;
1863 }
1864 
1865 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1866 {
1867 	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1868 	bool high_prec = false;
1869 	struct drm_pending_vblank_event *e, *t;
1870 	ktime_t now;
1871 	u64 seq;
1872 
1873 	assert_spin_locked(&dev->event_lock);
1874 
1875 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1876 
1877 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1878 		if (e->pipe != pipe)
1879 			continue;
1880 		if (!vblank_passed(seq, e->sequence))
1881 			continue;
1882 
1883 		drm_dbg_core(dev, "vblank event on %llu, current %llu\n",
1884 			     e->sequence, seq);
1885 
1886 		list_del(&e->base.link);
1887 		drm_vblank_put(dev, pipe);
1888 		send_vblank_event(dev, e, seq, now);
1889 	}
1890 
1891 	if (crtc && crtc->funcs->get_vblank_timestamp)
1892 		high_prec = true;
1893 
1894 	trace_drm_vblank_event(pipe, seq, now, high_prec);
1895 }
1896 
1897 /**
1898  * drm_handle_vblank - handle a vblank event
1899  * @dev: DRM device
1900  * @pipe: index of CRTC where this event occurred
1901  *
1902  * Drivers should call this routine in their vblank interrupt handlers to
1903  * update the vblank counter and send any signals that may be pending.
1904  *
1905  * This is the legacy version of drm_crtc_handle_vblank().
1906  */
1907 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1908 {
1909 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1910 	unsigned long irqflags;
1911 	bool disable_irq;
1912 
1913 	if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev)))
1914 		return false;
1915 
1916 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1917 		return false;
1918 
1919 	spin_lock_irqsave(&dev->event_lock, irqflags);
1920 
1921 	/* Need timestamp lock to prevent concurrent execution with
1922 	 * vblank enable/disable, as this would cause inconsistent
1923 	 * or corrupted timestamps and vblank counts.
1924 	 */
1925 	spin_lock(&dev->vblank_time_lock);
1926 
1927 	/* Vblank irq handling disabled. Nothing to do. */
1928 	if (!vblank->enabled) {
1929 		spin_unlock(&dev->vblank_time_lock);
1930 		spin_unlock_irqrestore(&dev->event_lock, irqflags);
1931 		return false;
1932 	}
1933 
1934 	drm_update_vblank_count(dev, pipe, true);
1935 
1936 	spin_unlock(&dev->vblank_time_lock);
1937 
1938 	wake_up(&vblank->queue);
1939 
1940 	/* With instant-off, we defer disabling the interrupt until after
1941 	 * we finish processing the following vblank after all events have
1942 	 * been signaled. The disable has to be last (after
1943 	 * drm_handle_vblank_events) so that the timestamp is always accurate.
1944 	 */
1945 	disable_irq = (dev->vblank_disable_immediate &&
1946 		       drm_vblank_offdelay > 0 &&
1947 		       !atomic_read(&vblank->refcount));
1948 
1949 	drm_handle_vblank_events(dev, pipe);
1950 
1951 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1952 
1953 	if (disable_irq)
1954 		vblank_disable_fn(&vblank->disable_timer);
1955 
1956 	return true;
1957 }
1958 EXPORT_SYMBOL(drm_handle_vblank);
1959 
1960 /**
1961  * drm_crtc_handle_vblank - handle a vblank event
1962  * @crtc: where this event occurred
1963  *
1964  * Drivers should call this routine in their vblank interrupt handlers to
1965  * update the vblank counter and send any signals that may be pending.
1966  *
1967  * This is the native KMS version of drm_handle_vblank().
1968  *
1969  * Note that for a given vblank counter value drm_crtc_handle_vblank()
1970  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1971  * provide a barrier: Any writes done before calling
1972  * drm_crtc_handle_vblank() will be visible to callers of the later
1973  * functions, iff the vblank count is the same or a later one.
1974  *
1975  * See also &drm_vblank_crtc.count.
1976  *
1977  * Returns:
1978  * True if the event was successfully handled, false on failure.
1979  */
1980 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1981 {
1982 	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1983 }
1984 EXPORT_SYMBOL(drm_crtc_handle_vblank);
1985 
1986 /*
1987  * Get crtc VBLANK count.
1988  *
1989  * \param dev DRM device
1990  * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
1991  * \param file_priv drm file private for the user's open file descriptor
1992  */
1993 
1994 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
1995 				struct drm_file *file_priv)
1996 {
1997 	struct drm_crtc *crtc;
1998 	struct drm_vblank_crtc *vblank;
1999 	int pipe;
2000 	struct drm_crtc_get_sequence *get_seq = data;
2001 	ktime_t now;
2002 	bool vblank_enabled;
2003 	int ret;
2004 
2005 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2006 		return -EOPNOTSUPP;
2007 
2008 	if (!dev->irq_enabled)
2009 		return -EOPNOTSUPP;
2010 
2011 	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
2012 	if (!crtc)
2013 		return -ENOENT;
2014 
2015 	pipe = drm_crtc_index(crtc);
2016 
2017 	vblank = &dev->vblank[pipe];
2018 	vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
2019 
2020 	if (!vblank_enabled) {
2021 		ret = drm_crtc_vblank_get(crtc);
2022 		if (ret) {
2023 			drm_dbg_core(dev,
2024 				     "crtc %d failed to acquire vblank counter, %d\n",
2025 				     pipe, ret);
2026 			return ret;
2027 		}
2028 	}
2029 	drm_modeset_lock(&crtc->mutex, NULL);
2030 	if (crtc->state)
2031 		get_seq->active = crtc->state->enable;
2032 	else
2033 		get_seq->active = crtc->enabled;
2034 	drm_modeset_unlock(&crtc->mutex);
2035 	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
2036 	get_seq->sequence_ns = ktime_to_ns(now);
2037 	if (!vblank_enabled)
2038 		drm_crtc_vblank_put(crtc);
2039 	return 0;
2040 }
2041 
2042 /*
2043  * Queue a event for VBLANK sequence
2044  *
2045  * \param dev DRM device
2046  * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
2047  * \param file_priv drm file private for the user's open file descriptor
2048  */
2049 
2050 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
2051 				  struct drm_file *file_priv)
2052 {
2053 	struct drm_crtc *crtc;
2054 	struct drm_vblank_crtc *vblank;
2055 	int pipe;
2056 	struct drm_crtc_queue_sequence *queue_seq = data;
2057 	ktime_t now;
2058 	struct drm_pending_vblank_event *e;
2059 	u32 flags;
2060 	u64 seq;
2061 	u64 req_seq;
2062 	int ret;
2063 	unsigned long spin_flags;
2064 
2065 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2066 		return -EOPNOTSUPP;
2067 
2068 	if (!dev->irq_enabled)
2069 		return -EOPNOTSUPP;
2070 
2071 	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
2072 	if (!crtc)
2073 		return -ENOENT;
2074 
2075 	flags = queue_seq->flags;
2076 	/* Check valid flag bits */
2077 	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
2078 		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
2079 		return -EINVAL;
2080 
2081 	pipe = drm_crtc_index(crtc);
2082 
2083 	vblank = &dev->vblank[pipe];
2084 
2085 	e = kzalloc(sizeof(*e), GFP_KERNEL);
2086 	if (e == NULL)
2087 		return -ENOMEM;
2088 
2089 	ret = drm_crtc_vblank_get(crtc);
2090 	if (ret) {
2091 		drm_dbg_core(dev,
2092 			     "crtc %d failed to acquire vblank counter, %d\n",
2093 			     pipe, ret);
2094 		goto err_free;
2095 	}
2096 
2097 	seq = drm_vblank_count_and_time(dev, pipe, &now);
2098 	req_seq = queue_seq->sequence;
2099 
2100 	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2101 		req_seq += seq;
2102 
2103 	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq))
2104 		req_seq = seq + 1;
2105 
2106 	e->pipe = pipe;
2107 	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2108 	e->event.base.length = sizeof(e->event.seq);
2109 	e->event.seq.user_data = queue_seq->user_data;
2110 
2111 	spin_lock_irqsave(&dev->event_lock, spin_flags);
2112 
2113 	/*
2114 	 * drm_crtc_vblank_off() might have been called after we called
2115 	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2116 	 * vblank disable, so no need for further locking.  The reference from
2117 	 * drm_crtc_vblank_get() protects against vblank disable from another source.
2118 	 */
2119 	if (!READ_ONCE(vblank->enabled)) {
2120 		ret = -EINVAL;
2121 		goto err_unlock;
2122 	}
2123 
2124 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2125 					    &e->event.base);
2126 
2127 	if (ret)
2128 		goto err_unlock;
2129 
2130 	e->sequence = req_seq;
2131 
2132 	if (vblank_passed(seq, req_seq)) {
2133 		drm_crtc_vblank_put(crtc);
2134 		send_vblank_event(dev, e, seq, now);
2135 		queue_seq->sequence = seq;
2136 	} else {
2137 		/* drm_handle_vblank_events will call drm_vblank_put */
2138 		list_add_tail(&e->base.link, &dev->vblank_event_list);
2139 		queue_seq->sequence = req_seq;
2140 	}
2141 
2142 	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
2143 	return 0;
2144 
2145 err_unlock:
2146 	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
2147 	drm_crtc_vblank_put(crtc);
2148 err_free:
2149 	kfree(e);
2150 	return ret;
2151 }
2152