xref: /openbmc/linux/drivers/gpu/drm/drm_modes.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * Copyright © 1997-2003 by The XFree86 Project, Inc.
3  * Copyright © 2007 Dave Airlie
4  * Copyright © 2007-2008 Intel Corporation
5  *   Jesse Barnes <jesse.barnes@intel.com>
6  * Copyright 2005-2006 Luc Verhaegen
7  * Copyright (c) 2001, Andy Ritger  aritger@nvidia.com
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a
10  * copy of this software and associated documentation files (the "Software"),
11  * to deal in the Software without restriction, including without limitation
12  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13  * and/or sell copies of the Software, and to permit persons to whom the
14  * Software is furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
23  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
24  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
25  * OTHER DEALINGS IN THE SOFTWARE.
26  *
27  * Except as contained in this notice, the name of the copyright holder(s)
28  * and author(s) shall not be used in advertising or otherwise to promote
29  * the sale, use or other dealings in this Software without prior written
30  * authorization from the copyright holder(s) and author(s).
31  */
32 
33 #include <linux/list.h>
34 #include <linux/list_sort.h>
35 #include "drmP.h"
36 #include "drm.h"
37 #include "drm_crtc.h"
38 
39 /**
40  * drm_mode_debug_printmodeline - debug print a mode
41  * @dev: DRM device
42  * @mode: mode to print
43  *
44  * LOCKING:
45  * None.
46  *
47  * Describe @mode using DRM_DEBUG.
48  */
49 void drm_mode_debug_printmodeline(struct drm_display_mode *mode)
50 {
51 	DRM_DEBUG_KMS("Modeline %d:\"%s\" %d %d %d %d %d %d %d %d %d %d "
52 			"0x%x 0x%x\n",
53 		mode->base.id, mode->name, mode->vrefresh, mode->clock,
54 		mode->hdisplay, mode->hsync_start,
55 		mode->hsync_end, mode->htotal,
56 		mode->vdisplay, mode->vsync_start,
57 		mode->vsync_end, mode->vtotal, mode->type, mode->flags);
58 }
59 EXPORT_SYMBOL(drm_mode_debug_printmodeline);
60 
61 /**
62  * drm_cvt_mode -create a modeline based on CVT algorithm
63  * @dev: DRM device
64  * @hdisplay: hdisplay size
65  * @vdisplay: vdisplay size
66  * @vrefresh  : vrefresh rate
67  * @reduced : Whether the GTF calculation is simplified
68  * @interlaced:Whether the interlace is supported
69  *
70  * LOCKING:
71  * none.
72  *
73  * return the modeline based on CVT algorithm
74  *
75  * This function is called to generate the modeline based on CVT algorithm
76  * according to the hdisplay, vdisplay, vrefresh.
77  * It is based from the VESA(TM) Coordinated Video Timing Generator by
78  * Graham Loveridge April 9, 2003 available at
79  * http://www.elo.utfsm.cl/~elo212/docs/CVTd6r1.xls
80  *
81  * And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c.
82  * What I have done is to translate it by using integer calculation.
83  */
84 #define HV_FACTOR			1000
85 struct drm_display_mode *drm_cvt_mode(struct drm_device *dev, int hdisplay,
86 				      int vdisplay, int vrefresh,
87 				      bool reduced, bool interlaced, bool margins)
88 {
89 	/* 1) top/bottom margin size (% of height) - default: 1.8, */
90 #define	CVT_MARGIN_PERCENTAGE		18
91 	/* 2) character cell horizontal granularity (pixels) - default 8 */
92 #define	CVT_H_GRANULARITY		8
93 	/* 3) Minimum vertical porch (lines) - default 3 */
94 #define	CVT_MIN_V_PORCH			3
95 	/* 4) Minimum number of vertical back porch lines - default 6 */
96 #define	CVT_MIN_V_BPORCH		6
97 	/* Pixel Clock step (kHz) */
98 #define CVT_CLOCK_STEP			250
99 	struct drm_display_mode *drm_mode;
100 	unsigned int vfieldrate, hperiod;
101 	int hdisplay_rnd, hmargin, vdisplay_rnd, vmargin, vsync;
102 	int interlace;
103 
104 	/* allocate the drm_display_mode structure. If failure, we will
105 	 * return directly
106 	 */
107 	drm_mode = drm_mode_create(dev);
108 	if (!drm_mode)
109 		return NULL;
110 
111 	/* the CVT default refresh rate is 60Hz */
112 	if (!vrefresh)
113 		vrefresh = 60;
114 
115 	/* the required field fresh rate */
116 	if (interlaced)
117 		vfieldrate = vrefresh * 2;
118 	else
119 		vfieldrate = vrefresh;
120 
121 	/* horizontal pixels */
122 	hdisplay_rnd = hdisplay - (hdisplay % CVT_H_GRANULARITY);
123 
124 	/* determine the left&right borders */
125 	hmargin = 0;
126 	if (margins) {
127 		hmargin = hdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
128 		hmargin -= hmargin % CVT_H_GRANULARITY;
129 	}
130 	/* find the total active pixels */
131 	drm_mode->hdisplay = hdisplay_rnd + 2 * hmargin;
132 
133 	/* find the number of lines per field */
134 	if (interlaced)
135 		vdisplay_rnd = vdisplay / 2;
136 	else
137 		vdisplay_rnd = vdisplay;
138 
139 	/* find the top & bottom borders */
140 	vmargin = 0;
141 	if (margins)
142 		vmargin = vdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
143 
144 	drm_mode->vdisplay = vdisplay + 2 * vmargin;
145 
146 	/* Interlaced */
147 	if (interlaced)
148 		interlace = 1;
149 	else
150 		interlace = 0;
151 
152 	/* Determine VSync Width from aspect ratio */
153 	if (!(vdisplay % 3) && ((vdisplay * 4 / 3) == hdisplay))
154 		vsync = 4;
155 	else if (!(vdisplay % 9) && ((vdisplay * 16 / 9) == hdisplay))
156 		vsync = 5;
157 	else if (!(vdisplay % 10) && ((vdisplay * 16 / 10) == hdisplay))
158 		vsync = 6;
159 	else if (!(vdisplay % 4) && ((vdisplay * 5 / 4) == hdisplay))
160 		vsync = 7;
161 	else if (!(vdisplay % 9) && ((vdisplay * 15 / 9) == hdisplay))
162 		vsync = 7;
163 	else /* custom */
164 		vsync = 10;
165 
166 	if (!reduced) {
167 		/* simplify the GTF calculation */
168 		/* 4) Minimum time of vertical sync + back porch interval (µs)
169 		 * default 550.0
170 		 */
171 		int tmp1, tmp2;
172 #define CVT_MIN_VSYNC_BP	550
173 		/* 3) Nominal HSync width (% of line period) - default 8 */
174 #define CVT_HSYNC_PERCENTAGE	8
175 		unsigned int hblank_percentage;
176 		int vsyncandback_porch, vback_porch, hblank;
177 
178 		/* estimated the horizontal period */
179 		tmp1 = HV_FACTOR * 1000000  -
180 				CVT_MIN_VSYNC_BP * HV_FACTOR * vfieldrate;
181 		tmp2 = (vdisplay_rnd + 2 * vmargin + CVT_MIN_V_PORCH) * 2 +
182 				interlace;
183 		hperiod = tmp1 * 2 / (tmp2 * vfieldrate);
184 
185 		tmp1 = CVT_MIN_VSYNC_BP * HV_FACTOR / hperiod + 1;
186 		/* 9. Find number of lines in sync + backporch */
187 		if (tmp1 < (vsync + CVT_MIN_V_PORCH))
188 			vsyncandback_porch = vsync + CVT_MIN_V_PORCH;
189 		else
190 			vsyncandback_porch = tmp1;
191 		/* 10. Find number of lines in back porch */
192 		vback_porch = vsyncandback_porch - vsync;
193 		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin +
194 				vsyncandback_porch + CVT_MIN_V_PORCH;
195 		/* 5) Definition of Horizontal blanking time limitation */
196 		/* Gradient (%/kHz) - default 600 */
197 #define CVT_M_FACTOR	600
198 		/* Offset (%) - default 40 */
199 #define CVT_C_FACTOR	40
200 		/* Blanking time scaling factor - default 128 */
201 #define CVT_K_FACTOR	128
202 		/* Scaling factor weighting - default 20 */
203 #define CVT_J_FACTOR	20
204 #define CVT_M_PRIME	(CVT_M_FACTOR * CVT_K_FACTOR / 256)
205 #define CVT_C_PRIME	((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256 + \
206 			 CVT_J_FACTOR)
207 		/* 12. Find ideal blanking duty cycle from formula */
208 		hblank_percentage = CVT_C_PRIME * HV_FACTOR - CVT_M_PRIME *
209 					hperiod / 1000;
210 		/* 13. Blanking time */
211 		if (hblank_percentage < 20 * HV_FACTOR)
212 			hblank_percentage = 20 * HV_FACTOR;
213 		hblank = drm_mode->hdisplay * hblank_percentage /
214 			 (100 * HV_FACTOR - hblank_percentage);
215 		hblank -= hblank % (2 * CVT_H_GRANULARITY);
216 		/* 14. find the total pixes per line */
217 		drm_mode->htotal = drm_mode->hdisplay + hblank;
218 		drm_mode->hsync_end = drm_mode->hdisplay + hblank / 2;
219 		drm_mode->hsync_start = drm_mode->hsync_end -
220 			(drm_mode->htotal * CVT_HSYNC_PERCENTAGE) / 100;
221 		drm_mode->hsync_start += CVT_H_GRANULARITY -
222 			drm_mode->hsync_start % CVT_H_GRANULARITY;
223 		/* fill the Vsync values */
224 		drm_mode->vsync_start = drm_mode->vdisplay + CVT_MIN_V_PORCH;
225 		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
226 	} else {
227 		/* Reduced blanking */
228 		/* Minimum vertical blanking interval time (µs)- default 460 */
229 #define CVT_RB_MIN_VBLANK	460
230 		/* Fixed number of clocks for horizontal sync */
231 #define CVT_RB_H_SYNC		32
232 		/* Fixed number of clocks for horizontal blanking */
233 #define CVT_RB_H_BLANK		160
234 		/* Fixed number of lines for vertical front porch - default 3*/
235 #define CVT_RB_VFPORCH		3
236 		int vbilines;
237 		int tmp1, tmp2;
238 		/* 8. Estimate Horizontal period. */
239 		tmp1 = HV_FACTOR * 1000000 -
240 			CVT_RB_MIN_VBLANK * HV_FACTOR * vfieldrate;
241 		tmp2 = vdisplay_rnd + 2 * vmargin;
242 		hperiod = tmp1 / (tmp2 * vfieldrate);
243 		/* 9. Find number of lines in vertical blanking */
244 		vbilines = CVT_RB_MIN_VBLANK * HV_FACTOR / hperiod + 1;
245 		/* 10. Check if vertical blanking is sufficient */
246 		if (vbilines < (CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH))
247 			vbilines = CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH;
248 		/* 11. Find total number of lines in vertical field */
249 		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vbilines;
250 		/* 12. Find total number of pixels in a line */
251 		drm_mode->htotal = drm_mode->hdisplay + CVT_RB_H_BLANK;
252 		/* Fill in HSync values */
253 		drm_mode->hsync_end = drm_mode->hdisplay + CVT_RB_H_BLANK / 2;
254 		drm_mode->hsync_start = drm_mode->hsync_end - CVT_RB_H_SYNC;
255 		/* Fill in VSync values */
256 		drm_mode->vsync_start = drm_mode->vdisplay + CVT_RB_VFPORCH;
257 		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
258 	}
259 	/* 15/13. Find pixel clock frequency (kHz for xf86) */
260 	drm_mode->clock = drm_mode->htotal * HV_FACTOR * 1000 / hperiod;
261 	drm_mode->clock -= drm_mode->clock % CVT_CLOCK_STEP;
262 	/* 18/16. Find actual vertical frame frequency */
263 	/* ignore - just set the mode flag for interlaced */
264 	if (interlaced) {
265 		drm_mode->vtotal *= 2;
266 		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
267 	}
268 	/* Fill the mode line name */
269 	drm_mode_set_name(drm_mode);
270 	if (reduced)
271 		drm_mode->flags |= (DRM_MODE_FLAG_PHSYNC |
272 					DRM_MODE_FLAG_NVSYNC);
273 	else
274 		drm_mode->flags |= (DRM_MODE_FLAG_PVSYNC |
275 					DRM_MODE_FLAG_NHSYNC);
276 
277 	return drm_mode;
278 }
279 EXPORT_SYMBOL(drm_cvt_mode);
280 
281 /**
282  * drm_gtf_mode_complex - create the modeline based on full GTF algorithm
283  *
284  * @dev		:drm device
285  * @hdisplay	:hdisplay size
286  * @vdisplay	:vdisplay size
287  * @vrefresh	:vrefresh rate.
288  * @interlaced	:whether the interlace is supported
289  * @margins	:desired margin size
290  * @GTF_[MCKJ]  :extended GTF formula parameters
291  *
292  * LOCKING.
293  * none.
294  *
295  * return the modeline based on full GTF algorithm.
296  *
297  * GTF feature blocks specify C and J in multiples of 0.5, so we pass them
298  * in here multiplied by two.  For a C of 40, pass in 80.
299  */
300 struct drm_display_mode *
301 drm_gtf_mode_complex(struct drm_device *dev, int hdisplay, int vdisplay,
302 		     int vrefresh, bool interlaced, int margins,
303 		     int GTF_M, int GTF_2C, int GTF_K, int GTF_2J)
304 {	/* 1) top/bottom margin size (% of height) - default: 1.8, */
305 #define	GTF_MARGIN_PERCENTAGE		18
306 	/* 2) character cell horizontal granularity (pixels) - default 8 */
307 #define	GTF_CELL_GRAN			8
308 	/* 3) Minimum vertical porch (lines) - default 3 */
309 #define	GTF_MIN_V_PORCH			1
310 	/* width of vsync in lines */
311 #define V_SYNC_RQD			3
312 	/* width of hsync as % of total line */
313 #define H_SYNC_PERCENT			8
314 	/* min time of vsync + back porch (microsec) */
315 #define MIN_VSYNC_PLUS_BP		550
316 	/* C' and M' are part of the Blanking Duty Cycle computation */
317 #define GTF_C_PRIME	((((GTF_2C - GTF_2J) * GTF_K / 256) + GTF_2J) / 2)
318 #define GTF_M_PRIME	(GTF_K * GTF_M / 256)
319 	struct drm_display_mode *drm_mode;
320 	unsigned int hdisplay_rnd, vdisplay_rnd, vfieldrate_rqd;
321 	int top_margin, bottom_margin;
322 	int interlace;
323 	unsigned int hfreq_est;
324 	int vsync_plus_bp, vback_porch;
325 	unsigned int vtotal_lines, vfieldrate_est, hperiod;
326 	unsigned int vfield_rate, vframe_rate;
327 	int left_margin, right_margin;
328 	unsigned int total_active_pixels, ideal_duty_cycle;
329 	unsigned int hblank, total_pixels, pixel_freq;
330 	int hsync, hfront_porch, vodd_front_porch_lines;
331 	unsigned int tmp1, tmp2;
332 
333 	drm_mode = drm_mode_create(dev);
334 	if (!drm_mode)
335 		return NULL;
336 
337 	/* 1. In order to give correct results, the number of horizontal
338 	 * pixels requested is first processed to ensure that it is divisible
339 	 * by the character size, by rounding it to the nearest character
340 	 * cell boundary:
341 	 */
342 	hdisplay_rnd = (hdisplay + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
343 	hdisplay_rnd = hdisplay_rnd * GTF_CELL_GRAN;
344 
345 	/* 2. If interlace is requested, the number of vertical lines assumed
346 	 * by the calculation must be halved, as the computation calculates
347 	 * the number of vertical lines per field.
348 	 */
349 	if (interlaced)
350 		vdisplay_rnd = vdisplay / 2;
351 	else
352 		vdisplay_rnd = vdisplay;
353 
354 	/* 3. Find the frame rate required: */
355 	if (interlaced)
356 		vfieldrate_rqd = vrefresh * 2;
357 	else
358 		vfieldrate_rqd = vrefresh;
359 
360 	/* 4. Find number of lines in Top margin: */
361 	top_margin = 0;
362 	if (margins)
363 		top_margin = (vdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
364 				1000;
365 	/* 5. Find number of lines in bottom margin: */
366 	bottom_margin = top_margin;
367 
368 	/* 6. If interlace is required, then set variable interlace: */
369 	if (interlaced)
370 		interlace = 1;
371 	else
372 		interlace = 0;
373 
374 	/* 7. Estimate the Horizontal frequency */
375 	{
376 		tmp1 = (1000000  - MIN_VSYNC_PLUS_BP * vfieldrate_rqd) / 500;
377 		tmp2 = (vdisplay_rnd + 2 * top_margin + GTF_MIN_V_PORCH) *
378 				2 + interlace;
379 		hfreq_est = (tmp2 * 1000 * vfieldrate_rqd) / tmp1;
380 	}
381 
382 	/* 8. Find the number of lines in V sync + back porch */
383 	/* [V SYNC+BP] = RINT(([MIN VSYNC+BP] * hfreq_est / 1000000)) */
384 	vsync_plus_bp = MIN_VSYNC_PLUS_BP * hfreq_est / 1000;
385 	vsync_plus_bp = (vsync_plus_bp + 500) / 1000;
386 	/*  9. Find the number of lines in V back porch alone: */
387 	vback_porch = vsync_plus_bp - V_SYNC_RQD;
388 	/*  10. Find the total number of lines in Vertical field period: */
389 	vtotal_lines = vdisplay_rnd + top_margin + bottom_margin +
390 			vsync_plus_bp + GTF_MIN_V_PORCH;
391 	/*  11. Estimate the Vertical field frequency: */
392 	vfieldrate_est = hfreq_est / vtotal_lines;
393 	/*  12. Find the actual horizontal period: */
394 	hperiod = 1000000 / (vfieldrate_rqd * vtotal_lines);
395 
396 	/*  13. Find the actual Vertical field frequency: */
397 	vfield_rate = hfreq_est / vtotal_lines;
398 	/*  14. Find the Vertical frame frequency: */
399 	if (interlaced)
400 		vframe_rate = vfield_rate / 2;
401 	else
402 		vframe_rate = vfield_rate;
403 	/*  15. Find number of pixels in left margin: */
404 	if (margins)
405 		left_margin = (hdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
406 				1000;
407 	else
408 		left_margin = 0;
409 
410 	/* 16.Find number of pixels in right margin: */
411 	right_margin = left_margin;
412 	/* 17.Find total number of active pixels in image and left and right */
413 	total_active_pixels = hdisplay_rnd + left_margin + right_margin;
414 	/* 18.Find the ideal blanking duty cycle from blanking duty cycle */
415 	ideal_duty_cycle = GTF_C_PRIME * 1000 -
416 				(GTF_M_PRIME * 1000000 / hfreq_est);
417 	/* 19.Find the number of pixels in the blanking time to the nearest
418 	 * double character cell: */
419 	hblank = total_active_pixels * ideal_duty_cycle /
420 			(100000 - ideal_duty_cycle);
421 	hblank = (hblank + GTF_CELL_GRAN) / (2 * GTF_CELL_GRAN);
422 	hblank = hblank * 2 * GTF_CELL_GRAN;
423 	/* 20.Find total number of pixels: */
424 	total_pixels = total_active_pixels + hblank;
425 	/* 21.Find pixel clock frequency: */
426 	pixel_freq = total_pixels * hfreq_est / 1000;
427 	/* Stage 1 computations are now complete; I should really pass
428 	 * the results to another function and do the Stage 2 computations,
429 	 * but I only need a few more values so I'll just append the
430 	 * computations here for now */
431 	/* 17. Find the number of pixels in the horizontal sync period: */
432 	hsync = H_SYNC_PERCENT * total_pixels / 100;
433 	hsync = (hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
434 	hsync = hsync * GTF_CELL_GRAN;
435 	/* 18. Find the number of pixels in horizontal front porch period */
436 	hfront_porch = hblank / 2 - hsync;
437 	/*  36. Find the number of lines in the odd front porch period: */
438 	vodd_front_porch_lines = GTF_MIN_V_PORCH ;
439 
440 	/* finally, pack the results in the mode struct */
441 	drm_mode->hdisplay = hdisplay_rnd;
442 	drm_mode->hsync_start = hdisplay_rnd + hfront_porch;
443 	drm_mode->hsync_end = drm_mode->hsync_start + hsync;
444 	drm_mode->htotal = total_pixels;
445 	drm_mode->vdisplay = vdisplay_rnd;
446 	drm_mode->vsync_start = vdisplay_rnd + vodd_front_porch_lines;
447 	drm_mode->vsync_end = drm_mode->vsync_start + V_SYNC_RQD;
448 	drm_mode->vtotal = vtotal_lines;
449 
450 	drm_mode->clock = pixel_freq;
451 
452 	if (interlaced) {
453 		drm_mode->vtotal *= 2;
454 		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
455 	}
456 
457 	drm_mode_set_name(drm_mode);
458 	if (GTF_M == 600 && GTF_2C == 80 && GTF_K == 128 && GTF_2J == 40)
459 		drm_mode->flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC;
460 	else
461 		drm_mode->flags = DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC;
462 
463 	return drm_mode;
464 }
465 EXPORT_SYMBOL(drm_gtf_mode_complex);
466 
467 /**
468  * drm_gtf_mode - create the modeline based on GTF algorithm
469  *
470  * @dev		:drm device
471  * @hdisplay	:hdisplay size
472  * @vdisplay	:vdisplay size
473  * @vrefresh	:vrefresh rate.
474  * @interlaced	:whether the interlace is supported
475  * @margins	:whether the margin is supported
476  *
477  * LOCKING.
478  * none.
479  *
480  * return the modeline based on GTF algorithm
481  *
482  * This function is to create the modeline based on the GTF algorithm.
483  * Generalized Timing Formula is derived from:
484  *	GTF Spreadsheet by Andy Morrish (1/5/97)
485  *	available at http://www.vesa.org
486  *
487  * And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c.
488  * What I have done is to translate it by using integer calculation.
489  * I also refer to the function of fb_get_mode in the file of
490  * drivers/video/fbmon.c
491  *
492  * Standard GTF parameters:
493  * M = 600
494  * C = 40
495  * K = 128
496  * J = 20
497  */
498 struct drm_display_mode *
499 drm_gtf_mode(struct drm_device *dev, int hdisplay, int vdisplay, int vrefresh,
500 	     bool lace, int margins)
501 {
502 	return drm_gtf_mode_complex(dev, hdisplay, vdisplay, vrefresh, lace,
503 				    margins, 600, 40 * 2, 128, 20 * 2);
504 }
505 EXPORT_SYMBOL(drm_gtf_mode);
506 
507 /**
508  * drm_mode_set_name - set the name on a mode
509  * @mode: name will be set in this mode
510  *
511  * LOCKING:
512  * None.
513  *
514  * Set the name of @mode to a standard format.
515  */
516 void drm_mode_set_name(struct drm_display_mode *mode)
517 {
518 	bool interlaced = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
519 
520 	snprintf(mode->name, DRM_DISPLAY_MODE_LEN, "%dx%d%s",
521 		 mode->hdisplay, mode->vdisplay,
522 		 interlaced ? "i" : "");
523 }
524 EXPORT_SYMBOL(drm_mode_set_name);
525 
526 /**
527  * drm_mode_list_concat - move modes from one list to another
528  * @head: source list
529  * @new: dst list
530  *
531  * LOCKING:
532  * Caller must ensure both lists are locked.
533  *
534  * Move all the modes from @head to @new.
535  */
536 void drm_mode_list_concat(struct list_head *head, struct list_head *new)
537 {
538 
539 	struct list_head *entry, *tmp;
540 
541 	list_for_each_safe(entry, tmp, head) {
542 		list_move_tail(entry, new);
543 	}
544 }
545 EXPORT_SYMBOL(drm_mode_list_concat);
546 
547 /**
548  * drm_mode_width - get the width of a mode
549  * @mode: mode
550  *
551  * LOCKING:
552  * None.
553  *
554  * Return @mode's width (hdisplay) value.
555  *
556  * FIXME: is this needed?
557  *
558  * RETURNS:
559  * @mode->hdisplay
560  */
561 int drm_mode_width(struct drm_display_mode *mode)
562 {
563 	return mode->hdisplay;
564 
565 }
566 EXPORT_SYMBOL(drm_mode_width);
567 
568 /**
569  * drm_mode_height - get the height of a mode
570  * @mode: mode
571  *
572  * LOCKING:
573  * None.
574  *
575  * Return @mode's height (vdisplay) value.
576  *
577  * FIXME: is this needed?
578  *
579  * RETURNS:
580  * @mode->vdisplay
581  */
582 int drm_mode_height(struct drm_display_mode *mode)
583 {
584 	return mode->vdisplay;
585 }
586 EXPORT_SYMBOL(drm_mode_height);
587 
588 /** drm_mode_hsync - get the hsync of a mode
589  * @mode: mode
590  *
591  * LOCKING:
592  * None.
593  *
594  * Return @modes's hsync rate in kHz, rounded to the nearest int.
595  */
596 int drm_mode_hsync(struct drm_display_mode *mode)
597 {
598 	unsigned int calc_val;
599 
600 	if (mode->hsync)
601 		return mode->hsync;
602 
603 	if (mode->htotal < 0)
604 		return 0;
605 
606 	calc_val = (mode->clock * 1000) / mode->htotal; /* hsync in Hz */
607 	calc_val += 500;				/* round to 1000Hz */
608 	calc_val /= 1000;				/* truncate to kHz */
609 
610 	return calc_val;
611 }
612 EXPORT_SYMBOL(drm_mode_hsync);
613 
614 /**
615  * drm_mode_vrefresh - get the vrefresh of a mode
616  * @mode: mode
617  *
618  * LOCKING:
619  * None.
620  *
621  * Return @mode's vrefresh rate in Hz or calculate it if necessary.
622  *
623  * FIXME: why is this needed?  shouldn't vrefresh be set already?
624  *
625  * RETURNS:
626  * Vertical refresh rate. It will be the result of actual value plus 0.5.
627  * If it is 70.288, it will return 70Hz.
628  * If it is 59.6, it will return 60Hz.
629  */
630 int drm_mode_vrefresh(struct drm_display_mode *mode)
631 {
632 	int refresh = 0;
633 	unsigned int calc_val;
634 
635 	if (mode->vrefresh > 0)
636 		refresh = mode->vrefresh;
637 	else if (mode->htotal > 0 && mode->vtotal > 0) {
638 		int vtotal;
639 		vtotal = mode->vtotal;
640 		/* work out vrefresh the value will be x1000 */
641 		calc_val = (mode->clock * 1000);
642 		calc_val /= mode->htotal;
643 		refresh = (calc_val + vtotal / 2) / vtotal;
644 
645 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
646 			refresh *= 2;
647 		if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
648 			refresh /= 2;
649 		if (mode->vscan > 1)
650 			refresh /= mode->vscan;
651 	}
652 	return refresh;
653 }
654 EXPORT_SYMBOL(drm_mode_vrefresh);
655 
656 /**
657  * drm_mode_set_crtcinfo - set CRTC modesetting parameters
658  * @p: mode
659  * @adjust_flags: unused? (FIXME)
660  *
661  * LOCKING:
662  * None.
663  *
664  * Setup the CRTC modesetting parameters for @p, adjusting if necessary.
665  */
666 void drm_mode_set_crtcinfo(struct drm_display_mode *p, int adjust_flags)
667 {
668 	if ((p == NULL) || ((p->type & DRM_MODE_TYPE_CRTC_C) == DRM_MODE_TYPE_BUILTIN))
669 		return;
670 
671 	p->crtc_hdisplay = p->hdisplay;
672 	p->crtc_hsync_start = p->hsync_start;
673 	p->crtc_hsync_end = p->hsync_end;
674 	p->crtc_htotal = p->htotal;
675 	p->crtc_hskew = p->hskew;
676 	p->crtc_vdisplay = p->vdisplay;
677 	p->crtc_vsync_start = p->vsync_start;
678 	p->crtc_vsync_end = p->vsync_end;
679 	p->crtc_vtotal = p->vtotal;
680 
681 	if (p->flags & DRM_MODE_FLAG_INTERLACE) {
682 		if (adjust_flags & CRTC_INTERLACE_HALVE_V) {
683 			p->crtc_vdisplay /= 2;
684 			p->crtc_vsync_start /= 2;
685 			p->crtc_vsync_end /= 2;
686 			p->crtc_vtotal /= 2;
687 		}
688 
689 		p->crtc_vtotal |= 1;
690 	}
691 
692 	if (p->flags & DRM_MODE_FLAG_DBLSCAN) {
693 		p->crtc_vdisplay *= 2;
694 		p->crtc_vsync_start *= 2;
695 		p->crtc_vsync_end *= 2;
696 		p->crtc_vtotal *= 2;
697 	}
698 
699 	if (p->vscan > 1) {
700 		p->crtc_vdisplay *= p->vscan;
701 		p->crtc_vsync_start *= p->vscan;
702 		p->crtc_vsync_end *= p->vscan;
703 		p->crtc_vtotal *= p->vscan;
704 	}
705 
706 	p->crtc_vblank_start = min(p->crtc_vsync_start, p->crtc_vdisplay);
707 	p->crtc_vblank_end = max(p->crtc_vsync_end, p->crtc_vtotal);
708 	p->crtc_hblank_start = min(p->crtc_hsync_start, p->crtc_hdisplay);
709 	p->crtc_hblank_end = max(p->crtc_hsync_end, p->crtc_htotal);
710 
711 	p->crtc_hadjusted = false;
712 	p->crtc_vadjusted = false;
713 }
714 EXPORT_SYMBOL(drm_mode_set_crtcinfo);
715 
716 
717 /**
718  * drm_mode_duplicate - allocate and duplicate an existing mode
719  * @m: mode to duplicate
720  *
721  * LOCKING:
722  * None.
723  *
724  * Just allocate a new mode, copy the existing mode into it, and return
725  * a pointer to it.  Used to create new instances of established modes.
726  */
727 struct drm_display_mode *drm_mode_duplicate(struct drm_device *dev,
728 					    struct drm_display_mode *mode)
729 {
730 	struct drm_display_mode *nmode;
731 	int new_id;
732 
733 	nmode = drm_mode_create(dev);
734 	if (!nmode)
735 		return NULL;
736 
737 	new_id = nmode->base.id;
738 	*nmode = *mode;
739 	nmode->base.id = new_id;
740 	INIT_LIST_HEAD(&nmode->head);
741 	return nmode;
742 }
743 EXPORT_SYMBOL(drm_mode_duplicate);
744 
745 /**
746  * drm_mode_equal - test modes for equality
747  * @mode1: first mode
748  * @mode2: second mode
749  *
750  * LOCKING:
751  * None.
752  *
753  * Check to see if @mode1 and @mode2 are equivalent.
754  *
755  * RETURNS:
756  * True if the modes are equal, false otherwise.
757  */
758 bool drm_mode_equal(struct drm_display_mode *mode1, struct drm_display_mode *mode2)
759 {
760 	/* do clock check convert to PICOS so fb modes get matched
761 	 * the same */
762 	if (mode1->clock && mode2->clock) {
763 		if (KHZ2PICOS(mode1->clock) != KHZ2PICOS(mode2->clock))
764 			return false;
765 	} else if (mode1->clock != mode2->clock)
766 		return false;
767 
768 	if (mode1->hdisplay == mode2->hdisplay &&
769 	    mode1->hsync_start == mode2->hsync_start &&
770 	    mode1->hsync_end == mode2->hsync_end &&
771 	    mode1->htotal == mode2->htotal &&
772 	    mode1->hskew == mode2->hskew &&
773 	    mode1->vdisplay == mode2->vdisplay &&
774 	    mode1->vsync_start == mode2->vsync_start &&
775 	    mode1->vsync_end == mode2->vsync_end &&
776 	    mode1->vtotal == mode2->vtotal &&
777 	    mode1->vscan == mode2->vscan &&
778 	    mode1->flags == mode2->flags)
779 		return true;
780 
781 	return false;
782 }
783 EXPORT_SYMBOL(drm_mode_equal);
784 
785 /**
786  * drm_mode_validate_size - make sure modes adhere to size constraints
787  * @dev: DRM device
788  * @mode_list: list of modes to check
789  * @maxX: maximum width
790  * @maxY: maximum height
791  * @maxPitch: max pitch
792  *
793  * LOCKING:
794  * Caller must hold a lock protecting @mode_list.
795  *
796  * The DRM device (@dev) has size and pitch limits.  Here we validate the
797  * modes we probed for @dev against those limits and set their status as
798  * necessary.
799  */
800 void drm_mode_validate_size(struct drm_device *dev,
801 			    struct list_head *mode_list,
802 			    int maxX, int maxY, int maxPitch)
803 {
804 	struct drm_display_mode *mode;
805 
806 	list_for_each_entry(mode, mode_list, head) {
807 		if (maxPitch > 0 && mode->hdisplay > maxPitch)
808 			mode->status = MODE_BAD_WIDTH;
809 
810 		if (maxX > 0 && mode->hdisplay > maxX)
811 			mode->status = MODE_VIRTUAL_X;
812 
813 		if (maxY > 0 && mode->vdisplay > maxY)
814 			mode->status = MODE_VIRTUAL_Y;
815 	}
816 }
817 EXPORT_SYMBOL(drm_mode_validate_size);
818 
819 /**
820  * drm_mode_validate_clocks - validate modes against clock limits
821  * @dev: DRM device
822  * @mode_list: list of modes to check
823  * @min: minimum clock rate array
824  * @max: maximum clock rate array
825  * @n_ranges: number of clock ranges (size of arrays)
826  *
827  * LOCKING:
828  * Caller must hold a lock protecting @mode_list.
829  *
830  * Some code may need to check a mode list against the clock limits of the
831  * device in question.  This function walks the mode list, testing to make
832  * sure each mode falls within a given range (defined by @min and @max
833  * arrays) and sets @mode->status as needed.
834  */
835 void drm_mode_validate_clocks(struct drm_device *dev,
836 			      struct list_head *mode_list,
837 			      int *min, int *max, int n_ranges)
838 {
839 	struct drm_display_mode *mode;
840 	int i;
841 
842 	list_for_each_entry(mode, mode_list, head) {
843 		bool good = false;
844 		for (i = 0; i < n_ranges; i++) {
845 			if (mode->clock >= min[i] && mode->clock <= max[i]) {
846 				good = true;
847 				break;
848 			}
849 		}
850 		if (!good)
851 			mode->status = MODE_CLOCK_RANGE;
852 	}
853 }
854 EXPORT_SYMBOL(drm_mode_validate_clocks);
855 
856 /**
857  * drm_mode_prune_invalid - remove invalid modes from mode list
858  * @dev: DRM device
859  * @mode_list: list of modes to check
860  * @verbose: be verbose about it
861  *
862  * LOCKING:
863  * Caller must hold a lock protecting @mode_list.
864  *
865  * Once mode list generation is complete, a caller can use this routine to
866  * remove invalid modes from a mode list.  If any of the modes have a
867  * status other than %MODE_OK, they are removed from @mode_list and freed.
868  */
869 void drm_mode_prune_invalid(struct drm_device *dev,
870 			    struct list_head *mode_list, bool verbose)
871 {
872 	struct drm_display_mode *mode, *t;
873 
874 	list_for_each_entry_safe(mode, t, mode_list, head) {
875 		if (mode->status != MODE_OK) {
876 			list_del(&mode->head);
877 			if (verbose) {
878 				drm_mode_debug_printmodeline(mode);
879 				DRM_DEBUG_KMS("Not using %s mode %d\n",
880 					mode->name, mode->status);
881 			}
882 			drm_mode_destroy(dev, mode);
883 		}
884 	}
885 }
886 EXPORT_SYMBOL(drm_mode_prune_invalid);
887 
888 /**
889  * drm_mode_compare - compare modes for favorability
890  * @priv: unused
891  * @lh_a: list_head for first mode
892  * @lh_b: list_head for second mode
893  *
894  * LOCKING:
895  * None.
896  *
897  * Compare two modes, given by @lh_a and @lh_b, returning a value indicating
898  * which is better.
899  *
900  * RETURNS:
901  * Negative if @lh_a is better than @lh_b, zero if they're equivalent, or
902  * positive if @lh_b is better than @lh_a.
903  */
904 static int drm_mode_compare(void *priv, struct list_head *lh_a, struct list_head *lh_b)
905 {
906 	struct drm_display_mode *a = list_entry(lh_a, struct drm_display_mode, head);
907 	struct drm_display_mode *b = list_entry(lh_b, struct drm_display_mode, head);
908 	int diff;
909 
910 	diff = ((b->type & DRM_MODE_TYPE_PREFERRED) != 0) -
911 		((a->type & DRM_MODE_TYPE_PREFERRED) != 0);
912 	if (diff)
913 		return diff;
914 	diff = b->hdisplay * b->vdisplay - a->hdisplay * a->vdisplay;
915 	if (diff)
916 		return diff;
917 	diff = b->clock - a->clock;
918 	return diff;
919 }
920 
921 /**
922  * drm_mode_sort - sort mode list
923  * @mode_list: list to sort
924  *
925  * LOCKING:
926  * Caller must hold a lock protecting @mode_list.
927  *
928  * Sort @mode_list by favorability, putting good modes first.
929  */
930 void drm_mode_sort(struct list_head *mode_list)
931 {
932 	list_sort(NULL, mode_list, drm_mode_compare);
933 }
934 EXPORT_SYMBOL(drm_mode_sort);
935 
936 /**
937  * drm_mode_connector_list_update - update the mode list for the connector
938  * @connector: the connector to update
939  *
940  * LOCKING:
941  * Caller must hold a lock protecting @mode_list.
942  *
943  * This moves the modes from the @connector probed_modes list
944  * to the actual mode list. It compares the probed mode against the current
945  * list and only adds different modes. All modes unverified after this point
946  * will be removed by the prune invalid modes.
947  */
948 void drm_mode_connector_list_update(struct drm_connector *connector)
949 {
950 	struct drm_display_mode *mode;
951 	struct drm_display_mode *pmode, *pt;
952 	int found_it;
953 
954 	list_for_each_entry_safe(pmode, pt, &connector->probed_modes,
955 				 head) {
956 		found_it = 0;
957 		/* go through current modes checking for the new probed mode */
958 		list_for_each_entry(mode, &connector->modes, head) {
959 			if (drm_mode_equal(pmode, mode)) {
960 				found_it = 1;
961 				/* if equal delete the probed mode */
962 				mode->status = pmode->status;
963 				/* Merge type bits together */
964 				mode->type |= pmode->type;
965 				list_del(&pmode->head);
966 				drm_mode_destroy(connector->dev, pmode);
967 				break;
968 			}
969 		}
970 
971 		if (!found_it) {
972 			list_move_tail(&pmode->head, &connector->modes);
973 		}
974 	}
975 }
976 EXPORT_SYMBOL(drm_mode_connector_list_update);
977