xref: /openbmc/linux/drivers/gpu/drm/drm_modes.c (revision 7dd65feb)
1 /*
2  * The list_sort function is (presumably) licensed under the GPL (see the
3  * top level "COPYING" file for details).
4  *
5  * The remainder of this file is:
6  *
7  * Copyright © 1997-2003 by The XFree86 Project, Inc.
8  * Copyright © 2007 Dave Airlie
9  * Copyright © 2007-2008 Intel Corporation
10  *   Jesse Barnes <jesse.barnes@intel.com>
11  * Copyright 2005-2006 Luc Verhaegen
12  * Copyright (c) 2001, Andy Ritger  aritger@nvidia.com
13  *
14  * Permission is hereby granted, free of charge, to any person obtaining a
15  * copy of this software and associated documentation files (the "Software"),
16  * to deal in the Software without restriction, including without limitation
17  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
18  * and/or sell copies of the Software, and to permit persons to whom the
19  * Software is furnished to do so, subject to the following conditions:
20  *
21  * The above copyright notice and this permission notice shall be included in
22  * all copies or substantial portions of the Software.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
25  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
27  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
28  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
29  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
30  * OTHER DEALINGS IN THE SOFTWARE.
31  *
32  * Except as contained in this notice, the name of the copyright holder(s)
33  * and author(s) shall not be used in advertising or otherwise to promote
34  * the sale, use or other dealings in this Software without prior written
35  * authorization from the copyright holder(s) and author(s).
36  */
37 
38 #include <linux/list.h>
39 #include "drmP.h"
40 #include "drm.h"
41 #include "drm_crtc.h"
42 
43 /**
44  * drm_mode_debug_printmodeline - debug print a mode
45  * @dev: DRM device
46  * @mode: mode to print
47  *
48  * LOCKING:
49  * None.
50  *
51  * Describe @mode using DRM_DEBUG.
52  */
53 void drm_mode_debug_printmodeline(struct drm_display_mode *mode)
54 {
55 	DRM_DEBUG_KMS("Modeline %d:\"%s\" %d %d %d %d %d %d %d %d %d %d "
56 			"0x%x 0x%x\n",
57 		mode->base.id, mode->name, mode->vrefresh, mode->clock,
58 		mode->hdisplay, mode->hsync_start,
59 		mode->hsync_end, mode->htotal,
60 		mode->vdisplay, mode->vsync_start,
61 		mode->vsync_end, mode->vtotal, mode->type, mode->flags);
62 }
63 EXPORT_SYMBOL(drm_mode_debug_printmodeline);
64 
65 /**
66  * drm_cvt_mode -create a modeline based on CVT algorithm
67  * @dev: DRM device
68  * @hdisplay: hdisplay size
69  * @vdisplay: vdisplay size
70  * @vrefresh  : vrefresh rate
71  * @reduced : Whether the GTF calculation is simplified
72  * @interlaced:Whether the interlace is supported
73  *
74  * LOCKING:
75  * none.
76  *
77  * return the modeline based on CVT algorithm
78  *
79  * This function is called to generate the modeline based on CVT algorithm
80  * according to the hdisplay, vdisplay, vrefresh.
81  * It is based from the VESA(TM) Coordinated Video Timing Generator by
82  * Graham Loveridge April 9, 2003 available at
83  * http://www.vesa.org/public/CVT/CVTd6r1.xls
84  *
85  * And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c.
86  * What I have done is to translate it by using integer calculation.
87  */
88 #define HV_FACTOR			1000
89 struct drm_display_mode *drm_cvt_mode(struct drm_device *dev, int hdisplay,
90 				      int vdisplay, int vrefresh,
91 				      bool reduced, bool interlaced, bool margins)
92 {
93 	/* 1) top/bottom margin size (% of height) - default: 1.8, */
94 #define	CVT_MARGIN_PERCENTAGE		18
95 	/* 2) character cell horizontal granularity (pixels) - default 8 */
96 #define	CVT_H_GRANULARITY		8
97 	/* 3) Minimum vertical porch (lines) - default 3 */
98 #define	CVT_MIN_V_PORCH			3
99 	/* 4) Minimum number of vertical back porch lines - default 6 */
100 #define	CVT_MIN_V_BPORCH		6
101 	/* Pixel Clock step (kHz) */
102 #define CVT_CLOCK_STEP			250
103 	struct drm_display_mode *drm_mode;
104 	unsigned int vfieldrate, hperiod;
105 	int hdisplay_rnd, hmargin, vdisplay_rnd, vmargin, vsync;
106 	int interlace;
107 
108 	/* allocate the drm_display_mode structure. If failure, we will
109 	 * return directly
110 	 */
111 	drm_mode = drm_mode_create(dev);
112 	if (!drm_mode)
113 		return NULL;
114 
115 	/* the CVT default refresh rate is 60Hz */
116 	if (!vrefresh)
117 		vrefresh = 60;
118 
119 	/* the required field fresh rate */
120 	if (interlaced)
121 		vfieldrate = vrefresh * 2;
122 	else
123 		vfieldrate = vrefresh;
124 
125 	/* horizontal pixels */
126 	hdisplay_rnd = hdisplay - (hdisplay % CVT_H_GRANULARITY);
127 
128 	/* determine the left&right borders */
129 	hmargin = 0;
130 	if (margins) {
131 		hmargin = hdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
132 		hmargin -= hmargin % CVT_H_GRANULARITY;
133 	}
134 	/* find the total active pixels */
135 	drm_mode->hdisplay = hdisplay_rnd + 2 * hmargin;
136 
137 	/* find the number of lines per field */
138 	if (interlaced)
139 		vdisplay_rnd = vdisplay / 2;
140 	else
141 		vdisplay_rnd = vdisplay;
142 
143 	/* find the top & bottom borders */
144 	vmargin = 0;
145 	if (margins)
146 		vmargin = vdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
147 
148 	drm_mode->vdisplay = vdisplay + 2 * vmargin;
149 
150 	/* Interlaced */
151 	if (interlaced)
152 		interlace = 1;
153 	else
154 		interlace = 0;
155 
156 	/* Determine VSync Width from aspect ratio */
157 	if (!(vdisplay % 3) && ((vdisplay * 4 / 3) == hdisplay))
158 		vsync = 4;
159 	else if (!(vdisplay % 9) && ((vdisplay * 16 / 9) == hdisplay))
160 		vsync = 5;
161 	else if (!(vdisplay % 10) && ((vdisplay * 16 / 10) == hdisplay))
162 		vsync = 6;
163 	else if (!(vdisplay % 4) && ((vdisplay * 5 / 4) == hdisplay))
164 		vsync = 7;
165 	else if (!(vdisplay % 9) && ((vdisplay * 15 / 9) == hdisplay))
166 		vsync = 7;
167 	else /* custom */
168 		vsync = 10;
169 
170 	if (!reduced) {
171 		/* simplify the GTF calculation */
172 		/* 4) Minimum time of vertical sync + back porch interval (µs)
173 		 * default 550.0
174 		 */
175 		int tmp1, tmp2;
176 #define CVT_MIN_VSYNC_BP	550
177 		/* 3) Nominal HSync width (% of line period) - default 8 */
178 #define CVT_HSYNC_PERCENTAGE	8
179 		unsigned int hblank_percentage;
180 		int vsyncandback_porch, vback_porch, hblank;
181 
182 		/* estimated the horizontal period */
183 		tmp1 = HV_FACTOR * 1000000  -
184 				CVT_MIN_VSYNC_BP * HV_FACTOR * vfieldrate;
185 		tmp2 = (vdisplay_rnd + 2 * vmargin + CVT_MIN_V_PORCH) * 2 +
186 				interlace;
187 		hperiod = tmp1 * 2 / (tmp2 * vfieldrate);
188 
189 		tmp1 = CVT_MIN_VSYNC_BP * HV_FACTOR / hperiod + 1;
190 		/* 9. Find number of lines in sync + backporch */
191 		if (tmp1 < (vsync + CVT_MIN_V_PORCH))
192 			vsyncandback_porch = vsync + CVT_MIN_V_PORCH;
193 		else
194 			vsyncandback_porch = tmp1;
195 		/* 10. Find number of lines in back porch */
196 		vback_porch = vsyncandback_porch - vsync;
197 		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin +
198 				vsyncandback_porch + CVT_MIN_V_PORCH;
199 		/* 5) Definition of Horizontal blanking time limitation */
200 		/* Gradient (%/kHz) - default 600 */
201 #define CVT_M_FACTOR	600
202 		/* Offset (%) - default 40 */
203 #define CVT_C_FACTOR	40
204 		/* Blanking time scaling factor - default 128 */
205 #define CVT_K_FACTOR	128
206 		/* Scaling factor weighting - default 20 */
207 #define CVT_J_FACTOR	20
208 #define CVT_M_PRIME	(CVT_M_FACTOR * CVT_K_FACTOR / 256)
209 #define CVT_C_PRIME	((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256 + \
210 			 CVT_J_FACTOR)
211 		/* 12. Find ideal blanking duty cycle from formula */
212 		hblank_percentage = CVT_C_PRIME * HV_FACTOR - CVT_M_PRIME *
213 					hperiod / 1000;
214 		/* 13. Blanking time */
215 		if (hblank_percentage < 20 * HV_FACTOR)
216 			hblank_percentage = 20 * HV_FACTOR;
217 		hblank = drm_mode->hdisplay * hblank_percentage /
218 			 (100 * HV_FACTOR - hblank_percentage);
219 		hblank -= hblank % (2 * CVT_H_GRANULARITY);
220 		/* 14. find the total pixes per line */
221 		drm_mode->htotal = drm_mode->hdisplay + hblank;
222 		drm_mode->hsync_end = drm_mode->hdisplay + hblank / 2;
223 		drm_mode->hsync_start = drm_mode->hsync_end -
224 			(drm_mode->htotal * CVT_HSYNC_PERCENTAGE) / 100;
225 		drm_mode->hsync_start += CVT_H_GRANULARITY -
226 			drm_mode->hsync_start % CVT_H_GRANULARITY;
227 		/* fill the Vsync values */
228 		drm_mode->vsync_start = drm_mode->vdisplay + CVT_MIN_V_PORCH;
229 		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
230 	} else {
231 		/* Reduced blanking */
232 		/* Minimum vertical blanking interval time (µs)- default 460 */
233 #define CVT_RB_MIN_VBLANK	460
234 		/* Fixed number of clocks for horizontal sync */
235 #define CVT_RB_H_SYNC		32
236 		/* Fixed number of clocks for horizontal blanking */
237 #define CVT_RB_H_BLANK		160
238 		/* Fixed number of lines for vertical front porch - default 3*/
239 #define CVT_RB_VFPORCH		3
240 		int vbilines;
241 		int tmp1, tmp2;
242 		/* 8. Estimate Horizontal period. */
243 		tmp1 = HV_FACTOR * 1000000 -
244 			CVT_RB_MIN_VBLANK * HV_FACTOR * vfieldrate;
245 		tmp2 = vdisplay_rnd + 2 * vmargin;
246 		hperiod = tmp1 / (tmp2 * vfieldrate);
247 		/* 9. Find number of lines in vertical blanking */
248 		vbilines = CVT_RB_MIN_VBLANK * HV_FACTOR / hperiod + 1;
249 		/* 10. Check if vertical blanking is sufficient */
250 		if (vbilines < (CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH))
251 			vbilines = CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH;
252 		/* 11. Find total number of lines in vertical field */
253 		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vbilines;
254 		/* 12. Find total number of pixels in a line */
255 		drm_mode->htotal = drm_mode->hdisplay + CVT_RB_H_BLANK;
256 		/* Fill in HSync values */
257 		drm_mode->hsync_end = drm_mode->hdisplay + CVT_RB_H_BLANK / 2;
258 		drm_mode->hsync_start = drm_mode->hsync_end = CVT_RB_H_SYNC;
259 	}
260 	/* 15/13. Find pixel clock frequency (kHz for xf86) */
261 	drm_mode->clock = drm_mode->htotal * HV_FACTOR * 1000 / hperiod;
262 	drm_mode->clock -= drm_mode->clock % CVT_CLOCK_STEP;
263 	/* 18/16. Find actual vertical frame frequency */
264 	/* ignore - just set the mode flag for interlaced */
265 	if (interlaced)
266 		drm_mode->vtotal *= 2;
267 	/* Fill the mode line name */
268 	drm_mode_set_name(drm_mode);
269 	if (reduced)
270 		drm_mode->flags |= (DRM_MODE_FLAG_PHSYNC |
271 					DRM_MODE_FLAG_NVSYNC);
272 	else
273 		drm_mode->flags |= (DRM_MODE_FLAG_PVSYNC |
274 					DRM_MODE_FLAG_NHSYNC);
275 	if (interlaced)
276 		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
277 
278     return drm_mode;
279 }
280 EXPORT_SYMBOL(drm_cvt_mode);
281 
282 /**
283  * drm_gtf_mode - create the modeline based on GTF algorithm
284  *
285  * @dev		:drm device
286  * @hdisplay	:hdisplay size
287  * @vdisplay	:vdisplay size
288  * @vrefresh	:vrefresh rate.
289  * @interlaced	:whether the interlace is supported
290  * @margins	:whether the margin is supported
291  *
292  * LOCKING.
293  * none.
294  *
295  * return the modeline based on GTF algorithm
296  *
297  * This function is to create the modeline based on the GTF algorithm.
298  * Generalized Timing Formula is derived from:
299  *	GTF Spreadsheet by Andy Morrish (1/5/97)
300  *	available at http://www.vesa.org
301  *
302  * And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c.
303  * What I have done is to translate it by using integer calculation.
304  * I also refer to the function of fb_get_mode in the file of
305  * drivers/video/fbmon.c
306  */
307 struct drm_display_mode *drm_gtf_mode(struct drm_device *dev, int hdisplay,
308 				      int vdisplay, int vrefresh,
309 				      bool interlaced, int margins)
310 {
311 	/* 1) top/bottom margin size (% of height) - default: 1.8, */
312 #define	GTF_MARGIN_PERCENTAGE		18
313 	/* 2) character cell horizontal granularity (pixels) - default 8 */
314 #define	GTF_CELL_GRAN			8
315 	/* 3) Minimum vertical porch (lines) - default 3 */
316 #define	GTF_MIN_V_PORCH			1
317 	/* width of vsync in lines */
318 #define V_SYNC_RQD			3
319 	/* width of hsync as % of total line */
320 #define H_SYNC_PERCENT			8
321 	/* min time of vsync + back porch (microsec) */
322 #define MIN_VSYNC_PLUS_BP		550
323 	/* blanking formula gradient */
324 #define GTF_M				600
325 	/* blanking formula offset */
326 #define GTF_C				40
327 	/* blanking formula scaling factor */
328 #define GTF_K				128
329 	/* blanking formula scaling factor */
330 #define GTF_J				20
331 	/* C' and M' are part of the Blanking Duty Cycle computation */
332 #define GTF_C_PRIME		(((GTF_C - GTF_J) * GTF_K / 256) + GTF_J)
333 #define GTF_M_PRIME		(GTF_K * GTF_M / 256)
334 	struct drm_display_mode *drm_mode;
335 	unsigned int hdisplay_rnd, vdisplay_rnd, vfieldrate_rqd;
336 	int top_margin, bottom_margin;
337 	int interlace;
338 	unsigned int hfreq_est;
339 	int vsync_plus_bp, vback_porch;
340 	unsigned int vtotal_lines, vfieldrate_est, hperiod;
341 	unsigned int vfield_rate, vframe_rate;
342 	int left_margin, right_margin;
343 	unsigned int total_active_pixels, ideal_duty_cycle;
344 	unsigned int hblank, total_pixels, pixel_freq;
345 	int hsync, hfront_porch, vodd_front_porch_lines;
346 	unsigned int tmp1, tmp2;
347 
348 	drm_mode = drm_mode_create(dev);
349 	if (!drm_mode)
350 		return NULL;
351 
352 	/* 1. In order to give correct results, the number of horizontal
353 	 * pixels requested is first processed to ensure that it is divisible
354 	 * by the character size, by rounding it to the nearest character
355 	 * cell boundary:
356 	 */
357 	hdisplay_rnd = (hdisplay + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
358 	hdisplay_rnd = hdisplay_rnd * GTF_CELL_GRAN;
359 
360 	/* 2. If interlace is requested, the number of vertical lines assumed
361 	 * by the calculation must be halved, as the computation calculates
362 	 * the number of vertical lines per field.
363 	 */
364 	if (interlaced)
365 		vdisplay_rnd = vdisplay / 2;
366 	else
367 		vdisplay_rnd = vdisplay;
368 
369 	/* 3. Find the frame rate required: */
370 	if (interlaced)
371 		vfieldrate_rqd = vrefresh * 2;
372 	else
373 		vfieldrate_rqd = vrefresh;
374 
375 	/* 4. Find number of lines in Top margin: */
376 	top_margin = 0;
377 	if (margins)
378 		top_margin = (vdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
379 				1000;
380 	/* 5. Find number of lines in bottom margin: */
381 	bottom_margin = top_margin;
382 
383 	/* 6. If interlace is required, then set variable interlace: */
384 	if (interlaced)
385 		interlace = 1;
386 	else
387 		interlace = 0;
388 
389 	/* 7. Estimate the Horizontal frequency */
390 	{
391 		tmp1 = (1000000  - MIN_VSYNC_PLUS_BP * vfieldrate_rqd) / 500;
392 		tmp2 = (vdisplay_rnd + 2 * top_margin + GTF_MIN_V_PORCH) *
393 				2 + interlace;
394 		hfreq_est = (tmp2 * 1000 * vfieldrate_rqd) / tmp1;
395 	}
396 
397 	/* 8. Find the number of lines in V sync + back porch */
398 	/* [V SYNC+BP] = RINT(([MIN VSYNC+BP] * hfreq_est / 1000000)) */
399 	vsync_plus_bp = MIN_VSYNC_PLUS_BP * hfreq_est / 1000;
400 	vsync_plus_bp = (vsync_plus_bp + 500) / 1000;
401 	/*  9. Find the number of lines in V back porch alone: */
402 	vback_porch = vsync_plus_bp - V_SYNC_RQD;
403 	/*  10. Find the total number of lines in Vertical field period: */
404 	vtotal_lines = vdisplay_rnd + top_margin + bottom_margin +
405 			vsync_plus_bp + GTF_MIN_V_PORCH;
406 	/*  11. Estimate the Vertical field frequency: */
407 	vfieldrate_est = hfreq_est / vtotal_lines;
408 	/*  12. Find the actual horizontal period: */
409 	hperiod = 1000000 / (vfieldrate_rqd * vtotal_lines);
410 
411 	/*  13. Find the actual Vertical field frequency: */
412 	vfield_rate = hfreq_est / vtotal_lines;
413 	/*  14. Find the Vertical frame frequency: */
414 	if (interlaced)
415 		vframe_rate = vfield_rate / 2;
416 	else
417 		vframe_rate = vfield_rate;
418 	/*  15. Find number of pixels in left margin: */
419 	if (margins)
420 		left_margin = (hdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
421 				1000;
422 	else
423 		left_margin = 0;
424 
425 	/* 16.Find number of pixels in right margin: */
426 	right_margin = left_margin;
427 	/* 17.Find total number of active pixels in image and left and right */
428 	total_active_pixels = hdisplay_rnd + left_margin + right_margin;
429 	/* 18.Find the ideal blanking duty cycle from blanking duty cycle */
430 	ideal_duty_cycle = GTF_C_PRIME * 1000 -
431 				(GTF_M_PRIME * 1000000 / hfreq_est);
432 	/* 19.Find the number of pixels in the blanking time to the nearest
433 	 * double character cell: */
434 	hblank = total_active_pixels * ideal_duty_cycle /
435 			(100000 - ideal_duty_cycle);
436 	hblank = (hblank + GTF_CELL_GRAN) / (2 * GTF_CELL_GRAN);
437 	hblank = hblank * 2 * GTF_CELL_GRAN;
438 	/* 20.Find total number of pixels: */
439 	total_pixels = total_active_pixels + hblank;
440 	/* 21.Find pixel clock frequency: */
441 	pixel_freq = total_pixels * hfreq_est / 1000;
442 	/* Stage 1 computations are now complete; I should really pass
443 	 * the results to another function and do the Stage 2 computations,
444 	 * but I only need a few more values so I'll just append the
445 	 * computations here for now */
446 	/* 17. Find the number of pixels in the horizontal sync period: */
447 	hsync = H_SYNC_PERCENT * total_pixels / 100;
448 	hsync = (hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
449 	hsync = hsync * GTF_CELL_GRAN;
450 	/* 18. Find the number of pixels in horizontal front porch period */
451 	hfront_porch = hblank / 2 - hsync;
452 	/*  36. Find the number of lines in the odd front porch period: */
453 	vodd_front_porch_lines = GTF_MIN_V_PORCH ;
454 
455 	/* finally, pack the results in the mode struct */
456 	drm_mode->hdisplay = hdisplay_rnd;
457 	drm_mode->hsync_start = hdisplay_rnd + hfront_porch;
458 	drm_mode->hsync_end = drm_mode->hsync_start + hsync;
459 	drm_mode->htotal = total_pixels;
460 	drm_mode->vdisplay = vdisplay_rnd;
461 	drm_mode->vsync_start = vdisplay_rnd + vodd_front_porch_lines;
462 	drm_mode->vsync_end = drm_mode->vsync_start + V_SYNC_RQD;
463 	drm_mode->vtotal = vtotal_lines;
464 
465 	drm_mode->clock = pixel_freq;
466 
467 	drm_mode_set_name(drm_mode);
468 	drm_mode->flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC;
469 
470 	if (interlaced) {
471 		drm_mode->vtotal *= 2;
472 		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
473 	}
474 
475 	return drm_mode;
476 }
477 EXPORT_SYMBOL(drm_gtf_mode);
478 /**
479  * drm_mode_set_name - set the name on a mode
480  * @mode: name will be set in this mode
481  *
482  * LOCKING:
483  * None.
484  *
485  * Set the name of @mode to a standard format.
486  */
487 void drm_mode_set_name(struct drm_display_mode *mode)
488 {
489 	snprintf(mode->name, DRM_DISPLAY_MODE_LEN, "%dx%d", mode->hdisplay,
490 		 mode->vdisplay);
491 }
492 EXPORT_SYMBOL(drm_mode_set_name);
493 
494 /**
495  * drm_mode_list_concat - move modes from one list to another
496  * @head: source list
497  * @new: dst list
498  *
499  * LOCKING:
500  * Caller must ensure both lists are locked.
501  *
502  * Move all the modes from @head to @new.
503  */
504 void drm_mode_list_concat(struct list_head *head, struct list_head *new)
505 {
506 
507 	struct list_head *entry, *tmp;
508 
509 	list_for_each_safe(entry, tmp, head) {
510 		list_move_tail(entry, new);
511 	}
512 }
513 EXPORT_SYMBOL(drm_mode_list_concat);
514 
515 /**
516  * drm_mode_width - get the width of a mode
517  * @mode: mode
518  *
519  * LOCKING:
520  * None.
521  *
522  * Return @mode's width (hdisplay) value.
523  *
524  * FIXME: is this needed?
525  *
526  * RETURNS:
527  * @mode->hdisplay
528  */
529 int drm_mode_width(struct drm_display_mode *mode)
530 {
531 	return mode->hdisplay;
532 
533 }
534 EXPORT_SYMBOL(drm_mode_width);
535 
536 /**
537  * drm_mode_height - get the height of a mode
538  * @mode: mode
539  *
540  * LOCKING:
541  * None.
542  *
543  * Return @mode's height (vdisplay) value.
544  *
545  * FIXME: is this needed?
546  *
547  * RETURNS:
548  * @mode->vdisplay
549  */
550 int drm_mode_height(struct drm_display_mode *mode)
551 {
552 	return mode->vdisplay;
553 }
554 EXPORT_SYMBOL(drm_mode_height);
555 
556 /** drm_mode_hsync - get the hsync of a mode
557  * @mode: mode
558  *
559  * LOCKING:
560  * None.
561  *
562  * Return @modes's hsync rate in kHz, rounded to the nearest int.
563  */
564 int drm_mode_hsync(struct drm_display_mode *mode)
565 {
566 	unsigned int calc_val;
567 
568 	if (mode->hsync)
569 		return mode->hsync;
570 
571 	if (mode->htotal < 0)
572 		return 0;
573 
574 	calc_val = (mode->clock * 1000) / mode->htotal; /* hsync in Hz */
575 	calc_val += 500;				/* round to 1000Hz */
576 	calc_val /= 1000;				/* truncate to kHz */
577 
578 	return calc_val;
579 }
580 EXPORT_SYMBOL(drm_mode_hsync);
581 
582 /**
583  * drm_mode_vrefresh - get the vrefresh of a mode
584  * @mode: mode
585  *
586  * LOCKING:
587  * None.
588  *
589  * Return @mode's vrefresh rate in Hz or calculate it if necessary.
590  *
591  * FIXME: why is this needed?  shouldn't vrefresh be set already?
592  *
593  * RETURNS:
594  * Vertical refresh rate. It will be the result of actual value plus 0.5.
595  * If it is 70.288, it will return 70Hz.
596  * If it is 59.6, it will return 60Hz.
597  */
598 int drm_mode_vrefresh(struct drm_display_mode *mode)
599 {
600 	int refresh = 0;
601 	unsigned int calc_val;
602 
603 	if (mode->vrefresh > 0)
604 		refresh = mode->vrefresh;
605 	else if (mode->htotal > 0 && mode->vtotal > 0) {
606 		int vtotal;
607 		vtotal = mode->vtotal;
608 		/* work out vrefresh the value will be x1000 */
609 		calc_val = (mode->clock * 1000);
610 		calc_val /= mode->htotal;
611 		refresh = (calc_val + vtotal / 2) / vtotal;
612 
613 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
614 			refresh *= 2;
615 		if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
616 			refresh /= 2;
617 		if (mode->vscan > 1)
618 			refresh /= mode->vscan;
619 	}
620 	return refresh;
621 }
622 EXPORT_SYMBOL(drm_mode_vrefresh);
623 
624 /**
625  * drm_mode_set_crtcinfo - set CRTC modesetting parameters
626  * @p: mode
627  * @adjust_flags: unused? (FIXME)
628  *
629  * LOCKING:
630  * None.
631  *
632  * Setup the CRTC modesetting parameters for @p, adjusting if necessary.
633  */
634 void drm_mode_set_crtcinfo(struct drm_display_mode *p, int adjust_flags)
635 {
636 	if ((p == NULL) || ((p->type & DRM_MODE_TYPE_CRTC_C) == DRM_MODE_TYPE_BUILTIN))
637 		return;
638 
639 	p->crtc_hdisplay = p->hdisplay;
640 	p->crtc_hsync_start = p->hsync_start;
641 	p->crtc_hsync_end = p->hsync_end;
642 	p->crtc_htotal = p->htotal;
643 	p->crtc_hskew = p->hskew;
644 	p->crtc_vdisplay = p->vdisplay;
645 	p->crtc_vsync_start = p->vsync_start;
646 	p->crtc_vsync_end = p->vsync_end;
647 	p->crtc_vtotal = p->vtotal;
648 
649 	if (p->flags & DRM_MODE_FLAG_INTERLACE) {
650 		if (adjust_flags & CRTC_INTERLACE_HALVE_V) {
651 			p->crtc_vdisplay /= 2;
652 			p->crtc_vsync_start /= 2;
653 			p->crtc_vsync_end /= 2;
654 			p->crtc_vtotal /= 2;
655 		}
656 
657 		p->crtc_vtotal |= 1;
658 	}
659 
660 	if (p->flags & DRM_MODE_FLAG_DBLSCAN) {
661 		p->crtc_vdisplay *= 2;
662 		p->crtc_vsync_start *= 2;
663 		p->crtc_vsync_end *= 2;
664 		p->crtc_vtotal *= 2;
665 	}
666 
667 	if (p->vscan > 1) {
668 		p->crtc_vdisplay *= p->vscan;
669 		p->crtc_vsync_start *= p->vscan;
670 		p->crtc_vsync_end *= p->vscan;
671 		p->crtc_vtotal *= p->vscan;
672 	}
673 
674 	p->crtc_vblank_start = min(p->crtc_vsync_start, p->crtc_vdisplay);
675 	p->crtc_vblank_end = max(p->crtc_vsync_end, p->crtc_vtotal);
676 	p->crtc_hblank_start = min(p->crtc_hsync_start, p->crtc_hdisplay);
677 	p->crtc_hblank_end = max(p->crtc_hsync_end, p->crtc_htotal);
678 
679 	p->crtc_hadjusted = false;
680 	p->crtc_vadjusted = false;
681 }
682 EXPORT_SYMBOL(drm_mode_set_crtcinfo);
683 
684 
685 /**
686  * drm_mode_duplicate - allocate and duplicate an existing mode
687  * @m: mode to duplicate
688  *
689  * LOCKING:
690  * None.
691  *
692  * Just allocate a new mode, copy the existing mode into it, and return
693  * a pointer to it.  Used to create new instances of established modes.
694  */
695 struct drm_display_mode *drm_mode_duplicate(struct drm_device *dev,
696 					    struct drm_display_mode *mode)
697 {
698 	struct drm_display_mode *nmode;
699 	int new_id;
700 
701 	nmode = drm_mode_create(dev);
702 	if (!nmode)
703 		return NULL;
704 
705 	new_id = nmode->base.id;
706 	*nmode = *mode;
707 	nmode->base.id = new_id;
708 	INIT_LIST_HEAD(&nmode->head);
709 	return nmode;
710 }
711 EXPORT_SYMBOL(drm_mode_duplicate);
712 
713 /**
714  * drm_mode_equal - test modes for equality
715  * @mode1: first mode
716  * @mode2: second mode
717  *
718  * LOCKING:
719  * None.
720  *
721  * Check to see if @mode1 and @mode2 are equivalent.
722  *
723  * RETURNS:
724  * True if the modes are equal, false otherwise.
725  */
726 bool drm_mode_equal(struct drm_display_mode *mode1, struct drm_display_mode *mode2)
727 {
728 	/* do clock check convert to PICOS so fb modes get matched
729 	 * the same */
730 	if (mode1->clock && mode2->clock) {
731 		if (KHZ2PICOS(mode1->clock) != KHZ2PICOS(mode2->clock))
732 			return false;
733 	} else if (mode1->clock != mode2->clock)
734 		return false;
735 
736 	if (mode1->hdisplay == mode2->hdisplay &&
737 	    mode1->hsync_start == mode2->hsync_start &&
738 	    mode1->hsync_end == mode2->hsync_end &&
739 	    mode1->htotal == mode2->htotal &&
740 	    mode1->hskew == mode2->hskew &&
741 	    mode1->vdisplay == mode2->vdisplay &&
742 	    mode1->vsync_start == mode2->vsync_start &&
743 	    mode1->vsync_end == mode2->vsync_end &&
744 	    mode1->vtotal == mode2->vtotal &&
745 	    mode1->vscan == mode2->vscan &&
746 	    mode1->flags == mode2->flags)
747 		return true;
748 
749 	return false;
750 }
751 EXPORT_SYMBOL(drm_mode_equal);
752 
753 /**
754  * drm_mode_validate_size - make sure modes adhere to size constraints
755  * @dev: DRM device
756  * @mode_list: list of modes to check
757  * @maxX: maximum width
758  * @maxY: maximum height
759  * @maxPitch: max pitch
760  *
761  * LOCKING:
762  * Caller must hold a lock protecting @mode_list.
763  *
764  * The DRM device (@dev) has size and pitch limits.  Here we validate the
765  * modes we probed for @dev against those limits and set their status as
766  * necessary.
767  */
768 void drm_mode_validate_size(struct drm_device *dev,
769 			    struct list_head *mode_list,
770 			    int maxX, int maxY, int maxPitch)
771 {
772 	struct drm_display_mode *mode;
773 
774 	list_for_each_entry(mode, mode_list, head) {
775 		if (maxPitch > 0 && mode->hdisplay > maxPitch)
776 			mode->status = MODE_BAD_WIDTH;
777 
778 		if (maxX > 0 && mode->hdisplay > maxX)
779 			mode->status = MODE_VIRTUAL_X;
780 
781 		if (maxY > 0 && mode->vdisplay > maxY)
782 			mode->status = MODE_VIRTUAL_Y;
783 	}
784 }
785 EXPORT_SYMBOL(drm_mode_validate_size);
786 
787 /**
788  * drm_mode_validate_clocks - validate modes against clock limits
789  * @dev: DRM device
790  * @mode_list: list of modes to check
791  * @min: minimum clock rate array
792  * @max: maximum clock rate array
793  * @n_ranges: number of clock ranges (size of arrays)
794  *
795  * LOCKING:
796  * Caller must hold a lock protecting @mode_list.
797  *
798  * Some code may need to check a mode list against the clock limits of the
799  * device in question.  This function walks the mode list, testing to make
800  * sure each mode falls within a given range (defined by @min and @max
801  * arrays) and sets @mode->status as needed.
802  */
803 void drm_mode_validate_clocks(struct drm_device *dev,
804 			      struct list_head *mode_list,
805 			      int *min, int *max, int n_ranges)
806 {
807 	struct drm_display_mode *mode;
808 	int i;
809 
810 	list_for_each_entry(mode, mode_list, head) {
811 		bool good = false;
812 		for (i = 0; i < n_ranges; i++) {
813 			if (mode->clock >= min[i] && mode->clock <= max[i]) {
814 				good = true;
815 				break;
816 			}
817 		}
818 		if (!good)
819 			mode->status = MODE_CLOCK_RANGE;
820 	}
821 }
822 EXPORT_SYMBOL(drm_mode_validate_clocks);
823 
824 /**
825  * drm_mode_prune_invalid - remove invalid modes from mode list
826  * @dev: DRM device
827  * @mode_list: list of modes to check
828  * @verbose: be verbose about it
829  *
830  * LOCKING:
831  * Caller must hold a lock protecting @mode_list.
832  *
833  * Once mode list generation is complete, a caller can use this routine to
834  * remove invalid modes from a mode list.  If any of the modes have a
835  * status other than %MODE_OK, they are removed from @mode_list and freed.
836  */
837 void drm_mode_prune_invalid(struct drm_device *dev,
838 			    struct list_head *mode_list, bool verbose)
839 {
840 	struct drm_display_mode *mode, *t;
841 
842 	list_for_each_entry_safe(mode, t, mode_list, head) {
843 		if (mode->status != MODE_OK) {
844 			list_del(&mode->head);
845 			if (verbose) {
846 				drm_mode_debug_printmodeline(mode);
847 				DRM_DEBUG_KMS("Not using %s mode %d\n",
848 					mode->name, mode->status);
849 			}
850 			drm_mode_destroy(dev, mode);
851 		}
852 	}
853 }
854 EXPORT_SYMBOL(drm_mode_prune_invalid);
855 
856 /**
857  * drm_mode_compare - compare modes for favorability
858  * @lh_a: list_head for first mode
859  * @lh_b: list_head for second mode
860  *
861  * LOCKING:
862  * None.
863  *
864  * Compare two modes, given by @lh_a and @lh_b, returning a value indicating
865  * which is better.
866  *
867  * RETURNS:
868  * Negative if @lh_a is better than @lh_b, zero if they're equivalent, or
869  * positive if @lh_b is better than @lh_a.
870  */
871 static int drm_mode_compare(struct list_head *lh_a, struct list_head *lh_b)
872 {
873 	struct drm_display_mode *a = list_entry(lh_a, struct drm_display_mode, head);
874 	struct drm_display_mode *b = list_entry(lh_b, struct drm_display_mode, head);
875 	int diff;
876 
877 	diff = ((b->type & DRM_MODE_TYPE_PREFERRED) != 0) -
878 		((a->type & DRM_MODE_TYPE_PREFERRED) != 0);
879 	if (diff)
880 		return diff;
881 	diff = b->hdisplay * b->vdisplay - a->hdisplay * a->vdisplay;
882 	if (diff)
883 		return diff;
884 	diff = b->clock - a->clock;
885 	return diff;
886 }
887 
888 /* FIXME: what we don't have a list sort function? */
889 /* list sort from Mark J Roberts (mjr@znex.org) */
890 void list_sort(struct list_head *head,
891 	       int (*cmp)(struct list_head *a, struct list_head *b))
892 {
893 	struct list_head *p, *q, *e, *list, *tail, *oldhead;
894 	int insize, nmerges, psize, qsize, i;
895 
896 	list = head->next;
897 	list_del(head);
898 	insize = 1;
899 	for (;;) {
900 		p = oldhead = list;
901 		list = tail = NULL;
902 		nmerges = 0;
903 
904 		while (p) {
905 			nmerges++;
906 			q = p;
907 			psize = 0;
908 			for (i = 0; i < insize; i++) {
909 				psize++;
910 				q = q->next == oldhead ? NULL : q->next;
911 				if (!q)
912 					break;
913 			}
914 
915 			qsize = insize;
916 			while (psize > 0 || (qsize > 0 && q)) {
917 				if (!psize) {
918 					e = q;
919 					q = q->next;
920 					qsize--;
921 					if (q == oldhead)
922 						q = NULL;
923 				} else if (!qsize || !q) {
924 					e = p;
925 					p = p->next;
926 					psize--;
927 					if (p == oldhead)
928 						p = NULL;
929 				} else if (cmp(p, q) <= 0) {
930 					e = p;
931 					p = p->next;
932 					psize--;
933 					if (p == oldhead)
934 						p = NULL;
935 				} else {
936 					e = q;
937 					q = q->next;
938 					qsize--;
939 					if (q == oldhead)
940 						q = NULL;
941 				}
942 				if (tail)
943 					tail->next = e;
944 				else
945 					list = e;
946 				e->prev = tail;
947 				tail = e;
948 			}
949 			p = q;
950 		}
951 
952 		tail->next = list;
953 		list->prev = tail;
954 
955 		if (nmerges <= 1)
956 			break;
957 
958 		insize *= 2;
959 	}
960 
961 	head->next = list;
962 	head->prev = list->prev;
963 	list->prev->next = head;
964 	list->prev = head;
965 }
966 
967 /**
968  * drm_mode_sort - sort mode list
969  * @mode_list: list to sort
970  *
971  * LOCKING:
972  * Caller must hold a lock protecting @mode_list.
973  *
974  * Sort @mode_list by favorability, putting good modes first.
975  */
976 void drm_mode_sort(struct list_head *mode_list)
977 {
978 	list_sort(mode_list, drm_mode_compare);
979 }
980 EXPORT_SYMBOL(drm_mode_sort);
981 
982 /**
983  * drm_mode_connector_list_update - update the mode list for the connector
984  * @connector: the connector to update
985  *
986  * LOCKING:
987  * Caller must hold a lock protecting @mode_list.
988  *
989  * This moves the modes from the @connector probed_modes list
990  * to the actual mode list. It compares the probed mode against the current
991  * list and only adds different modes. All modes unverified after this point
992  * will be removed by the prune invalid modes.
993  */
994 void drm_mode_connector_list_update(struct drm_connector *connector)
995 {
996 	struct drm_display_mode *mode;
997 	struct drm_display_mode *pmode, *pt;
998 	int found_it;
999 
1000 	list_for_each_entry_safe(pmode, pt, &connector->probed_modes,
1001 				 head) {
1002 		found_it = 0;
1003 		/* go through current modes checking for the new probed mode */
1004 		list_for_each_entry(mode, &connector->modes, head) {
1005 			if (drm_mode_equal(pmode, mode)) {
1006 				found_it = 1;
1007 				/* if equal delete the probed mode */
1008 				mode->status = pmode->status;
1009 				/* Merge type bits together */
1010 				mode->type |= pmode->type;
1011 				list_del(&pmode->head);
1012 				drm_mode_destroy(connector->dev, pmode);
1013 				break;
1014 			}
1015 		}
1016 
1017 		if (!found_it) {
1018 			list_move_tail(&pmode->head, &connector->modes);
1019 		}
1020 	}
1021 }
1022 EXPORT_SYMBOL(drm_mode_connector_list_update);
1023