1 /* 2 * drm_irq.c IRQ and vblank support 3 * 4 * \author Rickard E. (Rik) Faith <faith@valinux.com> 5 * \author Gareth Hughes <gareth@valinux.com> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 24 * OTHER DEALINGS IN THE SOFTWARE. 25 */ 26 27 #include <drm/drm_vblank.h> 28 #include <drm/drmP.h> 29 #include <linux/export.h> 30 31 #include "drm_trace.h" 32 #include "drm_internal.h" 33 34 /** 35 * DOC: vblank handling 36 * 37 * Vertical blanking plays a major role in graphics rendering. To achieve 38 * tear-free display, users must synchronize page flips and/or rendering to 39 * vertical blanking. The DRM API offers ioctls to perform page flips 40 * synchronized to vertical blanking and wait for vertical blanking. 41 * 42 * The DRM core handles most of the vertical blanking management logic, which 43 * involves filtering out spurious interrupts, keeping race-free blanking 44 * counters, coping with counter wrap-around and resets and keeping use counts. 45 * It relies on the driver to generate vertical blanking interrupts and 46 * optionally provide a hardware vertical blanking counter. 47 * 48 * Drivers must initialize the vertical blanking handling core with a call to 49 * drm_vblank_init(). Minimally, a driver needs to implement 50 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call 51 * drm_crtc_handle_vblank() in it's vblank interrupt handler for working vblank 52 * support. 53 * 54 * Vertical blanking interrupts can be enabled by the DRM core or by drivers 55 * themselves (for instance to handle page flipping operations). The DRM core 56 * maintains a vertical blanking use count to ensure that the interrupts are not 57 * disabled while a user still needs them. To increment the use count, drivers 58 * call drm_crtc_vblank_get() and release the vblank reference again with 59 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are 60 * guaranteed to be enabled. 61 * 62 * On many hardware disabling the vblank interrupt cannot be done in a race-free 63 * manner, see &drm_driver.vblank_disable_immediate and 64 * &drm_driver.max_vblank_count. In that case the vblank core only disables the 65 * vblanks after a timer has expired, which can be configured through the 66 * ``vblankoffdelay`` module parameter. 67 */ 68 69 /* Retry timestamp calculation up to 3 times to satisfy 70 * drm_timestamp_precision before giving up. 71 */ 72 #define DRM_TIMESTAMP_MAXRETRIES 3 73 74 /* Threshold in nanoseconds for detection of redundant 75 * vblank irq in drm_handle_vblank(). 1 msec should be ok. 76 */ 77 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 78 79 static bool 80 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 81 ktime_t *tvblank, bool in_vblank_irq); 82 83 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */ 84 85 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */ 86 87 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600); 88 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600); 89 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)"); 90 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]"); 91 92 static void store_vblank(struct drm_device *dev, unsigned int pipe, 93 u32 vblank_count_inc, 94 ktime_t t_vblank, u32 last) 95 { 96 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 97 98 assert_spin_locked(&dev->vblank_time_lock); 99 100 vblank->last = last; 101 102 write_seqlock(&vblank->seqlock); 103 vblank->time = t_vblank; 104 vblank->count += vblank_count_inc; 105 write_sequnlock(&vblank->seqlock); 106 } 107 108 /* 109 * "No hw counter" fallback implementation of .get_vblank_counter() hook, 110 * if there is no useable hardware frame counter available. 111 */ 112 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe) 113 { 114 WARN_ON_ONCE(dev->max_vblank_count != 0); 115 return 0; 116 } 117 118 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe) 119 { 120 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 121 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 122 123 if (crtc->funcs->get_vblank_counter) 124 return crtc->funcs->get_vblank_counter(crtc); 125 } 126 127 if (dev->driver->get_vblank_counter) 128 return dev->driver->get_vblank_counter(dev, pipe); 129 130 return drm_vblank_no_hw_counter(dev, pipe); 131 } 132 133 /* 134 * Reset the stored timestamp for the current vblank count to correspond 135 * to the last vblank occurred. 136 * 137 * Only to be called from drm_crtc_vblank_on(). 138 * 139 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 140 * device vblank fields. 141 */ 142 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe) 143 { 144 u32 cur_vblank; 145 bool rc; 146 ktime_t t_vblank; 147 int count = DRM_TIMESTAMP_MAXRETRIES; 148 149 spin_lock(&dev->vblank_time_lock); 150 151 /* 152 * sample the current counter to avoid random jumps 153 * when drm_vblank_enable() applies the diff 154 */ 155 do { 156 cur_vblank = __get_vblank_counter(dev, pipe); 157 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 158 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 159 160 /* 161 * Only reinitialize corresponding vblank timestamp if high-precision query 162 * available and didn't fail. Otherwise reinitialize delayed at next vblank 163 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid. 164 */ 165 if (!rc) 166 t_vblank = 0; 167 168 /* 169 * +1 to make sure user will never see the same 170 * vblank counter value before and after a modeset 171 */ 172 store_vblank(dev, pipe, 1, t_vblank, cur_vblank); 173 174 spin_unlock(&dev->vblank_time_lock); 175 } 176 177 /* 178 * Call back into the driver to update the appropriate vblank counter 179 * (specified by @pipe). Deal with wraparound, if it occurred, and 180 * update the last read value so we can deal with wraparound on the next 181 * call if necessary. 182 * 183 * Only necessary when going from off->on, to account for frames we 184 * didn't get an interrupt for. 185 * 186 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 187 * device vblank fields. 188 */ 189 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe, 190 bool in_vblank_irq) 191 { 192 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 193 u32 cur_vblank, diff; 194 bool rc; 195 ktime_t t_vblank; 196 int count = DRM_TIMESTAMP_MAXRETRIES; 197 int framedur_ns = vblank->framedur_ns; 198 199 /* 200 * Interrupts were disabled prior to this call, so deal with counter 201 * wrap if needed. 202 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events 203 * here if the register is small or we had vblank interrupts off for 204 * a long time. 205 * 206 * We repeat the hardware vblank counter & timestamp query until 207 * we get consistent results. This to prevent races between gpu 208 * updating its hardware counter while we are retrieving the 209 * corresponding vblank timestamp. 210 */ 211 do { 212 cur_vblank = __get_vblank_counter(dev, pipe); 213 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq); 214 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 215 216 if (dev->max_vblank_count != 0) { 217 /* trust the hw counter when it's around */ 218 diff = (cur_vblank - vblank->last) & dev->max_vblank_count; 219 } else if (rc && framedur_ns) { 220 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 221 222 /* 223 * Figure out how many vblanks we've missed based 224 * on the difference in the timestamps and the 225 * frame/field duration. 226 */ 227 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 228 229 if (diff == 0 && in_vblank_irq) 230 DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored." 231 " diff_ns = %lld, framedur_ns = %d)\n", 232 pipe, (long long) diff_ns, framedur_ns); 233 } else { 234 /* some kind of default for drivers w/o accurate vbl timestamping */ 235 diff = in_vblank_irq ? 1 : 0; 236 } 237 238 /* 239 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset 240 * interval? If so then vblank irqs keep running and it will likely 241 * happen that the hardware vblank counter is not trustworthy as it 242 * might reset at some point in that interval and vblank timestamps 243 * are not trustworthy either in that interval. Iow. this can result 244 * in a bogus diff >> 1 which must be avoided as it would cause 245 * random large forward jumps of the software vblank counter. 246 */ 247 if (diff > 1 && (vblank->inmodeset & 0x2)) { 248 DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u" 249 " due to pre-modeset.\n", pipe, diff); 250 diff = 1; 251 } 252 253 DRM_DEBUG_VBL("updating vblank count on crtc %u:" 254 " current=%llu, diff=%u, hw=%u hw_last=%u\n", 255 pipe, vblank->count, diff, cur_vblank, vblank->last); 256 257 if (diff == 0) { 258 WARN_ON_ONCE(cur_vblank != vblank->last); 259 return; 260 } 261 262 /* 263 * Only reinitialize corresponding vblank timestamp if high-precision query 264 * available and didn't fail, or we were called from the vblank interrupt. 265 * Otherwise reinitialize delayed at next vblank interrupt and assign 0 266 * for now, to mark the vblanktimestamp as invalid. 267 */ 268 if (!rc && !in_vblank_irq) 269 t_vblank = 0; 270 271 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 272 } 273 274 static u32 drm_vblank_count(struct drm_device *dev, unsigned int pipe) 275 { 276 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 277 278 if (WARN_ON(pipe >= dev->num_crtcs)) 279 return 0; 280 281 return vblank->count; 282 } 283 284 /** 285 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter 286 * @crtc: which counter to retrieve 287 * 288 * This function is similar to drm_crtc_vblank_count() but this function 289 * interpolates to handle a race with vblank interrupts using the high precision 290 * timestamping support. 291 * 292 * This is mostly useful for hardware that can obtain the scanout position, but 293 * doesn't have a hardware frame counter. 294 */ 295 u32 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc) 296 { 297 struct drm_device *dev = crtc->dev; 298 unsigned int pipe = drm_crtc_index(crtc); 299 u32 vblank; 300 unsigned long flags; 301 302 WARN_ONCE(drm_debug & DRM_UT_VBL && !dev->driver->get_vblank_timestamp, 303 "This function requires support for accurate vblank timestamps."); 304 305 spin_lock_irqsave(&dev->vblank_time_lock, flags); 306 307 drm_update_vblank_count(dev, pipe, false); 308 vblank = drm_vblank_count(dev, pipe); 309 310 spin_unlock_irqrestore(&dev->vblank_time_lock, flags); 311 312 return vblank; 313 } 314 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count); 315 316 static void __disable_vblank(struct drm_device *dev, unsigned int pipe) 317 { 318 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 319 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 320 321 if (crtc->funcs->disable_vblank) { 322 crtc->funcs->disable_vblank(crtc); 323 return; 324 } 325 } 326 327 dev->driver->disable_vblank(dev, pipe); 328 } 329 330 /* 331 * Disable vblank irq's on crtc, make sure that last vblank count 332 * of hardware and corresponding consistent software vblank counter 333 * are preserved, even if there are any spurious vblank irq's after 334 * disable. 335 */ 336 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe) 337 { 338 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 339 unsigned long irqflags; 340 341 assert_spin_locked(&dev->vbl_lock); 342 343 /* Prevent vblank irq processing while disabling vblank irqs, 344 * so no updates of timestamps or count can happen after we've 345 * disabled. Needed to prevent races in case of delayed irq's. 346 */ 347 spin_lock_irqsave(&dev->vblank_time_lock, irqflags); 348 349 /* 350 * Only disable vblank interrupts if they're enabled. This avoids 351 * calling the ->disable_vblank() operation in atomic context with the 352 * hardware potentially runtime suspended. 353 */ 354 if (vblank->enabled) { 355 __disable_vblank(dev, pipe); 356 vblank->enabled = false; 357 } 358 359 /* 360 * Always update the count and timestamp to maintain the 361 * appearance that the counter has been ticking all along until 362 * this time. This makes the count account for the entire time 363 * between drm_crtc_vblank_on() and drm_crtc_vblank_off(). 364 */ 365 drm_update_vblank_count(dev, pipe, false); 366 367 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 368 } 369 370 static void vblank_disable_fn(struct timer_list *t) 371 { 372 struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer); 373 struct drm_device *dev = vblank->dev; 374 unsigned int pipe = vblank->pipe; 375 unsigned long irqflags; 376 377 spin_lock_irqsave(&dev->vbl_lock, irqflags); 378 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) { 379 DRM_DEBUG("disabling vblank on crtc %u\n", pipe); 380 drm_vblank_disable_and_save(dev, pipe); 381 } 382 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 383 } 384 385 void drm_vblank_cleanup(struct drm_device *dev) 386 { 387 unsigned int pipe; 388 389 /* Bail if the driver didn't call drm_vblank_init() */ 390 if (dev->num_crtcs == 0) 391 return; 392 393 for (pipe = 0; pipe < dev->num_crtcs; pipe++) { 394 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 395 396 WARN_ON(READ_ONCE(vblank->enabled) && 397 drm_core_check_feature(dev, DRIVER_MODESET)); 398 399 del_timer_sync(&vblank->disable_timer); 400 } 401 402 kfree(dev->vblank); 403 404 dev->num_crtcs = 0; 405 } 406 407 /** 408 * drm_vblank_init - initialize vblank support 409 * @dev: DRM device 410 * @num_crtcs: number of CRTCs supported by @dev 411 * 412 * This function initializes vblank support for @num_crtcs display pipelines. 413 * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for 414 * drivers with a &drm_driver.release callback. 415 * 416 * Returns: 417 * Zero on success or a negative error code on failure. 418 */ 419 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs) 420 { 421 int ret = -ENOMEM; 422 unsigned int i; 423 424 spin_lock_init(&dev->vbl_lock); 425 spin_lock_init(&dev->vblank_time_lock); 426 427 dev->num_crtcs = num_crtcs; 428 429 dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL); 430 if (!dev->vblank) 431 goto err; 432 433 for (i = 0; i < num_crtcs; i++) { 434 struct drm_vblank_crtc *vblank = &dev->vblank[i]; 435 436 vblank->dev = dev; 437 vblank->pipe = i; 438 init_waitqueue_head(&vblank->queue); 439 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0); 440 seqlock_init(&vblank->seqlock); 441 } 442 443 DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n"); 444 445 /* Driver specific high-precision vblank timestamping supported? */ 446 if (dev->driver->get_vblank_timestamp) 447 DRM_INFO("Driver supports precise vblank timestamp query.\n"); 448 else 449 DRM_INFO("No driver support for vblank timestamp query.\n"); 450 451 /* Must have precise timestamping for reliable vblank instant disable */ 452 if (dev->vblank_disable_immediate && !dev->driver->get_vblank_timestamp) { 453 dev->vblank_disable_immediate = false; 454 DRM_INFO("Setting vblank_disable_immediate to false because " 455 "get_vblank_timestamp == NULL\n"); 456 } 457 458 return 0; 459 460 err: 461 dev->num_crtcs = 0; 462 return ret; 463 } 464 EXPORT_SYMBOL(drm_vblank_init); 465 466 /** 467 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC 468 * @crtc: which CRTC's vblank waitqueue to retrieve 469 * 470 * This function returns a pointer to the vblank waitqueue for the CRTC. 471 * Drivers can use this to implement vblank waits using wait_event() and related 472 * functions. 473 */ 474 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc) 475 { 476 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue; 477 } 478 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue); 479 480 481 /** 482 * drm_calc_timestamping_constants - calculate vblank timestamp constants 483 * @crtc: drm_crtc whose timestamp constants should be updated. 484 * @mode: display mode containing the scanout timings 485 * 486 * Calculate and store various constants which are later needed by vblank and 487 * swap-completion timestamping, e.g, by 488 * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true 489 * scanout timing, so they take things like panel scaling or other adjustments 490 * into account. 491 */ 492 void drm_calc_timestamping_constants(struct drm_crtc *crtc, 493 const struct drm_display_mode *mode) 494 { 495 struct drm_device *dev = crtc->dev; 496 unsigned int pipe = drm_crtc_index(crtc); 497 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 498 int linedur_ns = 0, framedur_ns = 0; 499 int dotclock = mode->crtc_clock; 500 501 if (!dev->num_crtcs) 502 return; 503 504 if (WARN_ON(pipe >= dev->num_crtcs)) 505 return; 506 507 /* Valid dotclock? */ 508 if (dotclock > 0) { 509 int frame_size = mode->crtc_htotal * mode->crtc_vtotal; 510 511 /* 512 * Convert scanline length in pixels and video 513 * dot clock to line duration and frame duration 514 * in nanoseconds: 515 */ 516 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock); 517 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock); 518 519 /* 520 * Fields of interlaced scanout modes are only half a frame duration. 521 */ 522 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 523 framedur_ns /= 2; 524 } else 525 DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n", 526 crtc->base.id); 527 528 vblank->linedur_ns = linedur_ns; 529 vblank->framedur_ns = framedur_ns; 530 vblank->hwmode = *mode; 531 532 DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n", 533 crtc->base.id, mode->crtc_htotal, 534 mode->crtc_vtotal, mode->crtc_vdisplay); 535 DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n", 536 crtc->base.id, dotclock, framedur_ns, linedur_ns); 537 } 538 EXPORT_SYMBOL(drm_calc_timestamping_constants); 539 540 /** 541 * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper 542 * @dev: DRM device 543 * @pipe: index of CRTC whose vblank timestamp to retrieve 544 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 545 * On return contains true maximum error of timestamp 546 * @vblank_time: Pointer to time which should receive the timestamp 547 * @in_vblank_irq: 548 * True when called from drm_crtc_handle_vblank(). Some drivers 549 * need to apply some workarounds for gpu-specific vblank irq quirks 550 * if flag is set. 551 * 552 * Implements calculation of exact vblank timestamps from given drm_display_mode 553 * timings and current video scanout position of a CRTC. This can be directly 554 * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver 555 * if &drm_driver.get_scanout_position is implemented. 556 * 557 * The current implementation only handles standard video modes. For double scan 558 * and interlaced modes the driver is supposed to adjust the hardware mode 559 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 560 * match the scanout position reported. 561 * 562 * Note that atomic drivers must call drm_calc_timestamping_constants() before 563 * enabling a CRTC. The atomic helpers already take care of that in 564 * drm_atomic_helper_update_legacy_modeset_state(). 565 * 566 * Returns: 567 * 568 * Returns true on success, and false on failure, i.e. when no accurate 569 * timestamp could be acquired. 570 */ 571 bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev, 572 unsigned int pipe, 573 int *max_error, 574 ktime_t *vblank_time, 575 bool in_vblank_irq) 576 { 577 struct timespec64 ts_etime, ts_vblank_time; 578 ktime_t stime, etime; 579 bool vbl_status; 580 struct drm_crtc *crtc; 581 const struct drm_display_mode *mode; 582 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 583 int vpos, hpos, i; 584 int delta_ns, duration_ns; 585 586 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 587 return false; 588 589 crtc = drm_crtc_from_index(dev, pipe); 590 591 if (pipe >= dev->num_crtcs || !crtc) { 592 DRM_ERROR("Invalid crtc %u\n", pipe); 593 return false; 594 } 595 596 /* Scanout position query not supported? Should not happen. */ 597 if (!dev->driver->get_scanout_position) { 598 DRM_ERROR("Called from driver w/o get_scanout_position()!?\n"); 599 return false; 600 } 601 602 if (drm_drv_uses_atomic_modeset(dev)) 603 mode = &vblank->hwmode; 604 else 605 mode = &crtc->hwmode; 606 607 /* If mode timing undefined, just return as no-op: 608 * Happens during initial modesetting of a crtc. 609 */ 610 if (mode->crtc_clock == 0) { 611 DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe); 612 WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev)); 613 614 return false; 615 } 616 617 /* Get current scanout position with system timestamp. 618 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times 619 * if single query takes longer than max_error nanoseconds. 620 * 621 * This guarantees a tight bound on maximum error if 622 * code gets preempted or delayed for some reason. 623 */ 624 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { 625 /* 626 * Get vertical and horizontal scanout position vpos, hpos, 627 * and bounding timestamps stime, etime, pre/post query. 628 */ 629 vbl_status = dev->driver->get_scanout_position(dev, pipe, 630 in_vblank_irq, 631 &vpos, &hpos, 632 &stime, &etime, 633 mode); 634 635 /* Return as no-op if scanout query unsupported or failed. */ 636 if (!vbl_status) { 637 DRM_DEBUG("crtc %u : scanoutpos query failed.\n", 638 pipe); 639 return false; 640 } 641 642 /* Compute uncertainty in timestamp of scanout position query. */ 643 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime); 644 645 /* Accept result with < max_error nsecs timing uncertainty. */ 646 if (duration_ns <= *max_error) 647 break; 648 } 649 650 /* Noisy system timing? */ 651 if (i == DRM_TIMESTAMP_MAXRETRIES) { 652 DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n", 653 pipe, duration_ns/1000, *max_error/1000, i); 654 } 655 656 /* Return upper bound of timestamp precision error. */ 657 *max_error = duration_ns; 658 659 /* Convert scanout position into elapsed time at raw_time query 660 * since start of scanout at first display scanline. delta_ns 661 * can be negative if start of scanout hasn't happened yet. 662 */ 663 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos), 664 mode->crtc_clock); 665 666 /* save this only for debugging purposes */ 667 ts_etime = ktime_to_timespec64(etime); 668 ts_vblank_time = ktime_to_timespec64(*vblank_time); 669 /* Subtract time delta from raw timestamp to get final 670 * vblank_time timestamp for end of vblank. 671 */ 672 etime = ktime_sub_ns(etime, delta_ns); 673 *vblank_time = etime; 674 675 DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n", 676 pipe, hpos, vpos, 677 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000, 678 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000, 679 duration_ns / 1000, i); 680 681 return true; 682 } 683 EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos); 684 685 /** 686 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent 687 * vblank interval 688 * @dev: DRM device 689 * @pipe: index of CRTC whose vblank timestamp to retrieve 690 * @tvblank: Pointer to target time which should receive the timestamp 691 * @in_vblank_irq: 692 * True when called from drm_crtc_handle_vblank(). Some drivers 693 * need to apply some workarounds for gpu-specific vblank irq quirks 694 * if flag is set. 695 * 696 * Fetches the system timestamp corresponding to the time of the most recent 697 * vblank interval on specified CRTC. May call into kms-driver to 698 * compute the timestamp with a high-precision GPU specific method. 699 * 700 * Returns zero if timestamp originates from uncorrected do_gettimeofday() 701 * call, i.e., it isn't very precisely locked to the true vblank. 702 * 703 * Returns: 704 * True if timestamp is considered to be very precise, false otherwise. 705 */ 706 static bool 707 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 708 ktime_t *tvblank, bool in_vblank_irq) 709 { 710 bool ret = false; 711 712 /* Define requested maximum error on timestamps (nanoseconds). */ 713 int max_error = (int) drm_timestamp_precision * 1000; 714 715 /* Query driver if possible and precision timestamping enabled. */ 716 if (dev->driver->get_vblank_timestamp && (max_error > 0)) 717 ret = dev->driver->get_vblank_timestamp(dev, pipe, &max_error, 718 tvblank, in_vblank_irq); 719 720 /* GPU high precision timestamp query unsupported or failed. 721 * Return current monotonic/gettimeofday timestamp as best estimate. 722 */ 723 if (!ret) 724 *tvblank = ktime_get(); 725 726 return ret; 727 } 728 729 /** 730 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value 731 * @crtc: which counter to retrieve 732 * 733 * Fetches the "cooked" vblank count value that represents the number of 734 * vblank events since the system was booted, including lost events due to 735 * modesetting activity. Note that this timer isn't correct against a racing 736 * vblank interrupt (since it only reports the software vblank counter), see 737 * drm_crtc_accurate_vblank_count() for such use-cases. 738 * 739 * Returns: 740 * The software vblank counter. 741 */ 742 u64 drm_crtc_vblank_count(struct drm_crtc *crtc) 743 { 744 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc)); 745 } 746 EXPORT_SYMBOL(drm_crtc_vblank_count); 747 748 /** 749 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the 750 * system timestamp corresponding to that vblank counter value. 751 * @dev: DRM device 752 * @pipe: index of CRTC whose counter to retrieve 753 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp. 754 * 755 * Fetches the "cooked" vblank count value that represents the number of 756 * vblank events since the system was booted, including lost events due to 757 * modesetting activity. Returns corresponding system timestamp of the time 758 * of the vblank interval that corresponds to the current vblank counter value. 759 * 760 * This is the legacy version of drm_crtc_vblank_count_and_time(). 761 */ 762 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe, 763 ktime_t *vblanktime) 764 { 765 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 766 u64 vblank_count; 767 unsigned int seq; 768 769 if (WARN_ON(pipe >= dev->num_crtcs)) { 770 *vblanktime = 0; 771 return 0; 772 } 773 774 do { 775 seq = read_seqbegin(&vblank->seqlock); 776 vblank_count = vblank->count; 777 *vblanktime = vblank->time; 778 } while (read_seqretry(&vblank->seqlock, seq)); 779 780 return vblank_count; 781 } 782 783 /** 784 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value 785 * and the system timestamp corresponding to that vblank counter value 786 * @crtc: which counter to retrieve 787 * @vblanktime: Pointer to time to receive the vblank timestamp. 788 * 789 * Fetches the "cooked" vblank count value that represents the number of 790 * vblank events since the system was booted, including lost events due to 791 * modesetting activity. Returns corresponding system timestamp of the time 792 * of the vblank interval that corresponds to the current vblank counter value. 793 */ 794 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc, 795 ktime_t *vblanktime) 796 { 797 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc), 798 vblanktime); 799 } 800 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time); 801 802 static void send_vblank_event(struct drm_device *dev, 803 struct drm_pending_vblank_event *e, 804 u64 seq, ktime_t now) 805 { 806 struct timespec64 tv; 807 808 switch (e->event.base.type) { 809 case DRM_EVENT_VBLANK: 810 case DRM_EVENT_FLIP_COMPLETE: 811 tv = ktime_to_timespec64(now); 812 e->event.vbl.sequence = seq; 813 /* 814 * e->event is a user space structure, with hardcoded unsigned 815 * 32-bit seconds/microseconds. This is safe as we always use 816 * monotonic timestamps since linux-4.15 817 */ 818 e->event.vbl.tv_sec = tv.tv_sec; 819 e->event.vbl.tv_usec = tv.tv_nsec / 1000; 820 break; 821 case DRM_EVENT_CRTC_SEQUENCE: 822 if (seq) 823 e->event.seq.sequence = seq; 824 e->event.seq.time_ns = ktime_to_ns(now); 825 break; 826 } 827 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq); 828 drm_send_event_locked(dev, &e->base); 829 } 830 831 /** 832 * drm_crtc_arm_vblank_event - arm vblank event after pageflip 833 * @crtc: the source CRTC of the vblank event 834 * @e: the event to send 835 * 836 * A lot of drivers need to generate vblank events for the very next vblank 837 * interrupt. For example when the page flip interrupt happens when the page 838 * flip gets armed, but not when it actually executes within the next vblank 839 * period. This helper function implements exactly the required vblank arming 840 * behaviour. 841 * 842 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an 843 * atomic commit must ensure that the next vblank happens at exactly the same 844 * time as the atomic commit is committed to the hardware. This function itself 845 * does **not** protect against the next vblank interrupt racing with either this 846 * function call or the atomic commit operation. A possible sequence could be: 847 * 848 * 1. Driver commits new hardware state into vblank-synchronized registers. 849 * 2. A vblank happens, committing the hardware state. Also the corresponding 850 * vblank interrupt is fired off and fully processed by the interrupt 851 * handler. 852 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event(). 853 * 4. The event is only send out for the next vblank, which is wrong. 854 * 855 * An equivalent race can happen when the driver calls 856 * drm_crtc_arm_vblank_event() before writing out the new hardware state. 857 * 858 * The only way to make this work safely is to prevent the vblank from firing 859 * (and the hardware from committing anything else) until the entire atomic 860 * commit sequence has run to completion. If the hardware does not have such a 861 * feature (e.g. using a "go" bit), then it is unsafe to use this functions. 862 * Instead drivers need to manually send out the event from their interrupt 863 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no 864 * possible race with the hardware committing the atomic update. 865 * 866 * Caller must hold a vblank reference for the event @e, which will be dropped 867 * when the next vblank arrives. 868 */ 869 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc, 870 struct drm_pending_vblank_event *e) 871 { 872 struct drm_device *dev = crtc->dev; 873 unsigned int pipe = drm_crtc_index(crtc); 874 875 assert_spin_locked(&dev->event_lock); 876 877 e->pipe = pipe; 878 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1; 879 list_add_tail(&e->base.link, &dev->vblank_event_list); 880 } 881 EXPORT_SYMBOL(drm_crtc_arm_vblank_event); 882 883 /** 884 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip 885 * @crtc: the source CRTC of the vblank event 886 * @e: the event to send 887 * 888 * Updates sequence # and timestamp on event for the most recently processed 889 * vblank, and sends it to userspace. Caller must hold event lock. 890 * 891 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain 892 * situation, especially to send out events for atomic commit operations. 893 */ 894 void drm_crtc_send_vblank_event(struct drm_crtc *crtc, 895 struct drm_pending_vblank_event *e) 896 { 897 struct drm_device *dev = crtc->dev; 898 u64 seq; 899 unsigned int pipe = drm_crtc_index(crtc); 900 ktime_t now; 901 902 if (dev->num_crtcs > 0) { 903 seq = drm_vblank_count_and_time(dev, pipe, &now); 904 } else { 905 seq = 0; 906 907 now = ktime_get(); 908 } 909 e->pipe = pipe; 910 send_vblank_event(dev, e, seq, now); 911 } 912 EXPORT_SYMBOL(drm_crtc_send_vblank_event); 913 914 static int __enable_vblank(struct drm_device *dev, unsigned int pipe) 915 { 916 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 917 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 918 919 if (crtc->funcs->enable_vblank) 920 return crtc->funcs->enable_vblank(crtc); 921 } 922 923 return dev->driver->enable_vblank(dev, pipe); 924 } 925 926 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe) 927 { 928 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 929 int ret = 0; 930 931 assert_spin_locked(&dev->vbl_lock); 932 933 spin_lock(&dev->vblank_time_lock); 934 935 if (!vblank->enabled) { 936 /* 937 * Enable vblank irqs under vblank_time_lock protection. 938 * All vblank count & timestamp updates are held off 939 * until we are done reinitializing master counter and 940 * timestamps. Filtercode in drm_handle_vblank() will 941 * prevent double-accounting of same vblank interval. 942 */ 943 ret = __enable_vblank(dev, pipe); 944 DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret); 945 if (ret) { 946 atomic_dec(&vblank->refcount); 947 } else { 948 drm_update_vblank_count(dev, pipe, 0); 949 /* drm_update_vblank_count() includes a wmb so we just 950 * need to ensure that the compiler emits the write 951 * to mark the vblank as enabled after the call 952 * to drm_update_vblank_count(). 953 */ 954 WRITE_ONCE(vblank->enabled, true); 955 } 956 } 957 958 spin_unlock(&dev->vblank_time_lock); 959 960 return ret; 961 } 962 963 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe) 964 { 965 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 966 unsigned long irqflags; 967 int ret = 0; 968 969 if (!dev->num_crtcs) 970 return -EINVAL; 971 972 if (WARN_ON(pipe >= dev->num_crtcs)) 973 return -EINVAL; 974 975 spin_lock_irqsave(&dev->vbl_lock, irqflags); 976 /* Going from 0->1 means we have to enable interrupts again */ 977 if (atomic_add_return(1, &vblank->refcount) == 1) { 978 ret = drm_vblank_enable(dev, pipe); 979 } else { 980 if (!vblank->enabled) { 981 atomic_dec(&vblank->refcount); 982 ret = -EINVAL; 983 } 984 } 985 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 986 987 return ret; 988 } 989 990 /** 991 * drm_crtc_vblank_get - get a reference count on vblank events 992 * @crtc: which CRTC to own 993 * 994 * Acquire a reference count on vblank events to avoid having them disabled 995 * while in use. 996 * 997 * Returns: 998 * Zero on success or a negative error code on failure. 999 */ 1000 int drm_crtc_vblank_get(struct drm_crtc *crtc) 1001 { 1002 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc)); 1003 } 1004 EXPORT_SYMBOL(drm_crtc_vblank_get); 1005 1006 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe) 1007 { 1008 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1009 1010 if (WARN_ON(pipe >= dev->num_crtcs)) 1011 return; 1012 1013 if (WARN_ON(atomic_read(&vblank->refcount) == 0)) 1014 return; 1015 1016 /* Last user schedules interrupt disable */ 1017 if (atomic_dec_and_test(&vblank->refcount)) { 1018 if (drm_vblank_offdelay == 0) 1019 return; 1020 else if (drm_vblank_offdelay < 0) 1021 vblank_disable_fn(&vblank->disable_timer); 1022 else if (!dev->vblank_disable_immediate) 1023 mod_timer(&vblank->disable_timer, 1024 jiffies + ((drm_vblank_offdelay * HZ)/1000)); 1025 } 1026 } 1027 1028 /** 1029 * drm_crtc_vblank_put - give up ownership of vblank events 1030 * @crtc: which counter to give up 1031 * 1032 * Release ownership of a given vblank counter, turning off interrupts 1033 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds. 1034 */ 1035 void drm_crtc_vblank_put(struct drm_crtc *crtc) 1036 { 1037 drm_vblank_put(crtc->dev, drm_crtc_index(crtc)); 1038 } 1039 EXPORT_SYMBOL(drm_crtc_vblank_put); 1040 1041 /** 1042 * drm_wait_one_vblank - wait for one vblank 1043 * @dev: DRM device 1044 * @pipe: CRTC index 1045 * 1046 * This waits for one vblank to pass on @pipe, using the irq driver interfaces. 1047 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g. 1048 * due to lack of driver support or because the crtc is off. 1049 * 1050 * This is the legacy version of drm_crtc_wait_one_vblank(). 1051 */ 1052 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe) 1053 { 1054 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1055 int ret; 1056 u32 last; 1057 1058 if (WARN_ON(pipe >= dev->num_crtcs)) 1059 return; 1060 1061 ret = drm_vblank_get(dev, pipe); 1062 if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret)) 1063 return; 1064 1065 last = drm_vblank_count(dev, pipe); 1066 1067 ret = wait_event_timeout(vblank->queue, 1068 last != drm_vblank_count(dev, pipe), 1069 msecs_to_jiffies(100)); 1070 1071 WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe); 1072 1073 drm_vblank_put(dev, pipe); 1074 } 1075 EXPORT_SYMBOL(drm_wait_one_vblank); 1076 1077 /** 1078 * drm_crtc_wait_one_vblank - wait for one vblank 1079 * @crtc: DRM crtc 1080 * 1081 * This waits for one vblank to pass on @crtc, using the irq driver interfaces. 1082 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g. 1083 * due to lack of driver support or because the crtc is off. 1084 */ 1085 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc) 1086 { 1087 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc)); 1088 } 1089 EXPORT_SYMBOL(drm_crtc_wait_one_vblank); 1090 1091 /** 1092 * drm_crtc_vblank_off - disable vblank events on a CRTC 1093 * @crtc: CRTC in question 1094 * 1095 * Drivers can use this function to shut down the vblank interrupt handling when 1096 * disabling a crtc. This function ensures that the latest vblank frame count is 1097 * stored so that drm_vblank_on can restore it again. 1098 * 1099 * Drivers must use this function when the hardware vblank counter can get 1100 * reset, e.g. when suspending or disabling the @crtc in general. 1101 */ 1102 void drm_crtc_vblank_off(struct drm_crtc *crtc) 1103 { 1104 struct drm_device *dev = crtc->dev; 1105 unsigned int pipe = drm_crtc_index(crtc); 1106 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1107 struct drm_pending_vblank_event *e, *t; 1108 1109 ktime_t now; 1110 unsigned long irqflags; 1111 u64 seq; 1112 1113 if (WARN_ON(pipe >= dev->num_crtcs)) 1114 return; 1115 1116 spin_lock_irqsave(&dev->event_lock, irqflags); 1117 1118 spin_lock(&dev->vbl_lock); 1119 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n", 1120 pipe, vblank->enabled, vblank->inmodeset); 1121 1122 /* Avoid redundant vblank disables without previous 1123 * drm_crtc_vblank_on(). */ 1124 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset) 1125 drm_vblank_disable_and_save(dev, pipe); 1126 1127 wake_up(&vblank->queue); 1128 1129 /* 1130 * Prevent subsequent drm_vblank_get() from re-enabling 1131 * the vblank interrupt by bumping the refcount. 1132 */ 1133 if (!vblank->inmodeset) { 1134 atomic_inc(&vblank->refcount); 1135 vblank->inmodeset = 1; 1136 } 1137 spin_unlock(&dev->vbl_lock); 1138 1139 /* Send any queued vblank events, lest the natives grow disquiet */ 1140 seq = drm_vblank_count_and_time(dev, pipe, &now); 1141 1142 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1143 if (e->pipe != pipe) 1144 continue; 1145 DRM_DEBUG("Sending premature vblank event on disable: " 1146 "wanted %llu, current %llu\n", 1147 e->sequence, seq); 1148 list_del(&e->base.link); 1149 drm_vblank_put(dev, pipe); 1150 send_vblank_event(dev, e, seq, now); 1151 } 1152 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1153 1154 /* Will be reset by the modeset helpers when re-enabling the crtc by 1155 * calling drm_calc_timestamping_constants(). */ 1156 vblank->hwmode.crtc_clock = 0; 1157 } 1158 EXPORT_SYMBOL(drm_crtc_vblank_off); 1159 1160 /** 1161 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC 1162 * @crtc: CRTC in question 1163 * 1164 * Drivers can use this function to reset the vblank state to off at load time. 1165 * Drivers should use this together with the drm_crtc_vblank_off() and 1166 * drm_crtc_vblank_on() functions. The difference compared to 1167 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter 1168 * and hence doesn't need to call any driver hooks. 1169 * 1170 * This is useful for recovering driver state e.g. on driver load, or on resume. 1171 */ 1172 void drm_crtc_vblank_reset(struct drm_crtc *crtc) 1173 { 1174 struct drm_device *dev = crtc->dev; 1175 unsigned long irqflags; 1176 unsigned int pipe = drm_crtc_index(crtc); 1177 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1178 1179 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1180 /* 1181 * Prevent subsequent drm_vblank_get() from enabling the vblank 1182 * interrupt by bumping the refcount. 1183 */ 1184 if (!vblank->inmodeset) { 1185 atomic_inc(&vblank->refcount); 1186 vblank->inmodeset = 1; 1187 } 1188 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1189 1190 WARN_ON(!list_empty(&dev->vblank_event_list)); 1191 } 1192 EXPORT_SYMBOL(drm_crtc_vblank_reset); 1193 1194 /** 1195 * drm_crtc_vblank_on - enable vblank events on a CRTC 1196 * @crtc: CRTC in question 1197 * 1198 * This functions restores the vblank interrupt state captured with 1199 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note 1200 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be 1201 * unbalanced and so can also be unconditionally called in driver load code to 1202 * reflect the current hardware state of the crtc. 1203 */ 1204 void drm_crtc_vblank_on(struct drm_crtc *crtc) 1205 { 1206 struct drm_device *dev = crtc->dev; 1207 unsigned int pipe = drm_crtc_index(crtc); 1208 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1209 unsigned long irqflags; 1210 1211 if (WARN_ON(pipe >= dev->num_crtcs)) 1212 return; 1213 1214 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1215 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n", 1216 pipe, vblank->enabled, vblank->inmodeset); 1217 1218 /* Drop our private "prevent drm_vblank_get" refcount */ 1219 if (vblank->inmodeset) { 1220 atomic_dec(&vblank->refcount); 1221 vblank->inmodeset = 0; 1222 } 1223 1224 drm_reset_vblank_timestamp(dev, pipe); 1225 1226 /* 1227 * re-enable interrupts if there are users left, or the 1228 * user wishes vblank interrupts to be enabled all the time. 1229 */ 1230 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0) 1231 WARN_ON(drm_vblank_enable(dev, pipe)); 1232 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1233 } 1234 EXPORT_SYMBOL(drm_crtc_vblank_on); 1235 1236 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev, 1237 unsigned int pipe) 1238 { 1239 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1240 1241 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1242 if (!dev->num_crtcs) 1243 return; 1244 1245 if (WARN_ON(pipe >= dev->num_crtcs)) 1246 return; 1247 1248 /* 1249 * To avoid all the problems that might happen if interrupts 1250 * were enabled/disabled around or between these calls, we just 1251 * have the kernel take a reference on the CRTC (just once though 1252 * to avoid corrupting the count if multiple, mismatch calls occur), 1253 * so that interrupts remain enabled in the interim. 1254 */ 1255 if (!vblank->inmodeset) { 1256 vblank->inmodeset = 0x1; 1257 if (drm_vblank_get(dev, pipe) == 0) 1258 vblank->inmodeset |= 0x2; 1259 } 1260 } 1261 1262 static void drm_legacy_vblank_post_modeset(struct drm_device *dev, 1263 unsigned int pipe) 1264 { 1265 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1266 unsigned long irqflags; 1267 1268 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1269 if (!dev->num_crtcs) 1270 return; 1271 1272 if (WARN_ON(pipe >= dev->num_crtcs)) 1273 return; 1274 1275 if (vblank->inmodeset) { 1276 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1277 drm_reset_vblank_timestamp(dev, pipe); 1278 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1279 1280 if (vblank->inmodeset & 0x2) 1281 drm_vblank_put(dev, pipe); 1282 1283 vblank->inmodeset = 0; 1284 } 1285 } 1286 1287 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data, 1288 struct drm_file *file_priv) 1289 { 1290 struct drm_modeset_ctl *modeset = data; 1291 unsigned int pipe; 1292 1293 /* If drm_vblank_init() hasn't been called yet, just no-op */ 1294 if (!dev->num_crtcs) 1295 return 0; 1296 1297 /* KMS drivers handle this internally */ 1298 if (!drm_core_check_feature(dev, DRIVER_LEGACY)) 1299 return 0; 1300 1301 pipe = modeset->crtc; 1302 if (pipe >= dev->num_crtcs) 1303 return -EINVAL; 1304 1305 switch (modeset->cmd) { 1306 case _DRM_PRE_MODESET: 1307 drm_legacy_vblank_pre_modeset(dev, pipe); 1308 break; 1309 case _DRM_POST_MODESET: 1310 drm_legacy_vblank_post_modeset(dev, pipe); 1311 break; 1312 default: 1313 return -EINVAL; 1314 } 1315 1316 return 0; 1317 } 1318 1319 static inline bool vblank_passed(u64 seq, u64 ref) 1320 { 1321 return (seq - ref) <= (1 << 23); 1322 } 1323 1324 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe, 1325 u64 req_seq, 1326 union drm_wait_vblank *vblwait, 1327 struct drm_file *file_priv) 1328 { 1329 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1330 struct drm_pending_vblank_event *e; 1331 ktime_t now; 1332 unsigned long flags; 1333 u64 seq; 1334 int ret; 1335 1336 e = kzalloc(sizeof(*e), GFP_KERNEL); 1337 if (e == NULL) { 1338 ret = -ENOMEM; 1339 goto err_put; 1340 } 1341 1342 e->pipe = pipe; 1343 e->event.base.type = DRM_EVENT_VBLANK; 1344 e->event.base.length = sizeof(e->event.vbl); 1345 e->event.vbl.user_data = vblwait->request.signal; 1346 e->event.vbl.crtc_id = 0; 1347 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1348 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1349 if (crtc) 1350 e->event.vbl.crtc_id = crtc->base.id; 1351 } 1352 1353 spin_lock_irqsave(&dev->event_lock, flags); 1354 1355 /* 1356 * drm_crtc_vblank_off() might have been called after we called 1357 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1358 * vblank disable, so no need for further locking. The reference from 1359 * drm_vblank_get() protects against vblank disable from another source. 1360 */ 1361 if (!READ_ONCE(vblank->enabled)) { 1362 ret = -EINVAL; 1363 goto err_unlock; 1364 } 1365 1366 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1367 &e->event.base); 1368 1369 if (ret) 1370 goto err_unlock; 1371 1372 seq = drm_vblank_count_and_time(dev, pipe, &now); 1373 1374 DRM_DEBUG("event on vblank count %llu, current %llu, crtc %u\n", 1375 req_seq, seq, pipe); 1376 1377 trace_drm_vblank_event_queued(file_priv, pipe, req_seq); 1378 1379 e->sequence = req_seq; 1380 if (vblank_passed(seq, req_seq)) { 1381 drm_vblank_put(dev, pipe); 1382 send_vblank_event(dev, e, seq, now); 1383 vblwait->reply.sequence = seq; 1384 } else { 1385 /* drm_handle_vblank_events will call drm_vblank_put */ 1386 list_add_tail(&e->base.link, &dev->vblank_event_list); 1387 vblwait->reply.sequence = req_seq; 1388 } 1389 1390 spin_unlock_irqrestore(&dev->event_lock, flags); 1391 1392 return 0; 1393 1394 err_unlock: 1395 spin_unlock_irqrestore(&dev->event_lock, flags); 1396 kfree(e); 1397 err_put: 1398 drm_vblank_put(dev, pipe); 1399 return ret; 1400 } 1401 1402 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait) 1403 { 1404 if (vblwait->request.sequence) 1405 return false; 1406 1407 return _DRM_VBLANK_RELATIVE == 1408 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK | 1409 _DRM_VBLANK_EVENT | 1410 _DRM_VBLANK_NEXTONMISS)); 1411 } 1412 1413 /* 1414 * Widen a 32-bit param to 64-bits. 1415 * 1416 * \param narrow 32-bit value (missing upper 32 bits) 1417 * \param near 64-bit value that should be 'close' to near 1418 * 1419 * This function returns a 64-bit value using the lower 32-bits from 1420 * 'narrow' and constructing the upper 32-bits so that the result is 1421 * as close as possible to 'near'. 1422 */ 1423 1424 static u64 widen_32_to_64(u32 narrow, u64 near) 1425 { 1426 return near + (s32) (narrow - near); 1427 } 1428 1429 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe, 1430 struct drm_wait_vblank_reply *reply) 1431 { 1432 ktime_t now; 1433 struct timespec64 ts; 1434 1435 /* 1436 * drm_wait_vblank_reply is a UAPI structure that uses 'long' 1437 * to store the seconds. This is safe as we always use monotonic 1438 * timestamps since linux-4.15. 1439 */ 1440 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1441 ts = ktime_to_timespec64(now); 1442 reply->tval_sec = (u32)ts.tv_sec; 1443 reply->tval_usec = ts.tv_nsec / 1000; 1444 } 1445 1446 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data, 1447 struct drm_file *file_priv) 1448 { 1449 struct drm_crtc *crtc; 1450 struct drm_vblank_crtc *vblank; 1451 union drm_wait_vblank *vblwait = data; 1452 int ret; 1453 u64 req_seq, seq; 1454 unsigned int pipe_index; 1455 unsigned int flags, pipe, high_pipe; 1456 1457 if (!dev->irq_enabled) 1458 return -EINVAL; 1459 1460 if (vblwait->request.type & _DRM_VBLANK_SIGNAL) 1461 return -EINVAL; 1462 1463 if (vblwait->request.type & 1464 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1465 _DRM_VBLANK_HIGH_CRTC_MASK)) { 1466 DRM_ERROR("Unsupported type value 0x%x, supported mask 0x%x\n", 1467 vblwait->request.type, 1468 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1469 _DRM_VBLANK_HIGH_CRTC_MASK)); 1470 return -EINVAL; 1471 } 1472 1473 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; 1474 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); 1475 if (high_pipe) 1476 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT; 1477 else 1478 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; 1479 1480 /* Convert lease-relative crtc index into global crtc index */ 1481 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1482 pipe = 0; 1483 drm_for_each_crtc(crtc, dev) { 1484 if (drm_lease_held(file_priv, crtc->base.id)) { 1485 if (pipe_index == 0) 1486 break; 1487 pipe_index--; 1488 } 1489 pipe++; 1490 } 1491 } else { 1492 pipe = pipe_index; 1493 } 1494 1495 if (pipe >= dev->num_crtcs) 1496 return -EINVAL; 1497 1498 vblank = &dev->vblank[pipe]; 1499 1500 /* If the counter is currently enabled and accurate, short-circuit 1501 * queries to return the cached timestamp of the last vblank. 1502 */ 1503 if (dev->vblank_disable_immediate && 1504 drm_wait_vblank_is_query(vblwait) && 1505 READ_ONCE(vblank->enabled)) { 1506 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1507 return 0; 1508 } 1509 1510 ret = drm_vblank_get(dev, pipe); 1511 if (ret) { 1512 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 1513 return ret; 1514 } 1515 seq = drm_vblank_count(dev, pipe); 1516 1517 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { 1518 case _DRM_VBLANK_RELATIVE: 1519 req_seq = seq + vblwait->request.sequence; 1520 vblwait->request.sequence = req_seq; 1521 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; 1522 break; 1523 case _DRM_VBLANK_ABSOLUTE: 1524 req_seq = widen_32_to_64(vblwait->request.sequence, seq); 1525 break; 1526 default: 1527 ret = -EINVAL; 1528 goto done; 1529 } 1530 1531 if ((flags & _DRM_VBLANK_NEXTONMISS) && 1532 vblank_passed(seq, req_seq)) { 1533 req_seq = seq + 1; 1534 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS; 1535 vblwait->request.sequence = req_seq; 1536 } 1537 1538 if (flags & _DRM_VBLANK_EVENT) { 1539 /* must hold on to the vblank ref until the event fires 1540 * drm_vblank_put will be called asynchronously 1541 */ 1542 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv); 1543 } 1544 1545 if (req_seq != seq) { 1546 DRM_DEBUG("waiting on vblank count %llu, crtc %u\n", 1547 req_seq, pipe); 1548 DRM_WAIT_ON(ret, vblank->queue, 3 * HZ, 1549 vblank_passed(drm_vblank_count(dev, pipe), 1550 req_seq) || 1551 !READ_ONCE(vblank->enabled)); 1552 } 1553 1554 if (ret != -EINTR) { 1555 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1556 1557 DRM_DEBUG("crtc %d returning %u to client\n", 1558 pipe, vblwait->reply.sequence); 1559 } else { 1560 DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe); 1561 } 1562 1563 done: 1564 drm_vblank_put(dev, pipe); 1565 return ret; 1566 } 1567 1568 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe) 1569 { 1570 struct drm_pending_vblank_event *e, *t; 1571 ktime_t now; 1572 u64 seq; 1573 1574 assert_spin_locked(&dev->event_lock); 1575 1576 seq = drm_vblank_count_and_time(dev, pipe, &now); 1577 1578 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1579 if (e->pipe != pipe) 1580 continue; 1581 if (!vblank_passed(seq, e->sequence)) 1582 continue; 1583 1584 DRM_DEBUG("vblank event on %llu, current %llu\n", 1585 e->sequence, seq); 1586 1587 list_del(&e->base.link); 1588 drm_vblank_put(dev, pipe); 1589 send_vblank_event(dev, e, seq, now); 1590 } 1591 1592 trace_drm_vblank_event(pipe, seq); 1593 } 1594 1595 /** 1596 * drm_handle_vblank - handle a vblank event 1597 * @dev: DRM device 1598 * @pipe: index of CRTC where this event occurred 1599 * 1600 * Drivers should call this routine in their vblank interrupt handlers to 1601 * update the vblank counter and send any signals that may be pending. 1602 * 1603 * This is the legacy version of drm_crtc_handle_vblank(). 1604 */ 1605 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe) 1606 { 1607 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1608 unsigned long irqflags; 1609 bool disable_irq; 1610 1611 if (WARN_ON_ONCE(!dev->num_crtcs)) 1612 return false; 1613 1614 if (WARN_ON(pipe >= dev->num_crtcs)) 1615 return false; 1616 1617 spin_lock_irqsave(&dev->event_lock, irqflags); 1618 1619 /* Need timestamp lock to prevent concurrent execution with 1620 * vblank enable/disable, as this would cause inconsistent 1621 * or corrupted timestamps and vblank counts. 1622 */ 1623 spin_lock(&dev->vblank_time_lock); 1624 1625 /* Vblank irq handling disabled. Nothing to do. */ 1626 if (!vblank->enabled) { 1627 spin_unlock(&dev->vblank_time_lock); 1628 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1629 return false; 1630 } 1631 1632 drm_update_vblank_count(dev, pipe, true); 1633 1634 spin_unlock(&dev->vblank_time_lock); 1635 1636 wake_up(&vblank->queue); 1637 1638 /* With instant-off, we defer disabling the interrupt until after 1639 * we finish processing the following vblank after all events have 1640 * been signaled. The disable has to be last (after 1641 * drm_handle_vblank_events) so that the timestamp is always accurate. 1642 */ 1643 disable_irq = (dev->vblank_disable_immediate && 1644 drm_vblank_offdelay > 0 && 1645 !atomic_read(&vblank->refcount)); 1646 1647 drm_handle_vblank_events(dev, pipe); 1648 1649 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1650 1651 if (disable_irq) 1652 vblank_disable_fn(&vblank->disable_timer); 1653 1654 return true; 1655 } 1656 EXPORT_SYMBOL(drm_handle_vblank); 1657 1658 /** 1659 * drm_crtc_handle_vblank - handle a vblank event 1660 * @crtc: where this event occurred 1661 * 1662 * Drivers should call this routine in their vblank interrupt handlers to 1663 * update the vblank counter and send any signals that may be pending. 1664 * 1665 * This is the native KMS version of drm_handle_vblank(). 1666 * 1667 * Returns: 1668 * True if the event was successfully handled, false on failure. 1669 */ 1670 bool drm_crtc_handle_vblank(struct drm_crtc *crtc) 1671 { 1672 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc)); 1673 } 1674 EXPORT_SYMBOL(drm_crtc_handle_vblank); 1675 1676 /* 1677 * Get crtc VBLANK count. 1678 * 1679 * \param dev DRM device 1680 * \param data user arguement, pointing to a drm_crtc_get_sequence structure. 1681 * \param file_priv drm file private for the user's open file descriptor 1682 */ 1683 1684 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data, 1685 struct drm_file *file_priv) 1686 { 1687 struct drm_crtc *crtc; 1688 struct drm_vblank_crtc *vblank; 1689 int pipe; 1690 struct drm_crtc_get_sequence *get_seq = data; 1691 ktime_t now; 1692 bool vblank_enabled; 1693 int ret; 1694 1695 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 1696 return -EINVAL; 1697 1698 if (!dev->irq_enabled) 1699 return -EINVAL; 1700 1701 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id); 1702 if (!crtc) 1703 return -ENOENT; 1704 1705 pipe = drm_crtc_index(crtc); 1706 1707 vblank = &dev->vblank[pipe]; 1708 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled); 1709 1710 if (!vblank_enabled) { 1711 ret = drm_crtc_vblank_get(crtc); 1712 if (ret) { 1713 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 1714 return ret; 1715 } 1716 } 1717 drm_modeset_lock(&crtc->mutex, NULL); 1718 if (crtc->state) 1719 get_seq->active = crtc->state->enable; 1720 else 1721 get_seq->active = crtc->enabled; 1722 drm_modeset_unlock(&crtc->mutex); 1723 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1724 get_seq->sequence_ns = ktime_to_ns(now); 1725 if (!vblank_enabled) 1726 drm_crtc_vblank_put(crtc); 1727 return 0; 1728 } 1729 1730 /* 1731 * Queue a event for VBLANK sequence 1732 * 1733 * \param dev DRM device 1734 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure. 1735 * \param file_priv drm file private for the user's open file descriptor 1736 */ 1737 1738 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data, 1739 struct drm_file *file_priv) 1740 { 1741 struct drm_crtc *crtc; 1742 struct drm_vblank_crtc *vblank; 1743 int pipe; 1744 struct drm_crtc_queue_sequence *queue_seq = data; 1745 ktime_t now; 1746 struct drm_pending_vblank_event *e; 1747 u32 flags; 1748 u64 seq; 1749 u64 req_seq; 1750 int ret; 1751 unsigned long spin_flags; 1752 1753 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 1754 return -EINVAL; 1755 1756 if (!dev->irq_enabled) 1757 return -EINVAL; 1758 1759 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id); 1760 if (!crtc) 1761 return -ENOENT; 1762 1763 flags = queue_seq->flags; 1764 /* Check valid flag bits */ 1765 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE| 1766 DRM_CRTC_SEQUENCE_NEXT_ON_MISS)) 1767 return -EINVAL; 1768 1769 pipe = drm_crtc_index(crtc); 1770 1771 vblank = &dev->vblank[pipe]; 1772 1773 e = kzalloc(sizeof(*e), GFP_KERNEL); 1774 if (e == NULL) 1775 return -ENOMEM; 1776 1777 ret = drm_crtc_vblank_get(crtc); 1778 if (ret) { 1779 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 1780 goto err_free; 1781 } 1782 1783 seq = drm_vblank_count_and_time(dev, pipe, &now); 1784 req_seq = queue_seq->sequence; 1785 1786 if (flags & DRM_CRTC_SEQUENCE_RELATIVE) 1787 req_seq += seq; 1788 1789 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq)) 1790 req_seq = seq + 1; 1791 1792 e->pipe = pipe; 1793 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE; 1794 e->event.base.length = sizeof(e->event.seq); 1795 e->event.seq.user_data = queue_seq->user_data; 1796 1797 spin_lock_irqsave(&dev->event_lock, spin_flags); 1798 1799 /* 1800 * drm_crtc_vblank_off() might have been called after we called 1801 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1802 * vblank disable, so no need for further locking. The reference from 1803 * drm_crtc_vblank_get() protects against vblank disable from another source. 1804 */ 1805 if (!READ_ONCE(vblank->enabled)) { 1806 ret = -EINVAL; 1807 goto err_unlock; 1808 } 1809 1810 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1811 &e->event.base); 1812 1813 if (ret) 1814 goto err_unlock; 1815 1816 e->sequence = req_seq; 1817 1818 if (vblank_passed(seq, req_seq)) { 1819 drm_crtc_vblank_put(crtc); 1820 send_vblank_event(dev, e, seq, now); 1821 queue_seq->sequence = seq; 1822 } else { 1823 /* drm_handle_vblank_events will call drm_vblank_put */ 1824 list_add_tail(&e->base.link, &dev->vblank_event_list); 1825 queue_seq->sequence = req_seq; 1826 } 1827 1828 spin_unlock_irqrestore(&dev->event_lock, spin_flags); 1829 return 0; 1830 1831 err_unlock: 1832 spin_unlock_irqrestore(&dev->event_lock, spin_flags); 1833 drm_crtc_vblank_put(crtc); 1834 err_free: 1835 kfree(e); 1836 return ret; 1837 } 1838