xref: /openbmc/linux/drivers/gpu/drm/drm_mm.c (revision cfbb9be8)
1 /**************************************************************************
2  *
3  * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
4  * Copyright 2016 Intel Corporation
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  *
28  **************************************************************************/
29 
30 /*
31  * Generic simple memory manager implementation. Intended to be used as a base
32  * class implementation for more advanced memory managers.
33  *
34  * Note that the algorithm used is quite simple and there might be substantial
35  * performance gains if a smarter free list is implemented. Currently it is
36  * just an unordered stack of free regions. This could easily be improved if
37  * an RB-tree is used instead. At least if we expect heavy fragmentation.
38  *
39  * Aligned allocations can also see improvement.
40  *
41  * Authors:
42  * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
43  */
44 
45 #include <drm/drmP.h>
46 #include <drm/drm_mm.h>
47 #include <linux/slab.h>
48 #include <linux/seq_file.h>
49 #include <linux/export.h>
50 #include <linux/interval_tree_generic.h>
51 
52 /**
53  * DOC: Overview
54  *
55  * drm_mm provides a simple range allocator. The drivers are free to use the
56  * resource allocator from the linux core if it suits them, the upside of drm_mm
57  * is that it's in the DRM core. Which means that it's easier to extend for
58  * some of the crazier special purpose needs of gpus.
59  *
60  * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
61  * Drivers are free to embed either of them into their own suitable
62  * datastructures. drm_mm itself will not do any memory allocations of its own,
63  * so if drivers choose not to embed nodes they need to still allocate them
64  * themselves.
65  *
66  * The range allocator also supports reservation of preallocated blocks. This is
67  * useful for taking over initial mode setting configurations from the firmware,
68  * where an object needs to be created which exactly matches the firmware's
69  * scanout target. As long as the range is still free it can be inserted anytime
70  * after the allocator is initialized, which helps with avoiding looped
71  * dependencies in the driver load sequence.
72  *
73  * drm_mm maintains a stack of most recently freed holes, which of all
74  * simplistic datastructures seems to be a fairly decent approach to clustering
75  * allocations and avoiding too much fragmentation. This means free space
76  * searches are O(num_holes). Given that all the fancy features drm_mm supports
77  * something better would be fairly complex and since gfx thrashing is a fairly
78  * steep cliff not a real concern. Removing a node again is O(1).
79  *
80  * drm_mm supports a few features: Alignment and range restrictions can be
81  * supplied. Furthermore every &drm_mm_node has a color value (which is just an
82  * opaque unsigned long) which in conjunction with a driver callback can be used
83  * to implement sophisticated placement restrictions. The i915 DRM driver uses
84  * this to implement guard pages between incompatible caching domains in the
85  * graphics TT.
86  *
87  * Two behaviors are supported for searching and allocating: bottom-up and
88  * top-down. The default is bottom-up. Top-down allocation can be used if the
89  * memory area has different restrictions, or just to reduce fragmentation.
90  *
91  * Finally iteration helpers to walk all nodes and all holes are provided as are
92  * some basic allocator dumpers for debugging.
93  *
94  * Note that this range allocator is not thread-safe, drivers need to protect
95  * modifications with their own locking. The idea behind this is that for a full
96  * memory manager additional data needs to be protected anyway, hence internal
97  * locking would be fully redundant.
98  */
99 
100 #ifdef CONFIG_DRM_DEBUG_MM
101 #include <linux/stackdepot.h>
102 
103 #define STACKDEPTH 32
104 #define BUFSZ 4096
105 
106 static noinline void save_stack(struct drm_mm_node *node)
107 {
108 	unsigned long entries[STACKDEPTH];
109 	struct stack_trace trace = {
110 		.entries = entries,
111 		.max_entries = STACKDEPTH,
112 		.skip = 1
113 	};
114 
115 	save_stack_trace(&trace);
116 	if (trace.nr_entries != 0 &&
117 	    trace.entries[trace.nr_entries-1] == ULONG_MAX)
118 		trace.nr_entries--;
119 
120 	/* May be called under spinlock, so avoid sleeping */
121 	node->stack = depot_save_stack(&trace, GFP_NOWAIT);
122 }
123 
124 static void show_leaks(struct drm_mm *mm)
125 {
126 	struct drm_mm_node *node;
127 	unsigned long entries[STACKDEPTH];
128 	char *buf;
129 
130 	buf = kmalloc(BUFSZ, GFP_KERNEL);
131 	if (!buf)
132 		return;
133 
134 	list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
135 		struct stack_trace trace = {
136 			.entries = entries,
137 			.max_entries = STACKDEPTH
138 		};
139 
140 		if (!node->stack) {
141 			DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
142 				  node->start, node->size);
143 			continue;
144 		}
145 
146 		depot_fetch_stack(node->stack, &trace);
147 		snprint_stack_trace(buf, BUFSZ, &trace, 0);
148 		DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
149 			  node->start, node->size, buf);
150 	}
151 
152 	kfree(buf);
153 }
154 
155 #undef STACKDEPTH
156 #undef BUFSZ
157 #else
158 static void save_stack(struct drm_mm_node *node) { }
159 static void show_leaks(struct drm_mm *mm) { }
160 #endif
161 
162 #define START(node) ((node)->start)
163 #define LAST(node)  ((node)->start + (node)->size - 1)
164 
165 INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
166 		     u64, __subtree_last,
167 		     START, LAST, static inline, drm_mm_interval_tree)
168 
169 struct drm_mm_node *
170 __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
171 {
172 	return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
173 					       start, last) ?: (struct drm_mm_node *)&mm->head_node;
174 }
175 EXPORT_SYMBOL(__drm_mm_interval_first);
176 
177 static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
178 					  struct drm_mm_node *node)
179 {
180 	struct drm_mm *mm = hole_node->mm;
181 	struct rb_node **link, *rb;
182 	struct drm_mm_node *parent;
183 	bool leftmost = true;
184 
185 	node->__subtree_last = LAST(node);
186 
187 	if (hole_node->allocated) {
188 		rb = &hole_node->rb;
189 		while (rb) {
190 			parent = rb_entry(rb, struct drm_mm_node, rb);
191 			if (parent->__subtree_last >= node->__subtree_last)
192 				break;
193 
194 			parent->__subtree_last = node->__subtree_last;
195 			rb = rb_parent(rb);
196 		}
197 
198 		rb = &hole_node->rb;
199 		link = &hole_node->rb.rb_right;
200 		leftmost = false;
201 	} else {
202 		rb = NULL;
203 		link = &mm->interval_tree.rb_root.rb_node;
204 	}
205 
206 	while (*link) {
207 		rb = *link;
208 		parent = rb_entry(rb, struct drm_mm_node, rb);
209 		if (parent->__subtree_last < node->__subtree_last)
210 			parent->__subtree_last = node->__subtree_last;
211 		if (node->start < parent->start)
212 			link = &parent->rb.rb_left;
213 		else {
214 			link = &parent->rb.rb_right;
215 			leftmost = true;
216 		}
217 	}
218 
219 	rb_link_node(&node->rb, rb, link);
220 	rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
221 				   &drm_mm_interval_tree_augment);
222 }
223 
224 #define RB_INSERT(root, member, expr) do { \
225 	struct rb_node **link = &root.rb_node, *rb = NULL; \
226 	u64 x = expr(node); \
227 	while (*link) { \
228 		rb = *link; \
229 		if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \
230 			link = &rb->rb_left; \
231 		else \
232 			link = &rb->rb_right; \
233 	} \
234 	rb_link_node(&node->member, rb, link); \
235 	rb_insert_color(&node->member, &root); \
236 } while (0)
237 
238 #define HOLE_SIZE(NODE) ((NODE)->hole_size)
239 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
240 
241 static void add_hole(struct drm_mm_node *node)
242 {
243 	struct drm_mm *mm = node->mm;
244 
245 	node->hole_size =
246 		__drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
247 	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
248 
249 	RB_INSERT(mm->holes_size, rb_hole_size, HOLE_SIZE);
250 	RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR);
251 
252 	list_add(&node->hole_stack, &mm->hole_stack);
253 }
254 
255 static void rm_hole(struct drm_mm_node *node)
256 {
257 	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
258 
259 	list_del(&node->hole_stack);
260 	rb_erase(&node->rb_hole_size, &node->mm->holes_size);
261 	rb_erase(&node->rb_hole_addr, &node->mm->holes_addr);
262 	node->hole_size = 0;
263 
264 	DRM_MM_BUG_ON(drm_mm_hole_follows(node));
265 }
266 
267 static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
268 {
269 	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
270 }
271 
272 static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
273 {
274 	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
275 }
276 
277 static inline u64 rb_hole_size(struct rb_node *rb)
278 {
279 	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
280 }
281 
282 static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
283 {
284 	struct rb_node *best = NULL;
285 	struct rb_node **link = &mm->holes_size.rb_node;
286 
287 	while (*link) {
288 		struct rb_node *rb = *link;
289 
290 		if (size <= rb_hole_size(rb)) {
291 			link = &rb->rb_left;
292 			best = rb;
293 		} else {
294 			link = &rb->rb_right;
295 		}
296 	}
297 
298 	return rb_hole_size_to_node(best);
299 }
300 
301 static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr)
302 {
303 	struct drm_mm_node *node = NULL;
304 	struct rb_node **link = &mm->holes_addr.rb_node;
305 
306 	while (*link) {
307 		u64 hole_start;
308 
309 		node = rb_hole_addr_to_node(*link);
310 		hole_start = __drm_mm_hole_node_start(node);
311 
312 		if (addr < hole_start)
313 			link = &node->rb_hole_addr.rb_left;
314 		else if (addr > hole_start + node->hole_size)
315 			link = &node->rb_hole_addr.rb_right;
316 		else
317 			break;
318 	}
319 
320 	return node;
321 }
322 
323 static struct drm_mm_node *
324 first_hole(struct drm_mm *mm,
325 	   u64 start, u64 end, u64 size,
326 	   enum drm_mm_insert_mode mode)
327 {
328 	if (RB_EMPTY_ROOT(&mm->holes_size))
329 		return NULL;
330 
331 	switch (mode) {
332 	default:
333 	case DRM_MM_INSERT_BEST:
334 		return best_hole(mm, size);
335 
336 	case DRM_MM_INSERT_LOW:
337 		return find_hole(mm, start);
338 
339 	case DRM_MM_INSERT_HIGH:
340 		return find_hole(mm, end);
341 
342 	case DRM_MM_INSERT_EVICT:
343 		return list_first_entry_or_null(&mm->hole_stack,
344 						struct drm_mm_node,
345 						hole_stack);
346 	}
347 }
348 
349 static struct drm_mm_node *
350 next_hole(struct drm_mm *mm,
351 	  struct drm_mm_node *node,
352 	  enum drm_mm_insert_mode mode)
353 {
354 	switch (mode) {
355 	default:
356 	case DRM_MM_INSERT_BEST:
357 		return rb_hole_size_to_node(rb_next(&node->rb_hole_size));
358 
359 	case DRM_MM_INSERT_LOW:
360 		return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr));
361 
362 	case DRM_MM_INSERT_HIGH:
363 		return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr));
364 
365 	case DRM_MM_INSERT_EVICT:
366 		node = list_next_entry(node, hole_stack);
367 		return &node->hole_stack == &mm->hole_stack ? NULL : node;
368 	}
369 }
370 
371 /**
372  * drm_mm_reserve_node - insert an pre-initialized node
373  * @mm: drm_mm allocator to insert @node into
374  * @node: drm_mm_node to insert
375  *
376  * This functions inserts an already set-up &drm_mm_node into the allocator,
377  * meaning that start, size and color must be set by the caller. All other
378  * fields must be cleared to 0. This is useful to initialize the allocator with
379  * preallocated objects which must be set-up before the range allocator can be
380  * set-up, e.g. when taking over a firmware framebuffer.
381  *
382  * Returns:
383  * 0 on success, -ENOSPC if there's no hole where @node is.
384  */
385 int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
386 {
387 	u64 end = node->start + node->size;
388 	struct drm_mm_node *hole;
389 	u64 hole_start, hole_end;
390 	u64 adj_start, adj_end;
391 
392 	end = node->start + node->size;
393 	if (unlikely(end <= node->start))
394 		return -ENOSPC;
395 
396 	/* Find the relevant hole to add our node to */
397 	hole = find_hole(mm, node->start);
398 	if (!hole)
399 		return -ENOSPC;
400 
401 	adj_start = hole_start = __drm_mm_hole_node_start(hole);
402 	adj_end = hole_end = hole_start + hole->hole_size;
403 
404 	if (mm->color_adjust)
405 		mm->color_adjust(hole, node->color, &adj_start, &adj_end);
406 
407 	if (adj_start > node->start || adj_end < end)
408 		return -ENOSPC;
409 
410 	node->mm = mm;
411 
412 	list_add(&node->node_list, &hole->node_list);
413 	drm_mm_interval_tree_add_node(hole, node);
414 	node->allocated = true;
415 	node->hole_size = 0;
416 
417 	rm_hole(hole);
418 	if (node->start > hole_start)
419 		add_hole(hole);
420 	if (end < hole_end)
421 		add_hole(node);
422 
423 	save_stack(node);
424 	return 0;
425 }
426 EXPORT_SYMBOL(drm_mm_reserve_node);
427 
428 /**
429  * drm_mm_insert_node_in_range - ranged search for space and insert @node
430  * @mm: drm_mm to allocate from
431  * @node: preallocate node to insert
432  * @size: size of the allocation
433  * @alignment: alignment of the allocation
434  * @color: opaque tag value to use for this node
435  * @range_start: start of the allowed range for this node
436  * @range_end: end of the allowed range for this node
437  * @mode: fine-tune the allocation search and placement
438  *
439  * The preallocated @node must be cleared to 0.
440  *
441  * Returns:
442  * 0 on success, -ENOSPC if there's no suitable hole.
443  */
444 int drm_mm_insert_node_in_range(struct drm_mm * const mm,
445 				struct drm_mm_node * const node,
446 				u64 size, u64 alignment,
447 				unsigned long color,
448 				u64 range_start, u64 range_end,
449 				enum drm_mm_insert_mode mode)
450 {
451 	struct drm_mm_node *hole;
452 	u64 remainder_mask;
453 
454 	DRM_MM_BUG_ON(range_start >= range_end);
455 
456 	if (unlikely(size == 0 || range_end - range_start < size))
457 		return -ENOSPC;
458 
459 	if (alignment <= 1)
460 		alignment = 0;
461 
462 	remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
463 	for (hole = first_hole(mm, range_start, range_end, size, mode); hole;
464 	     hole = next_hole(mm, hole, mode)) {
465 		u64 hole_start = __drm_mm_hole_node_start(hole);
466 		u64 hole_end = hole_start + hole->hole_size;
467 		u64 adj_start, adj_end;
468 		u64 col_start, col_end;
469 
470 		if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
471 			break;
472 
473 		if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
474 			break;
475 
476 		col_start = hole_start;
477 		col_end = hole_end;
478 		if (mm->color_adjust)
479 			mm->color_adjust(hole, color, &col_start, &col_end);
480 
481 		adj_start = max(col_start, range_start);
482 		adj_end = min(col_end, range_end);
483 
484 		if (adj_end <= adj_start || adj_end - adj_start < size)
485 			continue;
486 
487 		if (mode == DRM_MM_INSERT_HIGH)
488 			adj_start = adj_end - size;
489 
490 		if (alignment) {
491 			u64 rem;
492 
493 			if (likely(remainder_mask))
494 				rem = adj_start & remainder_mask;
495 			else
496 				div64_u64_rem(adj_start, alignment, &rem);
497 			if (rem) {
498 				adj_start -= rem;
499 				if (mode != DRM_MM_INSERT_HIGH)
500 					adj_start += alignment;
501 
502 				if (adj_start < max(col_start, range_start) ||
503 				    min(col_end, range_end) - adj_start < size)
504 					continue;
505 
506 				if (adj_end <= adj_start ||
507 				    adj_end - adj_start < size)
508 					continue;
509 			}
510 		}
511 
512 		node->mm = mm;
513 		node->size = size;
514 		node->start = adj_start;
515 		node->color = color;
516 		node->hole_size = 0;
517 
518 		list_add(&node->node_list, &hole->node_list);
519 		drm_mm_interval_tree_add_node(hole, node);
520 		node->allocated = true;
521 
522 		rm_hole(hole);
523 		if (adj_start > hole_start)
524 			add_hole(hole);
525 		if (adj_start + size < hole_end)
526 			add_hole(node);
527 
528 		save_stack(node);
529 		return 0;
530 	}
531 
532 	return -ENOSPC;
533 }
534 EXPORT_SYMBOL(drm_mm_insert_node_in_range);
535 
536 /**
537  * drm_mm_remove_node - Remove a memory node from the allocator.
538  * @node: drm_mm_node to remove
539  *
540  * This just removes a node from its drm_mm allocator. The node does not need to
541  * be cleared again before it can be re-inserted into this or any other drm_mm
542  * allocator. It is a bug to call this function on a unallocated node.
543  */
544 void drm_mm_remove_node(struct drm_mm_node *node)
545 {
546 	struct drm_mm *mm = node->mm;
547 	struct drm_mm_node *prev_node;
548 
549 	DRM_MM_BUG_ON(!node->allocated);
550 	DRM_MM_BUG_ON(node->scanned_block);
551 
552 	prev_node = list_prev_entry(node, node_list);
553 
554 	if (drm_mm_hole_follows(node))
555 		rm_hole(node);
556 
557 	drm_mm_interval_tree_remove(node, &mm->interval_tree);
558 	list_del(&node->node_list);
559 	node->allocated = false;
560 
561 	if (drm_mm_hole_follows(prev_node))
562 		rm_hole(prev_node);
563 	add_hole(prev_node);
564 }
565 EXPORT_SYMBOL(drm_mm_remove_node);
566 
567 /**
568  * drm_mm_replace_node - move an allocation from @old to @new
569  * @old: drm_mm_node to remove from the allocator
570  * @new: drm_mm_node which should inherit @old's allocation
571  *
572  * This is useful for when drivers embed the drm_mm_node structure and hence
573  * can't move allocations by reassigning pointers. It's a combination of remove
574  * and insert with the guarantee that the allocation start will match.
575  */
576 void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
577 {
578 	struct drm_mm *mm = old->mm;
579 
580 	DRM_MM_BUG_ON(!old->allocated);
581 
582 	*new = *old;
583 
584 	list_replace(&old->node_list, &new->node_list);
585 	rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree);
586 
587 	if (drm_mm_hole_follows(old)) {
588 		list_replace(&old->hole_stack, &new->hole_stack);
589 		rb_replace_node(&old->rb_hole_size,
590 				&new->rb_hole_size,
591 				&mm->holes_size);
592 		rb_replace_node(&old->rb_hole_addr,
593 				&new->rb_hole_addr,
594 				&mm->holes_addr);
595 	}
596 
597 	old->allocated = false;
598 	new->allocated = true;
599 }
600 EXPORT_SYMBOL(drm_mm_replace_node);
601 
602 /**
603  * DOC: lru scan roster
604  *
605  * Very often GPUs need to have continuous allocations for a given object. When
606  * evicting objects to make space for a new one it is therefore not most
607  * efficient when we simply start to select all objects from the tail of an LRU
608  * until there's a suitable hole: Especially for big objects or nodes that
609  * otherwise have special allocation constraints there's a good chance we evict
610  * lots of (smaller) objects unnecessarily.
611  *
612  * The DRM range allocator supports this use-case through the scanning
613  * interfaces. First a scan operation needs to be initialized with
614  * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
615  * objects to the roster, probably by walking an LRU list, but this can be
616  * freely implemented. Eviction candiates are added using
617  * drm_mm_scan_add_block() until a suitable hole is found or there are no
618  * further evictable objects. Eviction roster metadata is tracked in &struct
619  * drm_mm_scan.
620  *
621  * The driver must walk through all objects again in exactly the reverse
622  * order to restore the allocator state. Note that while the allocator is used
623  * in the scan mode no other operation is allowed.
624  *
625  * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
626  * reported true) in the scan, and any overlapping nodes after color adjustment
627  * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
628  * since freeing a node is also O(1) the overall complexity is
629  * O(scanned_objects). So like the free stack which needs to be walked before a
630  * scan operation even begins this is linear in the number of objects. It
631  * doesn't seem to hurt too badly.
632  */
633 
634 /**
635  * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
636  * @scan: scan state
637  * @mm: drm_mm to scan
638  * @size: size of the allocation
639  * @alignment: alignment of the allocation
640  * @color: opaque tag value to use for the allocation
641  * @start: start of the allowed range for the allocation
642  * @end: end of the allowed range for the allocation
643  * @mode: fine-tune the allocation search and placement
644  *
645  * This simply sets up the scanning routines with the parameters for the desired
646  * hole.
647  *
648  * Warning:
649  * As long as the scan list is non-empty, no other operations than
650  * adding/removing nodes to/from the scan list are allowed.
651  */
652 void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
653 				 struct drm_mm *mm,
654 				 u64 size,
655 				 u64 alignment,
656 				 unsigned long color,
657 				 u64 start,
658 				 u64 end,
659 				 enum drm_mm_insert_mode mode)
660 {
661 	DRM_MM_BUG_ON(start >= end);
662 	DRM_MM_BUG_ON(!size || size > end - start);
663 	DRM_MM_BUG_ON(mm->scan_active);
664 
665 	scan->mm = mm;
666 
667 	if (alignment <= 1)
668 		alignment = 0;
669 
670 	scan->color = color;
671 	scan->alignment = alignment;
672 	scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
673 	scan->size = size;
674 	scan->mode = mode;
675 
676 	DRM_MM_BUG_ON(end <= start);
677 	scan->range_start = start;
678 	scan->range_end = end;
679 
680 	scan->hit_start = U64_MAX;
681 	scan->hit_end = 0;
682 }
683 EXPORT_SYMBOL(drm_mm_scan_init_with_range);
684 
685 /**
686  * drm_mm_scan_add_block - add a node to the scan list
687  * @scan: the active drm_mm scanner
688  * @node: drm_mm_node to add
689  *
690  * Add a node to the scan list that might be freed to make space for the desired
691  * hole.
692  *
693  * Returns:
694  * True if a hole has been found, false otherwise.
695  */
696 bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
697 			   struct drm_mm_node *node)
698 {
699 	struct drm_mm *mm = scan->mm;
700 	struct drm_mm_node *hole;
701 	u64 hole_start, hole_end;
702 	u64 col_start, col_end;
703 	u64 adj_start, adj_end;
704 
705 	DRM_MM_BUG_ON(node->mm != mm);
706 	DRM_MM_BUG_ON(!node->allocated);
707 	DRM_MM_BUG_ON(node->scanned_block);
708 	node->scanned_block = true;
709 	mm->scan_active++;
710 
711 	/* Remove this block from the node_list so that we enlarge the hole
712 	 * (distance between the end of our previous node and the start of
713 	 * or next), without poisoning the link so that we can restore it
714 	 * later in drm_mm_scan_remove_block().
715 	 */
716 	hole = list_prev_entry(node, node_list);
717 	DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
718 	__list_del_entry(&node->node_list);
719 
720 	hole_start = __drm_mm_hole_node_start(hole);
721 	hole_end = __drm_mm_hole_node_end(hole);
722 
723 	col_start = hole_start;
724 	col_end = hole_end;
725 	if (mm->color_adjust)
726 		mm->color_adjust(hole, scan->color, &col_start, &col_end);
727 
728 	adj_start = max(col_start, scan->range_start);
729 	adj_end = min(col_end, scan->range_end);
730 	if (adj_end <= adj_start || adj_end - adj_start < scan->size)
731 		return false;
732 
733 	if (scan->mode == DRM_MM_INSERT_HIGH)
734 		adj_start = adj_end - scan->size;
735 
736 	if (scan->alignment) {
737 		u64 rem;
738 
739 		if (likely(scan->remainder_mask))
740 			rem = adj_start & scan->remainder_mask;
741 		else
742 			div64_u64_rem(adj_start, scan->alignment, &rem);
743 		if (rem) {
744 			adj_start -= rem;
745 			if (scan->mode != DRM_MM_INSERT_HIGH)
746 				adj_start += scan->alignment;
747 			if (adj_start < max(col_start, scan->range_start) ||
748 			    min(col_end, scan->range_end) - adj_start < scan->size)
749 				return false;
750 
751 			if (adj_end <= adj_start ||
752 			    adj_end - adj_start < scan->size)
753 				return false;
754 		}
755 	}
756 
757 	scan->hit_start = adj_start;
758 	scan->hit_end = adj_start + scan->size;
759 
760 	DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
761 	DRM_MM_BUG_ON(scan->hit_start < hole_start);
762 	DRM_MM_BUG_ON(scan->hit_end > hole_end);
763 
764 	return true;
765 }
766 EXPORT_SYMBOL(drm_mm_scan_add_block);
767 
768 /**
769  * drm_mm_scan_remove_block - remove a node from the scan list
770  * @scan: the active drm_mm scanner
771  * @node: drm_mm_node to remove
772  *
773  * Nodes **must** be removed in exactly the reverse order from the scan list as
774  * they have been added (e.g. using list_add() as they are added and then
775  * list_for_each() over that eviction list to remove), otherwise the internal
776  * state of the memory manager will be corrupted.
777  *
778  * When the scan list is empty, the selected memory nodes can be freed. An
779  * immediately following drm_mm_insert_node_in_range_generic() or one of the
780  * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
781  * the just freed block (because its at the top of the free_stack list).
782  *
783  * Returns:
784  * True if this block should be evicted, false otherwise. Will always
785  * return false when no hole has been found.
786  */
787 bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
788 			      struct drm_mm_node *node)
789 {
790 	struct drm_mm_node *prev_node;
791 
792 	DRM_MM_BUG_ON(node->mm != scan->mm);
793 	DRM_MM_BUG_ON(!node->scanned_block);
794 	node->scanned_block = false;
795 
796 	DRM_MM_BUG_ON(!node->mm->scan_active);
797 	node->mm->scan_active--;
798 
799 	/* During drm_mm_scan_add_block() we decoupled this node leaving
800 	 * its pointers intact. Now that the caller is walking back along
801 	 * the eviction list we can restore this block into its rightful
802 	 * place on the full node_list. To confirm that the caller is walking
803 	 * backwards correctly we check that prev_node->next == node->next,
804 	 * i.e. both believe the same node should be on the other side of the
805 	 * hole.
806 	 */
807 	prev_node = list_prev_entry(node, node_list);
808 	DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
809 		      list_next_entry(node, node_list));
810 	list_add(&node->node_list, &prev_node->node_list);
811 
812 	return (node->start + node->size > scan->hit_start &&
813 		node->start < scan->hit_end);
814 }
815 EXPORT_SYMBOL(drm_mm_scan_remove_block);
816 
817 /**
818  * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
819  * @scan: drm_mm scan with target hole
820  *
821  * After completing an eviction scan and removing the selected nodes, we may
822  * need to remove a few more nodes from either side of the target hole if
823  * mm.color_adjust is being used.
824  *
825  * Returns:
826  * A node to evict, or NULL if there are no overlapping nodes.
827  */
828 struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
829 {
830 	struct drm_mm *mm = scan->mm;
831 	struct drm_mm_node *hole;
832 	u64 hole_start, hole_end;
833 
834 	DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
835 
836 	if (!mm->color_adjust)
837 		return NULL;
838 
839 	/*
840 	 * The hole found during scanning should ideally be the first element
841 	 * in the hole_stack list, but due to side-effects in the driver it
842 	 * may not be.
843 	 */
844 	list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
845 		hole_start = __drm_mm_hole_node_start(hole);
846 		hole_end = hole_start + hole->hole_size;
847 
848 		if (hole_start <= scan->hit_start &&
849 		    hole_end >= scan->hit_end)
850 			break;
851 	}
852 
853 	/* We should only be called after we found the hole previously */
854 	DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
855 	if (unlikely(&hole->hole_stack == &mm->hole_stack))
856 		return NULL;
857 
858 	DRM_MM_BUG_ON(hole_start > scan->hit_start);
859 	DRM_MM_BUG_ON(hole_end < scan->hit_end);
860 
861 	mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
862 	if (hole_start > scan->hit_start)
863 		return hole;
864 	if (hole_end < scan->hit_end)
865 		return list_next_entry(hole, node_list);
866 
867 	return NULL;
868 }
869 EXPORT_SYMBOL(drm_mm_scan_color_evict);
870 
871 /**
872  * drm_mm_init - initialize a drm-mm allocator
873  * @mm: the drm_mm structure to initialize
874  * @start: start of the range managed by @mm
875  * @size: end of the range managed by @mm
876  *
877  * Note that @mm must be cleared to 0 before calling this function.
878  */
879 void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
880 {
881 	DRM_MM_BUG_ON(start + size <= start);
882 
883 	mm->color_adjust = NULL;
884 
885 	INIT_LIST_HEAD(&mm->hole_stack);
886 	mm->interval_tree = RB_ROOT_CACHED;
887 	mm->holes_size = RB_ROOT;
888 	mm->holes_addr = RB_ROOT;
889 
890 	/* Clever trick to avoid a special case in the free hole tracking. */
891 	INIT_LIST_HEAD(&mm->head_node.node_list);
892 	mm->head_node.allocated = false;
893 	mm->head_node.mm = mm;
894 	mm->head_node.start = start + size;
895 	mm->head_node.size = -size;
896 	add_hole(&mm->head_node);
897 
898 	mm->scan_active = 0;
899 }
900 EXPORT_SYMBOL(drm_mm_init);
901 
902 /**
903  * drm_mm_takedown - clean up a drm_mm allocator
904  * @mm: drm_mm allocator to clean up
905  *
906  * Note that it is a bug to call this function on an allocator which is not
907  * clean.
908  */
909 void drm_mm_takedown(struct drm_mm *mm)
910 {
911 	if (WARN(!drm_mm_clean(mm),
912 		 "Memory manager not clean during takedown.\n"))
913 		show_leaks(mm);
914 }
915 EXPORT_SYMBOL(drm_mm_takedown);
916 
917 static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
918 {
919 	u64 start, size;
920 
921 	size = entry->hole_size;
922 	if (size) {
923 		start = drm_mm_hole_node_start(entry);
924 		drm_printf(p, "%#018llx-%#018llx: %llu: free\n",
925 			   start, start + size, size);
926 	}
927 
928 	return size;
929 }
930 /**
931  * drm_mm_print - print allocator state
932  * @mm: drm_mm allocator to print
933  * @p: DRM printer to use
934  */
935 void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
936 {
937 	const struct drm_mm_node *entry;
938 	u64 total_used = 0, total_free = 0, total = 0;
939 
940 	total_free += drm_mm_dump_hole(p, &mm->head_node);
941 
942 	drm_mm_for_each_node(entry, mm) {
943 		drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
944 			   entry->start + entry->size, entry->size);
945 		total_used += entry->size;
946 		total_free += drm_mm_dump_hole(p, entry);
947 	}
948 	total = total_free + total_used;
949 
950 	drm_printf(p, "total: %llu, used %llu free %llu\n", total,
951 		   total_used, total_free);
952 }
953 EXPORT_SYMBOL(drm_mm_print);
954