1 /************************************************************************** 2 * 3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA. 4 * Copyright 2016 Intel Corporation 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 * 28 **************************************************************************/ 29 30 /* 31 * Generic simple memory manager implementation. Intended to be used as a base 32 * class implementation for more advanced memory managers. 33 * 34 * Note that the algorithm used is quite simple and there might be substantial 35 * performance gains if a smarter free list is implemented. Currently it is 36 * just an unordered stack of free regions. This could easily be improved if 37 * an RB-tree is used instead. At least if we expect heavy fragmentation. 38 * 39 * Aligned allocations can also see improvement. 40 * 41 * Authors: 42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com> 43 */ 44 45 #include <linux/export.h> 46 #include <linux/interval_tree_generic.h> 47 #include <linux/seq_file.h> 48 #include <linux/slab.h> 49 #include <linux/stacktrace.h> 50 51 #include <drm/drm_mm.h> 52 53 /** 54 * DOC: Overview 55 * 56 * drm_mm provides a simple range allocator. The drivers are free to use the 57 * resource allocator from the linux core if it suits them, the upside of drm_mm 58 * is that it's in the DRM core. Which means that it's easier to extend for 59 * some of the crazier special purpose needs of gpus. 60 * 61 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node. 62 * Drivers are free to embed either of them into their own suitable 63 * datastructures. drm_mm itself will not do any memory allocations of its own, 64 * so if drivers choose not to embed nodes they need to still allocate them 65 * themselves. 66 * 67 * The range allocator also supports reservation of preallocated blocks. This is 68 * useful for taking over initial mode setting configurations from the firmware, 69 * where an object needs to be created which exactly matches the firmware's 70 * scanout target. As long as the range is still free it can be inserted anytime 71 * after the allocator is initialized, which helps with avoiding looped 72 * dependencies in the driver load sequence. 73 * 74 * drm_mm maintains a stack of most recently freed holes, which of all 75 * simplistic datastructures seems to be a fairly decent approach to clustering 76 * allocations and avoiding too much fragmentation. This means free space 77 * searches are O(num_holes). Given that all the fancy features drm_mm supports 78 * something better would be fairly complex and since gfx thrashing is a fairly 79 * steep cliff not a real concern. Removing a node again is O(1). 80 * 81 * drm_mm supports a few features: Alignment and range restrictions can be 82 * supplied. Furthermore every &drm_mm_node has a color value (which is just an 83 * opaque unsigned long) which in conjunction with a driver callback can be used 84 * to implement sophisticated placement restrictions. The i915 DRM driver uses 85 * this to implement guard pages between incompatible caching domains in the 86 * graphics TT. 87 * 88 * Two behaviors are supported for searching and allocating: bottom-up and 89 * top-down. The default is bottom-up. Top-down allocation can be used if the 90 * memory area has different restrictions, or just to reduce fragmentation. 91 * 92 * Finally iteration helpers to walk all nodes and all holes are provided as are 93 * some basic allocator dumpers for debugging. 94 * 95 * Note that this range allocator is not thread-safe, drivers need to protect 96 * modifications with their own locking. The idea behind this is that for a full 97 * memory manager additional data needs to be protected anyway, hence internal 98 * locking would be fully redundant. 99 */ 100 101 #ifdef CONFIG_DRM_DEBUG_MM 102 #include <linux/stackdepot.h> 103 104 #define STACKDEPTH 32 105 #define BUFSZ 4096 106 107 static noinline void save_stack(struct drm_mm_node *node) 108 { 109 unsigned long entries[STACKDEPTH]; 110 unsigned int n; 111 112 n = stack_trace_save(entries, ARRAY_SIZE(entries), 1); 113 114 /* May be called under spinlock, so avoid sleeping */ 115 node->stack = stack_depot_save(entries, n, GFP_NOWAIT); 116 } 117 118 static void show_leaks(struct drm_mm *mm) 119 { 120 struct drm_mm_node *node; 121 unsigned long *entries; 122 unsigned int nr_entries; 123 char *buf; 124 125 buf = kmalloc(BUFSZ, GFP_KERNEL); 126 if (!buf) 127 return; 128 129 list_for_each_entry(node, drm_mm_nodes(mm), node_list) { 130 if (!node->stack) { 131 DRM_ERROR("node [%08llx + %08llx]: unknown owner\n", 132 node->start, node->size); 133 continue; 134 } 135 136 nr_entries = stack_depot_fetch(node->stack, &entries); 137 stack_trace_snprint(buf, BUFSZ, entries, nr_entries, 0); 138 DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s", 139 node->start, node->size, buf); 140 } 141 142 kfree(buf); 143 } 144 145 #undef STACKDEPTH 146 #undef BUFSZ 147 #else 148 static void save_stack(struct drm_mm_node *node) { } 149 static void show_leaks(struct drm_mm *mm) { } 150 #endif 151 152 #define START(node) ((node)->start) 153 #define LAST(node) ((node)->start + (node)->size - 1) 154 155 INTERVAL_TREE_DEFINE(struct drm_mm_node, rb, 156 u64, __subtree_last, 157 START, LAST, static inline, drm_mm_interval_tree) 158 159 struct drm_mm_node * 160 __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last) 161 { 162 return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree, 163 start, last) ?: (struct drm_mm_node *)&mm->head_node; 164 } 165 EXPORT_SYMBOL(__drm_mm_interval_first); 166 167 static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node, 168 struct drm_mm_node *node) 169 { 170 struct drm_mm *mm = hole_node->mm; 171 struct rb_node **link, *rb; 172 struct drm_mm_node *parent; 173 bool leftmost; 174 175 node->__subtree_last = LAST(node); 176 177 if (hole_node->allocated) { 178 rb = &hole_node->rb; 179 while (rb) { 180 parent = rb_entry(rb, struct drm_mm_node, rb); 181 if (parent->__subtree_last >= node->__subtree_last) 182 break; 183 184 parent->__subtree_last = node->__subtree_last; 185 rb = rb_parent(rb); 186 } 187 188 rb = &hole_node->rb; 189 link = &hole_node->rb.rb_right; 190 leftmost = false; 191 } else { 192 rb = NULL; 193 link = &mm->interval_tree.rb_root.rb_node; 194 leftmost = true; 195 } 196 197 while (*link) { 198 rb = *link; 199 parent = rb_entry(rb, struct drm_mm_node, rb); 200 if (parent->__subtree_last < node->__subtree_last) 201 parent->__subtree_last = node->__subtree_last; 202 if (node->start < parent->start) { 203 link = &parent->rb.rb_left; 204 } else { 205 link = &parent->rb.rb_right; 206 leftmost = false; 207 } 208 } 209 210 rb_link_node(&node->rb, rb, link); 211 rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost, 212 &drm_mm_interval_tree_augment); 213 } 214 215 #define RB_INSERT(root, member, expr) do { \ 216 struct rb_node **link = &root.rb_node, *rb = NULL; \ 217 u64 x = expr(node); \ 218 while (*link) { \ 219 rb = *link; \ 220 if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \ 221 link = &rb->rb_left; \ 222 else \ 223 link = &rb->rb_right; \ 224 } \ 225 rb_link_node(&node->member, rb, link); \ 226 rb_insert_color(&node->member, &root); \ 227 } while (0) 228 229 #define HOLE_SIZE(NODE) ((NODE)->hole_size) 230 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE)) 231 232 static u64 rb_to_hole_size(struct rb_node *rb) 233 { 234 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size; 235 } 236 237 static void insert_hole_size(struct rb_root_cached *root, 238 struct drm_mm_node *node) 239 { 240 struct rb_node **link = &root->rb_root.rb_node, *rb = NULL; 241 u64 x = node->hole_size; 242 bool first = true; 243 244 while (*link) { 245 rb = *link; 246 if (x > rb_to_hole_size(rb)) { 247 link = &rb->rb_left; 248 } else { 249 link = &rb->rb_right; 250 first = false; 251 } 252 } 253 254 rb_link_node(&node->rb_hole_size, rb, link); 255 rb_insert_color_cached(&node->rb_hole_size, root, first); 256 } 257 258 static void add_hole(struct drm_mm_node *node) 259 { 260 struct drm_mm *mm = node->mm; 261 262 node->hole_size = 263 __drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node); 264 DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); 265 266 insert_hole_size(&mm->holes_size, node); 267 RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR); 268 269 list_add(&node->hole_stack, &mm->hole_stack); 270 } 271 272 static void rm_hole(struct drm_mm_node *node) 273 { 274 DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); 275 276 list_del(&node->hole_stack); 277 rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size); 278 rb_erase(&node->rb_hole_addr, &node->mm->holes_addr); 279 node->hole_size = 0; 280 281 DRM_MM_BUG_ON(drm_mm_hole_follows(node)); 282 } 283 284 static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb) 285 { 286 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size); 287 } 288 289 static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb) 290 { 291 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr); 292 } 293 294 static inline u64 rb_hole_size(struct rb_node *rb) 295 { 296 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size; 297 } 298 299 static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size) 300 { 301 struct rb_node *rb = mm->holes_size.rb_root.rb_node; 302 struct drm_mm_node *best = NULL; 303 304 do { 305 struct drm_mm_node *node = 306 rb_entry(rb, struct drm_mm_node, rb_hole_size); 307 308 if (size <= node->hole_size) { 309 best = node; 310 rb = rb->rb_right; 311 } else { 312 rb = rb->rb_left; 313 } 314 } while (rb); 315 316 return best; 317 } 318 319 static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr) 320 { 321 struct rb_node *rb = mm->holes_addr.rb_node; 322 struct drm_mm_node *node = NULL; 323 324 while (rb) { 325 u64 hole_start; 326 327 node = rb_hole_addr_to_node(rb); 328 hole_start = __drm_mm_hole_node_start(node); 329 330 if (addr < hole_start) 331 rb = node->rb_hole_addr.rb_left; 332 else if (addr > hole_start + node->hole_size) 333 rb = node->rb_hole_addr.rb_right; 334 else 335 break; 336 } 337 338 return node; 339 } 340 341 static struct drm_mm_node * 342 first_hole(struct drm_mm *mm, 343 u64 start, u64 end, u64 size, 344 enum drm_mm_insert_mode mode) 345 { 346 switch (mode) { 347 default: 348 case DRM_MM_INSERT_BEST: 349 return best_hole(mm, size); 350 351 case DRM_MM_INSERT_LOW: 352 return find_hole(mm, start); 353 354 case DRM_MM_INSERT_HIGH: 355 return find_hole(mm, end); 356 357 case DRM_MM_INSERT_EVICT: 358 return list_first_entry_or_null(&mm->hole_stack, 359 struct drm_mm_node, 360 hole_stack); 361 } 362 } 363 364 static struct drm_mm_node * 365 next_hole(struct drm_mm *mm, 366 struct drm_mm_node *node, 367 enum drm_mm_insert_mode mode) 368 { 369 switch (mode) { 370 default: 371 case DRM_MM_INSERT_BEST: 372 return rb_hole_size_to_node(rb_prev(&node->rb_hole_size)); 373 374 case DRM_MM_INSERT_LOW: 375 return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr)); 376 377 case DRM_MM_INSERT_HIGH: 378 return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr)); 379 380 case DRM_MM_INSERT_EVICT: 381 node = list_next_entry(node, hole_stack); 382 return &node->hole_stack == &mm->hole_stack ? NULL : node; 383 } 384 } 385 386 /** 387 * drm_mm_reserve_node - insert an pre-initialized node 388 * @mm: drm_mm allocator to insert @node into 389 * @node: drm_mm_node to insert 390 * 391 * This functions inserts an already set-up &drm_mm_node into the allocator, 392 * meaning that start, size and color must be set by the caller. All other 393 * fields must be cleared to 0. This is useful to initialize the allocator with 394 * preallocated objects which must be set-up before the range allocator can be 395 * set-up, e.g. when taking over a firmware framebuffer. 396 * 397 * Returns: 398 * 0 on success, -ENOSPC if there's no hole where @node is. 399 */ 400 int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node) 401 { 402 u64 end = node->start + node->size; 403 struct drm_mm_node *hole; 404 u64 hole_start, hole_end; 405 u64 adj_start, adj_end; 406 407 end = node->start + node->size; 408 if (unlikely(end <= node->start)) 409 return -ENOSPC; 410 411 /* Find the relevant hole to add our node to */ 412 hole = find_hole(mm, node->start); 413 if (!hole) 414 return -ENOSPC; 415 416 adj_start = hole_start = __drm_mm_hole_node_start(hole); 417 adj_end = hole_end = hole_start + hole->hole_size; 418 419 if (mm->color_adjust) 420 mm->color_adjust(hole, node->color, &adj_start, &adj_end); 421 422 if (adj_start > node->start || adj_end < end) 423 return -ENOSPC; 424 425 node->mm = mm; 426 427 list_add(&node->node_list, &hole->node_list); 428 drm_mm_interval_tree_add_node(hole, node); 429 node->allocated = true; 430 node->hole_size = 0; 431 432 rm_hole(hole); 433 if (node->start > hole_start) 434 add_hole(hole); 435 if (end < hole_end) 436 add_hole(node); 437 438 save_stack(node); 439 return 0; 440 } 441 EXPORT_SYMBOL(drm_mm_reserve_node); 442 443 static u64 rb_to_hole_size_or_zero(struct rb_node *rb) 444 { 445 return rb ? rb_to_hole_size(rb) : 0; 446 } 447 448 /** 449 * drm_mm_insert_node_in_range - ranged search for space and insert @node 450 * @mm: drm_mm to allocate from 451 * @node: preallocate node to insert 452 * @size: size of the allocation 453 * @alignment: alignment of the allocation 454 * @color: opaque tag value to use for this node 455 * @range_start: start of the allowed range for this node 456 * @range_end: end of the allowed range for this node 457 * @mode: fine-tune the allocation search and placement 458 * 459 * The preallocated @node must be cleared to 0. 460 * 461 * Returns: 462 * 0 on success, -ENOSPC if there's no suitable hole. 463 */ 464 int drm_mm_insert_node_in_range(struct drm_mm * const mm, 465 struct drm_mm_node * const node, 466 u64 size, u64 alignment, 467 unsigned long color, 468 u64 range_start, u64 range_end, 469 enum drm_mm_insert_mode mode) 470 { 471 struct drm_mm_node *hole; 472 u64 remainder_mask; 473 bool once; 474 475 DRM_MM_BUG_ON(range_start > range_end); 476 477 if (unlikely(size == 0 || range_end - range_start < size)) 478 return -ENOSPC; 479 480 if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size) 481 return -ENOSPC; 482 483 if (alignment <= 1) 484 alignment = 0; 485 486 once = mode & DRM_MM_INSERT_ONCE; 487 mode &= ~DRM_MM_INSERT_ONCE; 488 489 remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; 490 for (hole = first_hole(mm, range_start, range_end, size, mode); 491 hole; 492 hole = once ? NULL : next_hole(mm, hole, mode)) { 493 u64 hole_start = __drm_mm_hole_node_start(hole); 494 u64 hole_end = hole_start + hole->hole_size; 495 u64 adj_start, adj_end; 496 u64 col_start, col_end; 497 498 if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end) 499 break; 500 501 if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start) 502 break; 503 504 col_start = hole_start; 505 col_end = hole_end; 506 if (mm->color_adjust) 507 mm->color_adjust(hole, color, &col_start, &col_end); 508 509 adj_start = max(col_start, range_start); 510 adj_end = min(col_end, range_end); 511 512 if (adj_end <= adj_start || adj_end - adj_start < size) 513 continue; 514 515 if (mode == DRM_MM_INSERT_HIGH) 516 adj_start = adj_end - size; 517 518 if (alignment) { 519 u64 rem; 520 521 if (likely(remainder_mask)) 522 rem = adj_start & remainder_mask; 523 else 524 div64_u64_rem(adj_start, alignment, &rem); 525 if (rem) { 526 adj_start -= rem; 527 if (mode != DRM_MM_INSERT_HIGH) 528 adj_start += alignment; 529 530 if (adj_start < max(col_start, range_start) || 531 min(col_end, range_end) - adj_start < size) 532 continue; 533 534 if (adj_end <= adj_start || 535 adj_end - adj_start < size) 536 continue; 537 } 538 } 539 540 node->mm = mm; 541 node->size = size; 542 node->start = adj_start; 543 node->color = color; 544 node->hole_size = 0; 545 546 list_add(&node->node_list, &hole->node_list); 547 drm_mm_interval_tree_add_node(hole, node); 548 node->allocated = true; 549 550 rm_hole(hole); 551 if (adj_start > hole_start) 552 add_hole(hole); 553 if (adj_start + size < hole_end) 554 add_hole(node); 555 556 save_stack(node); 557 return 0; 558 } 559 560 return -ENOSPC; 561 } 562 EXPORT_SYMBOL(drm_mm_insert_node_in_range); 563 564 /** 565 * drm_mm_remove_node - Remove a memory node from the allocator. 566 * @node: drm_mm_node to remove 567 * 568 * This just removes a node from its drm_mm allocator. The node does not need to 569 * be cleared again before it can be re-inserted into this or any other drm_mm 570 * allocator. It is a bug to call this function on a unallocated node. 571 */ 572 void drm_mm_remove_node(struct drm_mm_node *node) 573 { 574 struct drm_mm *mm = node->mm; 575 struct drm_mm_node *prev_node; 576 577 DRM_MM_BUG_ON(!node->allocated); 578 DRM_MM_BUG_ON(node->scanned_block); 579 580 prev_node = list_prev_entry(node, node_list); 581 582 if (drm_mm_hole_follows(node)) 583 rm_hole(node); 584 585 drm_mm_interval_tree_remove(node, &mm->interval_tree); 586 list_del(&node->node_list); 587 node->allocated = false; 588 589 if (drm_mm_hole_follows(prev_node)) 590 rm_hole(prev_node); 591 add_hole(prev_node); 592 } 593 EXPORT_SYMBOL(drm_mm_remove_node); 594 595 /** 596 * drm_mm_replace_node - move an allocation from @old to @new 597 * @old: drm_mm_node to remove from the allocator 598 * @new: drm_mm_node which should inherit @old's allocation 599 * 600 * This is useful for when drivers embed the drm_mm_node structure and hence 601 * can't move allocations by reassigning pointers. It's a combination of remove 602 * and insert with the guarantee that the allocation start will match. 603 */ 604 void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new) 605 { 606 struct drm_mm *mm = old->mm; 607 608 DRM_MM_BUG_ON(!old->allocated); 609 610 *new = *old; 611 612 list_replace(&old->node_list, &new->node_list); 613 rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree); 614 615 if (drm_mm_hole_follows(old)) { 616 list_replace(&old->hole_stack, &new->hole_stack); 617 rb_replace_node_cached(&old->rb_hole_size, 618 &new->rb_hole_size, 619 &mm->holes_size); 620 rb_replace_node(&old->rb_hole_addr, 621 &new->rb_hole_addr, 622 &mm->holes_addr); 623 } 624 625 old->allocated = false; 626 new->allocated = true; 627 } 628 EXPORT_SYMBOL(drm_mm_replace_node); 629 630 /** 631 * DOC: lru scan roster 632 * 633 * Very often GPUs need to have continuous allocations for a given object. When 634 * evicting objects to make space for a new one it is therefore not most 635 * efficient when we simply start to select all objects from the tail of an LRU 636 * until there's a suitable hole: Especially for big objects or nodes that 637 * otherwise have special allocation constraints there's a good chance we evict 638 * lots of (smaller) objects unnecessarily. 639 * 640 * The DRM range allocator supports this use-case through the scanning 641 * interfaces. First a scan operation needs to be initialized with 642 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds 643 * objects to the roster, probably by walking an LRU list, but this can be 644 * freely implemented. Eviction candiates are added using 645 * drm_mm_scan_add_block() until a suitable hole is found or there are no 646 * further evictable objects. Eviction roster metadata is tracked in &struct 647 * drm_mm_scan. 648 * 649 * The driver must walk through all objects again in exactly the reverse 650 * order to restore the allocator state. Note that while the allocator is used 651 * in the scan mode no other operation is allowed. 652 * 653 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block() 654 * reported true) in the scan, and any overlapping nodes after color adjustment 655 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and 656 * since freeing a node is also O(1) the overall complexity is 657 * O(scanned_objects). So like the free stack which needs to be walked before a 658 * scan operation even begins this is linear in the number of objects. It 659 * doesn't seem to hurt too badly. 660 */ 661 662 /** 663 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning 664 * @scan: scan state 665 * @mm: drm_mm to scan 666 * @size: size of the allocation 667 * @alignment: alignment of the allocation 668 * @color: opaque tag value to use for the allocation 669 * @start: start of the allowed range for the allocation 670 * @end: end of the allowed range for the allocation 671 * @mode: fine-tune the allocation search and placement 672 * 673 * This simply sets up the scanning routines with the parameters for the desired 674 * hole. 675 * 676 * Warning: 677 * As long as the scan list is non-empty, no other operations than 678 * adding/removing nodes to/from the scan list are allowed. 679 */ 680 void drm_mm_scan_init_with_range(struct drm_mm_scan *scan, 681 struct drm_mm *mm, 682 u64 size, 683 u64 alignment, 684 unsigned long color, 685 u64 start, 686 u64 end, 687 enum drm_mm_insert_mode mode) 688 { 689 DRM_MM_BUG_ON(start >= end); 690 DRM_MM_BUG_ON(!size || size > end - start); 691 DRM_MM_BUG_ON(mm->scan_active); 692 693 scan->mm = mm; 694 695 if (alignment <= 1) 696 alignment = 0; 697 698 scan->color = color; 699 scan->alignment = alignment; 700 scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; 701 scan->size = size; 702 scan->mode = mode; 703 704 DRM_MM_BUG_ON(end <= start); 705 scan->range_start = start; 706 scan->range_end = end; 707 708 scan->hit_start = U64_MAX; 709 scan->hit_end = 0; 710 } 711 EXPORT_SYMBOL(drm_mm_scan_init_with_range); 712 713 /** 714 * drm_mm_scan_add_block - add a node to the scan list 715 * @scan: the active drm_mm scanner 716 * @node: drm_mm_node to add 717 * 718 * Add a node to the scan list that might be freed to make space for the desired 719 * hole. 720 * 721 * Returns: 722 * True if a hole has been found, false otherwise. 723 */ 724 bool drm_mm_scan_add_block(struct drm_mm_scan *scan, 725 struct drm_mm_node *node) 726 { 727 struct drm_mm *mm = scan->mm; 728 struct drm_mm_node *hole; 729 u64 hole_start, hole_end; 730 u64 col_start, col_end; 731 u64 adj_start, adj_end; 732 733 DRM_MM_BUG_ON(node->mm != mm); 734 DRM_MM_BUG_ON(!node->allocated); 735 DRM_MM_BUG_ON(node->scanned_block); 736 node->scanned_block = true; 737 mm->scan_active++; 738 739 /* Remove this block from the node_list so that we enlarge the hole 740 * (distance between the end of our previous node and the start of 741 * or next), without poisoning the link so that we can restore it 742 * later in drm_mm_scan_remove_block(). 743 */ 744 hole = list_prev_entry(node, node_list); 745 DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node); 746 __list_del_entry(&node->node_list); 747 748 hole_start = __drm_mm_hole_node_start(hole); 749 hole_end = __drm_mm_hole_node_end(hole); 750 751 col_start = hole_start; 752 col_end = hole_end; 753 if (mm->color_adjust) 754 mm->color_adjust(hole, scan->color, &col_start, &col_end); 755 756 adj_start = max(col_start, scan->range_start); 757 adj_end = min(col_end, scan->range_end); 758 if (adj_end <= adj_start || adj_end - adj_start < scan->size) 759 return false; 760 761 if (scan->mode == DRM_MM_INSERT_HIGH) 762 adj_start = adj_end - scan->size; 763 764 if (scan->alignment) { 765 u64 rem; 766 767 if (likely(scan->remainder_mask)) 768 rem = adj_start & scan->remainder_mask; 769 else 770 div64_u64_rem(adj_start, scan->alignment, &rem); 771 if (rem) { 772 adj_start -= rem; 773 if (scan->mode != DRM_MM_INSERT_HIGH) 774 adj_start += scan->alignment; 775 if (adj_start < max(col_start, scan->range_start) || 776 min(col_end, scan->range_end) - adj_start < scan->size) 777 return false; 778 779 if (adj_end <= adj_start || 780 adj_end - adj_start < scan->size) 781 return false; 782 } 783 } 784 785 scan->hit_start = adj_start; 786 scan->hit_end = adj_start + scan->size; 787 788 DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end); 789 DRM_MM_BUG_ON(scan->hit_start < hole_start); 790 DRM_MM_BUG_ON(scan->hit_end > hole_end); 791 792 return true; 793 } 794 EXPORT_SYMBOL(drm_mm_scan_add_block); 795 796 /** 797 * drm_mm_scan_remove_block - remove a node from the scan list 798 * @scan: the active drm_mm scanner 799 * @node: drm_mm_node to remove 800 * 801 * Nodes **must** be removed in exactly the reverse order from the scan list as 802 * they have been added (e.g. using list_add() as they are added and then 803 * list_for_each() over that eviction list to remove), otherwise the internal 804 * state of the memory manager will be corrupted. 805 * 806 * When the scan list is empty, the selected memory nodes can be freed. An 807 * immediately following drm_mm_insert_node_in_range_generic() or one of the 808 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return 809 * the just freed block (because it's at the top of the free_stack list). 810 * 811 * Returns: 812 * True if this block should be evicted, false otherwise. Will always 813 * return false when no hole has been found. 814 */ 815 bool drm_mm_scan_remove_block(struct drm_mm_scan *scan, 816 struct drm_mm_node *node) 817 { 818 struct drm_mm_node *prev_node; 819 820 DRM_MM_BUG_ON(node->mm != scan->mm); 821 DRM_MM_BUG_ON(!node->scanned_block); 822 node->scanned_block = false; 823 824 DRM_MM_BUG_ON(!node->mm->scan_active); 825 node->mm->scan_active--; 826 827 /* During drm_mm_scan_add_block() we decoupled this node leaving 828 * its pointers intact. Now that the caller is walking back along 829 * the eviction list we can restore this block into its rightful 830 * place on the full node_list. To confirm that the caller is walking 831 * backwards correctly we check that prev_node->next == node->next, 832 * i.e. both believe the same node should be on the other side of the 833 * hole. 834 */ 835 prev_node = list_prev_entry(node, node_list); 836 DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) != 837 list_next_entry(node, node_list)); 838 list_add(&node->node_list, &prev_node->node_list); 839 840 return (node->start + node->size > scan->hit_start && 841 node->start < scan->hit_end); 842 } 843 EXPORT_SYMBOL(drm_mm_scan_remove_block); 844 845 /** 846 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole 847 * @scan: drm_mm scan with target hole 848 * 849 * After completing an eviction scan and removing the selected nodes, we may 850 * need to remove a few more nodes from either side of the target hole if 851 * mm.color_adjust is being used. 852 * 853 * Returns: 854 * A node to evict, or NULL if there are no overlapping nodes. 855 */ 856 struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan) 857 { 858 struct drm_mm *mm = scan->mm; 859 struct drm_mm_node *hole; 860 u64 hole_start, hole_end; 861 862 DRM_MM_BUG_ON(list_empty(&mm->hole_stack)); 863 864 if (!mm->color_adjust) 865 return NULL; 866 867 /* 868 * The hole found during scanning should ideally be the first element 869 * in the hole_stack list, but due to side-effects in the driver it 870 * may not be. 871 */ 872 list_for_each_entry(hole, &mm->hole_stack, hole_stack) { 873 hole_start = __drm_mm_hole_node_start(hole); 874 hole_end = hole_start + hole->hole_size; 875 876 if (hole_start <= scan->hit_start && 877 hole_end >= scan->hit_end) 878 break; 879 } 880 881 /* We should only be called after we found the hole previously */ 882 DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack); 883 if (unlikely(&hole->hole_stack == &mm->hole_stack)) 884 return NULL; 885 886 DRM_MM_BUG_ON(hole_start > scan->hit_start); 887 DRM_MM_BUG_ON(hole_end < scan->hit_end); 888 889 mm->color_adjust(hole, scan->color, &hole_start, &hole_end); 890 if (hole_start > scan->hit_start) 891 return hole; 892 if (hole_end < scan->hit_end) 893 return list_next_entry(hole, node_list); 894 895 return NULL; 896 } 897 EXPORT_SYMBOL(drm_mm_scan_color_evict); 898 899 /** 900 * drm_mm_init - initialize a drm-mm allocator 901 * @mm: the drm_mm structure to initialize 902 * @start: start of the range managed by @mm 903 * @size: end of the range managed by @mm 904 * 905 * Note that @mm must be cleared to 0 before calling this function. 906 */ 907 void drm_mm_init(struct drm_mm *mm, u64 start, u64 size) 908 { 909 DRM_MM_BUG_ON(start + size <= start); 910 911 mm->color_adjust = NULL; 912 913 INIT_LIST_HEAD(&mm->hole_stack); 914 mm->interval_tree = RB_ROOT_CACHED; 915 mm->holes_size = RB_ROOT_CACHED; 916 mm->holes_addr = RB_ROOT; 917 918 /* Clever trick to avoid a special case in the free hole tracking. */ 919 INIT_LIST_HEAD(&mm->head_node.node_list); 920 mm->head_node.allocated = false; 921 mm->head_node.mm = mm; 922 mm->head_node.start = start + size; 923 mm->head_node.size = -size; 924 add_hole(&mm->head_node); 925 926 mm->scan_active = 0; 927 } 928 EXPORT_SYMBOL(drm_mm_init); 929 930 /** 931 * drm_mm_takedown - clean up a drm_mm allocator 932 * @mm: drm_mm allocator to clean up 933 * 934 * Note that it is a bug to call this function on an allocator which is not 935 * clean. 936 */ 937 void drm_mm_takedown(struct drm_mm *mm) 938 { 939 if (WARN(!drm_mm_clean(mm), 940 "Memory manager not clean during takedown.\n")) 941 show_leaks(mm); 942 } 943 EXPORT_SYMBOL(drm_mm_takedown); 944 945 static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry) 946 { 947 u64 start, size; 948 949 size = entry->hole_size; 950 if (size) { 951 start = drm_mm_hole_node_start(entry); 952 drm_printf(p, "%#018llx-%#018llx: %llu: free\n", 953 start, start + size, size); 954 } 955 956 return size; 957 } 958 /** 959 * drm_mm_print - print allocator state 960 * @mm: drm_mm allocator to print 961 * @p: DRM printer to use 962 */ 963 void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p) 964 { 965 const struct drm_mm_node *entry; 966 u64 total_used = 0, total_free = 0, total = 0; 967 968 total_free += drm_mm_dump_hole(p, &mm->head_node); 969 970 drm_mm_for_each_node(entry, mm) { 971 drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start, 972 entry->start + entry->size, entry->size); 973 total_used += entry->size; 974 total_free += drm_mm_dump_hole(p, entry); 975 } 976 total = total_free + total_used; 977 978 drm_printf(p, "total: %llu, used %llu free %llu\n", total, 979 total_used, total_free); 980 } 981 EXPORT_SYMBOL(drm_mm_print); 982