1 /* 2 * drm_irq.c IRQ and vblank support 3 * 4 * \author Rickard E. (Rik) Faith <faith@valinux.com> 5 * \author Gareth Hughes <gareth@valinux.com> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 24 * OTHER DEALINGS IN THE SOFTWARE. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/moduleparam.h> 29 30 #include <drm/drm_crtc.h> 31 #include <drm/drm_drv.h> 32 #include <drm/drm_framebuffer.h> 33 #include <drm/drm_managed.h> 34 #include <drm/drm_modeset_helper_vtables.h> 35 #include <drm/drm_print.h> 36 #include <drm/drm_vblank.h> 37 38 #include "drm_internal.h" 39 #include "drm_trace.h" 40 41 /** 42 * DOC: vblank handling 43 * 44 * From the computer's perspective, every time the monitor displays 45 * a new frame the scanout engine has "scanned out" the display image 46 * from top to bottom, one row of pixels at a time. The current row 47 * of pixels is referred to as the current scanline. 48 * 49 * In addition to the display's visible area, there's usually a couple of 50 * extra scanlines which aren't actually displayed on the screen. 51 * These extra scanlines don't contain image data and are occasionally used 52 * for features like audio and infoframes. The region made up of these 53 * scanlines is referred to as the vertical blanking region, or vblank for 54 * short. 55 * 56 * For historical reference, the vertical blanking period was designed to 57 * give the electron gun (on CRTs) enough time to move back to the top of 58 * the screen to start scanning out the next frame. Similar for horizontal 59 * blanking periods. They were designed to give the electron gun enough 60 * time to move back to the other side of the screen to start scanning the 61 * next scanline. 62 * 63 * :: 64 * 65 * 66 * physical → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 67 * top of | | 68 * display | | 69 * | New frame | 70 * | | 71 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| 72 * |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline, 73 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| updates the 74 * | | frame as it 75 * | | travels down 76 * | | ("sacn out") 77 * | Old frame | 78 * | | 79 * | | 80 * | | 81 * | | physical 82 * | | bottom of 83 * vertical |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display 84 * blanking ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 85 * region → ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 86 * ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 87 * start of → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 88 * new frame 89 * 90 * "Physical top of display" is the reference point for the high-precision/ 91 * corrected timestamp. 92 * 93 * On a lot of display hardware, programming needs to take effect during the 94 * vertical blanking period so that settings like gamma, the image buffer 95 * buffer to be scanned out, etc. can safely be changed without showing 96 * any visual artifacts on the screen. In some unforgiving hardware, some of 97 * this programming has to both start and end in the same vblank. To help 98 * with the timing of the hardware programming, an interrupt is usually 99 * available to notify the driver when it can start the updating of registers. 100 * The interrupt is in this context named the vblank interrupt. 101 * 102 * The vblank interrupt may be fired at different points depending on the 103 * hardware. Some hardware implementations will fire the interrupt when the 104 * new frame start, other implementations will fire the interrupt at different 105 * points in time. 106 * 107 * Vertical blanking plays a major role in graphics rendering. To achieve 108 * tear-free display, users must synchronize page flips and/or rendering to 109 * vertical blanking. The DRM API offers ioctls to perform page flips 110 * synchronized to vertical blanking and wait for vertical blanking. 111 * 112 * The DRM core handles most of the vertical blanking management logic, which 113 * involves filtering out spurious interrupts, keeping race-free blanking 114 * counters, coping with counter wrap-around and resets and keeping use counts. 115 * It relies on the driver to generate vertical blanking interrupts and 116 * optionally provide a hardware vertical blanking counter. 117 * 118 * Drivers must initialize the vertical blanking handling core with a call to 119 * drm_vblank_init(). Minimally, a driver needs to implement 120 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call 121 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank 122 * support. 123 * 124 * Vertical blanking interrupts can be enabled by the DRM core or by drivers 125 * themselves (for instance to handle page flipping operations). The DRM core 126 * maintains a vertical blanking use count to ensure that the interrupts are not 127 * disabled while a user still needs them. To increment the use count, drivers 128 * call drm_crtc_vblank_get() and release the vblank reference again with 129 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are 130 * guaranteed to be enabled. 131 * 132 * On many hardware disabling the vblank interrupt cannot be done in a race-free 133 * manner, see &drm_driver.vblank_disable_immediate and 134 * &drm_driver.max_vblank_count. In that case the vblank core only disables the 135 * vblanks after a timer has expired, which can be configured through the 136 * ``vblankoffdelay`` module parameter. 137 * 138 * Drivers for hardware without support for vertical-blanking interrupts 139 * must not call drm_vblank_init(). For such drivers, atomic helpers will 140 * automatically generate fake vblank events as part of the display update. 141 * This functionality also can be controlled by the driver by enabling and 142 * disabling struct drm_crtc_state.no_vblank. 143 */ 144 145 /* Retry timestamp calculation up to 3 times to satisfy 146 * drm_timestamp_precision before giving up. 147 */ 148 #define DRM_TIMESTAMP_MAXRETRIES 3 149 150 /* Threshold in nanoseconds for detection of redundant 151 * vblank irq in drm_handle_vblank(). 1 msec should be ok. 152 */ 153 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 154 155 static bool 156 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 157 ktime_t *tvblank, bool in_vblank_irq); 158 159 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */ 160 161 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */ 162 163 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600); 164 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600); 165 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)"); 166 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]"); 167 168 static void store_vblank(struct drm_device *dev, unsigned int pipe, 169 u32 vblank_count_inc, 170 ktime_t t_vblank, u32 last) 171 { 172 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 173 174 assert_spin_locked(&dev->vblank_time_lock); 175 176 vblank->last = last; 177 178 write_seqlock(&vblank->seqlock); 179 vblank->time = t_vblank; 180 atomic64_add(vblank_count_inc, &vblank->count); 181 write_sequnlock(&vblank->seqlock); 182 } 183 184 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe) 185 { 186 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 187 188 return vblank->max_vblank_count ?: dev->max_vblank_count; 189 } 190 191 /* 192 * "No hw counter" fallback implementation of .get_vblank_counter() hook, 193 * if there is no useable hardware frame counter available. 194 */ 195 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe) 196 { 197 drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0); 198 return 0; 199 } 200 201 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe) 202 { 203 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 204 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 205 206 if (drm_WARN_ON(dev, !crtc)) 207 return 0; 208 209 if (crtc->funcs->get_vblank_counter) 210 return crtc->funcs->get_vblank_counter(crtc); 211 } else if (dev->driver->get_vblank_counter) { 212 return dev->driver->get_vblank_counter(dev, pipe); 213 } 214 215 return drm_vblank_no_hw_counter(dev, pipe); 216 } 217 218 /* 219 * Reset the stored timestamp for the current vblank count to correspond 220 * to the last vblank occurred. 221 * 222 * Only to be called from drm_crtc_vblank_on(). 223 * 224 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 225 * device vblank fields. 226 */ 227 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe) 228 { 229 u32 cur_vblank; 230 bool rc; 231 ktime_t t_vblank; 232 int count = DRM_TIMESTAMP_MAXRETRIES; 233 234 spin_lock(&dev->vblank_time_lock); 235 236 /* 237 * sample the current counter to avoid random jumps 238 * when drm_vblank_enable() applies the diff 239 */ 240 do { 241 cur_vblank = __get_vblank_counter(dev, pipe); 242 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 243 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 244 245 /* 246 * Only reinitialize corresponding vblank timestamp if high-precision query 247 * available and didn't fail. Otherwise reinitialize delayed at next vblank 248 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid. 249 */ 250 if (!rc) 251 t_vblank = 0; 252 253 /* 254 * +1 to make sure user will never see the same 255 * vblank counter value before and after a modeset 256 */ 257 store_vblank(dev, pipe, 1, t_vblank, cur_vblank); 258 259 spin_unlock(&dev->vblank_time_lock); 260 } 261 262 /* 263 * Call back into the driver to update the appropriate vblank counter 264 * (specified by @pipe). Deal with wraparound, if it occurred, and 265 * update the last read value so we can deal with wraparound on the next 266 * call if necessary. 267 * 268 * Only necessary when going from off->on, to account for frames we 269 * didn't get an interrupt for. 270 * 271 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 272 * device vblank fields. 273 */ 274 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe, 275 bool in_vblank_irq) 276 { 277 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 278 u32 cur_vblank, diff; 279 bool rc; 280 ktime_t t_vblank; 281 int count = DRM_TIMESTAMP_MAXRETRIES; 282 int framedur_ns = vblank->framedur_ns; 283 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 284 285 /* 286 * Interrupts were disabled prior to this call, so deal with counter 287 * wrap if needed. 288 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events 289 * here if the register is small or we had vblank interrupts off for 290 * a long time. 291 * 292 * We repeat the hardware vblank counter & timestamp query until 293 * we get consistent results. This to prevent races between gpu 294 * updating its hardware counter while we are retrieving the 295 * corresponding vblank timestamp. 296 */ 297 do { 298 cur_vblank = __get_vblank_counter(dev, pipe); 299 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq); 300 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 301 302 if (max_vblank_count) { 303 /* trust the hw counter when it's around */ 304 diff = (cur_vblank - vblank->last) & max_vblank_count; 305 } else if (rc && framedur_ns) { 306 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 307 308 /* 309 * Figure out how many vblanks we've missed based 310 * on the difference in the timestamps and the 311 * frame/field duration. 312 */ 313 314 drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks." 315 " diff_ns = %lld, framedur_ns = %d)\n", 316 pipe, (long long)diff_ns, framedur_ns); 317 318 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 319 320 if (diff == 0 && in_vblank_irq) 321 drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n", 322 pipe); 323 } else { 324 /* some kind of default for drivers w/o accurate vbl timestamping */ 325 diff = in_vblank_irq ? 1 : 0; 326 } 327 328 /* 329 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset 330 * interval? If so then vblank irqs keep running and it will likely 331 * happen that the hardware vblank counter is not trustworthy as it 332 * might reset at some point in that interval and vblank timestamps 333 * are not trustworthy either in that interval. Iow. this can result 334 * in a bogus diff >> 1 which must be avoided as it would cause 335 * random large forward jumps of the software vblank counter. 336 */ 337 if (diff > 1 && (vblank->inmodeset & 0x2)) { 338 drm_dbg_vbl(dev, 339 "clamping vblank bump to 1 on crtc %u: diffr=%u" 340 " due to pre-modeset.\n", pipe, diff); 341 diff = 1; 342 } 343 344 drm_dbg_vbl(dev, "updating vblank count on crtc %u:" 345 " current=%llu, diff=%u, hw=%u hw_last=%u\n", 346 pipe, (unsigned long long)atomic64_read(&vblank->count), 347 diff, cur_vblank, vblank->last); 348 349 if (diff == 0) { 350 drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last); 351 return; 352 } 353 354 /* 355 * Only reinitialize corresponding vblank timestamp if high-precision query 356 * available and didn't fail, or we were called from the vblank interrupt. 357 * Otherwise reinitialize delayed at next vblank interrupt and assign 0 358 * for now, to mark the vblanktimestamp as invalid. 359 */ 360 if (!rc && !in_vblank_irq) 361 t_vblank = 0; 362 363 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 364 } 365 366 static u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe) 367 { 368 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 369 u64 count; 370 371 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 372 return 0; 373 374 count = atomic64_read(&vblank->count); 375 376 /* 377 * This read barrier corresponds to the implicit write barrier of the 378 * write seqlock in store_vblank(). Note that this is the only place 379 * where we need an explicit barrier, since all other access goes 380 * through drm_vblank_count_and_time(), which already has the required 381 * read barrier curtesy of the read seqlock. 382 */ 383 smp_rmb(); 384 385 return count; 386 } 387 388 /** 389 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter 390 * @crtc: which counter to retrieve 391 * 392 * This function is similar to drm_crtc_vblank_count() but this function 393 * interpolates to handle a race with vblank interrupts using the high precision 394 * timestamping support. 395 * 396 * This is mostly useful for hardware that can obtain the scanout position, but 397 * doesn't have a hardware frame counter. 398 */ 399 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc) 400 { 401 struct drm_device *dev = crtc->dev; 402 unsigned int pipe = drm_crtc_index(crtc); 403 u64 vblank; 404 unsigned long flags; 405 406 drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) && 407 !crtc->funcs->get_vblank_timestamp, 408 "This function requires support for accurate vblank timestamps."); 409 410 spin_lock_irqsave(&dev->vblank_time_lock, flags); 411 412 drm_update_vblank_count(dev, pipe, false); 413 vblank = drm_vblank_count(dev, pipe); 414 415 spin_unlock_irqrestore(&dev->vblank_time_lock, flags); 416 417 return vblank; 418 } 419 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count); 420 421 static void __disable_vblank(struct drm_device *dev, unsigned int pipe) 422 { 423 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 424 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 425 426 if (drm_WARN_ON(dev, !crtc)) 427 return; 428 429 if (crtc->funcs->disable_vblank) 430 crtc->funcs->disable_vblank(crtc); 431 } else { 432 dev->driver->disable_vblank(dev, pipe); 433 } 434 } 435 436 /* 437 * Disable vblank irq's on crtc, make sure that last vblank count 438 * of hardware and corresponding consistent software vblank counter 439 * are preserved, even if there are any spurious vblank irq's after 440 * disable. 441 */ 442 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe) 443 { 444 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 445 unsigned long irqflags; 446 447 assert_spin_locked(&dev->vbl_lock); 448 449 /* Prevent vblank irq processing while disabling vblank irqs, 450 * so no updates of timestamps or count can happen after we've 451 * disabled. Needed to prevent races in case of delayed irq's. 452 */ 453 spin_lock_irqsave(&dev->vblank_time_lock, irqflags); 454 455 /* 456 * Update vblank count and disable vblank interrupts only if the 457 * interrupts were enabled. This avoids calling the ->disable_vblank() 458 * operation in atomic context with the hardware potentially runtime 459 * suspended. 460 */ 461 if (!vblank->enabled) 462 goto out; 463 464 /* 465 * Update the count and timestamp to maintain the 466 * appearance that the counter has been ticking all along until 467 * this time. This makes the count account for the entire time 468 * between drm_crtc_vblank_on() and drm_crtc_vblank_off(). 469 */ 470 drm_update_vblank_count(dev, pipe, false); 471 __disable_vblank(dev, pipe); 472 vblank->enabled = false; 473 474 out: 475 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 476 } 477 478 static void vblank_disable_fn(struct timer_list *t) 479 { 480 struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer); 481 struct drm_device *dev = vblank->dev; 482 unsigned int pipe = vblank->pipe; 483 unsigned long irqflags; 484 485 spin_lock_irqsave(&dev->vbl_lock, irqflags); 486 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) { 487 drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe); 488 drm_vblank_disable_and_save(dev, pipe); 489 } 490 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 491 } 492 493 static void drm_vblank_init_release(struct drm_device *dev, void *ptr) 494 { 495 unsigned int pipe; 496 497 for (pipe = 0; pipe < dev->num_crtcs; pipe++) { 498 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 499 500 drm_WARN_ON(dev, READ_ONCE(vblank->enabled) && 501 drm_core_check_feature(dev, DRIVER_MODESET)); 502 503 del_timer_sync(&vblank->disable_timer); 504 } 505 } 506 507 /** 508 * drm_vblank_init - initialize vblank support 509 * @dev: DRM device 510 * @num_crtcs: number of CRTCs supported by @dev 511 * 512 * This function initializes vblank support for @num_crtcs display pipelines. 513 * Cleanup is handled automatically through a cleanup function added with 514 * drmm_add_action(). 515 * 516 * Returns: 517 * Zero on success or a negative error code on failure. 518 */ 519 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs) 520 { 521 int ret; 522 unsigned int i; 523 524 spin_lock_init(&dev->vbl_lock); 525 spin_lock_init(&dev->vblank_time_lock); 526 527 dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL); 528 if (!dev->vblank) 529 return -ENOMEM; 530 531 dev->num_crtcs = num_crtcs; 532 533 ret = drmm_add_action(dev, drm_vblank_init_release, NULL); 534 if (ret) 535 return ret; 536 537 for (i = 0; i < num_crtcs; i++) { 538 struct drm_vblank_crtc *vblank = &dev->vblank[i]; 539 540 vblank->dev = dev; 541 vblank->pipe = i; 542 init_waitqueue_head(&vblank->queue); 543 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0); 544 seqlock_init(&vblank->seqlock); 545 } 546 547 return 0; 548 } 549 EXPORT_SYMBOL(drm_vblank_init); 550 551 /** 552 * drm_dev_has_vblank - test if vblanking has been initialized for 553 * a device 554 * @dev: the device 555 * 556 * Drivers may call this function to test if vblank support is 557 * initialized for a device. For most hardware this means that vblanking 558 * can also be enabled. 559 * 560 * Atomic helpers use this function to initialize 561 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset(). 562 * 563 * Returns: 564 * True if vblanking has been initialized for the given device, false 565 * otherwise. 566 */ 567 bool drm_dev_has_vblank(const struct drm_device *dev) 568 { 569 return dev->num_crtcs != 0; 570 } 571 EXPORT_SYMBOL(drm_dev_has_vblank); 572 573 /** 574 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC 575 * @crtc: which CRTC's vblank waitqueue to retrieve 576 * 577 * This function returns a pointer to the vblank waitqueue for the CRTC. 578 * Drivers can use this to implement vblank waits using wait_event() and related 579 * functions. 580 */ 581 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc) 582 { 583 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue; 584 } 585 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue); 586 587 588 /** 589 * drm_calc_timestamping_constants - calculate vblank timestamp constants 590 * @crtc: drm_crtc whose timestamp constants should be updated. 591 * @mode: display mode containing the scanout timings 592 * 593 * Calculate and store various constants which are later needed by vblank and 594 * swap-completion timestamping, e.g, by 595 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from 596 * CRTC's true scanout timing, so they take things like panel scaling or 597 * other adjustments into account. 598 */ 599 void drm_calc_timestamping_constants(struct drm_crtc *crtc, 600 const struct drm_display_mode *mode) 601 { 602 struct drm_device *dev = crtc->dev; 603 unsigned int pipe = drm_crtc_index(crtc); 604 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 605 int linedur_ns = 0, framedur_ns = 0; 606 int dotclock = mode->crtc_clock; 607 608 if (!drm_dev_has_vblank(dev)) 609 return; 610 611 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 612 return; 613 614 /* Valid dotclock? */ 615 if (dotclock > 0) { 616 int frame_size = mode->crtc_htotal * mode->crtc_vtotal; 617 618 /* 619 * Convert scanline length in pixels and video 620 * dot clock to line duration and frame duration 621 * in nanoseconds: 622 */ 623 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock); 624 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock); 625 626 /* 627 * Fields of interlaced scanout modes are only half a frame duration. 628 */ 629 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 630 framedur_ns /= 2; 631 } else { 632 drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n", 633 crtc->base.id); 634 } 635 636 vblank->linedur_ns = linedur_ns; 637 vblank->framedur_ns = framedur_ns; 638 vblank->hwmode = *mode; 639 640 drm_dbg_core(dev, 641 "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n", 642 crtc->base.id, mode->crtc_htotal, 643 mode->crtc_vtotal, mode->crtc_vdisplay); 644 drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n", 645 crtc->base.id, dotclock, framedur_ns, linedur_ns); 646 } 647 EXPORT_SYMBOL(drm_calc_timestamping_constants); 648 649 /** 650 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank 651 * timestamp helper 652 * @crtc: CRTC whose vblank timestamp to retrieve 653 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 654 * On return contains true maximum error of timestamp 655 * @vblank_time: Pointer to time which should receive the timestamp 656 * @in_vblank_irq: 657 * True when called from drm_crtc_handle_vblank(). Some drivers 658 * need to apply some workarounds for gpu-specific vblank irq quirks 659 * if flag is set. 660 * @get_scanout_position: 661 * Callback function to retrieve the scanout position. See 662 * @struct drm_crtc_helper_funcs.get_scanout_position. 663 * 664 * Implements calculation of exact vblank timestamps from given drm_display_mode 665 * timings and current video scanout position of a CRTC. 666 * 667 * The current implementation only handles standard video modes. For double scan 668 * and interlaced modes the driver is supposed to adjust the hardware mode 669 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 670 * match the scanout position reported. 671 * 672 * Note that atomic drivers must call drm_calc_timestamping_constants() before 673 * enabling a CRTC. The atomic helpers already take care of that in 674 * drm_atomic_helper_update_legacy_modeset_state(). 675 * 676 * Returns: 677 * 678 * Returns true on success, and false on failure, i.e. when no accurate 679 * timestamp could be acquired. 680 */ 681 bool 682 drm_crtc_vblank_helper_get_vblank_timestamp_internal( 683 struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time, 684 bool in_vblank_irq, 685 drm_vblank_get_scanout_position_func get_scanout_position) 686 { 687 struct drm_device *dev = crtc->dev; 688 unsigned int pipe = crtc->index; 689 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 690 struct timespec64 ts_etime, ts_vblank_time; 691 ktime_t stime, etime; 692 bool vbl_status; 693 const struct drm_display_mode *mode; 694 int vpos, hpos, i; 695 int delta_ns, duration_ns; 696 697 if (pipe >= dev->num_crtcs) { 698 drm_err(dev, "Invalid crtc %u\n", pipe); 699 return false; 700 } 701 702 /* Scanout position query not supported? Should not happen. */ 703 if (!get_scanout_position) { 704 drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n"); 705 return false; 706 } 707 708 if (drm_drv_uses_atomic_modeset(dev)) 709 mode = &vblank->hwmode; 710 else 711 mode = &crtc->hwmode; 712 713 /* If mode timing undefined, just return as no-op: 714 * Happens during initial modesetting of a crtc. 715 */ 716 if (mode->crtc_clock == 0) { 717 drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n", 718 pipe); 719 drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev)); 720 return false; 721 } 722 723 /* Get current scanout position with system timestamp. 724 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times 725 * if single query takes longer than max_error nanoseconds. 726 * 727 * This guarantees a tight bound on maximum error if 728 * code gets preempted or delayed for some reason. 729 */ 730 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { 731 /* 732 * Get vertical and horizontal scanout position vpos, hpos, 733 * and bounding timestamps stime, etime, pre/post query. 734 */ 735 vbl_status = get_scanout_position(crtc, in_vblank_irq, 736 &vpos, &hpos, 737 &stime, &etime, 738 mode); 739 740 /* Return as no-op if scanout query unsupported or failed. */ 741 if (!vbl_status) { 742 drm_dbg_core(dev, 743 "crtc %u : scanoutpos query failed.\n", 744 pipe); 745 return false; 746 } 747 748 /* Compute uncertainty in timestamp of scanout position query. */ 749 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime); 750 751 /* Accept result with < max_error nsecs timing uncertainty. */ 752 if (duration_ns <= *max_error) 753 break; 754 } 755 756 /* Noisy system timing? */ 757 if (i == DRM_TIMESTAMP_MAXRETRIES) { 758 drm_dbg_core(dev, 759 "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n", 760 pipe, duration_ns / 1000, *max_error / 1000, i); 761 } 762 763 /* Return upper bound of timestamp precision error. */ 764 *max_error = duration_ns; 765 766 /* Convert scanout position into elapsed time at raw_time query 767 * since start of scanout at first display scanline. delta_ns 768 * can be negative if start of scanout hasn't happened yet. 769 */ 770 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos), 771 mode->crtc_clock); 772 773 /* Subtract time delta from raw timestamp to get final 774 * vblank_time timestamp for end of vblank. 775 */ 776 *vblank_time = ktime_sub_ns(etime, delta_ns); 777 778 if (!drm_debug_enabled(DRM_UT_VBL)) 779 return true; 780 781 ts_etime = ktime_to_timespec64(etime); 782 ts_vblank_time = ktime_to_timespec64(*vblank_time); 783 784 drm_dbg_vbl(dev, 785 "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n", 786 pipe, hpos, vpos, 787 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000, 788 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000, 789 duration_ns / 1000, i); 790 791 return true; 792 } 793 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal); 794 795 /** 796 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp 797 * helper 798 * @crtc: CRTC whose vblank timestamp to retrieve 799 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 800 * On return contains true maximum error of timestamp 801 * @vblank_time: Pointer to time which should receive the timestamp 802 * @in_vblank_irq: 803 * True when called from drm_crtc_handle_vblank(). Some drivers 804 * need to apply some workarounds for gpu-specific vblank irq quirks 805 * if flag is set. 806 * 807 * Implements calculation of exact vblank timestamps from given drm_display_mode 808 * timings and current video scanout position of a CRTC. This can be directly 809 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms 810 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented. 811 * 812 * The current implementation only handles standard video modes. For double scan 813 * and interlaced modes the driver is supposed to adjust the hardware mode 814 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 815 * match the scanout position reported. 816 * 817 * Note that atomic drivers must call drm_calc_timestamping_constants() before 818 * enabling a CRTC. The atomic helpers already take care of that in 819 * drm_atomic_helper_update_legacy_modeset_state(). 820 * 821 * Returns: 822 * 823 * Returns true on success, and false on failure, i.e. when no accurate 824 * timestamp could be acquired. 825 */ 826 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc, 827 int *max_error, 828 ktime_t *vblank_time, 829 bool in_vblank_irq) 830 { 831 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 832 crtc, max_error, vblank_time, in_vblank_irq, 833 crtc->helper_private->get_scanout_position); 834 } 835 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp); 836 837 /** 838 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent 839 * vblank interval 840 * @dev: DRM device 841 * @pipe: index of CRTC whose vblank timestamp to retrieve 842 * @tvblank: Pointer to target time which should receive the timestamp 843 * @in_vblank_irq: 844 * True when called from drm_crtc_handle_vblank(). Some drivers 845 * need to apply some workarounds for gpu-specific vblank irq quirks 846 * if flag is set. 847 * 848 * Fetches the system timestamp corresponding to the time of the most recent 849 * vblank interval on specified CRTC. May call into kms-driver to 850 * compute the timestamp with a high-precision GPU specific method. 851 * 852 * Returns zero if timestamp originates from uncorrected do_gettimeofday() 853 * call, i.e., it isn't very precisely locked to the true vblank. 854 * 855 * Returns: 856 * True if timestamp is considered to be very precise, false otherwise. 857 */ 858 static bool 859 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 860 ktime_t *tvblank, bool in_vblank_irq) 861 { 862 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 863 bool ret = false; 864 865 /* Define requested maximum error on timestamps (nanoseconds). */ 866 int max_error = (int) drm_timestamp_precision * 1000; 867 868 /* Query driver if possible and precision timestamping enabled. */ 869 if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) { 870 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 871 872 ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error, 873 tvblank, in_vblank_irq); 874 } 875 876 /* GPU high precision timestamp query unsupported or failed. 877 * Return current monotonic/gettimeofday timestamp as best estimate. 878 */ 879 if (!ret) 880 *tvblank = ktime_get(); 881 882 return ret; 883 } 884 885 /** 886 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value 887 * @crtc: which counter to retrieve 888 * 889 * Fetches the "cooked" vblank count value that represents the number of 890 * vblank events since the system was booted, including lost events due to 891 * modesetting activity. Note that this timer isn't correct against a racing 892 * vblank interrupt (since it only reports the software vblank counter), see 893 * drm_crtc_accurate_vblank_count() for such use-cases. 894 * 895 * Note that for a given vblank counter value drm_crtc_handle_vblank() 896 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 897 * provide a barrier: Any writes done before calling 898 * drm_crtc_handle_vblank() will be visible to callers of the later 899 * functions, iff the vblank count is the same or a later one. 900 * 901 * See also &drm_vblank_crtc.count. 902 * 903 * Returns: 904 * The software vblank counter. 905 */ 906 u64 drm_crtc_vblank_count(struct drm_crtc *crtc) 907 { 908 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc)); 909 } 910 EXPORT_SYMBOL(drm_crtc_vblank_count); 911 912 /** 913 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the 914 * system timestamp corresponding to that vblank counter value. 915 * @dev: DRM device 916 * @pipe: index of CRTC whose counter to retrieve 917 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp. 918 * 919 * Fetches the "cooked" vblank count value that represents the number of 920 * vblank events since the system was booted, including lost events due to 921 * modesetting activity. Returns corresponding system timestamp of the time 922 * of the vblank interval that corresponds to the current vblank counter value. 923 * 924 * This is the legacy version of drm_crtc_vblank_count_and_time(). 925 */ 926 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe, 927 ktime_t *vblanktime) 928 { 929 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 930 u64 vblank_count; 931 unsigned int seq; 932 933 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) { 934 *vblanktime = 0; 935 return 0; 936 } 937 938 do { 939 seq = read_seqbegin(&vblank->seqlock); 940 vblank_count = atomic64_read(&vblank->count); 941 *vblanktime = vblank->time; 942 } while (read_seqretry(&vblank->seqlock, seq)); 943 944 return vblank_count; 945 } 946 947 /** 948 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value 949 * and the system timestamp corresponding to that vblank counter value 950 * @crtc: which counter to retrieve 951 * @vblanktime: Pointer to time to receive the vblank timestamp. 952 * 953 * Fetches the "cooked" vblank count value that represents the number of 954 * vblank events since the system was booted, including lost events due to 955 * modesetting activity. Returns corresponding system timestamp of the time 956 * of the vblank interval that corresponds to the current vblank counter value. 957 * 958 * Note that for a given vblank counter value drm_crtc_handle_vblank() 959 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 960 * provide a barrier: Any writes done before calling 961 * drm_crtc_handle_vblank() will be visible to callers of the later 962 * functions, iff the vblank count is the same or a later one. 963 * 964 * See also &drm_vblank_crtc.count. 965 */ 966 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc, 967 ktime_t *vblanktime) 968 { 969 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc), 970 vblanktime); 971 } 972 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time); 973 974 static void send_vblank_event(struct drm_device *dev, 975 struct drm_pending_vblank_event *e, 976 u64 seq, ktime_t now) 977 { 978 struct timespec64 tv; 979 980 switch (e->event.base.type) { 981 case DRM_EVENT_VBLANK: 982 case DRM_EVENT_FLIP_COMPLETE: 983 tv = ktime_to_timespec64(now); 984 e->event.vbl.sequence = seq; 985 /* 986 * e->event is a user space structure, with hardcoded unsigned 987 * 32-bit seconds/microseconds. This is safe as we always use 988 * monotonic timestamps since linux-4.15 989 */ 990 e->event.vbl.tv_sec = tv.tv_sec; 991 e->event.vbl.tv_usec = tv.tv_nsec / 1000; 992 break; 993 case DRM_EVENT_CRTC_SEQUENCE: 994 if (seq) 995 e->event.seq.sequence = seq; 996 e->event.seq.time_ns = ktime_to_ns(now); 997 break; 998 } 999 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq); 1000 drm_send_event_locked(dev, &e->base); 1001 } 1002 1003 /** 1004 * drm_crtc_arm_vblank_event - arm vblank event after pageflip 1005 * @crtc: the source CRTC of the vblank event 1006 * @e: the event to send 1007 * 1008 * A lot of drivers need to generate vblank events for the very next vblank 1009 * interrupt. For example when the page flip interrupt happens when the page 1010 * flip gets armed, but not when it actually executes within the next vblank 1011 * period. This helper function implements exactly the required vblank arming 1012 * behaviour. 1013 * 1014 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an 1015 * atomic commit must ensure that the next vblank happens at exactly the same 1016 * time as the atomic commit is committed to the hardware. This function itself 1017 * does **not** protect against the next vblank interrupt racing with either this 1018 * function call or the atomic commit operation. A possible sequence could be: 1019 * 1020 * 1. Driver commits new hardware state into vblank-synchronized registers. 1021 * 2. A vblank happens, committing the hardware state. Also the corresponding 1022 * vblank interrupt is fired off and fully processed by the interrupt 1023 * handler. 1024 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event(). 1025 * 4. The event is only send out for the next vblank, which is wrong. 1026 * 1027 * An equivalent race can happen when the driver calls 1028 * drm_crtc_arm_vblank_event() before writing out the new hardware state. 1029 * 1030 * The only way to make this work safely is to prevent the vblank from firing 1031 * (and the hardware from committing anything else) until the entire atomic 1032 * commit sequence has run to completion. If the hardware does not have such a 1033 * feature (e.g. using a "go" bit), then it is unsafe to use this functions. 1034 * Instead drivers need to manually send out the event from their interrupt 1035 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no 1036 * possible race with the hardware committing the atomic update. 1037 * 1038 * Caller must hold a vblank reference for the event @e acquired by a 1039 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives. 1040 */ 1041 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc, 1042 struct drm_pending_vblank_event *e) 1043 { 1044 struct drm_device *dev = crtc->dev; 1045 unsigned int pipe = drm_crtc_index(crtc); 1046 1047 assert_spin_locked(&dev->event_lock); 1048 1049 e->pipe = pipe; 1050 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1; 1051 list_add_tail(&e->base.link, &dev->vblank_event_list); 1052 } 1053 EXPORT_SYMBOL(drm_crtc_arm_vblank_event); 1054 1055 /** 1056 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip 1057 * @crtc: the source CRTC of the vblank event 1058 * @e: the event to send 1059 * 1060 * Updates sequence # and timestamp on event for the most recently processed 1061 * vblank, and sends it to userspace. Caller must hold event lock. 1062 * 1063 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain 1064 * situation, especially to send out events for atomic commit operations. 1065 */ 1066 void drm_crtc_send_vblank_event(struct drm_crtc *crtc, 1067 struct drm_pending_vblank_event *e) 1068 { 1069 struct drm_device *dev = crtc->dev; 1070 u64 seq; 1071 unsigned int pipe = drm_crtc_index(crtc); 1072 ktime_t now; 1073 1074 if (drm_dev_has_vblank(dev)) { 1075 seq = drm_vblank_count_and_time(dev, pipe, &now); 1076 } else { 1077 seq = 0; 1078 1079 now = ktime_get(); 1080 } 1081 e->pipe = pipe; 1082 send_vblank_event(dev, e, seq, now); 1083 } 1084 EXPORT_SYMBOL(drm_crtc_send_vblank_event); 1085 1086 static int __enable_vblank(struct drm_device *dev, unsigned int pipe) 1087 { 1088 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1089 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1090 1091 if (drm_WARN_ON(dev, !crtc)) 1092 return 0; 1093 1094 if (crtc->funcs->enable_vblank) 1095 return crtc->funcs->enable_vblank(crtc); 1096 } else if (dev->driver->enable_vblank) { 1097 return dev->driver->enable_vblank(dev, pipe); 1098 } 1099 1100 return -EINVAL; 1101 } 1102 1103 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe) 1104 { 1105 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1106 int ret = 0; 1107 1108 assert_spin_locked(&dev->vbl_lock); 1109 1110 spin_lock(&dev->vblank_time_lock); 1111 1112 if (!vblank->enabled) { 1113 /* 1114 * Enable vblank irqs under vblank_time_lock protection. 1115 * All vblank count & timestamp updates are held off 1116 * until we are done reinitializing master counter and 1117 * timestamps. Filtercode in drm_handle_vblank() will 1118 * prevent double-accounting of same vblank interval. 1119 */ 1120 ret = __enable_vblank(dev, pipe); 1121 drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n", 1122 pipe, ret); 1123 if (ret) { 1124 atomic_dec(&vblank->refcount); 1125 } else { 1126 drm_update_vblank_count(dev, pipe, 0); 1127 /* drm_update_vblank_count() includes a wmb so we just 1128 * need to ensure that the compiler emits the write 1129 * to mark the vblank as enabled after the call 1130 * to drm_update_vblank_count(). 1131 */ 1132 WRITE_ONCE(vblank->enabled, true); 1133 } 1134 } 1135 1136 spin_unlock(&dev->vblank_time_lock); 1137 1138 return ret; 1139 } 1140 1141 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe) 1142 { 1143 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1144 unsigned long irqflags; 1145 int ret = 0; 1146 1147 if (!drm_dev_has_vblank(dev)) 1148 return -EINVAL; 1149 1150 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1151 return -EINVAL; 1152 1153 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1154 /* Going from 0->1 means we have to enable interrupts again */ 1155 if (atomic_add_return(1, &vblank->refcount) == 1) { 1156 ret = drm_vblank_enable(dev, pipe); 1157 } else { 1158 if (!vblank->enabled) { 1159 atomic_dec(&vblank->refcount); 1160 ret = -EINVAL; 1161 } 1162 } 1163 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1164 1165 return ret; 1166 } 1167 1168 /** 1169 * drm_crtc_vblank_get - get a reference count on vblank events 1170 * @crtc: which CRTC to own 1171 * 1172 * Acquire a reference count on vblank events to avoid having them disabled 1173 * while in use. 1174 * 1175 * Returns: 1176 * Zero on success or a negative error code on failure. 1177 */ 1178 int drm_crtc_vblank_get(struct drm_crtc *crtc) 1179 { 1180 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc)); 1181 } 1182 EXPORT_SYMBOL(drm_crtc_vblank_get); 1183 1184 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe) 1185 { 1186 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1187 1188 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1189 return; 1190 1191 if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0)) 1192 return; 1193 1194 /* Last user schedules interrupt disable */ 1195 if (atomic_dec_and_test(&vblank->refcount)) { 1196 if (drm_vblank_offdelay == 0) 1197 return; 1198 else if (drm_vblank_offdelay < 0) 1199 vblank_disable_fn(&vblank->disable_timer); 1200 else if (!dev->vblank_disable_immediate) 1201 mod_timer(&vblank->disable_timer, 1202 jiffies + ((drm_vblank_offdelay * HZ)/1000)); 1203 } 1204 } 1205 1206 /** 1207 * drm_crtc_vblank_put - give up ownership of vblank events 1208 * @crtc: which counter to give up 1209 * 1210 * Release ownership of a given vblank counter, turning off interrupts 1211 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds. 1212 */ 1213 void drm_crtc_vblank_put(struct drm_crtc *crtc) 1214 { 1215 drm_vblank_put(crtc->dev, drm_crtc_index(crtc)); 1216 } 1217 EXPORT_SYMBOL(drm_crtc_vblank_put); 1218 1219 /** 1220 * drm_wait_one_vblank - wait for one vblank 1221 * @dev: DRM device 1222 * @pipe: CRTC index 1223 * 1224 * This waits for one vblank to pass on @pipe, using the irq driver interfaces. 1225 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g. 1226 * due to lack of driver support or because the crtc is off. 1227 * 1228 * This is the legacy version of drm_crtc_wait_one_vblank(). 1229 */ 1230 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe) 1231 { 1232 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1233 int ret; 1234 u64 last; 1235 1236 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1237 return; 1238 1239 ret = drm_vblank_get(dev, pipe); 1240 if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n", 1241 pipe, ret)) 1242 return; 1243 1244 last = drm_vblank_count(dev, pipe); 1245 1246 ret = wait_event_timeout(vblank->queue, 1247 last != drm_vblank_count(dev, pipe), 1248 msecs_to_jiffies(100)); 1249 1250 drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe); 1251 1252 drm_vblank_put(dev, pipe); 1253 } 1254 EXPORT_SYMBOL(drm_wait_one_vblank); 1255 1256 /** 1257 * drm_crtc_wait_one_vblank - wait for one vblank 1258 * @crtc: DRM crtc 1259 * 1260 * This waits for one vblank to pass on @crtc, using the irq driver interfaces. 1261 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g. 1262 * due to lack of driver support or because the crtc is off. 1263 */ 1264 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc) 1265 { 1266 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc)); 1267 } 1268 EXPORT_SYMBOL(drm_crtc_wait_one_vblank); 1269 1270 /** 1271 * drm_crtc_vblank_off - disable vblank events on a CRTC 1272 * @crtc: CRTC in question 1273 * 1274 * Drivers can use this function to shut down the vblank interrupt handling when 1275 * disabling a crtc. This function ensures that the latest vblank frame count is 1276 * stored so that drm_vblank_on can restore it again. 1277 * 1278 * Drivers must use this function when the hardware vblank counter can get 1279 * reset, e.g. when suspending or disabling the @crtc in general. 1280 */ 1281 void drm_crtc_vblank_off(struct drm_crtc *crtc) 1282 { 1283 struct drm_device *dev = crtc->dev; 1284 unsigned int pipe = drm_crtc_index(crtc); 1285 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1286 struct drm_pending_vblank_event *e, *t; 1287 1288 ktime_t now; 1289 unsigned long irqflags; 1290 u64 seq; 1291 1292 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1293 return; 1294 1295 spin_lock_irqsave(&dev->event_lock, irqflags); 1296 1297 spin_lock(&dev->vbl_lock); 1298 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n", 1299 pipe, vblank->enabled, vblank->inmodeset); 1300 1301 /* Avoid redundant vblank disables without previous 1302 * drm_crtc_vblank_on(). */ 1303 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset) 1304 drm_vblank_disable_and_save(dev, pipe); 1305 1306 wake_up(&vblank->queue); 1307 1308 /* 1309 * Prevent subsequent drm_vblank_get() from re-enabling 1310 * the vblank interrupt by bumping the refcount. 1311 */ 1312 if (!vblank->inmodeset) { 1313 atomic_inc(&vblank->refcount); 1314 vblank->inmodeset = 1; 1315 } 1316 spin_unlock(&dev->vbl_lock); 1317 1318 /* Send any queued vblank events, lest the natives grow disquiet */ 1319 seq = drm_vblank_count_and_time(dev, pipe, &now); 1320 1321 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1322 if (e->pipe != pipe) 1323 continue; 1324 drm_dbg_core(dev, "Sending premature vblank event on disable: " 1325 "wanted %llu, current %llu\n", 1326 e->sequence, seq); 1327 list_del(&e->base.link); 1328 drm_vblank_put(dev, pipe); 1329 send_vblank_event(dev, e, seq, now); 1330 } 1331 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1332 1333 /* Will be reset by the modeset helpers when re-enabling the crtc by 1334 * calling drm_calc_timestamping_constants(). */ 1335 vblank->hwmode.crtc_clock = 0; 1336 } 1337 EXPORT_SYMBOL(drm_crtc_vblank_off); 1338 1339 /** 1340 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC 1341 * @crtc: CRTC in question 1342 * 1343 * Drivers can use this function to reset the vblank state to off at load time. 1344 * Drivers should use this together with the drm_crtc_vblank_off() and 1345 * drm_crtc_vblank_on() functions. The difference compared to 1346 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter 1347 * and hence doesn't need to call any driver hooks. 1348 * 1349 * This is useful for recovering driver state e.g. on driver load, or on resume. 1350 */ 1351 void drm_crtc_vblank_reset(struct drm_crtc *crtc) 1352 { 1353 struct drm_device *dev = crtc->dev; 1354 unsigned long irqflags; 1355 unsigned int pipe = drm_crtc_index(crtc); 1356 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1357 1358 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1359 /* 1360 * Prevent subsequent drm_vblank_get() from enabling the vblank 1361 * interrupt by bumping the refcount. 1362 */ 1363 if (!vblank->inmodeset) { 1364 atomic_inc(&vblank->refcount); 1365 vblank->inmodeset = 1; 1366 } 1367 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1368 1369 drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list)); 1370 } 1371 EXPORT_SYMBOL(drm_crtc_vblank_reset); 1372 1373 /** 1374 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value 1375 * @crtc: CRTC in question 1376 * @max_vblank_count: max hardware vblank counter value 1377 * 1378 * Update the maximum hardware vblank counter value for @crtc 1379 * at runtime. Useful for hardware where the operation of the 1380 * hardware vblank counter depends on the currently active 1381 * display configuration. 1382 * 1383 * For example, if the hardware vblank counter does not work 1384 * when a specific connector is active the maximum can be set 1385 * to zero. And when that specific connector isn't active the 1386 * maximum can again be set to the appropriate non-zero value. 1387 * 1388 * If used, must be called before drm_vblank_on(). 1389 */ 1390 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc, 1391 u32 max_vblank_count) 1392 { 1393 struct drm_device *dev = crtc->dev; 1394 unsigned int pipe = drm_crtc_index(crtc); 1395 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1396 1397 drm_WARN_ON(dev, dev->max_vblank_count); 1398 drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset)); 1399 1400 vblank->max_vblank_count = max_vblank_count; 1401 } 1402 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count); 1403 1404 /** 1405 * drm_crtc_vblank_on - enable vblank events on a CRTC 1406 * @crtc: CRTC in question 1407 * 1408 * This functions restores the vblank interrupt state captured with 1409 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note 1410 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be 1411 * unbalanced and so can also be unconditionally called in driver load code to 1412 * reflect the current hardware state of the crtc. 1413 */ 1414 void drm_crtc_vblank_on(struct drm_crtc *crtc) 1415 { 1416 struct drm_device *dev = crtc->dev; 1417 unsigned int pipe = drm_crtc_index(crtc); 1418 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1419 unsigned long irqflags; 1420 1421 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1422 return; 1423 1424 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1425 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n", 1426 pipe, vblank->enabled, vblank->inmodeset); 1427 1428 /* Drop our private "prevent drm_vblank_get" refcount */ 1429 if (vblank->inmodeset) { 1430 atomic_dec(&vblank->refcount); 1431 vblank->inmodeset = 0; 1432 } 1433 1434 drm_reset_vblank_timestamp(dev, pipe); 1435 1436 /* 1437 * re-enable interrupts if there are users left, or the 1438 * user wishes vblank interrupts to be enabled all the time. 1439 */ 1440 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0) 1441 drm_WARN_ON(dev, drm_vblank_enable(dev, pipe)); 1442 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1443 } 1444 EXPORT_SYMBOL(drm_crtc_vblank_on); 1445 1446 /** 1447 * drm_vblank_restore - estimate missed vblanks and update vblank count. 1448 * @dev: DRM device 1449 * @pipe: CRTC index 1450 * 1451 * Power manamement features can cause frame counter resets between vblank 1452 * disable and enable. Drivers can use this function in their 1453 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1454 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1455 * vblank counter. 1456 * 1457 * This function is the legacy version of drm_crtc_vblank_restore(). 1458 */ 1459 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe) 1460 { 1461 ktime_t t_vblank; 1462 struct drm_vblank_crtc *vblank; 1463 int framedur_ns; 1464 u64 diff_ns; 1465 u32 cur_vblank, diff = 1; 1466 int count = DRM_TIMESTAMP_MAXRETRIES; 1467 1468 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1469 return; 1470 1471 assert_spin_locked(&dev->vbl_lock); 1472 assert_spin_locked(&dev->vblank_time_lock); 1473 1474 vblank = &dev->vblank[pipe]; 1475 drm_WARN_ONCE(dev, 1476 drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns, 1477 "Cannot compute missed vblanks without frame duration\n"); 1478 framedur_ns = vblank->framedur_ns; 1479 1480 do { 1481 cur_vblank = __get_vblank_counter(dev, pipe); 1482 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 1483 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 1484 1485 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 1486 if (framedur_ns) 1487 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 1488 1489 1490 drm_dbg_vbl(dev, 1491 "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n", 1492 diff, diff_ns, framedur_ns, cur_vblank - vblank->last); 1493 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 1494 } 1495 EXPORT_SYMBOL(drm_vblank_restore); 1496 1497 /** 1498 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count. 1499 * @crtc: CRTC in question 1500 * 1501 * Power manamement features can cause frame counter resets between vblank 1502 * disable and enable. Drivers can use this function in their 1503 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1504 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1505 * vblank counter. 1506 */ 1507 void drm_crtc_vblank_restore(struct drm_crtc *crtc) 1508 { 1509 drm_vblank_restore(crtc->dev, drm_crtc_index(crtc)); 1510 } 1511 EXPORT_SYMBOL(drm_crtc_vblank_restore); 1512 1513 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev, 1514 unsigned int pipe) 1515 { 1516 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1517 1518 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1519 if (!drm_dev_has_vblank(dev)) 1520 return; 1521 1522 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1523 return; 1524 1525 /* 1526 * To avoid all the problems that might happen if interrupts 1527 * were enabled/disabled around or between these calls, we just 1528 * have the kernel take a reference on the CRTC (just once though 1529 * to avoid corrupting the count if multiple, mismatch calls occur), 1530 * so that interrupts remain enabled in the interim. 1531 */ 1532 if (!vblank->inmodeset) { 1533 vblank->inmodeset = 0x1; 1534 if (drm_vblank_get(dev, pipe) == 0) 1535 vblank->inmodeset |= 0x2; 1536 } 1537 } 1538 1539 static void drm_legacy_vblank_post_modeset(struct drm_device *dev, 1540 unsigned int pipe) 1541 { 1542 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1543 unsigned long irqflags; 1544 1545 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1546 if (!drm_dev_has_vblank(dev)) 1547 return; 1548 1549 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1550 return; 1551 1552 if (vblank->inmodeset) { 1553 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1554 drm_reset_vblank_timestamp(dev, pipe); 1555 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1556 1557 if (vblank->inmodeset & 0x2) 1558 drm_vblank_put(dev, pipe); 1559 1560 vblank->inmodeset = 0; 1561 } 1562 } 1563 1564 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data, 1565 struct drm_file *file_priv) 1566 { 1567 struct drm_modeset_ctl *modeset = data; 1568 unsigned int pipe; 1569 1570 /* If drm_vblank_init() hasn't been called yet, just no-op */ 1571 if (!drm_dev_has_vblank(dev)) 1572 return 0; 1573 1574 /* KMS drivers handle this internally */ 1575 if (!drm_core_check_feature(dev, DRIVER_LEGACY)) 1576 return 0; 1577 1578 pipe = modeset->crtc; 1579 if (pipe >= dev->num_crtcs) 1580 return -EINVAL; 1581 1582 switch (modeset->cmd) { 1583 case _DRM_PRE_MODESET: 1584 drm_legacy_vblank_pre_modeset(dev, pipe); 1585 break; 1586 case _DRM_POST_MODESET: 1587 drm_legacy_vblank_post_modeset(dev, pipe); 1588 break; 1589 default: 1590 return -EINVAL; 1591 } 1592 1593 return 0; 1594 } 1595 1596 static inline bool vblank_passed(u64 seq, u64 ref) 1597 { 1598 return (seq - ref) <= (1 << 23); 1599 } 1600 1601 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe, 1602 u64 req_seq, 1603 union drm_wait_vblank *vblwait, 1604 struct drm_file *file_priv) 1605 { 1606 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1607 struct drm_pending_vblank_event *e; 1608 ktime_t now; 1609 unsigned long flags; 1610 u64 seq; 1611 int ret; 1612 1613 e = kzalloc(sizeof(*e), GFP_KERNEL); 1614 if (e == NULL) { 1615 ret = -ENOMEM; 1616 goto err_put; 1617 } 1618 1619 e->pipe = pipe; 1620 e->event.base.type = DRM_EVENT_VBLANK; 1621 e->event.base.length = sizeof(e->event.vbl); 1622 e->event.vbl.user_data = vblwait->request.signal; 1623 e->event.vbl.crtc_id = 0; 1624 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1625 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1626 if (crtc) 1627 e->event.vbl.crtc_id = crtc->base.id; 1628 } 1629 1630 spin_lock_irqsave(&dev->event_lock, flags); 1631 1632 /* 1633 * drm_crtc_vblank_off() might have been called after we called 1634 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1635 * vblank disable, so no need for further locking. The reference from 1636 * drm_vblank_get() protects against vblank disable from another source. 1637 */ 1638 if (!READ_ONCE(vblank->enabled)) { 1639 ret = -EINVAL; 1640 goto err_unlock; 1641 } 1642 1643 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1644 &e->event.base); 1645 1646 if (ret) 1647 goto err_unlock; 1648 1649 seq = drm_vblank_count_and_time(dev, pipe, &now); 1650 1651 drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n", 1652 req_seq, seq, pipe); 1653 1654 trace_drm_vblank_event_queued(file_priv, pipe, req_seq); 1655 1656 e->sequence = req_seq; 1657 if (vblank_passed(seq, req_seq)) { 1658 drm_vblank_put(dev, pipe); 1659 send_vblank_event(dev, e, seq, now); 1660 vblwait->reply.sequence = seq; 1661 } else { 1662 /* drm_handle_vblank_events will call drm_vblank_put */ 1663 list_add_tail(&e->base.link, &dev->vblank_event_list); 1664 vblwait->reply.sequence = req_seq; 1665 } 1666 1667 spin_unlock_irqrestore(&dev->event_lock, flags); 1668 1669 return 0; 1670 1671 err_unlock: 1672 spin_unlock_irqrestore(&dev->event_lock, flags); 1673 kfree(e); 1674 err_put: 1675 drm_vblank_put(dev, pipe); 1676 return ret; 1677 } 1678 1679 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait) 1680 { 1681 if (vblwait->request.sequence) 1682 return false; 1683 1684 return _DRM_VBLANK_RELATIVE == 1685 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK | 1686 _DRM_VBLANK_EVENT | 1687 _DRM_VBLANK_NEXTONMISS)); 1688 } 1689 1690 /* 1691 * Widen a 32-bit param to 64-bits. 1692 * 1693 * \param narrow 32-bit value (missing upper 32 bits) 1694 * \param near 64-bit value that should be 'close' to near 1695 * 1696 * This function returns a 64-bit value using the lower 32-bits from 1697 * 'narrow' and constructing the upper 32-bits so that the result is 1698 * as close as possible to 'near'. 1699 */ 1700 1701 static u64 widen_32_to_64(u32 narrow, u64 near) 1702 { 1703 return near + (s32) (narrow - near); 1704 } 1705 1706 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe, 1707 struct drm_wait_vblank_reply *reply) 1708 { 1709 ktime_t now; 1710 struct timespec64 ts; 1711 1712 /* 1713 * drm_wait_vblank_reply is a UAPI structure that uses 'long' 1714 * to store the seconds. This is safe as we always use monotonic 1715 * timestamps since linux-4.15. 1716 */ 1717 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1718 ts = ktime_to_timespec64(now); 1719 reply->tval_sec = (u32)ts.tv_sec; 1720 reply->tval_usec = ts.tv_nsec / 1000; 1721 } 1722 1723 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data, 1724 struct drm_file *file_priv) 1725 { 1726 struct drm_crtc *crtc; 1727 struct drm_vblank_crtc *vblank; 1728 union drm_wait_vblank *vblwait = data; 1729 int ret; 1730 u64 req_seq, seq; 1731 unsigned int pipe_index; 1732 unsigned int flags, pipe, high_pipe; 1733 1734 if (!dev->irq_enabled) 1735 return -EOPNOTSUPP; 1736 1737 if (vblwait->request.type & _DRM_VBLANK_SIGNAL) 1738 return -EINVAL; 1739 1740 if (vblwait->request.type & 1741 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1742 _DRM_VBLANK_HIGH_CRTC_MASK)) { 1743 drm_dbg_core(dev, 1744 "Unsupported type value 0x%x, supported mask 0x%x\n", 1745 vblwait->request.type, 1746 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1747 _DRM_VBLANK_HIGH_CRTC_MASK)); 1748 return -EINVAL; 1749 } 1750 1751 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; 1752 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); 1753 if (high_pipe) 1754 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT; 1755 else 1756 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; 1757 1758 /* Convert lease-relative crtc index into global crtc index */ 1759 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1760 pipe = 0; 1761 drm_for_each_crtc(crtc, dev) { 1762 if (drm_lease_held(file_priv, crtc->base.id)) { 1763 if (pipe_index == 0) 1764 break; 1765 pipe_index--; 1766 } 1767 pipe++; 1768 } 1769 } else { 1770 pipe = pipe_index; 1771 } 1772 1773 if (pipe >= dev->num_crtcs) 1774 return -EINVAL; 1775 1776 vblank = &dev->vblank[pipe]; 1777 1778 /* If the counter is currently enabled and accurate, short-circuit 1779 * queries to return the cached timestamp of the last vblank. 1780 */ 1781 if (dev->vblank_disable_immediate && 1782 drm_wait_vblank_is_query(vblwait) && 1783 READ_ONCE(vblank->enabled)) { 1784 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1785 return 0; 1786 } 1787 1788 ret = drm_vblank_get(dev, pipe); 1789 if (ret) { 1790 drm_dbg_core(dev, 1791 "crtc %d failed to acquire vblank counter, %d\n", 1792 pipe, ret); 1793 return ret; 1794 } 1795 seq = drm_vblank_count(dev, pipe); 1796 1797 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { 1798 case _DRM_VBLANK_RELATIVE: 1799 req_seq = seq + vblwait->request.sequence; 1800 vblwait->request.sequence = req_seq; 1801 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; 1802 break; 1803 case _DRM_VBLANK_ABSOLUTE: 1804 req_seq = widen_32_to_64(vblwait->request.sequence, seq); 1805 break; 1806 default: 1807 ret = -EINVAL; 1808 goto done; 1809 } 1810 1811 if ((flags & _DRM_VBLANK_NEXTONMISS) && 1812 vblank_passed(seq, req_seq)) { 1813 req_seq = seq + 1; 1814 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS; 1815 vblwait->request.sequence = req_seq; 1816 } 1817 1818 if (flags & _DRM_VBLANK_EVENT) { 1819 /* must hold on to the vblank ref until the event fires 1820 * drm_vblank_put will be called asynchronously 1821 */ 1822 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv); 1823 } 1824 1825 if (req_seq != seq) { 1826 int wait; 1827 1828 drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n", 1829 req_seq, pipe); 1830 wait = wait_event_interruptible_timeout(vblank->queue, 1831 vblank_passed(drm_vblank_count(dev, pipe), req_seq) || 1832 !READ_ONCE(vblank->enabled), 1833 msecs_to_jiffies(3000)); 1834 1835 switch (wait) { 1836 case 0: 1837 /* timeout */ 1838 ret = -EBUSY; 1839 break; 1840 case -ERESTARTSYS: 1841 /* interrupted by signal */ 1842 ret = -EINTR; 1843 break; 1844 default: 1845 ret = 0; 1846 break; 1847 } 1848 } 1849 1850 if (ret != -EINTR) { 1851 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1852 1853 drm_dbg_core(dev, "crtc %d returning %u to client\n", 1854 pipe, vblwait->reply.sequence); 1855 } else { 1856 drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n", 1857 pipe); 1858 } 1859 1860 done: 1861 drm_vblank_put(dev, pipe); 1862 return ret; 1863 } 1864 1865 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe) 1866 { 1867 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1868 bool high_prec = false; 1869 struct drm_pending_vblank_event *e, *t; 1870 ktime_t now; 1871 u64 seq; 1872 1873 assert_spin_locked(&dev->event_lock); 1874 1875 seq = drm_vblank_count_and_time(dev, pipe, &now); 1876 1877 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1878 if (e->pipe != pipe) 1879 continue; 1880 if (!vblank_passed(seq, e->sequence)) 1881 continue; 1882 1883 drm_dbg_core(dev, "vblank event on %llu, current %llu\n", 1884 e->sequence, seq); 1885 1886 list_del(&e->base.link); 1887 drm_vblank_put(dev, pipe); 1888 send_vblank_event(dev, e, seq, now); 1889 } 1890 1891 if (crtc && crtc->funcs->get_vblank_timestamp) 1892 high_prec = true; 1893 1894 trace_drm_vblank_event(pipe, seq, now, high_prec); 1895 } 1896 1897 /** 1898 * drm_handle_vblank - handle a vblank event 1899 * @dev: DRM device 1900 * @pipe: index of CRTC where this event occurred 1901 * 1902 * Drivers should call this routine in their vblank interrupt handlers to 1903 * update the vblank counter and send any signals that may be pending. 1904 * 1905 * This is the legacy version of drm_crtc_handle_vblank(). 1906 */ 1907 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe) 1908 { 1909 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1910 unsigned long irqflags; 1911 bool disable_irq; 1912 1913 if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev))) 1914 return false; 1915 1916 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1917 return false; 1918 1919 spin_lock_irqsave(&dev->event_lock, irqflags); 1920 1921 /* Need timestamp lock to prevent concurrent execution with 1922 * vblank enable/disable, as this would cause inconsistent 1923 * or corrupted timestamps and vblank counts. 1924 */ 1925 spin_lock(&dev->vblank_time_lock); 1926 1927 /* Vblank irq handling disabled. Nothing to do. */ 1928 if (!vblank->enabled) { 1929 spin_unlock(&dev->vblank_time_lock); 1930 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1931 return false; 1932 } 1933 1934 drm_update_vblank_count(dev, pipe, true); 1935 1936 spin_unlock(&dev->vblank_time_lock); 1937 1938 wake_up(&vblank->queue); 1939 1940 /* With instant-off, we defer disabling the interrupt until after 1941 * we finish processing the following vblank after all events have 1942 * been signaled. The disable has to be last (after 1943 * drm_handle_vblank_events) so that the timestamp is always accurate. 1944 */ 1945 disable_irq = (dev->vblank_disable_immediate && 1946 drm_vblank_offdelay > 0 && 1947 !atomic_read(&vblank->refcount)); 1948 1949 drm_handle_vblank_events(dev, pipe); 1950 1951 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1952 1953 if (disable_irq) 1954 vblank_disable_fn(&vblank->disable_timer); 1955 1956 return true; 1957 } 1958 EXPORT_SYMBOL(drm_handle_vblank); 1959 1960 /** 1961 * drm_crtc_handle_vblank - handle a vblank event 1962 * @crtc: where this event occurred 1963 * 1964 * Drivers should call this routine in their vblank interrupt handlers to 1965 * update the vblank counter and send any signals that may be pending. 1966 * 1967 * This is the native KMS version of drm_handle_vblank(). 1968 * 1969 * Note that for a given vblank counter value drm_crtc_handle_vblank() 1970 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 1971 * provide a barrier: Any writes done before calling 1972 * drm_crtc_handle_vblank() will be visible to callers of the later 1973 * functions, iff the vblank count is the same or a later one. 1974 * 1975 * See also &drm_vblank_crtc.count. 1976 * 1977 * Returns: 1978 * True if the event was successfully handled, false on failure. 1979 */ 1980 bool drm_crtc_handle_vblank(struct drm_crtc *crtc) 1981 { 1982 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc)); 1983 } 1984 EXPORT_SYMBOL(drm_crtc_handle_vblank); 1985 1986 /* 1987 * Get crtc VBLANK count. 1988 * 1989 * \param dev DRM device 1990 * \param data user arguement, pointing to a drm_crtc_get_sequence structure. 1991 * \param file_priv drm file private for the user's open file descriptor 1992 */ 1993 1994 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data, 1995 struct drm_file *file_priv) 1996 { 1997 struct drm_crtc *crtc; 1998 struct drm_vblank_crtc *vblank; 1999 int pipe; 2000 struct drm_crtc_get_sequence *get_seq = data; 2001 ktime_t now; 2002 bool vblank_enabled; 2003 int ret; 2004 2005 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2006 return -EOPNOTSUPP; 2007 2008 if (!dev->irq_enabled) 2009 return -EOPNOTSUPP; 2010 2011 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id); 2012 if (!crtc) 2013 return -ENOENT; 2014 2015 pipe = drm_crtc_index(crtc); 2016 2017 vblank = &dev->vblank[pipe]; 2018 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled); 2019 2020 if (!vblank_enabled) { 2021 ret = drm_crtc_vblank_get(crtc); 2022 if (ret) { 2023 drm_dbg_core(dev, 2024 "crtc %d failed to acquire vblank counter, %d\n", 2025 pipe, ret); 2026 return ret; 2027 } 2028 } 2029 drm_modeset_lock(&crtc->mutex, NULL); 2030 if (crtc->state) 2031 get_seq->active = crtc->state->enable; 2032 else 2033 get_seq->active = crtc->enabled; 2034 drm_modeset_unlock(&crtc->mutex); 2035 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now); 2036 get_seq->sequence_ns = ktime_to_ns(now); 2037 if (!vblank_enabled) 2038 drm_crtc_vblank_put(crtc); 2039 return 0; 2040 } 2041 2042 /* 2043 * Queue a event for VBLANK sequence 2044 * 2045 * \param dev DRM device 2046 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure. 2047 * \param file_priv drm file private for the user's open file descriptor 2048 */ 2049 2050 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data, 2051 struct drm_file *file_priv) 2052 { 2053 struct drm_crtc *crtc; 2054 struct drm_vblank_crtc *vblank; 2055 int pipe; 2056 struct drm_crtc_queue_sequence *queue_seq = data; 2057 ktime_t now; 2058 struct drm_pending_vblank_event *e; 2059 u32 flags; 2060 u64 seq; 2061 u64 req_seq; 2062 int ret; 2063 unsigned long spin_flags; 2064 2065 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2066 return -EOPNOTSUPP; 2067 2068 if (!dev->irq_enabled) 2069 return -EOPNOTSUPP; 2070 2071 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id); 2072 if (!crtc) 2073 return -ENOENT; 2074 2075 flags = queue_seq->flags; 2076 /* Check valid flag bits */ 2077 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE| 2078 DRM_CRTC_SEQUENCE_NEXT_ON_MISS)) 2079 return -EINVAL; 2080 2081 pipe = drm_crtc_index(crtc); 2082 2083 vblank = &dev->vblank[pipe]; 2084 2085 e = kzalloc(sizeof(*e), GFP_KERNEL); 2086 if (e == NULL) 2087 return -ENOMEM; 2088 2089 ret = drm_crtc_vblank_get(crtc); 2090 if (ret) { 2091 drm_dbg_core(dev, 2092 "crtc %d failed to acquire vblank counter, %d\n", 2093 pipe, ret); 2094 goto err_free; 2095 } 2096 2097 seq = drm_vblank_count_and_time(dev, pipe, &now); 2098 req_seq = queue_seq->sequence; 2099 2100 if (flags & DRM_CRTC_SEQUENCE_RELATIVE) 2101 req_seq += seq; 2102 2103 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq)) 2104 req_seq = seq + 1; 2105 2106 e->pipe = pipe; 2107 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE; 2108 e->event.base.length = sizeof(e->event.seq); 2109 e->event.seq.user_data = queue_seq->user_data; 2110 2111 spin_lock_irqsave(&dev->event_lock, spin_flags); 2112 2113 /* 2114 * drm_crtc_vblank_off() might have been called after we called 2115 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 2116 * vblank disable, so no need for further locking. The reference from 2117 * drm_crtc_vblank_get() protects against vblank disable from another source. 2118 */ 2119 if (!READ_ONCE(vblank->enabled)) { 2120 ret = -EINVAL; 2121 goto err_unlock; 2122 } 2123 2124 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 2125 &e->event.base); 2126 2127 if (ret) 2128 goto err_unlock; 2129 2130 e->sequence = req_seq; 2131 2132 if (vblank_passed(seq, req_seq)) { 2133 drm_crtc_vblank_put(crtc); 2134 send_vblank_event(dev, e, seq, now); 2135 queue_seq->sequence = seq; 2136 } else { 2137 /* drm_handle_vblank_events will call drm_vblank_put */ 2138 list_add_tail(&e->base.link, &dev->vblank_event_list); 2139 queue_seq->sequence = req_seq; 2140 } 2141 2142 spin_unlock_irqrestore(&dev->event_lock, spin_flags); 2143 return 0; 2144 2145 err_unlock: 2146 spin_unlock_irqrestore(&dev->event_lock, spin_flags); 2147 drm_crtc_vblank_put(crtc); 2148 err_free: 2149 kfree(e); 2150 return ret; 2151 } 2152