1 /* 2 * Copyright (C) 2011-2013 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 */ 23 24 #include <linux/errno.h> 25 #include <linux/export.h> 26 #include <linux/kernel.h> 27 #include <drm/drmP.h> 28 #include <drm/drm_rect.h> 29 30 /** 31 * drm_rect_intersect - intersect two rectangles 32 * @r1: first rectangle 33 * @r2: second rectangle 34 * 35 * Calculate the intersection of rectangles @r1 and @r2. 36 * @r1 will be overwritten with the intersection. 37 * 38 * RETURNS: 39 * %true if rectangle @r1 is still visible after the operation, 40 * %false otherwise. 41 */ 42 bool drm_rect_intersect(struct drm_rect *r1, const struct drm_rect *r2) 43 { 44 r1->x1 = max(r1->x1, r2->x1); 45 r1->y1 = max(r1->y1, r2->y1); 46 r1->x2 = min(r1->x2, r2->x2); 47 r1->y2 = min(r1->y2, r2->y2); 48 49 return drm_rect_visible(r1); 50 } 51 EXPORT_SYMBOL(drm_rect_intersect); 52 53 /** 54 * drm_rect_clip_scaled - perform a scaled clip operation 55 * @src: source window rectangle 56 * @dst: destination window rectangle 57 * @clip: clip rectangle 58 * @hscale: horizontal scaling factor 59 * @vscale: vertical scaling factor 60 * 61 * Clip rectangle @dst by rectangle @clip. Clip rectangle @src by the 62 * same amounts multiplied by @hscale and @vscale. 63 * 64 * RETURNS: 65 * %true if rectangle @dst is still visible after being clipped, 66 * %false otherwise 67 */ 68 bool drm_rect_clip_scaled(struct drm_rect *src, struct drm_rect *dst, 69 const struct drm_rect *clip, 70 int hscale, int vscale) 71 { 72 int diff; 73 74 diff = clip->x1 - dst->x1; 75 if (diff > 0) { 76 int64_t tmp = src->x1 + (int64_t) diff * hscale; 77 src->x1 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX); 78 } 79 diff = clip->y1 - dst->y1; 80 if (diff > 0) { 81 int64_t tmp = src->y1 + (int64_t) diff * vscale; 82 src->y1 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX); 83 } 84 diff = dst->x2 - clip->x2; 85 if (diff > 0) { 86 int64_t tmp = src->x2 - (int64_t) diff * hscale; 87 src->x2 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX); 88 } 89 diff = dst->y2 - clip->y2; 90 if (diff > 0) { 91 int64_t tmp = src->y2 - (int64_t) diff * vscale; 92 src->y2 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX); 93 } 94 95 return drm_rect_intersect(dst, clip); 96 } 97 EXPORT_SYMBOL(drm_rect_clip_scaled); 98 99 static int drm_calc_scale(int src, int dst) 100 { 101 int scale = 0; 102 103 if (WARN_ON(src < 0 || dst < 0)) 104 return -EINVAL; 105 106 if (dst == 0) 107 return 0; 108 109 scale = src / dst; 110 111 return scale; 112 } 113 114 /** 115 * drm_rect_calc_hscale - calculate the horizontal scaling factor 116 * @src: source window rectangle 117 * @dst: destination window rectangle 118 * @min_hscale: minimum allowed horizontal scaling factor 119 * @max_hscale: maximum allowed horizontal scaling factor 120 * 121 * Calculate the horizontal scaling factor as 122 * (@src width) / (@dst width). 123 * 124 * RETURNS: 125 * The horizontal scaling factor, or errno of out of limits. 126 */ 127 int drm_rect_calc_hscale(const struct drm_rect *src, 128 const struct drm_rect *dst, 129 int min_hscale, int max_hscale) 130 { 131 int src_w = drm_rect_width(src); 132 int dst_w = drm_rect_width(dst); 133 int hscale = drm_calc_scale(src_w, dst_w); 134 135 if (hscale < 0 || dst_w == 0) 136 return hscale; 137 138 if (hscale < min_hscale || hscale > max_hscale) 139 return -ERANGE; 140 141 return hscale; 142 } 143 EXPORT_SYMBOL(drm_rect_calc_hscale); 144 145 /** 146 * drm_rect_calc_vscale - calculate the vertical scaling factor 147 * @src: source window rectangle 148 * @dst: destination window rectangle 149 * @min_vscale: minimum allowed vertical scaling factor 150 * @max_vscale: maximum allowed vertical scaling factor 151 * 152 * Calculate the vertical scaling factor as 153 * (@src height) / (@dst height). 154 * 155 * RETURNS: 156 * The vertical scaling factor, or errno of out of limits. 157 */ 158 int drm_rect_calc_vscale(const struct drm_rect *src, 159 const struct drm_rect *dst, 160 int min_vscale, int max_vscale) 161 { 162 int src_h = drm_rect_height(src); 163 int dst_h = drm_rect_height(dst); 164 int vscale = drm_calc_scale(src_h, dst_h); 165 166 if (vscale < 0 || dst_h == 0) 167 return vscale; 168 169 if (vscale < min_vscale || vscale > max_vscale) 170 return -ERANGE; 171 172 return vscale; 173 } 174 EXPORT_SYMBOL(drm_rect_calc_vscale); 175 176 /** 177 * drm_calc_hscale_relaxed - calculate the horizontal scaling factor 178 * @src: source window rectangle 179 * @dst: destination window rectangle 180 * @min_hscale: minimum allowed horizontal scaling factor 181 * @max_hscale: maximum allowed horizontal scaling factor 182 * 183 * Calculate the horizontal scaling factor as 184 * (@src width) / (@dst width). 185 * 186 * If the calculated scaling factor is below @min_vscale, 187 * decrease the height of rectangle @dst to compensate. 188 * 189 * If the calculated scaling factor is above @max_vscale, 190 * decrease the height of rectangle @src to compensate. 191 * 192 * RETURNS: 193 * The horizontal scaling factor. 194 */ 195 int drm_rect_calc_hscale_relaxed(struct drm_rect *src, 196 struct drm_rect *dst, 197 int min_hscale, int max_hscale) 198 { 199 int src_w = drm_rect_width(src); 200 int dst_w = drm_rect_width(dst); 201 int hscale = drm_calc_scale(src_w, dst_w); 202 203 if (hscale < 0 || dst_w == 0) 204 return hscale; 205 206 if (hscale < min_hscale) { 207 int max_dst_w = src_w / min_hscale; 208 209 drm_rect_adjust_size(dst, max_dst_w - dst_w, 0); 210 211 return min_hscale; 212 } 213 214 if (hscale > max_hscale) { 215 int max_src_w = dst_w * max_hscale; 216 217 drm_rect_adjust_size(src, max_src_w - src_w, 0); 218 219 return max_hscale; 220 } 221 222 return hscale; 223 } 224 EXPORT_SYMBOL(drm_rect_calc_hscale_relaxed); 225 226 /** 227 * drm_rect_calc_vscale_relaxed - calculate the vertical scaling factor 228 * @src: source window rectangle 229 * @dst: destination window rectangle 230 * @min_vscale: minimum allowed vertical scaling factor 231 * @max_vscale: maximum allowed vertical scaling factor 232 * 233 * Calculate the vertical scaling factor as 234 * (@src height) / (@dst height). 235 * 236 * If the calculated scaling factor is below @min_vscale, 237 * decrease the height of rectangle @dst to compensate. 238 * 239 * If the calculated scaling factor is above @max_vscale, 240 * decrease the height of rectangle @src to compensate. 241 * 242 * RETURNS: 243 * The vertical scaling factor. 244 */ 245 int drm_rect_calc_vscale_relaxed(struct drm_rect *src, 246 struct drm_rect *dst, 247 int min_vscale, int max_vscale) 248 { 249 int src_h = drm_rect_height(src); 250 int dst_h = drm_rect_height(dst); 251 int vscale = drm_calc_scale(src_h, dst_h); 252 253 if (vscale < 0 || dst_h == 0) 254 return vscale; 255 256 if (vscale < min_vscale) { 257 int max_dst_h = src_h / min_vscale; 258 259 drm_rect_adjust_size(dst, 0, max_dst_h - dst_h); 260 261 return min_vscale; 262 } 263 264 if (vscale > max_vscale) { 265 int max_src_h = dst_h * max_vscale; 266 267 drm_rect_adjust_size(src, 0, max_src_h - src_h); 268 269 return max_vscale; 270 } 271 272 return vscale; 273 } 274 EXPORT_SYMBOL(drm_rect_calc_vscale_relaxed); 275 276 /** 277 * drm_rect_debug_print - print the rectangle information 278 * @prefix: prefix string 279 * @r: rectangle to print 280 * @fixed_point: rectangle is in 16.16 fixed point format 281 */ 282 void drm_rect_debug_print(const char *prefix, const struct drm_rect *r, bool fixed_point) 283 { 284 if (fixed_point) 285 DRM_DEBUG_KMS("%s" DRM_RECT_FP_FMT "\n", prefix, DRM_RECT_FP_ARG(r)); 286 else 287 DRM_DEBUG_KMS("%s" DRM_RECT_FMT "\n", prefix, DRM_RECT_ARG(r)); 288 } 289 EXPORT_SYMBOL(drm_rect_debug_print); 290 291 /** 292 * drm_rect_rotate - Rotate the rectangle 293 * @r: rectangle to be rotated 294 * @width: Width of the coordinate space 295 * @height: Height of the coordinate space 296 * @rotation: Transformation to be applied 297 * 298 * Apply @rotation to the coordinates of rectangle @r. 299 * 300 * @width and @height combined with @rotation define 301 * the location of the new origin. 302 * 303 * @width correcsponds to the horizontal and @height 304 * to the vertical axis of the untransformed coordinate 305 * space. 306 */ 307 void drm_rect_rotate(struct drm_rect *r, 308 int width, int height, 309 unsigned int rotation) 310 { 311 struct drm_rect tmp; 312 313 if (rotation & (DRM_REFLECT_X | DRM_REFLECT_Y)) { 314 tmp = *r; 315 316 if (rotation & DRM_REFLECT_X) { 317 r->x1 = width - tmp.x2; 318 r->x2 = width - tmp.x1; 319 } 320 321 if (rotation & DRM_REFLECT_Y) { 322 r->y1 = height - tmp.y2; 323 r->y2 = height - tmp.y1; 324 } 325 } 326 327 switch (rotation & DRM_ROTATE_MASK) { 328 case DRM_ROTATE_0: 329 break; 330 case DRM_ROTATE_90: 331 tmp = *r; 332 r->x1 = tmp.y1; 333 r->x2 = tmp.y2; 334 r->y1 = width - tmp.x2; 335 r->y2 = width - tmp.x1; 336 break; 337 case DRM_ROTATE_180: 338 tmp = *r; 339 r->x1 = width - tmp.x2; 340 r->x2 = width - tmp.x1; 341 r->y1 = height - tmp.y2; 342 r->y2 = height - tmp.y1; 343 break; 344 case DRM_ROTATE_270: 345 tmp = *r; 346 r->x1 = height - tmp.y2; 347 r->x2 = height - tmp.y1; 348 r->y1 = tmp.x1; 349 r->y2 = tmp.x2; 350 break; 351 default: 352 break; 353 } 354 } 355 EXPORT_SYMBOL(drm_rect_rotate); 356 357 /** 358 * drm_rect_rotate_inv - Inverse rotate the rectangle 359 * @r: rectangle to be rotated 360 * @width: Width of the coordinate space 361 * @height: Height of the coordinate space 362 * @rotation: Transformation whose inverse is to be applied 363 * 364 * Apply the inverse of @rotation to the coordinates 365 * of rectangle @r. 366 * 367 * @width and @height combined with @rotation define 368 * the location of the new origin. 369 * 370 * @width correcsponds to the horizontal and @height 371 * to the vertical axis of the original untransformed 372 * coordinate space, so that you never have to flip 373 * them when doing a rotatation and its inverse. 374 * That is, if you do :: 375 * 376 * drm_rotate(&r, width, height, rotation); 377 * drm_rotate_inv(&r, width, height, rotation); 378 * 379 * you will always get back the original rectangle. 380 */ 381 void drm_rect_rotate_inv(struct drm_rect *r, 382 int width, int height, 383 unsigned int rotation) 384 { 385 struct drm_rect tmp; 386 387 switch (rotation & DRM_ROTATE_MASK) { 388 case DRM_ROTATE_0: 389 break; 390 case DRM_ROTATE_90: 391 tmp = *r; 392 r->x1 = width - tmp.y2; 393 r->x2 = width - tmp.y1; 394 r->y1 = tmp.x1; 395 r->y2 = tmp.x2; 396 break; 397 case DRM_ROTATE_180: 398 tmp = *r; 399 r->x1 = width - tmp.x2; 400 r->x2 = width - tmp.x1; 401 r->y1 = height - tmp.y2; 402 r->y2 = height - tmp.y1; 403 break; 404 case DRM_ROTATE_270: 405 tmp = *r; 406 r->x1 = tmp.y1; 407 r->x2 = tmp.y2; 408 r->y1 = height - tmp.x2; 409 r->y2 = height - tmp.x1; 410 break; 411 default: 412 break; 413 } 414 415 if (rotation & (DRM_REFLECT_X | DRM_REFLECT_Y)) { 416 tmp = *r; 417 418 if (rotation & DRM_REFLECT_X) { 419 r->x1 = width - tmp.x2; 420 r->x2 = width - tmp.x1; 421 } 422 423 if (rotation & DRM_REFLECT_Y) { 424 r->y1 = height - tmp.y2; 425 r->y2 = height - tmp.y1; 426 } 427 } 428 } 429 EXPORT_SYMBOL(drm_rect_rotate_inv); 430