xref: /openbmc/linux/drivers/gpu/drm/drm_vblank.c (revision 0bea2a65)
1 /*
2  * drm_irq.c IRQ and vblank support
3  *
4  * \author Rickard E. (Rik) Faith <faith@valinux.com>
5  * \author Gareth Hughes <gareth@valinux.com>
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the next
15  * paragraph) shall be included in all copies or substantial portions of the
16  * Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24  * OTHER DEALINGS IN THE SOFTWARE.
25  */
26 
27 #include <drm/drm_vblank.h>
28 #include <drm/drmP.h>
29 #include <linux/export.h>
30 
31 #include "drm_trace.h"
32 #include "drm_internal.h"
33 
34 /**
35  * DOC: vblank handling
36  *
37  * Vertical blanking plays a major role in graphics rendering. To achieve
38  * tear-free display, users must synchronize page flips and/or rendering to
39  * vertical blanking. The DRM API offers ioctls to perform page flips
40  * synchronized to vertical blanking and wait for vertical blanking.
41  *
42  * The DRM core handles most of the vertical blanking management logic, which
43  * involves filtering out spurious interrupts, keeping race-free blanking
44  * counters, coping with counter wrap-around and resets and keeping use counts.
45  * It relies on the driver to generate vertical blanking interrupts and
46  * optionally provide a hardware vertical blanking counter.
47  *
48  * Drivers must initialize the vertical blanking handling core with a call to
49  * drm_vblank_init(). Minimally, a driver needs to implement
50  * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
51  * drm_crtc_handle_vblank() in it's vblank interrupt handler for working vblank
52  * support.
53  *
54  * Vertical blanking interrupts can be enabled by the DRM core or by drivers
55  * themselves (for instance to handle page flipping operations).  The DRM core
56  * maintains a vertical blanking use count to ensure that the interrupts are not
57  * disabled while a user still needs them. To increment the use count, drivers
58  * call drm_crtc_vblank_get() and release the vblank reference again with
59  * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
60  * guaranteed to be enabled.
61  *
62  * On many hardware disabling the vblank interrupt cannot be done in a race-free
63  * manner, see &drm_driver.vblank_disable_immediate and
64  * &drm_driver.max_vblank_count. In that case the vblank core only disables the
65  * vblanks after a timer has expired, which can be configured through the
66  * ``vblankoffdelay`` module parameter.
67  */
68 
69 /* Retry timestamp calculation up to 3 times to satisfy
70  * drm_timestamp_precision before giving up.
71  */
72 #define DRM_TIMESTAMP_MAXRETRIES 3
73 
74 /* Threshold in nanoseconds for detection of redundant
75  * vblank irq in drm_handle_vblank(). 1 msec should be ok.
76  */
77 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
78 
79 static bool
80 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
81 			  ktime_t *tvblank, bool in_vblank_irq);
82 
83 static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
84 
85 static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
86 
87 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
88 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
89 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
90 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
91 
92 static void store_vblank(struct drm_device *dev, unsigned int pipe,
93 			 u32 vblank_count_inc,
94 			 ktime_t t_vblank, u32 last)
95 {
96 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
97 
98 	assert_spin_locked(&dev->vblank_time_lock);
99 
100 	vblank->last = last;
101 
102 	write_seqlock(&vblank->seqlock);
103 	vblank->time = t_vblank;
104 	vblank->count += vblank_count_inc;
105 	write_sequnlock(&vblank->seqlock);
106 }
107 
108 /*
109  * "No hw counter" fallback implementation of .get_vblank_counter() hook,
110  * if there is no useable hardware frame counter available.
111  */
112 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
113 {
114 	WARN_ON_ONCE(dev->max_vblank_count != 0);
115 	return 0;
116 }
117 
118 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
119 {
120 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
121 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
122 
123 		if (crtc->funcs->get_vblank_counter)
124 			return crtc->funcs->get_vblank_counter(crtc);
125 	}
126 
127 	if (dev->driver->get_vblank_counter)
128 		return dev->driver->get_vblank_counter(dev, pipe);
129 
130 	return drm_vblank_no_hw_counter(dev, pipe);
131 }
132 
133 /*
134  * Reset the stored timestamp for the current vblank count to correspond
135  * to the last vblank occurred.
136  *
137  * Only to be called from drm_crtc_vblank_on().
138  *
139  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
140  * device vblank fields.
141  */
142 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
143 {
144 	u32 cur_vblank;
145 	bool rc;
146 	ktime_t t_vblank;
147 	int count = DRM_TIMESTAMP_MAXRETRIES;
148 
149 	spin_lock(&dev->vblank_time_lock);
150 
151 	/*
152 	 * sample the current counter to avoid random jumps
153 	 * when drm_vblank_enable() applies the diff
154 	 */
155 	do {
156 		cur_vblank = __get_vblank_counter(dev, pipe);
157 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
158 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
159 
160 	/*
161 	 * Only reinitialize corresponding vblank timestamp if high-precision query
162 	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
163 	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
164 	 */
165 	if (!rc)
166 		t_vblank = 0;
167 
168 	/*
169 	 * +1 to make sure user will never see the same
170 	 * vblank counter value before and after a modeset
171 	 */
172 	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
173 
174 	spin_unlock(&dev->vblank_time_lock);
175 }
176 
177 /*
178  * Call back into the driver to update the appropriate vblank counter
179  * (specified by @pipe).  Deal with wraparound, if it occurred, and
180  * update the last read value so we can deal with wraparound on the next
181  * call if necessary.
182  *
183  * Only necessary when going from off->on, to account for frames we
184  * didn't get an interrupt for.
185  *
186  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
187  * device vblank fields.
188  */
189 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
190 				    bool in_vblank_irq)
191 {
192 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
193 	u32 cur_vblank, diff;
194 	bool rc;
195 	ktime_t t_vblank;
196 	int count = DRM_TIMESTAMP_MAXRETRIES;
197 	int framedur_ns = vblank->framedur_ns;
198 
199 	/*
200 	 * Interrupts were disabled prior to this call, so deal with counter
201 	 * wrap if needed.
202 	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
203 	 * here if the register is small or we had vblank interrupts off for
204 	 * a long time.
205 	 *
206 	 * We repeat the hardware vblank counter & timestamp query until
207 	 * we get consistent results. This to prevent races between gpu
208 	 * updating its hardware counter while we are retrieving the
209 	 * corresponding vblank timestamp.
210 	 */
211 	do {
212 		cur_vblank = __get_vblank_counter(dev, pipe);
213 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
214 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
215 
216 	if (dev->max_vblank_count != 0) {
217 		/* trust the hw counter when it's around */
218 		diff = (cur_vblank - vblank->last) & dev->max_vblank_count;
219 	} else if (rc && framedur_ns) {
220 		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
221 
222 		/*
223 		 * Figure out how many vblanks we've missed based
224 		 * on the difference in the timestamps and the
225 		 * frame/field duration.
226 		 */
227 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
228 
229 		if (diff == 0 && in_vblank_irq)
230 			DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored."
231 				      " diff_ns = %lld, framedur_ns = %d)\n",
232 				      pipe, (long long) diff_ns, framedur_ns);
233 	} else {
234 		/* some kind of default for drivers w/o accurate vbl timestamping */
235 		diff = in_vblank_irq ? 1 : 0;
236 	}
237 
238 	/*
239 	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
240 	 * interval? If so then vblank irqs keep running and it will likely
241 	 * happen that the hardware vblank counter is not trustworthy as it
242 	 * might reset at some point in that interval and vblank timestamps
243 	 * are not trustworthy either in that interval. Iow. this can result
244 	 * in a bogus diff >> 1 which must be avoided as it would cause
245 	 * random large forward jumps of the software vblank counter.
246 	 */
247 	if (diff > 1 && (vblank->inmodeset & 0x2)) {
248 		DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u"
249 			      " due to pre-modeset.\n", pipe, diff);
250 		diff = 1;
251 	}
252 
253 	DRM_DEBUG_VBL("updating vblank count on crtc %u:"
254 		      " current=%llu, diff=%u, hw=%u hw_last=%u\n",
255 		      pipe, vblank->count, diff, cur_vblank, vblank->last);
256 
257 	if (diff == 0) {
258 		WARN_ON_ONCE(cur_vblank != vblank->last);
259 		return;
260 	}
261 
262 	/*
263 	 * Only reinitialize corresponding vblank timestamp if high-precision query
264 	 * available and didn't fail, or we were called from the vblank interrupt.
265 	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
266 	 * for now, to mark the vblanktimestamp as invalid.
267 	 */
268 	if (!rc && !in_vblank_irq)
269 		t_vblank = 0;
270 
271 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
272 }
273 
274 static u32 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
275 {
276 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
277 
278 	if (WARN_ON(pipe >= dev->num_crtcs))
279 		return 0;
280 
281 	return vblank->count;
282 }
283 
284 /**
285  * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
286  * @crtc: which counter to retrieve
287  *
288  * This function is similar to drm_crtc_vblank_count() but this function
289  * interpolates to handle a race with vblank interrupts using the high precision
290  * timestamping support.
291  *
292  * This is mostly useful for hardware that can obtain the scanout position, but
293  * doesn't have a hardware frame counter.
294  */
295 u32 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
296 {
297 	struct drm_device *dev = crtc->dev;
298 	unsigned int pipe = drm_crtc_index(crtc);
299 	u32 vblank;
300 	unsigned long flags;
301 
302 	WARN_ONCE(drm_debug & DRM_UT_VBL && !dev->driver->get_vblank_timestamp,
303 		  "This function requires support for accurate vblank timestamps.");
304 
305 	spin_lock_irqsave(&dev->vblank_time_lock, flags);
306 
307 	drm_update_vblank_count(dev, pipe, false);
308 	vblank = drm_vblank_count(dev, pipe);
309 
310 	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
311 
312 	return vblank;
313 }
314 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
315 
316 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
317 {
318 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
319 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
320 
321 		if (crtc->funcs->disable_vblank) {
322 			crtc->funcs->disable_vblank(crtc);
323 			return;
324 		}
325 	}
326 
327 	dev->driver->disable_vblank(dev, pipe);
328 }
329 
330 /*
331  * Disable vblank irq's on crtc, make sure that last vblank count
332  * of hardware and corresponding consistent software vblank counter
333  * are preserved, even if there are any spurious vblank irq's after
334  * disable.
335  */
336 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
337 {
338 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
339 	unsigned long irqflags;
340 
341 	assert_spin_locked(&dev->vbl_lock);
342 
343 	/* Prevent vblank irq processing while disabling vblank irqs,
344 	 * so no updates of timestamps or count can happen after we've
345 	 * disabled. Needed to prevent races in case of delayed irq's.
346 	 */
347 	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
348 
349 	/*
350 	 * Only disable vblank interrupts if they're enabled. This avoids
351 	 * calling the ->disable_vblank() operation in atomic context with the
352 	 * hardware potentially runtime suspended.
353 	 */
354 	if (vblank->enabled) {
355 		__disable_vblank(dev, pipe);
356 		vblank->enabled = false;
357 	}
358 
359 	/*
360 	 * Always update the count and timestamp to maintain the
361 	 * appearance that the counter has been ticking all along until
362 	 * this time. This makes the count account for the entire time
363 	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
364 	 */
365 	drm_update_vblank_count(dev, pipe, false);
366 
367 	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
368 }
369 
370 static void vblank_disable_fn(struct timer_list *t)
371 {
372 	struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
373 	struct drm_device *dev = vblank->dev;
374 	unsigned int pipe = vblank->pipe;
375 	unsigned long irqflags;
376 
377 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
378 	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
379 		DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
380 		drm_vblank_disable_and_save(dev, pipe);
381 	}
382 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
383 }
384 
385 void drm_vblank_cleanup(struct drm_device *dev)
386 {
387 	unsigned int pipe;
388 
389 	/* Bail if the driver didn't call drm_vblank_init() */
390 	if (dev->num_crtcs == 0)
391 		return;
392 
393 	for (pipe = 0; pipe < dev->num_crtcs; pipe++) {
394 		struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
395 
396 		WARN_ON(READ_ONCE(vblank->enabled) &&
397 			drm_core_check_feature(dev, DRIVER_MODESET));
398 
399 		del_timer_sync(&vblank->disable_timer);
400 	}
401 
402 	kfree(dev->vblank);
403 
404 	dev->num_crtcs = 0;
405 }
406 
407 /**
408  * drm_vblank_init - initialize vblank support
409  * @dev: DRM device
410  * @num_crtcs: number of CRTCs supported by @dev
411  *
412  * This function initializes vblank support for @num_crtcs display pipelines.
413  * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for
414  * drivers with a &drm_driver.release callback.
415  *
416  * Returns:
417  * Zero on success or a negative error code on failure.
418  */
419 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
420 {
421 	int ret = -ENOMEM;
422 	unsigned int i;
423 
424 	spin_lock_init(&dev->vbl_lock);
425 	spin_lock_init(&dev->vblank_time_lock);
426 
427 	dev->num_crtcs = num_crtcs;
428 
429 	dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
430 	if (!dev->vblank)
431 		goto err;
432 
433 	for (i = 0; i < num_crtcs; i++) {
434 		struct drm_vblank_crtc *vblank = &dev->vblank[i];
435 
436 		vblank->dev = dev;
437 		vblank->pipe = i;
438 		init_waitqueue_head(&vblank->queue);
439 		timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
440 		seqlock_init(&vblank->seqlock);
441 	}
442 
443 	DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n");
444 
445 	/* Driver specific high-precision vblank timestamping supported? */
446 	if (dev->driver->get_vblank_timestamp)
447 		DRM_INFO("Driver supports precise vblank timestamp query.\n");
448 	else
449 		DRM_INFO("No driver support for vblank timestamp query.\n");
450 
451 	/* Must have precise timestamping for reliable vblank instant disable */
452 	if (dev->vblank_disable_immediate && !dev->driver->get_vblank_timestamp) {
453 		dev->vblank_disable_immediate = false;
454 		DRM_INFO("Setting vblank_disable_immediate to false because "
455 			 "get_vblank_timestamp == NULL\n");
456 	}
457 
458 	return 0;
459 
460 err:
461 	dev->num_crtcs = 0;
462 	return ret;
463 }
464 EXPORT_SYMBOL(drm_vblank_init);
465 
466 /**
467  * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
468  * @crtc: which CRTC's vblank waitqueue to retrieve
469  *
470  * This function returns a pointer to the vblank waitqueue for the CRTC.
471  * Drivers can use this to implement vblank waits using wait_event() and related
472  * functions.
473  */
474 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
475 {
476 	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
477 }
478 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
479 
480 
481 /**
482  * drm_calc_timestamping_constants - calculate vblank timestamp constants
483  * @crtc: drm_crtc whose timestamp constants should be updated.
484  * @mode: display mode containing the scanout timings
485  *
486  * Calculate and store various constants which are later needed by vblank and
487  * swap-completion timestamping, e.g, by
488  * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true
489  * scanout timing, so they take things like panel scaling or other adjustments
490  * into account.
491  */
492 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
493 				     const struct drm_display_mode *mode)
494 {
495 	struct drm_device *dev = crtc->dev;
496 	unsigned int pipe = drm_crtc_index(crtc);
497 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
498 	int linedur_ns = 0, framedur_ns = 0;
499 	int dotclock = mode->crtc_clock;
500 
501 	if (!dev->num_crtcs)
502 		return;
503 
504 	if (WARN_ON(pipe >= dev->num_crtcs))
505 		return;
506 
507 	/* Valid dotclock? */
508 	if (dotclock > 0) {
509 		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
510 
511 		/*
512 		 * Convert scanline length in pixels and video
513 		 * dot clock to line duration and frame duration
514 		 * in nanoseconds:
515 		 */
516 		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
517 		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
518 
519 		/*
520 		 * Fields of interlaced scanout modes are only half a frame duration.
521 		 */
522 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
523 			framedur_ns /= 2;
524 	} else
525 		DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n",
526 			  crtc->base.id);
527 
528 	vblank->linedur_ns  = linedur_ns;
529 	vblank->framedur_ns = framedur_ns;
530 	vblank->hwmode = *mode;
531 
532 	DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
533 		  crtc->base.id, mode->crtc_htotal,
534 		  mode->crtc_vtotal, mode->crtc_vdisplay);
535 	DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n",
536 		  crtc->base.id, dotclock, framedur_ns, linedur_ns);
537 }
538 EXPORT_SYMBOL(drm_calc_timestamping_constants);
539 
540 /**
541  * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper
542  * @dev: DRM device
543  * @pipe: index of CRTC whose vblank timestamp to retrieve
544  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
545  *             On return contains true maximum error of timestamp
546  * @vblank_time: Pointer to time which should receive the timestamp
547  * @in_vblank_irq:
548  *     True when called from drm_crtc_handle_vblank().  Some drivers
549  *     need to apply some workarounds for gpu-specific vblank irq quirks
550  *     if flag is set.
551  *
552  * Implements calculation of exact vblank timestamps from given drm_display_mode
553  * timings and current video scanout position of a CRTC. This can be directly
554  * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver
555  * if &drm_driver.get_scanout_position is implemented.
556  *
557  * The current implementation only handles standard video modes. For double scan
558  * and interlaced modes the driver is supposed to adjust the hardware mode
559  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
560  * match the scanout position reported.
561  *
562  * Note that atomic drivers must call drm_calc_timestamping_constants() before
563  * enabling a CRTC. The atomic helpers already take care of that in
564  * drm_atomic_helper_update_legacy_modeset_state().
565  *
566  * Returns:
567  *
568  * Returns true on success, and false on failure, i.e. when no accurate
569  * timestamp could be acquired.
570  */
571 bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev,
572 					   unsigned int pipe,
573 					   int *max_error,
574 					   ktime_t *vblank_time,
575 					   bool in_vblank_irq)
576 {
577 	struct timespec64 ts_etime, ts_vblank_time;
578 	ktime_t stime, etime;
579 	bool vbl_status;
580 	struct drm_crtc *crtc;
581 	const struct drm_display_mode *mode;
582 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
583 	int vpos, hpos, i;
584 	int delta_ns, duration_ns;
585 
586 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
587 		return false;
588 
589 	crtc = drm_crtc_from_index(dev, pipe);
590 
591 	if (pipe >= dev->num_crtcs || !crtc) {
592 		DRM_ERROR("Invalid crtc %u\n", pipe);
593 		return false;
594 	}
595 
596 	/* Scanout position query not supported? Should not happen. */
597 	if (!dev->driver->get_scanout_position) {
598 		DRM_ERROR("Called from driver w/o get_scanout_position()!?\n");
599 		return false;
600 	}
601 
602 	if (drm_drv_uses_atomic_modeset(dev))
603 		mode = &vblank->hwmode;
604 	else
605 		mode = &crtc->hwmode;
606 
607 	/* If mode timing undefined, just return as no-op:
608 	 * Happens during initial modesetting of a crtc.
609 	 */
610 	if (mode->crtc_clock == 0) {
611 		DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe);
612 		WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev));
613 
614 		return false;
615 	}
616 
617 	/* Get current scanout position with system timestamp.
618 	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
619 	 * if single query takes longer than max_error nanoseconds.
620 	 *
621 	 * This guarantees a tight bound on maximum error if
622 	 * code gets preempted or delayed for some reason.
623 	 */
624 	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
625 		/*
626 		 * Get vertical and horizontal scanout position vpos, hpos,
627 		 * and bounding timestamps stime, etime, pre/post query.
628 		 */
629 		vbl_status = dev->driver->get_scanout_position(dev, pipe,
630 							       in_vblank_irq,
631 							       &vpos, &hpos,
632 							       &stime, &etime,
633 							       mode);
634 
635 		/* Return as no-op if scanout query unsupported or failed. */
636 		if (!vbl_status) {
637 			DRM_DEBUG("crtc %u : scanoutpos query failed.\n",
638 				  pipe);
639 			return false;
640 		}
641 
642 		/* Compute uncertainty in timestamp of scanout position query. */
643 		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
644 
645 		/* Accept result with <  max_error nsecs timing uncertainty. */
646 		if (duration_ns <= *max_error)
647 			break;
648 	}
649 
650 	/* Noisy system timing? */
651 	if (i == DRM_TIMESTAMP_MAXRETRIES) {
652 		DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
653 			  pipe, duration_ns/1000, *max_error/1000, i);
654 	}
655 
656 	/* Return upper bound of timestamp precision error. */
657 	*max_error = duration_ns;
658 
659 	/* Convert scanout position into elapsed time at raw_time query
660 	 * since start of scanout at first display scanline. delta_ns
661 	 * can be negative if start of scanout hasn't happened yet.
662 	 */
663 	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
664 			   mode->crtc_clock);
665 
666 	/* save this only for debugging purposes */
667 	ts_etime = ktime_to_timespec64(etime);
668 	ts_vblank_time = ktime_to_timespec64(*vblank_time);
669 	/* Subtract time delta from raw timestamp to get final
670 	 * vblank_time timestamp for end of vblank.
671 	 */
672 	etime = ktime_sub_ns(etime, delta_ns);
673 	*vblank_time = etime;
674 
675 	DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
676 		      pipe, hpos, vpos,
677 		      (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
678 		      (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
679 		      duration_ns / 1000, i);
680 
681 	return true;
682 }
683 EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos);
684 
685 /**
686  * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
687  *                             vblank interval
688  * @dev: DRM device
689  * @pipe: index of CRTC whose vblank timestamp to retrieve
690  * @tvblank: Pointer to target time which should receive the timestamp
691  * @in_vblank_irq:
692  *     True when called from drm_crtc_handle_vblank().  Some drivers
693  *     need to apply some workarounds for gpu-specific vblank irq quirks
694  *     if flag is set.
695  *
696  * Fetches the system timestamp corresponding to the time of the most recent
697  * vblank interval on specified CRTC. May call into kms-driver to
698  * compute the timestamp with a high-precision GPU specific method.
699  *
700  * Returns zero if timestamp originates from uncorrected do_gettimeofday()
701  * call, i.e., it isn't very precisely locked to the true vblank.
702  *
703  * Returns:
704  * True if timestamp is considered to be very precise, false otherwise.
705  */
706 static bool
707 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
708 			  ktime_t *tvblank, bool in_vblank_irq)
709 {
710 	bool ret = false;
711 
712 	/* Define requested maximum error on timestamps (nanoseconds). */
713 	int max_error = (int) drm_timestamp_precision * 1000;
714 
715 	/* Query driver if possible and precision timestamping enabled. */
716 	if (dev->driver->get_vblank_timestamp && (max_error > 0))
717 		ret = dev->driver->get_vblank_timestamp(dev, pipe, &max_error,
718 							tvblank, in_vblank_irq);
719 
720 	/* GPU high precision timestamp query unsupported or failed.
721 	 * Return current monotonic/gettimeofday timestamp as best estimate.
722 	 */
723 	if (!ret)
724 		*tvblank = ktime_get();
725 
726 	return ret;
727 }
728 
729 /**
730  * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
731  * @crtc: which counter to retrieve
732  *
733  * Fetches the "cooked" vblank count value that represents the number of
734  * vblank events since the system was booted, including lost events due to
735  * modesetting activity. Note that this timer isn't correct against a racing
736  * vblank interrupt (since it only reports the software vblank counter), see
737  * drm_crtc_accurate_vblank_count() for such use-cases.
738  *
739  * Returns:
740  * The software vblank counter.
741  */
742 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
743 {
744 	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
745 }
746 EXPORT_SYMBOL(drm_crtc_vblank_count);
747 
748 /**
749  * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
750  *     system timestamp corresponding to that vblank counter value.
751  * @dev: DRM device
752  * @pipe: index of CRTC whose counter to retrieve
753  * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
754  *
755  * Fetches the "cooked" vblank count value that represents the number of
756  * vblank events since the system was booted, including lost events due to
757  * modesetting activity. Returns corresponding system timestamp of the time
758  * of the vblank interval that corresponds to the current vblank counter value.
759  *
760  * This is the legacy version of drm_crtc_vblank_count_and_time().
761  */
762 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
763 				     ktime_t *vblanktime)
764 {
765 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
766 	u64 vblank_count;
767 	unsigned int seq;
768 
769 	if (WARN_ON(pipe >= dev->num_crtcs)) {
770 		*vblanktime = 0;
771 		return 0;
772 	}
773 
774 	do {
775 		seq = read_seqbegin(&vblank->seqlock);
776 		vblank_count = vblank->count;
777 		*vblanktime = vblank->time;
778 	} while (read_seqretry(&vblank->seqlock, seq));
779 
780 	return vblank_count;
781 }
782 
783 /**
784  * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
785  *     and the system timestamp corresponding to that vblank counter value
786  * @crtc: which counter to retrieve
787  * @vblanktime: Pointer to time to receive the vblank timestamp.
788  *
789  * Fetches the "cooked" vblank count value that represents the number of
790  * vblank events since the system was booted, including lost events due to
791  * modesetting activity. Returns corresponding system timestamp of the time
792  * of the vblank interval that corresponds to the current vblank counter value.
793  */
794 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
795 				   ktime_t *vblanktime)
796 {
797 	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
798 					 vblanktime);
799 }
800 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
801 
802 static void send_vblank_event(struct drm_device *dev,
803 		struct drm_pending_vblank_event *e,
804 		u64 seq, ktime_t now)
805 {
806 	struct timespec64 tv;
807 
808 	switch (e->event.base.type) {
809 	case DRM_EVENT_VBLANK:
810 	case DRM_EVENT_FLIP_COMPLETE:
811 		tv = ktime_to_timespec64(now);
812 		e->event.vbl.sequence = seq;
813 		/*
814 		 * e->event is a user space structure, with hardcoded unsigned
815 		 * 32-bit seconds/microseconds. This is safe as we always use
816 		 * monotonic timestamps since linux-4.15
817 		 */
818 		e->event.vbl.tv_sec = tv.tv_sec;
819 		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
820 		break;
821 	case DRM_EVENT_CRTC_SEQUENCE:
822 		if (seq)
823 			e->event.seq.sequence = seq;
824 		e->event.seq.time_ns = ktime_to_ns(now);
825 		break;
826 	}
827 	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
828 	drm_send_event_locked(dev, &e->base);
829 }
830 
831 /**
832  * drm_crtc_arm_vblank_event - arm vblank event after pageflip
833  * @crtc: the source CRTC of the vblank event
834  * @e: the event to send
835  *
836  * A lot of drivers need to generate vblank events for the very next vblank
837  * interrupt. For example when the page flip interrupt happens when the page
838  * flip gets armed, but not when it actually executes within the next vblank
839  * period. This helper function implements exactly the required vblank arming
840  * behaviour.
841  *
842  * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
843  * atomic commit must ensure that the next vblank happens at exactly the same
844  * time as the atomic commit is committed to the hardware. This function itself
845  * does **not** protect against the next vblank interrupt racing with either this
846  * function call or the atomic commit operation. A possible sequence could be:
847  *
848  * 1. Driver commits new hardware state into vblank-synchronized registers.
849  * 2. A vblank happens, committing the hardware state. Also the corresponding
850  *    vblank interrupt is fired off and fully processed by the interrupt
851  *    handler.
852  * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
853  * 4. The event is only send out for the next vblank, which is wrong.
854  *
855  * An equivalent race can happen when the driver calls
856  * drm_crtc_arm_vblank_event() before writing out the new hardware state.
857  *
858  * The only way to make this work safely is to prevent the vblank from firing
859  * (and the hardware from committing anything else) until the entire atomic
860  * commit sequence has run to completion. If the hardware does not have such a
861  * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
862  * Instead drivers need to manually send out the event from their interrupt
863  * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
864  * possible race with the hardware committing the atomic update.
865  *
866  * Caller must hold a vblank reference for the event @e, which will be dropped
867  * when the next vblank arrives.
868  */
869 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
870 			       struct drm_pending_vblank_event *e)
871 {
872 	struct drm_device *dev = crtc->dev;
873 	unsigned int pipe = drm_crtc_index(crtc);
874 
875 	assert_spin_locked(&dev->event_lock);
876 
877 	e->pipe = pipe;
878 	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
879 	list_add_tail(&e->base.link, &dev->vblank_event_list);
880 }
881 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
882 
883 /**
884  * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
885  * @crtc: the source CRTC of the vblank event
886  * @e: the event to send
887  *
888  * Updates sequence # and timestamp on event for the most recently processed
889  * vblank, and sends it to userspace.  Caller must hold event lock.
890  *
891  * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
892  * situation, especially to send out events for atomic commit operations.
893  */
894 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
895 				struct drm_pending_vblank_event *e)
896 {
897 	struct drm_device *dev = crtc->dev;
898 	u64 seq;
899 	unsigned int pipe = drm_crtc_index(crtc);
900 	ktime_t now;
901 
902 	if (dev->num_crtcs > 0) {
903 		seq = drm_vblank_count_and_time(dev, pipe, &now);
904 	} else {
905 		seq = 0;
906 
907 		now = ktime_get();
908 	}
909 	e->pipe = pipe;
910 	send_vblank_event(dev, e, seq, now);
911 }
912 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
913 
914 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
915 {
916 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
917 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
918 
919 		if (crtc->funcs->enable_vblank)
920 			return crtc->funcs->enable_vblank(crtc);
921 	}
922 
923 	return dev->driver->enable_vblank(dev, pipe);
924 }
925 
926 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
927 {
928 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
929 	int ret = 0;
930 
931 	assert_spin_locked(&dev->vbl_lock);
932 
933 	spin_lock(&dev->vblank_time_lock);
934 
935 	if (!vblank->enabled) {
936 		/*
937 		 * Enable vblank irqs under vblank_time_lock protection.
938 		 * All vblank count & timestamp updates are held off
939 		 * until we are done reinitializing master counter and
940 		 * timestamps. Filtercode in drm_handle_vblank() will
941 		 * prevent double-accounting of same vblank interval.
942 		 */
943 		ret = __enable_vblank(dev, pipe);
944 		DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret);
945 		if (ret) {
946 			atomic_dec(&vblank->refcount);
947 		} else {
948 			drm_update_vblank_count(dev, pipe, 0);
949 			/* drm_update_vblank_count() includes a wmb so we just
950 			 * need to ensure that the compiler emits the write
951 			 * to mark the vblank as enabled after the call
952 			 * to drm_update_vblank_count().
953 			 */
954 			WRITE_ONCE(vblank->enabled, true);
955 		}
956 	}
957 
958 	spin_unlock(&dev->vblank_time_lock);
959 
960 	return ret;
961 }
962 
963 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
964 {
965 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
966 	unsigned long irqflags;
967 	int ret = 0;
968 
969 	if (!dev->num_crtcs)
970 		return -EINVAL;
971 
972 	if (WARN_ON(pipe >= dev->num_crtcs))
973 		return -EINVAL;
974 
975 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
976 	/* Going from 0->1 means we have to enable interrupts again */
977 	if (atomic_add_return(1, &vblank->refcount) == 1) {
978 		ret = drm_vblank_enable(dev, pipe);
979 	} else {
980 		if (!vblank->enabled) {
981 			atomic_dec(&vblank->refcount);
982 			ret = -EINVAL;
983 		}
984 	}
985 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
986 
987 	return ret;
988 }
989 
990 /**
991  * drm_crtc_vblank_get - get a reference count on vblank events
992  * @crtc: which CRTC to own
993  *
994  * Acquire a reference count on vblank events to avoid having them disabled
995  * while in use.
996  *
997  * Returns:
998  * Zero on success or a negative error code on failure.
999  */
1000 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1001 {
1002 	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1003 }
1004 EXPORT_SYMBOL(drm_crtc_vblank_get);
1005 
1006 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1007 {
1008 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1009 
1010 	if (WARN_ON(pipe >= dev->num_crtcs))
1011 		return;
1012 
1013 	if (WARN_ON(atomic_read(&vblank->refcount) == 0))
1014 		return;
1015 
1016 	/* Last user schedules interrupt disable */
1017 	if (atomic_dec_and_test(&vblank->refcount)) {
1018 		if (drm_vblank_offdelay == 0)
1019 			return;
1020 		else if (drm_vblank_offdelay < 0)
1021 			vblank_disable_fn(&vblank->disable_timer);
1022 		else if (!dev->vblank_disable_immediate)
1023 			mod_timer(&vblank->disable_timer,
1024 				  jiffies + ((drm_vblank_offdelay * HZ)/1000));
1025 	}
1026 }
1027 
1028 /**
1029  * drm_crtc_vblank_put - give up ownership of vblank events
1030  * @crtc: which counter to give up
1031  *
1032  * Release ownership of a given vblank counter, turning off interrupts
1033  * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1034  */
1035 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1036 {
1037 	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1038 }
1039 EXPORT_SYMBOL(drm_crtc_vblank_put);
1040 
1041 /**
1042  * drm_wait_one_vblank - wait for one vblank
1043  * @dev: DRM device
1044  * @pipe: CRTC index
1045  *
1046  * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1047  * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1048  * due to lack of driver support or because the crtc is off.
1049  *
1050  * This is the legacy version of drm_crtc_wait_one_vblank().
1051  */
1052 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1053 {
1054 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1055 	int ret;
1056 	u32 last;
1057 
1058 	if (WARN_ON(pipe >= dev->num_crtcs))
1059 		return;
1060 
1061 	ret = drm_vblank_get(dev, pipe);
1062 	if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret))
1063 		return;
1064 
1065 	last = drm_vblank_count(dev, pipe);
1066 
1067 	ret = wait_event_timeout(vblank->queue,
1068 				 last != drm_vblank_count(dev, pipe),
1069 				 msecs_to_jiffies(100));
1070 
1071 	WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1072 
1073 	drm_vblank_put(dev, pipe);
1074 }
1075 EXPORT_SYMBOL(drm_wait_one_vblank);
1076 
1077 /**
1078  * drm_crtc_wait_one_vblank - wait for one vblank
1079  * @crtc: DRM crtc
1080  *
1081  * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1082  * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1083  * due to lack of driver support or because the crtc is off.
1084  */
1085 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1086 {
1087 	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1088 }
1089 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1090 
1091 /**
1092  * drm_crtc_vblank_off - disable vblank events on a CRTC
1093  * @crtc: CRTC in question
1094  *
1095  * Drivers can use this function to shut down the vblank interrupt handling when
1096  * disabling a crtc. This function ensures that the latest vblank frame count is
1097  * stored so that drm_vblank_on can restore it again.
1098  *
1099  * Drivers must use this function when the hardware vblank counter can get
1100  * reset, e.g. when suspending or disabling the @crtc in general.
1101  */
1102 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1103 {
1104 	struct drm_device *dev = crtc->dev;
1105 	unsigned int pipe = drm_crtc_index(crtc);
1106 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1107 	struct drm_pending_vblank_event *e, *t;
1108 
1109 	ktime_t now;
1110 	unsigned long irqflags;
1111 	u64 seq;
1112 
1113 	if (WARN_ON(pipe >= dev->num_crtcs))
1114 		return;
1115 
1116 	spin_lock_irqsave(&dev->event_lock, irqflags);
1117 
1118 	spin_lock(&dev->vbl_lock);
1119 	DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1120 		      pipe, vblank->enabled, vblank->inmodeset);
1121 
1122 	/* Avoid redundant vblank disables without previous
1123 	 * drm_crtc_vblank_on(). */
1124 	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1125 		drm_vblank_disable_and_save(dev, pipe);
1126 
1127 	wake_up(&vblank->queue);
1128 
1129 	/*
1130 	 * Prevent subsequent drm_vblank_get() from re-enabling
1131 	 * the vblank interrupt by bumping the refcount.
1132 	 */
1133 	if (!vblank->inmodeset) {
1134 		atomic_inc(&vblank->refcount);
1135 		vblank->inmodeset = 1;
1136 	}
1137 	spin_unlock(&dev->vbl_lock);
1138 
1139 	/* Send any queued vblank events, lest the natives grow disquiet */
1140 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1141 
1142 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1143 		if (e->pipe != pipe)
1144 			continue;
1145 		DRM_DEBUG("Sending premature vblank event on disable: "
1146 			  "wanted %llu, current %llu\n",
1147 			  e->sequence, seq);
1148 		list_del(&e->base.link);
1149 		drm_vblank_put(dev, pipe);
1150 		send_vblank_event(dev, e, seq, now);
1151 	}
1152 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1153 
1154 	/* Will be reset by the modeset helpers when re-enabling the crtc by
1155 	 * calling drm_calc_timestamping_constants(). */
1156 	vblank->hwmode.crtc_clock = 0;
1157 }
1158 EXPORT_SYMBOL(drm_crtc_vblank_off);
1159 
1160 /**
1161  * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1162  * @crtc: CRTC in question
1163  *
1164  * Drivers can use this function to reset the vblank state to off at load time.
1165  * Drivers should use this together with the drm_crtc_vblank_off() and
1166  * drm_crtc_vblank_on() functions. The difference compared to
1167  * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1168  * and hence doesn't need to call any driver hooks.
1169  *
1170  * This is useful for recovering driver state e.g. on driver load, or on resume.
1171  */
1172 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1173 {
1174 	struct drm_device *dev = crtc->dev;
1175 	unsigned long irqflags;
1176 	unsigned int pipe = drm_crtc_index(crtc);
1177 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1178 
1179 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1180 	/*
1181 	 * Prevent subsequent drm_vblank_get() from enabling the vblank
1182 	 * interrupt by bumping the refcount.
1183 	 */
1184 	if (!vblank->inmodeset) {
1185 		atomic_inc(&vblank->refcount);
1186 		vblank->inmodeset = 1;
1187 	}
1188 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1189 
1190 	WARN_ON(!list_empty(&dev->vblank_event_list));
1191 }
1192 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1193 
1194 /**
1195  * drm_crtc_vblank_on - enable vblank events on a CRTC
1196  * @crtc: CRTC in question
1197  *
1198  * This functions restores the vblank interrupt state captured with
1199  * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1200  * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1201  * unbalanced and so can also be unconditionally called in driver load code to
1202  * reflect the current hardware state of the crtc.
1203  */
1204 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1205 {
1206 	struct drm_device *dev = crtc->dev;
1207 	unsigned int pipe = drm_crtc_index(crtc);
1208 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1209 	unsigned long irqflags;
1210 
1211 	if (WARN_ON(pipe >= dev->num_crtcs))
1212 		return;
1213 
1214 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1215 	DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1216 		      pipe, vblank->enabled, vblank->inmodeset);
1217 
1218 	/* Drop our private "prevent drm_vblank_get" refcount */
1219 	if (vblank->inmodeset) {
1220 		atomic_dec(&vblank->refcount);
1221 		vblank->inmodeset = 0;
1222 	}
1223 
1224 	drm_reset_vblank_timestamp(dev, pipe);
1225 
1226 	/*
1227 	 * re-enable interrupts if there are users left, or the
1228 	 * user wishes vblank interrupts to be enabled all the time.
1229 	 */
1230 	if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1231 		WARN_ON(drm_vblank_enable(dev, pipe));
1232 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1233 }
1234 EXPORT_SYMBOL(drm_crtc_vblank_on);
1235 
1236 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1237 					  unsigned int pipe)
1238 {
1239 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1240 
1241 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1242 	if (!dev->num_crtcs)
1243 		return;
1244 
1245 	if (WARN_ON(pipe >= dev->num_crtcs))
1246 		return;
1247 
1248 	/*
1249 	 * To avoid all the problems that might happen if interrupts
1250 	 * were enabled/disabled around or between these calls, we just
1251 	 * have the kernel take a reference on the CRTC (just once though
1252 	 * to avoid corrupting the count if multiple, mismatch calls occur),
1253 	 * so that interrupts remain enabled in the interim.
1254 	 */
1255 	if (!vblank->inmodeset) {
1256 		vblank->inmodeset = 0x1;
1257 		if (drm_vblank_get(dev, pipe) == 0)
1258 			vblank->inmodeset |= 0x2;
1259 	}
1260 }
1261 
1262 static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1263 					   unsigned int pipe)
1264 {
1265 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1266 	unsigned long irqflags;
1267 
1268 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1269 	if (!dev->num_crtcs)
1270 		return;
1271 
1272 	if (WARN_ON(pipe >= dev->num_crtcs))
1273 		return;
1274 
1275 	if (vblank->inmodeset) {
1276 		spin_lock_irqsave(&dev->vbl_lock, irqflags);
1277 		drm_reset_vblank_timestamp(dev, pipe);
1278 		spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1279 
1280 		if (vblank->inmodeset & 0x2)
1281 			drm_vblank_put(dev, pipe);
1282 
1283 		vblank->inmodeset = 0;
1284 	}
1285 }
1286 
1287 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1288 				 struct drm_file *file_priv)
1289 {
1290 	struct drm_modeset_ctl *modeset = data;
1291 	unsigned int pipe;
1292 
1293 	/* If drm_vblank_init() hasn't been called yet, just no-op */
1294 	if (!dev->num_crtcs)
1295 		return 0;
1296 
1297 	/* KMS drivers handle this internally */
1298 	if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1299 		return 0;
1300 
1301 	pipe = modeset->crtc;
1302 	if (pipe >= dev->num_crtcs)
1303 		return -EINVAL;
1304 
1305 	switch (modeset->cmd) {
1306 	case _DRM_PRE_MODESET:
1307 		drm_legacy_vblank_pre_modeset(dev, pipe);
1308 		break;
1309 	case _DRM_POST_MODESET:
1310 		drm_legacy_vblank_post_modeset(dev, pipe);
1311 		break;
1312 	default:
1313 		return -EINVAL;
1314 	}
1315 
1316 	return 0;
1317 }
1318 
1319 static inline bool vblank_passed(u64 seq, u64 ref)
1320 {
1321 	return (seq - ref) <= (1 << 23);
1322 }
1323 
1324 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1325 				  u64 req_seq,
1326 				  union drm_wait_vblank *vblwait,
1327 				  struct drm_file *file_priv)
1328 {
1329 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1330 	struct drm_pending_vblank_event *e;
1331 	ktime_t now;
1332 	unsigned long flags;
1333 	u64 seq;
1334 	int ret;
1335 
1336 	e = kzalloc(sizeof(*e), GFP_KERNEL);
1337 	if (e == NULL) {
1338 		ret = -ENOMEM;
1339 		goto err_put;
1340 	}
1341 
1342 	e->pipe = pipe;
1343 	e->event.base.type = DRM_EVENT_VBLANK;
1344 	e->event.base.length = sizeof(e->event.vbl);
1345 	e->event.vbl.user_data = vblwait->request.signal;
1346 	e->event.vbl.crtc_id = 0;
1347 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1348 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1349 		if (crtc)
1350 			e->event.vbl.crtc_id = crtc->base.id;
1351 	}
1352 
1353 	spin_lock_irqsave(&dev->event_lock, flags);
1354 
1355 	/*
1356 	 * drm_crtc_vblank_off() might have been called after we called
1357 	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1358 	 * vblank disable, so no need for further locking.  The reference from
1359 	 * drm_vblank_get() protects against vblank disable from another source.
1360 	 */
1361 	if (!READ_ONCE(vblank->enabled)) {
1362 		ret = -EINVAL;
1363 		goto err_unlock;
1364 	}
1365 
1366 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1367 					    &e->event.base);
1368 
1369 	if (ret)
1370 		goto err_unlock;
1371 
1372 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1373 
1374 	DRM_DEBUG("event on vblank count %llu, current %llu, crtc %u\n",
1375 		  req_seq, seq, pipe);
1376 
1377 	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1378 
1379 	e->sequence = req_seq;
1380 	if (vblank_passed(seq, req_seq)) {
1381 		drm_vblank_put(dev, pipe);
1382 		send_vblank_event(dev, e, seq, now);
1383 		vblwait->reply.sequence = seq;
1384 	} else {
1385 		/* drm_handle_vblank_events will call drm_vblank_put */
1386 		list_add_tail(&e->base.link, &dev->vblank_event_list);
1387 		vblwait->reply.sequence = req_seq;
1388 	}
1389 
1390 	spin_unlock_irqrestore(&dev->event_lock, flags);
1391 
1392 	return 0;
1393 
1394 err_unlock:
1395 	spin_unlock_irqrestore(&dev->event_lock, flags);
1396 	kfree(e);
1397 err_put:
1398 	drm_vblank_put(dev, pipe);
1399 	return ret;
1400 }
1401 
1402 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1403 {
1404 	if (vblwait->request.sequence)
1405 		return false;
1406 
1407 	return _DRM_VBLANK_RELATIVE ==
1408 		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1409 					  _DRM_VBLANK_EVENT |
1410 					  _DRM_VBLANK_NEXTONMISS));
1411 }
1412 
1413 /*
1414  * Widen a 32-bit param to 64-bits.
1415  *
1416  * \param narrow 32-bit value (missing upper 32 bits)
1417  * \param near 64-bit value that should be 'close' to near
1418  *
1419  * This function returns a 64-bit value using the lower 32-bits from
1420  * 'narrow' and constructing the upper 32-bits so that the result is
1421  * as close as possible to 'near'.
1422  */
1423 
1424 static u64 widen_32_to_64(u32 narrow, u64 near)
1425 {
1426 	return near + (s32) (narrow - near);
1427 }
1428 
1429 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1430 				  struct drm_wait_vblank_reply *reply)
1431 {
1432 	ktime_t now;
1433 	struct timespec64 ts;
1434 
1435 	/*
1436 	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1437 	 * to store the seconds. This is safe as we always use monotonic
1438 	 * timestamps since linux-4.15.
1439 	 */
1440 	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1441 	ts = ktime_to_timespec64(now);
1442 	reply->tval_sec = (u32)ts.tv_sec;
1443 	reply->tval_usec = ts.tv_nsec / 1000;
1444 }
1445 
1446 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1447 			  struct drm_file *file_priv)
1448 {
1449 	struct drm_crtc *crtc;
1450 	struct drm_vblank_crtc *vblank;
1451 	union drm_wait_vblank *vblwait = data;
1452 	int ret;
1453 	u64 req_seq, seq;
1454 	unsigned int pipe_index;
1455 	unsigned int flags, pipe, high_pipe;
1456 
1457 	if (!dev->irq_enabled)
1458 		return -EINVAL;
1459 
1460 	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1461 		return -EINVAL;
1462 
1463 	if (vblwait->request.type &
1464 	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1465 	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
1466 		DRM_ERROR("Unsupported type value 0x%x, supported mask 0x%x\n",
1467 			  vblwait->request.type,
1468 			  (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1469 			   _DRM_VBLANK_HIGH_CRTC_MASK));
1470 		return -EINVAL;
1471 	}
1472 
1473 	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1474 	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1475 	if (high_pipe)
1476 		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1477 	else
1478 		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1479 
1480 	/* Convert lease-relative crtc index into global crtc index */
1481 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1482 		pipe = 0;
1483 		drm_for_each_crtc(crtc, dev) {
1484 			if (drm_lease_held(file_priv, crtc->base.id)) {
1485 				if (pipe_index == 0)
1486 					break;
1487 				pipe_index--;
1488 			}
1489 			pipe++;
1490 		}
1491 	} else {
1492 		pipe = pipe_index;
1493 	}
1494 
1495 	if (pipe >= dev->num_crtcs)
1496 		return -EINVAL;
1497 
1498 	vblank = &dev->vblank[pipe];
1499 
1500 	/* If the counter is currently enabled and accurate, short-circuit
1501 	 * queries to return the cached timestamp of the last vblank.
1502 	 */
1503 	if (dev->vblank_disable_immediate &&
1504 	    drm_wait_vblank_is_query(vblwait) &&
1505 	    READ_ONCE(vblank->enabled)) {
1506 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1507 		return 0;
1508 	}
1509 
1510 	ret = drm_vblank_get(dev, pipe);
1511 	if (ret) {
1512 		DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1513 		return ret;
1514 	}
1515 	seq = drm_vblank_count(dev, pipe);
1516 
1517 	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1518 	case _DRM_VBLANK_RELATIVE:
1519 		req_seq = seq + vblwait->request.sequence;
1520 		vblwait->request.sequence = req_seq;
1521 		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1522 		break;
1523 	case _DRM_VBLANK_ABSOLUTE:
1524 		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1525 		break;
1526 	default:
1527 		ret = -EINVAL;
1528 		goto done;
1529 	}
1530 
1531 	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1532 	    vblank_passed(seq, req_seq)) {
1533 		req_seq = seq + 1;
1534 		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1535 		vblwait->request.sequence = req_seq;
1536 	}
1537 
1538 	if (flags & _DRM_VBLANK_EVENT) {
1539 		/* must hold on to the vblank ref until the event fires
1540 		 * drm_vblank_put will be called asynchronously
1541 		 */
1542 		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1543 	}
1544 
1545 	if (req_seq != seq) {
1546 		DRM_DEBUG("waiting on vblank count %llu, crtc %u\n",
1547 			  req_seq, pipe);
1548 		DRM_WAIT_ON(ret, vblank->queue, 3 * HZ,
1549 			    vblank_passed(drm_vblank_count(dev, pipe),
1550 					  req_seq) ||
1551 			    !READ_ONCE(vblank->enabled));
1552 	}
1553 
1554 	if (ret != -EINTR) {
1555 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1556 
1557 		DRM_DEBUG("crtc %d returning %u to client\n",
1558 			  pipe, vblwait->reply.sequence);
1559 	} else {
1560 		DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe);
1561 	}
1562 
1563 done:
1564 	drm_vblank_put(dev, pipe);
1565 	return ret;
1566 }
1567 
1568 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1569 {
1570 	struct drm_pending_vblank_event *e, *t;
1571 	ktime_t now;
1572 	u64 seq;
1573 
1574 	assert_spin_locked(&dev->event_lock);
1575 
1576 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1577 
1578 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1579 		if (e->pipe != pipe)
1580 			continue;
1581 		if (!vblank_passed(seq, e->sequence))
1582 			continue;
1583 
1584 		DRM_DEBUG("vblank event on %llu, current %llu\n",
1585 			  e->sequence, seq);
1586 
1587 		list_del(&e->base.link);
1588 		drm_vblank_put(dev, pipe);
1589 		send_vblank_event(dev, e, seq, now);
1590 	}
1591 
1592 	trace_drm_vblank_event(pipe, seq);
1593 }
1594 
1595 /**
1596  * drm_handle_vblank - handle a vblank event
1597  * @dev: DRM device
1598  * @pipe: index of CRTC where this event occurred
1599  *
1600  * Drivers should call this routine in their vblank interrupt handlers to
1601  * update the vblank counter and send any signals that may be pending.
1602  *
1603  * This is the legacy version of drm_crtc_handle_vblank().
1604  */
1605 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1606 {
1607 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1608 	unsigned long irqflags;
1609 	bool disable_irq;
1610 
1611 	if (WARN_ON_ONCE(!dev->num_crtcs))
1612 		return false;
1613 
1614 	if (WARN_ON(pipe >= dev->num_crtcs))
1615 		return false;
1616 
1617 	spin_lock_irqsave(&dev->event_lock, irqflags);
1618 
1619 	/* Need timestamp lock to prevent concurrent execution with
1620 	 * vblank enable/disable, as this would cause inconsistent
1621 	 * or corrupted timestamps and vblank counts.
1622 	 */
1623 	spin_lock(&dev->vblank_time_lock);
1624 
1625 	/* Vblank irq handling disabled. Nothing to do. */
1626 	if (!vblank->enabled) {
1627 		spin_unlock(&dev->vblank_time_lock);
1628 		spin_unlock_irqrestore(&dev->event_lock, irqflags);
1629 		return false;
1630 	}
1631 
1632 	drm_update_vblank_count(dev, pipe, true);
1633 
1634 	spin_unlock(&dev->vblank_time_lock);
1635 
1636 	wake_up(&vblank->queue);
1637 
1638 	/* With instant-off, we defer disabling the interrupt until after
1639 	 * we finish processing the following vblank after all events have
1640 	 * been signaled. The disable has to be last (after
1641 	 * drm_handle_vblank_events) so that the timestamp is always accurate.
1642 	 */
1643 	disable_irq = (dev->vblank_disable_immediate &&
1644 		       drm_vblank_offdelay > 0 &&
1645 		       !atomic_read(&vblank->refcount));
1646 
1647 	drm_handle_vblank_events(dev, pipe);
1648 
1649 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1650 
1651 	if (disable_irq)
1652 		vblank_disable_fn(&vblank->disable_timer);
1653 
1654 	return true;
1655 }
1656 EXPORT_SYMBOL(drm_handle_vblank);
1657 
1658 /**
1659  * drm_crtc_handle_vblank - handle a vblank event
1660  * @crtc: where this event occurred
1661  *
1662  * Drivers should call this routine in their vblank interrupt handlers to
1663  * update the vblank counter and send any signals that may be pending.
1664  *
1665  * This is the native KMS version of drm_handle_vblank().
1666  *
1667  * Returns:
1668  * True if the event was successfully handled, false on failure.
1669  */
1670 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1671 {
1672 	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1673 }
1674 EXPORT_SYMBOL(drm_crtc_handle_vblank);
1675 
1676 /*
1677  * Get crtc VBLANK count.
1678  *
1679  * \param dev DRM device
1680  * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
1681  * \param file_priv drm file private for the user's open file descriptor
1682  */
1683 
1684 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
1685 				struct drm_file *file_priv)
1686 {
1687 	struct drm_crtc *crtc;
1688 	struct drm_vblank_crtc *vblank;
1689 	int pipe;
1690 	struct drm_crtc_get_sequence *get_seq = data;
1691 	ktime_t now;
1692 	bool vblank_enabled;
1693 	int ret;
1694 
1695 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
1696 		return -EINVAL;
1697 
1698 	if (!dev->irq_enabled)
1699 		return -EINVAL;
1700 
1701 	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
1702 	if (!crtc)
1703 		return -ENOENT;
1704 
1705 	pipe = drm_crtc_index(crtc);
1706 
1707 	vblank = &dev->vblank[pipe];
1708 	vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
1709 
1710 	if (!vblank_enabled) {
1711 		ret = drm_crtc_vblank_get(crtc);
1712 		if (ret) {
1713 			DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1714 			return ret;
1715 		}
1716 	}
1717 	drm_modeset_lock(&crtc->mutex, NULL);
1718 	if (crtc->state)
1719 		get_seq->active = crtc->state->enable;
1720 	else
1721 		get_seq->active = crtc->enabled;
1722 	drm_modeset_unlock(&crtc->mutex);
1723 	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1724 	get_seq->sequence_ns = ktime_to_ns(now);
1725 	if (!vblank_enabled)
1726 		drm_crtc_vblank_put(crtc);
1727 	return 0;
1728 }
1729 
1730 /*
1731  * Queue a event for VBLANK sequence
1732  *
1733  * \param dev DRM device
1734  * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
1735  * \param file_priv drm file private for the user's open file descriptor
1736  */
1737 
1738 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
1739 				  struct drm_file *file_priv)
1740 {
1741 	struct drm_crtc *crtc;
1742 	struct drm_vblank_crtc *vblank;
1743 	int pipe;
1744 	struct drm_crtc_queue_sequence *queue_seq = data;
1745 	ktime_t now;
1746 	struct drm_pending_vblank_event *e;
1747 	u32 flags;
1748 	u64 seq;
1749 	u64 req_seq;
1750 	int ret;
1751 	unsigned long spin_flags;
1752 
1753 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
1754 		return -EINVAL;
1755 
1756 	if (!dev->irq_enabled)
1757 		return -EINVAL;
1758 
1759 	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
1760 	if (!crtc)
1761 		return -ENOENT;
1762 
1763 	flags = queue_seq->flags;
1764 	/* Check valid flag bits */
1765 	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
1766 		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
1767 		return -EINVAL;
1768 
1769 	pipe = drm_crtc_index(crtc);
1770 
1771 	vblank = &dev->vblank[pipe];
1772 
1773 	e = kzalloc(sizeof(*e), GFP_KERNEL);
1774 	if (e == NULL)
1775 		return -ENOMEM;
1776 
1777 	ret = drm_crtc_vblank_get(crtc);
1778 	if (ret) {
1779 		DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1780 		goto err_free;
1781 	}
1782 
1783 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1784 	req_seq = queue_seq->sequence;
1785 
1786 	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
1787 		req_seq += seq;
1788 
1789 	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq))
1790 		req_seq = seq + 1;
1791 
1792 	e->pipe = pipe;
1793 	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
1794 	e->event.base.length = sizeof(e->event.seq);
1795 	e->event.seq.user_data = queue_seq->user_data;
1796 
1797 	spin_lock_irqsave(&dev->event_lock, spin_flags);
1798 
1799 	/*
1800 	 * drm_crtc_vblank_off() might have been called after we called
1801 	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1802 	 * vblank disable, so no need for further locking.  The reference from
1803 	 * drm_crtc_vblank_get() protects against vblank disable from another source.
1804 	 */
1805 	if (!READ_ONCE(vblank->enabled)) {
1806 		ret = -EINVAL;
1807 		goto err_unlock;
1808 	}
1809 
1810 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1811 					    &e->event.base);
1812 
1813 	if (ret)
1814 		goto err_unlock;
1815 
1816 	e->sequence = req_seq;
1817 
1818 	if (vblank_passed(seq, req_seq)) {
1819 		drm_crtc_vblank_put(crtc);
1820 		send_vblank_event(dev, e, seq, now);
1821 		queue_seq->sequence = seq;
1822 	} else {
1823 		/* drm_handle_vblank_events will call drm_vblank_put */
1824 		list_add_tail(&e->base.link, &dev->vblank_event_list);
1825 		queue_seq->sequence = req_seq;
1826 	}
1827 
1828 	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
1829 	return 0;
1830 
1831 err_unlock:
1832 	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
1833 	drm_crtc_vblank_put(crtc);
1834 err_free:
1835 	kfree(e);
1836 	return ret;
1837 }
1838