1 /* 2 * Copyright © 2012 Red Hat 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Dave Airlie <airlied@redhat.com> 25 * Rob Clark <rob.clark@linaro.org> 26 * 27 */ 28 29 #include <linux/export.h> 30 #include <linux/dma-buf.h> 31 #include <linux/rbtree.h> 32 #include <linux/module.h> 33 34 #include <drm/drm.h> 35 #include <drm/drm_drv.h> 36 #include <drm/drm_file.h> 37 #include <drm/drm_framebuffer.h> 38 #include <drm/drm_gem.h> 39 #include <drm/drm_prime.h> 40 41 #include "drm_internal.h" 42 43 MODULE_IMPORT_NS(DMA_BUF); 44 45 /** 46 * DOC: overview and lifetime rules 47 * 48 * Similar to GEM global names, PRIME file descriptors are also used to share 49 * buffer objects across processes. They offer additional security: as file 50 * descriptors must be explicitly sent over UNIX domain sockets to be shared 51 * between applications, they can't be guessed like the globally unique GEM 52 * names. 53 * 54 * Drivers that support the PRIME API implement the 55 * &drm_driver.prime_handle_to_fd and &drm_driver.prime_fd_to_handle operations. 56 * GEM based drivers must use drm_gem_prime_handle_to_fd() and 57 * drm_gem_prime_fd_to_handle() to implement these. For GEM based drivers the 58 * actual driver interfaces is provided through the &drm_gem_object_funcs.export 59 * and &drm_driver.gem_prime_import hooks. 60 * 61 * &dma_buf_ops implementations for GEM drivers are all individually exported 62 * for drivers which need to overwrite or reimplement some of them. 63 * 64 * Reference Counting for GEM Drivers 65 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 66 * 67 * On the export the &dma_buf holds a reference to the exported buffer object, 68 * usually a &drm_gem_object. It takes this reference in the PRIME_HANDLE_TO_FD 69 * IOCTL, when it first calls &drm_gem_object_funcs.export 70 * and stores the exporting GEM object in the &dma_buf.priv field. This 71 * reference needs to be released when the final reference to the &dma_buf 72 * itself is dropped and its &dma_buf_ops.release function is called. For 73 * GEM-based drivers, the &dma_buf should be exported using 74 * drm_gem_dmabuf_export() and then released by drm_gem_dmabuf_release(). 75 * 76 * Thus the chain of references always flows in one direction, avoiding loops: 77 * importing GEM object -> dma-buf -> exported GEM bo. A further complication 78 * are the lookup caches for import and export. These are required to guarantee 79 * that any given object will always have only one unique userspace handle. This 80 * is required to allow userspace to detect duplicated imports, since some GEM 81 * drivers do fail command submissions if a given buffer object is listed more 82 * than once. These import and export caches in &drm_prime_file_private only 83 * retain a weak reference, which is cleaned up when the corresponding object is 84 * released. 85 * 86 * Self-importing: If userspace is using PRIME as a replacement for flink then 87 * it will get a fd->handle request for a GEM object that it created. Drivers 88 * should detect this situation and return back the underlying object from the 89 * dma-buf private. For GEM based drivers this is handled in 90 * drm_gem_prime_import() already. 91 */ 92 93 struct drm_prime_member { 94 struct dma_buf *dma_buf; 95 uint32_t handle; 96 97 struct rb_node dmabuf_rb; 98 struct rb_node handle_rb; 99 }; 100 101 static int drm_prime_add_buf_handle(struct drm_prime_file_private *prime_fpriv, 102 struct dma_buf *dma_buf, uint32_t handle) 103 { 104 struct drm_prime_member *member; 105 struct rb_node **p, *rb; 106 107 member = kmalloc(sizeof(*member), GFP_KERNEL); 108 if (!member) 109 return -ENOMEM; 110 111 get_dma_buf(dma_buf); 112 member->dma_buf = dma_buf; 113 member->handle = handle; 114 115 rb = NULL; 116 p = &prime_fpriv->dmabufs.rb_node; 117 while (*p) { 118 struct drm_prime_member *pos; 119 120 rb = *p; 121 pos = rb_entry(rb, struct drm_prime_member, dmabuf_rb); 122 if (dma_buf > pos->dma_buf) 123 p = &rb->rb_right; 124 else 125 p = &rb->rb_left; 126 } 127 rb_link_node(&member->dmabuf_rb, rb, p); 128 rb_insert_color(&member->dmabuf_rb, &prime_fpriv->dmabufs); 129 130 rb = NULL; 131 p = &prime_fpriv->handles.rb_node; 132 while (*p) { 133 struct drm_prime_member *pos; 134 135 rb = *p; 136 pos = rb_entry(rb, struct drm_prime_member, handle_rb); 137 if (handle > pos->handle) 138 p = &rb->rb_right; 139 else 140 p = &rb->rb_left; 141 } 142 rb_link_node(&member->handle_rb, rb, p); 143 rb_insert_color(&member->handle_rb, &prime_fpriv->handles); 144 145 return 0; 146 } 147 148 static struct dma_buf *drm_prime_lookup_buf_by_handle(struct drm_prime_file_private *prime_fpriv, 149 uint32_t handle) 150 { 151 struct rb_node *rb; 152 153 rb = prime_fpriv->handles.rb_node; 154 while (rb) { 155 struct drm_prime_member *member; 156 157 member = rb_entry(rb, struct drm_prime_member, handle_rb); 158 if (member->handle == handle) 159 return member->dma_buf; 160 else if (member->handle < handle) 161 rb = rb->rb_right; 162 else 163 rb = rb->rb_left; 164 } 165 166 return NULL; 167 } 168 169 static int drm_prime_lookup_buf_handle(struct drm_prime_file_private *prime_fpriv, 170 struct dma_buf *dma_buf, 171 uint32_t *handle) 172 { 173 struct rb_node *rb; 174 175 rb = prime_fpriv->dmabufs.rb_node; 176 while (rb) { 177 struct drm_prime_member *member; 178 179 member = rb_entry(rb, struct drm_prime_member, dmabuf_rb); 180 if (member->dma_buf == dma_buf) { 181 *handle = member->handle; 182 return 0; 183 } else if (member->dma_buf < dma_buf) { 184 rb = rb->rb_right; 185 } else { 186 rb = rb->rb_left; 187 } 188 } 189 190 return -ENOENT; 191 } 192 193 void drm_prime_remove_buf_handle(struct drm_prime_file_private *prime_fpriv, 194 uint32_t handle) 195 { 196 struct rb_node *rb; 197 198 mutex_lock(&prime_fpriv->lock); 199 200 rb = prime_fpriv->handles.rb_node; 201 while (rb) { 202 struct drm_prime_member *member; 203 204 member = rb_entry(rb, struct drm_prime_member, handle_rb); 205 if (member->handle == handle) { 206 rb_erase(&member->handle_rb, &prime_fpriv->handles); 207 rb_erase(&member->dmabuf_rb, &prime_fpriv->dmabufs); 208 209 dma_buf_put(member->dma_buf); 210 kfree(member); 211 break; 212 } else if (member->handle < handle) { 213 rb = rb->rb_right; 214 } else { 215 rb = rb->rb_left; 216 } 217 } 218 219 mutex_unlock(&prime_fpriv->lock); 220 } 221 222 void drm_prime_init_file_private(struct drm_prime_file_private *prime_fpriv) 223 { 224 mutex_init(&prime_fpriv->lock); 225 prime_fpriv->dmabufs = RB_ROOT; 226 prime_fpriv->handles = RB_ROOT; 227 } 228 229 void drm_prime_destroy_file_private(struct drm_prime_file_private *prime_fpriv) 230 { 231 /* by now drm_gem_release should've made sure the list is empty */ 232 WARN_ON(!RB_EMPTY_ROOT(&prime_fpriv->dmabufs)); 233 } 234 235 /** 236 * drm_gem_dmabuf_export - &dma_buf export implementation for GEM 237 * @dev: parent device for the exported dmabuf 238 * @exp_info: the export information used by dma_buf_export() 239 * 240 * This wraps dma_buf_export() for use by generic GEM drivers that are using 241 * drm_gem_dmabuf_release(). In addition to calling dma_buf_export(), we take 242 * a reference to the &drm_device and the exported &drm_gem_object (stored in 243 * &dma_buf_export_info.priv) which is released by drm_gem_dmabuf_release(). 244 * 245 * Returns the new dmabuf. 246 */ 247 struct dma_buf *drm_gem_dmabuf_export(struct drm_device *dev, 248 struct dma_buf_export_info *exp_info) 249 { 250 struct drm_gem_object *obj = exp_info->priv; 251 struct dma_buf *dma_buf; 252 253 dma_buf = dma_buf_export(exp_info); 254 if (IS_ERR(dma_buf)) 255 return dma_buf; 256 257 drm_dev_get(dev); 258 drm_gem_object_get(obj); 259 dma_buf->file->f_mapping = obj->dev->anon_inode->i_mapping; 260 261 return dma_buf; 262 } 263 EXPORT_SYMBOL(drm_gem_dmabuf_export); 264 265 /** 266 * drm_gem_dmabuf_release - &dma_buf release implementation for GEM 267 * @dma_buf: buffer to be released 268 * 269 * Generic release function for dma_bufs exported as PRIME buffers. GEM drivers 270 * must use this in their &dma_buf_ops structure as the release callback. 271 * drm_gem_dmabuf_release() should be used in conjunction with 272 * drm_gem_dmabuf_export(). 273 */ 274 void drm_gem_dmabuf_release(struct dma_buf *dma_buf) 275 { 276 struct drm_gem_object *obj = dma_buf->priv; 277 struct drm_device *dev = obj->dev; 278 279 /* drop the reference on the export fd holds */ 280 drm_gem_object_put(obj); 281 282 drm_dev_put(dev); 283 } 284 EXPORT_SYMBOL(drm_gem_dmabuf_release); 285 286 /** 287 * drm_gem_prime_fd_to_handle - PRIME import function for GEM drivers 288 * @dev: dev to export the buffer from 289 * @file_priv: drm file-private structure 290 * @prime_fd: fd id of the dma-buf which should be imported 291 * @handle: pointer to storage for the handle of the imported buffer object 292 * 293 * This is the PRIME import function which must be used mandatorily by GEM 294 * drivers to ensure correct lifetime management of the underlying GEM object. 295 * The actual importing of GEM object from the dma-buf is done through the 296 * &drm_driver.gem_prime_import driver callback. 297 * 298 * Returns 0 on success or a negative error code on failure. 299 */ 300 int drm_gem_prime_fd_to_handle(struct drm_device *dev, 301 struct drm_file *file_priv, int prime_fd, 302 uint32_t *handle) 303 { 304 struct dma_buf *dma_buf; 305 struct drm_gem_object *obj; 306 int ret; 307 308 dma_buf = dma_buf_get(prime_fd); 309 if (IS_ERR(dma_buf)) 310 return PTR_ERR(dma_buf); 311 312 mutex_lock(&file_priv->prime.lock); 313 314 ret = drm_prime_lookup_buf_handle(&file_priv->prime, 315 dma_buf, handle); 316 if (ret == 0) 317 goto out_put; 318 319 /* never seen this one, need to import */ 320 mutex_lock(&dev->object_name_lock); 321 if (dev->driver->gem_prime_import) 322 obj = dev->driver->gem_prime_import(dev, dma_buf); 323 else 324 obj = drm_gem_prime_import(dev, dma_buf); 325 if (IS_ERR(obj)) { 326 ret = PTR_ERR(obj); 327 goto out_unlock; 328 } 329 330 if (obj->dma_buf) { 331 WARN_ON(obj->dma_buf != dma_buf); 332 } else { 333 obj->dma_buf = dma_buf; 334 get_dma_buf(dma_buf); 335 } 336 337 /* _handle_create_tail unconditionally unlocks dev->object_name_lock. */ 338 ret = drm_gem_handle_create_tail(file_priv, obj, handle); 339 drm_gem_object_put(obj); 340 if (ret) 341 goto out_put; 342 343 ret = drm_prime_add_buf_handle(&file_priv->prime, 344 dma_buf, *handle); 345 mutex_unlock(&file_priv->prime.lock); 346 if (ret) 347 goto fail; 348 349 dma_buf_put(dma_buf); 350 351 return 0; 352 353 fail: 354 /* hmm, if driver attached, we are relying on the free-object path 355 * to detach.. which seems ok.. 356 */ 357 drm_gem_handle_delete(file_priv, *handle); 358 dma_buf_put(dma_buf); 359 return ret; 360 361 out_unlock: 362 mutex_unlock(&dev->object_name_lock); 363 out_put: 364 mutex_unlock(&file_priv->prime.lock); 365 dma_buf_put(dma_buf); 366 return ret; 367 } 368 EXPORT_SYMBOL(drm_gem_prime_fd_to_handle); 369 370 int drm_prime_fd_to_handle_ioctl(struct drm_device *dev, void *data, 371 struct drm_file *file_priv) 372 { 373 struct drm_prime_handle *args = data; 374 375 if (!dev->driver->prime_fd_to_handle) 376 return -ENOSYS; 377 378 return dev->driver->prime_fd_to_handle(dev, file_priv, 379 args->fd, &args->handle); 380 } 381 382 static struct dma_buf *export_and_register_object(struct drm_device *dev, 383 struct drm_gem_object *obj, 384 uint32_t flags) 385 { 386 struct dma_buf *dmabuf; 387 388 /* prevent races with concurrent gem_close. */ 389 if (obj->handle_count == 0) { 390 dmabuf = ERR_PTR(-ENOENT); 391 return dmabuf; 392 } 393 394 if (obj->funcs && obj->funcs->export) 395 dmabuf = obj->funcs->export(obj, flags); 396 else 397 dmabuf = drm_gem_prime_export(obj, flags); 398 if (IS_ERR(dmabuf)) { 399 /* normally the created dma-buf takes ownership of the ref, 400 * but if that fails then drop the ref 401 */ 402 return dmabuf; 403 } 404 405 /* 406 * Note that callers do not need to clean up the export cache 407 * since the check for obj->handle_count guarantees that someone 408 * will clean it up. 409 */ 410 obj->dma_buf = dmabuf; 411 get_dma_buf(obj->dma_buf); 412 413 return dmabuf; 414 } 415 416 /** 417 * drm_gem_prime_handle_to_fd - PRIME export function for GEM drivers 418 * @dev: dev to export the buffer from 419 * @file_priv: drm file-private structure 420 * @handle: buffer handle to export 421 * @flags: flags like DRM_CLOEXEC 422 * @prime_fd: pointer to storage for the fd id of the create dma-buf 423 * 424 * This is the PRIME export function which must be used mandatorily by GEM 425 * drivers to ensure correct lifetime management of the underlying GEM object. 426 * The actual exporting from GEM object to a dma-buf is done through the 427 * &drm_gem_object_funcs.export callback. 428 */ 429 int drm_gem_prime_handle_to_fd(struct drm_device *dev, 430 struct drm_file *file_priv, uint32_t handle, 431 uint32_t flags, 432 int *prime_fd) 433 { 434 struct drm_gem_object *obj; 435 int ret = 0; 436 struct dma_buf *dmabuf; 437 438 mutex_lock(&file_priv->prime.lock); 439 obj = drm_gem_object_lookup(file_priv, handle); 440 if (!obj) { 441 ret = -ENOENT; 442 goto out_unlock; 443 } 444 445 dmabuf = drm_prime_lookup_buf_by_handle(&file_priv->prime, handle); 446 if (dmabuf) { 447 get_dma_buf(dmabuf); 448 goto out_have_handle; 449 } 450 451 mutex_lock(&dev->object_name_lock); 452 /* re-export the original imported object */ 453 if (obj->import_attach) { 454 dmabuf = obj->import_attach->dmabuf; 455 get_dma_buf(dmabuf); 456 goto out_have_obj; 457 } 458 459 if (obj->dma_buf) { 460 get_dma_buf(obj->dma_buf); 461 dmabuf = obj->dma_buf; 462 goto out_have_obj; 463 } 464 465 dmabuf = export_and_register_object(dev, obj, flags); 466 if (IS_ERR(dmabuf)) { 467 /* normally the created dma-buf takes ownership of the ref, 468 * but if that fails then drop the ref 469 */ 470 ret = PTR_ERR(dmabuf); 471 mutex_unlock(&dev->object_name_lock); 472 goto out; 473 } 474 475 out_have_obj: 476 /* 477 * If we've exported this buffer then cheat and add it to the import list 478 * so we get the correct handle back. We must do this under the 479 * protection of dev->object_name_lock to ensure that a racing gem close 480 * ioctl doesn't miss to remove this buffer handle from the cache. 481 */ 482 ret = drm_prime_add_buf_handle(&file_priv->prime, 483 dmabuf, handle); 484 mutex_unlock(&dev->object_name_lock); 485 if (ret) 486 goto fail_put_dmabuf; 487 488 out_have_handle: 489 ret = dma_buf_fd(dmabuf, flags); 490 /* 491 * We must _not_ remove the buffer from the handle cache since the newly 492 * created dma buf is already linked in the global obj->dma_buf pointer, 493 * and that is invariant as long as a userspace gem handle exists. 494 * Closing the handle will clean out the cache anyway, so we don't leak. 495 */ 496 if (ret < 0) { 497 goto fail_put_dmabuf; 498 } else { 499 *prime_fd = ret; 500 ret = 0; 501 } 502 503 goto out; 504 505 fail_put_dmabuf: 506 dma_buf_put(dmabuf); 507 out: 508 drm_gem_object_put(obj); 509 out_unlock: 510 mutex_unlock(&file_priv->prime.lock); 511 512 return ret; 513 } 514 EXPORT_SYMBOL(drm_gem_prime_handle_to_fd); 515 516 int drm_prime_handle_to_fd_ioctl(struct drm_device *dev, void *data, 517 struct drm_file *file_priv) 518 { 519 struct drm_prime_handle *args = data; 520 521 if (!dev->driver->prime_handle_to_fd) 522 return -ENOSYS; 523 524 /* check flags are valid */ 525 if (args->flags & ~(DRM_CLOEXEC | DRM_RDWR)) 526 return -EINVAL; 527 528 return dev->driver->prime_handle_to_fd(dev, file_priv, 529 args->handle, args->flags, &args->fd); 530 } 531 532 /** 533 * DOC: PRIME Helpers 534 * 535 * Drivers can implement &drm_gem_object_funcs.export and 536 * &drm_driver.gem_prime_import in terms of simpler APIs by using the helper 537 * functions drm_gem_prime_export() and drm_gem_prime_import(). These functions 538 * implement dma-buf support in terms of some lower-level helpers, which are 539 * again exported for drivers to use individually: 540 * 541 * Exporting buffers 542 * ~~~~~~~~~~~~~~~~~ 543 * 544 * Optional pinning of buffers is handled at dma-buf attach and detach time in 545 * drm_gem_map_attach() and drm_gem_map_detach(). Backing storage itself is 546 * handled by drm_gem_map_dma_buf() and drm_gem_unmap_dma_buf(), which relies on 547 * &drm_gem_object_funcs.get_sg_table. 548 * 549 * For kernel-internal access there's drm_gem_dmabuf_vmap() and 550 * drm_gem_dmabuf_vunmap(). Userspace mmap support is provided by 551 * drm_gem_dmabuf_mmap(). 552 * 553 * Note that these export helpers can only be used if the underlying backing 554 * storage is fully coherent and either permanently pinned, or it is safe to pin 555 * it indefinitely. 556 * 557 * FIXME: The underlying helper functions are named rather inconsistently. 558 * 559 * Importing buffers 560 * ~~~~~~~~~~~~~~~~~ 561 * 562 * Importing dma-bufs using drm_gem_prime_import() relies on 563 * &drm_driver.gem_prime_import_sg_table. 564 * 565 * Note that similarly to the export helpers this permanently pins the 566 * underlying backing storage. Which is ok for scanout, but is not the best 567 * option for sharing lots of buffers for rendering. 568 */ 569 570 /** 571 * drm_gem_map_attach - dma_buf attach implementation for GEM 572 * @dma_buf: buffer to attach device to 573 * @attach: buffer attachment data 574 * 575 * Calls &drm_gem_object_funcs.pin for device specific handling. This can be 576 * used as the &dma_buf_ops.attach callback. Must be used together with 577 * drm_gem_map_detach(). 578 * 579 * Returns 0 on success, negative error code on failure. 580 */ 581 int drm_gem_map_attach(struct dma_buf *dma_buf, 582 struct dma_buf_attachment *attach) 583 { 584 struct drm_gem_object *obj = dma_buf->priv; 585 586 return drm_gem_pin(obj); 587 } 588 EXPORT_SYMBOL(drm_gem_map_attach); 589 590 /** 591 * drm_gem_map_detach - dma_buf detach implementation for GEM 592 * @dma_buf: buffer to detach from 593 * @attach: attachment to be detached 594 * 595 * Calls &drm_gem_object_funcs.pin for device specific handling. Cleans up 596 * &dma_buf_attachment from drm_gem_map_attach(). This can be used as the 597 * &dma_buf_ops.detach callback. 598 */ 599 void drm_gem_map_detach(struct dma_buf *dma_buf, 600 struct dma_buf_attachment *attach) 601 { 602 struct drm_gem_object *obj = dma_buf->priv; 603 604 drm_gem_unpin(obj); 605 } 606 EXPORT_SYMBOL(drm_gem_map_detach); 607 608 /** 609 * drm_gem_map_dma_buf - map_dma_buf implementation for GEM 610 * @attach: attachment whose scatterlist is to be returned 611 * @dir: direction of DMA transfer 612 * 613 * Calls &drm_gem_object_funcs.get_sg_table and then maps the scatterlist. This 614 * can be used as the &dma_buf_ops.map_dma_buf callback. Should be used together 615 * with drm_gem_unmap_dma_buf(). 616 * 617 * Returns:sg_table containing the scatterlist to be returned; returns ERR_PTR 618 * on error. May return -EINTR if it is interrupted by a signal. 619 */ 620 struct sg_table *drm_gem_map_dma_buf(struct dma_buf_attachment *attach, 621 enum dma_data_direction dir) 622 { 623 struct drm_gem_object *obj = attach->dmabuf->priv; 624 struct sg_table *sgt; 625 int ret; 626 627 if (WARN_ON(dir == DMA_NONE)) 628 return ERR_PTR(-EINVAL); 629 630 if (WARN_ON(!obj->funcs->get_sg_table)) 631 return ERR_PTR(-ENOSYS); 632 633 sgt = obj->funcs->get_sg_table(obj); 634 if (IS_ERR(sgt)) 635 return sgt; 636 637 ret = dma_map_sgtable(attach->dev, sgt, dir, 638 DMA_ATTR_SKIP_CPU_SYNC); 639 if (ret) { 640 sg_free_table(sgt); 641 kfree(sgt); 642 sgt = ERR_PTR(ret); 643 } 644 645 return sgt; 646 } 647 EXPORT_SYMBOL(drm_gem_map_dma_buf); 648 649 /** 650 * drm_gem_unmap_dma_buf - unmap_dma_buf implementation for GEM 651 * @attach: attachment to unmap buffer from 652 * @sgt: scatterlist info of the buffer to unmap 653 * @dir: direction of DMA transfer 654 * 655 * This can be used as the &dma_buf_ops.unmap_dma_buf callback. 656 */ 657 void drm_gem_unmap_dma_buf(struct dma_buf_attachment *attach, 658 struct sg_table *sgt, 659 enum dma_data_direction dir) 660 { 661 if (!sgt) 662 return; 663 664 dma_unmap_sgtable(attach->dev, sgt, dir, DMA_ATTR_SKIP_CPU_SYNC); 665 sg_free_table(sgt); 666 kfree(sgt); 667 } 668 EXPORT_SYMBOL(drm_gem_unmap_dma_buf); 669 670 /** 671 * drm_gem_dmabuf_vmap - dma_buf vmap implementation for GEM 672 * @dma_buf: buffer to be mapped 673 * @map: the virtual address of the buffer 674 * 675 * Sets up a kernel virtual mapping. This can be used as the &dma_buf_ops.vmap 676 * callback. Calls into &drm_gem_object_funcs.vmap for device specific handling. 677 * The kernel virtual address is returned in map. 678 * 679 * Returns 0 on success or a negative errno code otherwise. 680 */ 681 int drm_gem_dmabuf_vmap(struct dma_buf *dma_buf, struct iosys_map *map) 682 { 683 struct drm_gem_object *obj = dma_buf->priv; 684 685 return drm_gem_vmap(obj, map); 686 } 687 EXPORT_SYMBOL(drm_gem_dmabuf_vmap); 688 689 /** 690 * drm_gem_dmabuf_vunmap - dma_buf vunmap implementation for GEM 691 * @dma_buf: buffer to be unmapped 692 * @map: the virtual address of the buffer 693 * 694 * Releases a kernel virtual mapping. This can be used as the 695 * &dma_buf_ops.vunmap callback. Calls into &drm_gem_object_funcs.vunmap for device specific handling. 696 */ 697 void drm_gem_dmabuf_vunmap(struct dma_buf *dma_buf, struct iosys_map *map) 698 { 699 struct drm_gem_object *obj = dma_buf->priv; 700 701 drm_gem_vunmap(obj, map); 702 } 703 EXPORT_SYMBOL(drm_gem_dmabuf_vunmap); 704 705 /** 706 * drm_gem_prime_mmap - PRIME mmap function for GEM drivers 707 * @obj: GEM object 708 * @vma: Virtual address range 709 * 710 * This function sets up a userspace mapping for PRIME exported buffers using 711 * the same codepath that is used for regular GEM buffer mapping on the DRM fd. 712 * The fake GEM offset is added to vma->vm_pgoff and &drm_driver->fops->mmap is 713 * called to set up the mapping. 714 * 715 * Drivers can use this as their &drm_driver.gem_prime_mmap callback. 716 */ 717 int drm_gem_prime_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma) 718 { 719 struct drm_file *priv; 720 struct file *fil; 721 int ret; 722 723 /* Add the fake offset */ 724 vma->vm_pgoff += drm_vma_node_start(&obj->vma_node); 725 726 if (obj->funcs && obj->funcs->mmap) { 727 vma->vm_ops = obj->funcs->vm_ops; 728 729 drm_gem_object_get(obj); 730 ret = obj->funcs->mmap(obj, vma); 731 if (ret) { 732 drm_gem_object_put(obj); 733 return ret; 734 } 735 vma->vm_private_data = obj; 736 return 0; 737 } 738 739 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 740 fil = kzalloc(sizeof(*fil), GFP_KERNEL); 741 if (!priv || !fil) { 742 ret = -ENOMEM; 743 goto out; 744 } 745 746 /* Used by drm_gem_mmap() to lookup the GEM object */ 747 priv->minor = obj->dev->primary; 748 fil->private_data = priv; 749 750 ret = drm_vma_node_allow(&obj->vma_node, priv); 751 if (ret) 752 goto out; 753 754 ret = obj->dev->driver->fops->mmap(fil, vma); 755 756 drm_vma_node_revoke(&obj->vma_node, priv); 757 out: 758 kfree(priv); 759 kfree(fil); 760 761 return ret; 762 } 763 EXPORT_SYMBOL(drm_gem_prime_mmap); 764 765 /** 766 * drm_gem_dmabuf_mmap - dma_buf mmap implementation for GEM 767 * @dma_buf: buffer to be mapped 768 * @vma: virtual address range 769 * 770 * Provides memory mapping for the buffer. This can be used as the 771 * &dma_buf_ops.mmap callback. It just forwards to &drm_driver.gem_prime_mmap, 772 * which should be set to drm_gem_prime_mmap(). 773 * 774 * FIXME: There's really no point to this wrapper, drivers which need anything 775 * else but drm_gem_prime_mmap can roll their own &dma_buf_ops.mmap callback. 776 * 777 * Returns 0 on success or a negative error code on failure. 778 */ 779 int drm_gem_dmabuf_mmap(struct dma_buf *dma_buf, struct vm_area_struct *vma) 780 { 781 struct drm_gem_object *obj = dma_buf->priv; 782 struct drm_device *dev = obj->dev; 783 784 dma_resv_assert_held(dma_buf->resv); 785 786 if (!dev->driver->gem_prime_mmap) 787 return -ENOSYS; 788 789 return dev->driver->gem_prime_mmap(obj, vma); 790 } 791 EXPORT_SYMBOL(drm_gem_dmabuf_mmap); 792 793 static const struct dma_buf_ops drm_gem_prime_dmabuf_ops = { 794 .cache_sgt_mapping = true, 795 .attach = drm_gem_map_attach, 796 .detach = drm_gem_map_detach, 797 .map_dma_buf = drm_gem_map_dma_buf, 798 .unmap_dma_buf = drm_gem_unmap_dma_buf, 799 .release = drm_gem_dmabuf_release, 800 .mmap = drm_gem_dmabuf_mmap, 801 .vmap = drm_gem_dmabuf_vmap, 802 .vunmap = drm_gem_dmabuf_vunmap, 803 }; 804 805 /** 806 * drm_prime_pages_to_sg - converts a page array into an sg list 807 * @dev: DRM device 808 * @pages: pointer to the array of page pointers to convert 809 * @nr_pages: length of the page vector 810 * 811 * This helper creates an sg table object from a set of pages 812 * the driver is responsible for mapping the pages into the 813 * importers address space for use with dma_buf itself. 814 * 815 * This is useful for implementing &drm_gem_object_funcs.get_sg_table. 816 */ 817 struct sg_table *drm_prime_pages_to_sg(struct drm_device *dev, 818 struct page **pages, unsigned int nr_pages) 819 { 820 struct sg_table *sg; 821 size_t max_segment = 0; 822 int err; 823 824 sg = kmalloc(sizeof(struct sg_table), GFP_KERNEL); 825 if (!sg) 826 return ERR_PTR(-ENOMEM); 827 828 if (dev) 829 max_segment = dma_max_mapping_size(dev->dev); 830 if (max_segment == 0) 831 max_segment = UINT_MAX; 832 err = sg_alloc_table_from_pages_segment(sg, pages, nr_pages, 0, 833 nr_pages << PAGE_SHIFT, 834 max_segment, GFP_KERNEL); 835 if (err) { 836 kfree(sg); 837 sg = ERR_PTR(err); 838 } 839 return sg; 840 } 841 EXPORT_SYMBOL(drm_prime_pages_to_sg); 842 843 /** 844 * drm_prime_get_contiguous_size - returns the contiguous size of the buffer 845 * @sgt: sg_table describing the buffer to check 846 * 847 * This helper calculates the contiguous size in the DMA address space 848 * of the buffer described by the provided sg_table. 849 * 850 * This is useful for implementing 851 * &drm_gem_object_funcs.gem_prime_import_sg_table. 852 */ 853 unsigned long drm_prime_get_contiguous_size(struct sg_table *sgt) 854 { 855 dma_addr_t expected = sg_dma_address(sgt->sgl); 856 struct scatterlist *sg; 857 unsigned long size = 0; 858 int i; 859 860 for_each_sgtable_dma_sg(sgt, sg, i) { 861 unsigned int len = sg_dma_len(sg); 862 863 if (!len) 864 break; 865 if (sg_dma_address(sg) != expected) 866 break; 867 expected += len; 868 size += len; 869 } 870 return size; 871 } 872 EXPORT_SYMBOL(drm_prime_get_contiguous_size); 873 874 /** 875 * drm_gem_prime_export - helper library implementation of the export callback 876 * @obj: GEM object to export 877 * @flags: flags like DRM_CLOEXEC and DRM_RDWR 878 * 879 * This is the implementation of the &drm_gem_object_funcs.export functions for GEM drivers 880 * using the PRIME helpers. It is used as the default in 881 * drm_gem_prime_handle_to_fd(). 882 */ 883 struct dma_buf *drm_gem_prime_export(struct drm_gem_object *obj, 884 int flags) 885 { 886 struct drm_device *dev = obj->dev; 887 struct dma_buf_export_info exp_info = { 888 .exp_name = KBUILD_MODNAME, /* white lie for debug */ 889 .owner = dev->driver->fops->owner, 890 .ops = &drm_gem_prime_dmabuf_ops, 891 .size = obj->size, 892 .flags = flags, 893 .priv = obj, 894 .resv = obj->resv, 895 }; 896 897 return drm_gem_dmabuf_export(dev, &exp_info); 898 } 899 EXPORT_SYMBOL(drm_gem_prime_export); 900 901 /** 902 * drm_gem_prime_import_dev - core implementation of the import callback 903 * @dev: drm_device to import into 904 * @dma_buf: dma-buf object to import 905 * @attach_dev: struct device to dma_buf attach 906 * 907 * This is the core of drm_gem_prime_import(). It's designed to be called by 908 * drivers who want to use a different device structure than &drm_device.dev for 909 * attaching via dma_buf. This function calls 910 * &drm_driver.gem_prime_import_sg_table internally. 911 * 912 * Drivers must arrange to call drm_prime_gem_destroy() from their 913 * &drm_gem_object_funcs.free hook when using this function. 914 */ 915 struct drm_gem_object *drm_gem_prime_import_dev(struct drm_device *dev, 916 struct dma_buf *dma_buf, 917 struct device *attach_dev) 918 { 919 struct dma_buf_attachment *attach; 920 struct sg_table *sgt; 921 struct drm_gem_object *obj; 922 int ret; 923 924 if (dma_buf->ops == &drm_gem_prime_dmabuf_ops) { 925 obj = dma_buf->priv; 926 if (obj->dev == dev) { 927 /* 928 * Importing dmabuf exported from out own gem increases 929 * refcount on gem itself instead of f_count of dmabuf. 930 */ 931 drm_gem_object_get(obj); 932 return obj; 933 } 934 } 935 936 if (!dev->driver->gem_prime_import_sg_table) 937 return ERR_PTR(-EINVAL); 938 939 attach = dma_buf_attach(dma_buf, attach_dev); 940 if (IS_ERR(attach)) 941 return ERR_CAST(attach); 942 943 get_dma_buf(dma_buf); 944 945 sgt = dma_buf_map_attachment_unlocked(attach, DMA_BIDIRECTIONAL); 946 if (IS_ERR(sgt)) { 947 ret = PTR_ERR(sgt); 948 goto fail_detach; 949 } 950 951 obj = dev->driver->gem_prime_import_sg_table(dev, attach, sgt); 952 if (IS_ERR(obj)) { 953 ret = PTR_ERR(obj); 954 goto fail_unmap; 955 } 956 957 obj->import_attach = attach; 958 obj->resv = dma_buf->resv; 959 960 return obj; 961 962 fail_unmap: 963 dma_buf_unmap_attachment_unlocked(attach, sgt, DMA_BIDIRECTIONAL); 964 fail_detach: 965 dma_buf_detach(dma_buf, attach); 966 dma_buf_put(dma_buf); 967 968 return ERR_PTR(ret); 969 } 970 EXPORT_SYMBOL(drm_gem_prime_import_dev); 971 972 /** 973 * drm_gem_prime_import - helper library implementation of the import callback 974 * @dev: drm_device to import into 975 * @dma_buf: dma-buf object to import 976 * 977 * This is the implementation of the gem_prime_import functions for GEM drivers 978 * using the PRIME helpers. Drivers can use this as their 979 * &drm_driver.gem_prime_import implementation. It is used as the default 980 * implementation in drm_gem_prime_fd_to_handle(). 981 * 982 * Drivers must arrange to call drm_prime_gem_destroy() from their 983 * &drm_gem_object_funcs.free hook when using this function. 984 */ 985 struct drm_gem_object *drm_gem_prime_import(struct drm_device *dev, 986 struct dma_buf *dma_buf) 987 { 988 return drm_gem_prime_import_dev(dev, dma_buf, dev->dev); 989 } 990 EXPORT_SYMBOL(drm_gem_prime_import); 991 992 /** 993 * drm_prime_sg_to_page_array - convert an sg table into a page array 994 * @sgt: scatter-gather table to convert 995 * @pages: array of page pointers to store the pages in 996 * @max_entries: size of the passed-in array 997 * 998 * Exports an sg table into an array of pages. 999 * 1000 * This function is deprecated and strongly discouraged to be used. 1001 * The page array is only useful for page faults and those can corrupt fields 1002 * in the struct page if they are not handled by the exporting driver. 1003 */ 1004 int __deprecated drm_prime_sg_to_page_array(struct sg_table *sgt, 1005 struct page **pages, 1006 int max_entries) 1007 { 1008 struct sg_page_iter page_iter; 1009 struct page **p = pages; 1010 1011 for_each_sgtable_page(sgt, &page_iter, 0) { 1012 if (WARN_ON(p - pages >= max_entries)) 1013 return -1; 1014 *p++ = sg_page_iter_page(&page_iter); 1015 } 1016 return 0; 1017 } 1018 EXPORT_SYMBOL(drm_prime_sg_to_page_array); 1019 1020 /** 1021 * drm_prime_sg_to_dma_addr_array - convert an sg table into a dma addr array 1022 * @sgt: scatter-gather table to convert 1023 * @addrs: array to store the dma bus address of each page 1024 * @max_entries: size of both the passed-in arrays 1025 * 1026 * Exports an sg table into an array of addresses. 1027 * 1028 * Drivers should use this in their &drm_driver.gem_prime_import_sg_table 1029 * implementation. 1030 */ 1031 int drm_prime_sg_to_dma_addr_array(struct sg_table *sgt, dma_addr_t *addrs, 1032 int max_entries) 1033 { 1034 struct sg_dma_page_iter dma_iter; 1035 dma_addr_t *a = addrs; 1036 1037 for_each_sgtable_dma_page(sgt, &dma_iter, 0) { 1038 if (WARN_ON(a - addrs >= max_entries)) 1039 return -1; 1040 *a++ = sg_page_iter_dma_address(&dma_iter); 1041 } 1042 return 0; 1043 } 1044 EXPORT_SYMBOL(drm_prime_sg_to_dma_addr_array); 1045 1046 /** 1047 * drm_prime_gem_destroy - helper to clean up a PRIME-imported GEM object 1048 * @obj: GEM object which was created from a dma-buf 1049 * @sg: the sg-table which was pinned at import time 1050 * 1051 * This is the cleanup functions which GEM drivers need to call when they use 1052 * drm_gem_prime_import() or drm_gem_prime_import_dev() to import dma-bufs. 1053 */ 1054 void drm_prime_gem_destroy(struct drm_gem_object *obj, struct sg_table *sg) 1055 { 1056 struct dma_buf_attachment *attach; 1057 struct dma_buf *dma_buf; 1058 1059 attach = obj->import_attach; 1060 if (sg) 1061 dma_buf_unmap_attachment_unlocked(attach, sg, DMA_BIDIRECTIONAL); 1062 dma_buf = attach->dmabuf; 1063 dma_buf_detach(attach->dmabuf, attach); 1064 /* remove the reference */ 1065 dma_buf_put(dma_buf); 1066 } 1067 EXPORT_SYMBOL(drm_prime_gem_destroy); 1068