xref: /openbmc/linux/drivers/gpu/drm/drm_mm.c (revision cd238eff)
1 /**************************************************************************
2  *
3  * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
4  * Copyright 2016 Intel Corporation
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  *
28  **************************************************************************/
29 
30 /*
31  * Generic simple memory manager implementation. Intended to be used as a base
32  * class implementation for more advanced memory managers.
33  *
34  * Note that the algorithm used is quite simple and there might be substantial
35  * performance gains if a smarter free list is implemented. Currently it is
36  * just an unordered stack of free regions. This could easily be improved if
37  * an RB-tree is used instead. At least if we expect heavy fragmentation.
38  *
39  * Aligned allocations can also see improvement.
40  *
41  * Authors:
42  * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
43  */
44 
45 #include <drm/drmP.h>
46 #include <drm/drm_mm.h>
47 #include <linux/slab.h>
48 #include <linux/seq_file.h>
49 #include <linux/export.h>
50 #include <linux/interval_tree_generic.h>
51 
52 /**
53  * DOC: Overview
54  *
55  * drm_mm provides a simple range allocator. The drivers are free to use the
56  * resource allocator from the linux core if it suits them, the upside of drm_mm
57  * is that it's in the DRM core. Which means that it's easier to extend for
58  * some of the crazier special purpose needs of gpus.
59  *
60  * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
61  * Drivers are free to embed either of them into their own suitable
62  * datastructures. drm_mm itself will not do any memory allocations of its own,
63  * so if drivers choose not to embed nodes they need to still allocate them
64  * themselves.
65  *
66  * The range allocator also supports reservation of preallocated blocks. This is
67  * useful for taking over initial mode setting configurations from the firmware,
68  * where an object needs to be created which exactly matches the firmware's
69  * scanout target. As long as the range is still free it can be inserted anytime
70  * after the allocator is initialized, which helps with avoiding looped
71  * dependencies in the driver load sequence.
72  *
73  * drm_mm maintains a stack of most recently freed holes, which of all
74  * simplistic datastructures seems to be a fairly decent approach to clustering
75  * allocations and avoiding too much fragmentation. This means free space
76  * searches are O(num_holes). Given that all the fancy features drm_mm supports
77  * something better would be fairly complex and since gfx thrashing is a fairly
78  * steep cliff not a real concern. Removing a node again is O(1).
79  *
80  * drm_mm supports a few features: Alignment and range restrictions can be
81  * supplied. Furthermore every &drm_mm_node has a color value (which is just an
82  * opaque unsigned long) which in conjunction with a driver callback can be used
83  * to implement sophisticated placement restrictions. The i915 DRM driver uses
84  * this to implement guard pages between incompatible caching domains in the
85  * graphics TT.
86  *
87  * Two behaviors are supported for searching and allocating: bottom-up and
88  * top-down. The default is bottom-up. Top-down allocation can be used if the
89  * memory area has different restrictions, or just to reduce fragmentation.
90  *
91  * Finally iteration helpers to walk all nodes and all holes are provided as are
92  * some basic allocator dumpers for debugging.
93  *
94  * Note that this range allocator is not thread-safe, drivers need to protect
95  * modifications with their own locking. The idea behind this is that for a full
96  * memory manager additional data needs to be protected anyway, hence internal
97  * locking would be fully redundant.
98  */
99 
100 #ifdef CONFIG_DRM_DEBUG_MM
101 #include <linux/stackdepot.h>
102 
103 #define STACKDEPTH 32
104 #define BUFSZ 4096
105 
106 static noinline void save_stack(struct drm_mm_node *node)
107 {
108 	unsigned long entries[STACKDEPTH];
109 	unsigned int n;
110 
111 	n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
112 
113 	/* May be called under spinlock, so avoid sleeping */
114 	node->stack = stack_depot_save(entries, n, GFP_NOWAIT);
115 }
116 
117 static void show_leaks(struct drm_mm *mm)
118 {
119 	struct drm_mm_node *node;
120 	unsigned long *entries;
121 	unsigned int nr_entries;
122 	char *buf;
123 
124 	buf = kmalloc(BUFSZ, GFP_KERNEL);
125 	if (!buf)
126 		return;
127 
128 	list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
129 		if (!node->stack) {
130 			DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
131 				  node->start, node->size);
132 			continue;
133 		}
134 
135 		nr_entries = stack_depot_fetch(node->stack, &entries);
136 		stack_trace_snprint(buf, BUFSZ, entries, nr_entries, 0);
137 		DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
138 			  node->start, node->size, buf);
139 	}
140 
141 	kfree(buf);
142 }
143 
144 #undef STACKDEPTH
145 #undef BUFSZ
146 #else
147 static void save_stack(struct drm_mm_node *node) { }
148 static void show_leaks(struct drm_mm *mm) { }
149 #endif
150 
151 #define START(node) ((node)->start)
152 #define LAST(node)  ((node)->start + (node)->size - 1)
153 
154 INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
155 		     u64, __subtree_last,
156 		     START, LAST, static inline, drm_mm_interval_tree)
157 
158 struct drm_mm_node *
159 __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
160 {
161 	return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
162 					       start, last) ?: (struct drm_mm_node *)&mm->head_node;
163 }
164 EXPORT_SYMBOL(__drm_mm_interval_first);
165 
166 static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
167 					  struct drm_mm_node *node)
168 {
169 	struct drm_mm *mm = hole_node->mm;
170 	struct rb_node **link, *rb;
171 	struct drm_mm_node *parent;
172 	bool leftmost;
173 
174 	node->__subtree_last = LAST(node);
175 
176 	if (hole_node->allocated) {
177 		rb = &hole_node->rb;
178 		while (rb) {
179 			parent = rb_entry(rb, struct drm_mm_node, rb);
180 			if (parent->__subtree_last >= node->__subtree_last)
181 				break;
182 
183 			parent->__subtree_last = node->__subtree_last;
184 			rb = rb_parent(rb);
185 		}
186 
187 		rb = &hole_node->rb;
188 		link = &hole_node->rb.rb_right;
189 		leftmost = false;
190 	} else {
191 		rb = NULL;
192 		link = &mm->interval_tree.rb_root.rb_node;
193 		leftmost = true;
194 	}
195 
196 	while (*link) {
197 		rb = *link;
198 		parent = rb_entry(rb, struct drm_mm_node, rb);
199 		if (parent->__subtree_last < node->__subtree_last)
200 			parent->__subtree_last = node->__subtree_last;
201 		if (node->start < parent->start) {
202 			link = &parent->rb.rb_left;
203 		} else {
204 			link = &parent->rb.rb_right;
205 			leftmost = false;
206 		}
207 	}
208 
209 	rb_link_node(&node->rb, rb, link);
210 	rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
211 				   &drm_mm_interval_tree_augment);
212 }
213 
214 #define RB_INSERT(root, member, expr) do { \
215 	struct rb_node **link = &root.rb_node, *rb = NULL; \
216 	u64 x = expr(node); \
217 	while (*link) { \
218 		rb = *link; \
219 		if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \
220 			link = &rb->rb_left; \
221 		else \
222 			link = &rb->rb_right; \
223 	} \
224 	rb_link_node(&node->member, rb, link); \
225 	rb_insert_color(&node->member, &root); \
226 } while (0)
227 
228 #define HOLE_SIZE(NODE) ((NODE)->hole_size)
229 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
230 
231 static u64 rb_to_hole_size(struct rb_node *rb)
232 {
233 	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
234 }
235 
236 static void insert_hole_size(struct rb_root_cached *root,
237 			     struct drm_mm_node *node)
238 {
239 	struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
240 	u64 x = node->hole_size;
241 	bool first = true;
242 
243 	while (*link) {
244 		rb = *link;
245 		if (x > rb_to_hole_size(rb)) {
246 			link = &rb->rb_left;
247 		} else {
248 			link = &rb->rb_right;
249 			first = false;
250 		}
251 	}
252 
253 	rb_link_node(&node->rb_hole_size, rb, link);
254 	rb_insert_color_cached(&node->rb_hole_size, root, first);
255 }
256 
257 static void add_hole(struct drm_mm_node *node)
258 {
259 	struct drm_mm *mm = node->mm;
260 
261 	node->hole_size =
262 		__drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
263 	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
264 
265 	insert_hole_size(&mm->holes_size, node);
266 	RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR);
267 
268 	list_add(&node->hole_stack, &mm->hole_stack);
269 }
270 
271 static void rm_hole(struct drm_mm_node *node)
272 {
273 	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
274 
275 	list_del(&node->hole_stack);
276 	rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size);
277 	rb_erase(&node->rb_hole_addr, &node->mm->holes_addr);
278 	node->hole_size = 0;
279 
280 	DRM_MM_BUG_ON(drm_mm_hole_follows(node));
281 }
282 
283 static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
284 {
285 	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
286 }
287 
288 static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
289 {
290 	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
291 }
292 
293 static inline u64 rb_hole_size(struct rb_node *rb)
294 {
295 	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
296 }
297 
298 static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
299 {
300 	struct rb_node *rb = mm->holes_size.rb_root.rb_node;
301 	struct drm_mm_node *best = NULL;
302 
303 	do {
304 		struct drm_mm_node *node =
305 			rb_entry(rb, struct drm_mm_node, rb_hole_size);
306 
307 		if (size <= node->hole_size) {
308 			best = node;
309 			rb = rb->rb_right;
310 		} else {
311 			rb = rb->rb_left;
312 		}
313 	} while (rb);
314 
315 	return best;
316 }
317 
318 static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr)
319 {
320 	struct rb_node *rb = mm->holes_addr.rb_node;
321 	struct drm_mm_node *node = NULL;
322 
323 	while (rb) {
324 		u64 hole_start;
325 
326 		node = rb_hole_addr_to_node(rb);
327 		hole_start = __drm_mm_hole_node_start(node);
328 
329 		if (addr < hole_start)
330 			rb = node->rb_hole_addr.rb_left;
331 		else if (addr > hole_start + node->hole_size)
332 			rb = node->rb_hole_addr.rb_right;
333 		else
334 			break;
335 	}
336 
337 	return node;
338 }
339 
340 static struct drm_mm_node *
341 first_hole(struct drm_mm *mm,
342 	   u64 start, u64 end, u64 size,
343 	   enum drm_mm_insert_mode mode)
344 {
345 	switch (mode) {
346 	default:
347 	case DRM_MM_INSERT_BEST:
348 		return best_hole(mm, size);
349 
350 	case DRM_MM_INSERT_LOW:
351 		return find_hole(mm, start);
352 
353 	case DRM_MM_INSERT_HIGH:
354 		return find_hole(mm, end);
355 
356 	case DRM_MM_INSERT_EVICT:
357 		return list_first_entry_or_null(&mm->hole_stack,
358 						struct drm_mm_node,
359 						hole_stack);
360 	}
361 }
362 
363 static struct drm_mm_node *
364 next_hole(struct drm_mm *mm,
365 	  struct drm_mm_node *node,
366 	  enum drm_mm_insert_mode mode)
367 {
368 	switch (mode) {
369 	default:
370 	case DRM_MM_INSERT_BEST:
371 		return rb_hole_size_to_node(rb_prev(&node->rb_hole_size));
372 
373 	case DRM_MM_INSERT_LOW:
374 		return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr));
375 
376 	case DRM_MM_INSERT_HIGH:
377 		return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr));
378 
379 	case DRM_MM_INSERT_EVICT:
380 		node = list_next_entry(node, hole_stack);
381 		return &node->hole_stack == &mm->hole_stack ? NULL : node;
382 	}
383 }
384 
385 /**
386  * drm_mm_reserve_node - insert an pre-initialized node
387  * @mm: drm_mm allocator to insert @node into
388  * @node: drm_mm_node to insert
389  *
390  * This functions inserts an already set-up &drm_mm_node into the allocator,
391  * meaning that start, size and color must be set by the caller. All other
392  * fields must be cleared to 0. This is useful to initialize the allocator with
393  * preallocated objects which must be set-up before the range allocator can be
394  * set-up, e.g. when taking over a firmware framebuffer.
395  *
396  * Returns:
397  * 0 on success, -ENOSPC if there's no hole where @node is.
398  */
399 int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
400 {
401 	u64 end = node->start + node->size;
402 	struct drm_mm_node *hole;
403 	u64 hole_start, hole_end;
404 	u64 adj_start, adj_end;
405 
406 	end = node->start + node->size;
407 	if (unlikely(end <= node->start))
408 		return -ENOSPC;
409 
410 	/* Find the relevant hole to add our node to */
411 	hole = find_hole(mm, node->start);
412 	if (!hole)
413 		return -ENOSPC;
414 
415 	adj_start = hole_start = __drm_mm_hole_node_start(hole);
416 	adj_end = hole_end = hole_start + hole->hole_size;
417 
418 	if (mm->color_adjust)
419 		mm->color_adjust(hole, node->color, &adj_start, &adj_end);
420 
421 	if (adj_start > node->start || adj_end < end)
422 		return -ENOSPC;
423 
424 	node->mm = mm;
425 
426 	list_add(&node->node_list, &hole->node_list);
427 	drm_mm_interval_tree_add_node(hole, node);
428 	node->allocated = true;
429 	node->hole_size = 0;
430 
431 	rm_hole(hole);
432 	if (node->start > hole_start)
433 		add_hole(hole);
434 	if (end < hole_end)
435 		add_hole(node);
436 
437 	save_stack(node);
438 	return 0;
439 }
440 EXPORT_SYMBOL(drm_mm_reserve_node);
441 
442 static u64 rb_to_hole_size_or_zero(struct rb_node *rb)
443 {
444 	return rb ? rb_to_hole_size(rb) : 0;
445 }
446 
447 /**
448  * drm_mm_insert_node_in_range - ranged search for space and insert @node
449  * @mm: drm_mm to allocate from
450  * @node: preallocate node to insert
451  * @size: size of the allocation
452  * @alignment: alignment of the allocation
453  * @color: opaque tag value to use for this node
454  * @range_start: start of the allowed range for this node
455  * @range_end: end of the allowed range for this node
456  * @mode: fine-tune the allocation search and placement
457  *
458  * The preallocated @node must be cleared to 0.
459  *
460  * Returns:
461  * 0 on success, -ENOSPC if there's no suitable hole.
462  */
463 int drm_mm_insert_node_in_range(struct drm_mm * const mm,
464 				struct drm_mm_node * const node,
465 				u64 size, u64 alignment,
466 				unsigned long color,
467 				u64 range_start, u64 range_end,
468 				enum drm_mm_insert_mode mode)
469 {
470 	struct drm_mm_node *hole;
471 	u64 remainder_mask;
472 	bool once;
473 
474 	DRM_MM_BUG_ON(range_start >= range_end);
475 
476 	if (unlikely(size == 0 || range_end - range_start < size))
477 		return -ENOSPC;
478 
479 	if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size)
480 		return -ENOSPC;
481 
482 	if (alignment <= 1)
483 		alignment = 0;
484 
485 	once = mode & DRM_MM_INSERT_ONCE;
486 	mode &= ~DRM_MM_INSERT_ONCE;
487 
488 	remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
489 	for (hole = first_hole(mm, range_start, range_end, size, mode);
490 	     hole;
491 	     hole = once ? NULL : next_hole(mm, hole, mode)) {
492 		u64 hole_start = __drm_mm_hole_node_start(hole);
493 		u64 hole_end = hole_start + hole->hole_size;
494 		u64 adj_start, adj_end;
495 		u64 col_start, col_end;
496 
497 		if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
498 			break;
499 
500 		if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
501 			break;
502 
503 		col_start = hole_start;
504 		col_end = hole_end;
505 		if (mm->color_adjust)
506 			mm->color_adjust(hole, color, &col_start, &col_end);
507 
508 		adj_start = max(col_start, range_start);
509 		adj_end = min(col_end, range_end);
510 
511 		if (adj_end <= adj_start || adj_end - adj_start < size)
512 			continue;
513 
514 		if (mode == DRM_MM_INSERT_HIGH)
515 			adj_start = adj_end - size;
516 
517 		if (alignment) {
518 			u64 rem;
519 
520 			if (likely(remainder_mask))
521 				rem = adj_start & remainder_mask;
522 			else
523 				div64_u64_rem(adj_start, alignment, &rem);
524 			if (rem) {
525 				adj_start -= rem;
526 				if (mode != DRM_MM_INSERT_HIGH)
527 					adj_start += alignment;
528 
529 				if (adj_start < max(col_start, range_start) ||
530 				    min(col_end, range_end) - adj_start < size)
531 					continue;
532 
533 				if (adj_end <= adj_start ||
534 				    adj_end - adj_start < size)
535 					continue;
536 			}
537 		}
538 
539 		node->mm = mm;
540 		node->size = size;
541 		node->start = adj_start;
542 		node->color = color;
543 		node->hole_size = 0;
544 
545 		list_add(&node->node_list, &hole->node_list);
546 		drm_mm_interval_tree_add_node(hole, node);
547 		node->allocated = true;
548 
549 		rm_hole(hole);
550 		if (adj_start > hole_start)
551 			add_hole(hole);
552 		if (adj_start + size < hole_end)
553 			add_hole(node);
554 
555 		save_stack(node);
556 		return 0;
557 	}
558 
559 	return -ENOSPC;
560 }
561 EXPORT_SYMBOL(drm_mm_insert_node_in_range);
562 
563 /**
564  * drm_mm_remove_node - Remove a memory node from the allocator.
565  * @node: drm_mm_node to remove
566  *
567  * This just removes a node from its drm_mm allocator. The node does not need to
568  * be cleared again before it can be re-inserted into this or any other drm_mm
569  * allocator. It is a bug to call this function on a unallocated node.
570  */
571 void drm_mm_remove_node(struct drm_mm_node *node)
572 {
573 	struct drm_mm *mm = node->mm;
574 	struct drm_mm_node *prev_node;
575 
576 	DRM_MM_BUG_ON(!node->allocated);
577 	DRM_MM_BUG_ON(node->scanned_block);
578 
579 	prev_node = list_prev_entry(node, node_list);
580 
581 	if (drm_mm_hole_follows(node))
582 		rm_hole(node);
583 
584 	drm_mm_interval_tree_remove(node, &mm->interval_tree);
585 	list_del(&node->node_list);
586 	node->allocated = false;
587 
588 	if (drm_mm_hole_follows(prev_node))
589 		rm_hole(prev_node);
590 	add_hole(prev_node);
591 }
592 EXPORT_SYMBOL(drm_mm_remove_node);
593 
594 /**
595  * drm_mm_replace_node - move an allocation from @old to @new
596  * @old: drm_mm_node to remove from the allocator
597  * @new: drm_mm_node which should inherit @old's allocation
598  *
599  * This is useful for when drivers embed the drm_mm_node structure and hence
600  * can't move allocations by reassigning pointers. It's a combination of remove
601  * and insert with the guarantee that the allocation start will match.
602  */
603 void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
604 {
605 	struct drm_mm *mm = old->mm;
606 
607 	DRM_MM_BUG_ON(!old->allocated);
608 
609 	*new = *old;
610 
611 	list_replace(&old->node_list, &new->node_list);
612 	rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree);
613 
614 	if (drm_mm_hole_follows(old)) {
615 		list_replace(&old->hole_stack, &new->hole_stack);
616 		rb_replace_node_cached(&old->rb_hole_size,
617 				       &new->rb_hole_size,
618 				       &mm->holes_size);
619 		rb_replace_node(&old->rb_hole_addr,
620 				&new->rb_hole_addr,
621 				&mm->holes_addr);
622 	}
623 
624 	old->allocated = false;
625 	new->allocated = true;
626 }
627 EXPORT_SYMBOL(drm_mm_replace_node);
628 
629 /**
630  * DOC: lru scan roster
631  *
632  * Very often GPUs need to have continuous allocations for a given object. When
633  * evicting objects to make space for a new one it is therefore not most
634  * efficient when we simply start to select all objects from the tail of an LRU
635  * until there's a suitable hole: Especially for big objects or nodes that
636  * otherwise have special allocation constraints there's a good chance we evict
637  * lots of (smaller) objects unnecessarily.
638  *
639  * The DRM range allocator supports this use-case through the scanning
640  * interfaces. First a scan operation needs to be initialized with
641  * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
642  * objects to the roster, probably by walking an LRU list, but this can be
643  * freely implemented. Eviction candiates are added using
644  * drm_mm_scan_add_block() until a suitable hole is found or there are no
645  * further evictable objects. Eviction roster metadata is tracked in &struct
646  * drm_mm_scan.
647  *
648  * The driver must walk through all objects again in exactly the reverse
649  * order to restore the allocator state. Note that while the allocator is used
650  * in the scan mode no other operation is allowed.
651  *
652  * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
653  * reported true) in the scan, and any overlapping nodes after color adjustment
654  * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
655  * since freeing a node is also O(1) the overall complexity is
656  * O(scanned_objects). So like the free stack which needs to be walked before a
657  * scan operation even begins this is linear in the number of objects. It
658  * doesn't seem to hurt too badly.
659  */
660 
661 /**
662  * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
663  * @scan: scan state
664  * @mm: drm_mm to scan
665  * @size: size of the allocation
666  * @alignment: alignment of the allocation
667  * @color: opaque tag value to use for the allocation
668  * @start: start of the allowed range for the allocation
669  * @end: end of the allowed range for the allocation
670  * @mode: fine-tune the allocation search and placement
671  *
672  * This simply sets up the scanning routines with the parameters for the desired
673  * hole.
674  *
675  * Warning:
676  * As long as the scan list is non-empty, no other operations than
677  * adding/removing nodes to/from the scan list are allowed.
678  */
679 void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
680 				 struct drm_mm *mm,
681 				 u64 size,
682 				 u64 alignment,
683 				 unsigned long color,
684 				 u64 start,
685 				 u64 end,
686 				 enum drm_mm_insert_mode mode)
687 {
688 	DRM_MM_BUG_ON(start >= end);
689 	DRM_MM_BUG_ON(!size || size > end - start);
690 	DRM_MM_BUG_ON(mm->scan_active);
691 
692 	scan->mm = mm;
693 
694 	if (alignment <= 1)
695 		alignment = 0;
696 
697 	scan->color = color;
698 	scan->alignment = alignment;
699 	scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
700 	scan->size = size;
701 	scan->mode = mode;
702 
703 	DRM_MM_BUG_ON(end <= start);
704 	scan->range_start = start;
705 	scan->range_end = end;
706 
707 	scan->hit_start = U64_MAX;
708 	scan->hit_end = 0;
709 }
710 EXPORT_SYMBOL(drm_mm_scan_init_with_range);
711 
712 /**
713  * drm_mm_scan_add_block - add a node to the scan list
714  * @scan: the active drm_mm scanner
715  * @node: drm_mm_node to add
716  *
717  * Add a node to the scan list that might be freed to make space for the desired
718  * hole.
719  *
720  * Returns:
721  * True if a hole has been found, false otherwise.
722  */
723 bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
724 			   struct drm_mm_node *node)
725 {
726 	struct drm_mm *mm = scan->mm;
727 	struct drm_mm_node *hole;
728 	u64 hole_start, hole_end;
729 	u64 col_start, col_end;
730 	u64 adj_start, adj_end;
731 
732 	DRM_MM_BUG_ON(node->mm != mm);
733 	DRM_MM_BUG_ON(!node->allocated);
734 	DRM_MM_BUG_ON(node->scanned_block);
735 	node->scanned_block = true;
736 	mm->scan_active++;
737 
738 	/* Remove this block from the node_list so that we enlarge the hole
739 	 * (distance between the end of our previous node and the start of
740 	 * or next), without poisoning the link so that we can restore it
741 	 * later in drm_mm_scan_remove_block().
742 	 */
743 	hole = list_prev_entry(node, node_list);
744 	DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
745 	__list_del_entry(&node->node_list);
746 
747 	hole_start = __drm_mm_hole_node_start(hole);
748 	hole_end = __drm_mm_hole_node_end(hole);
749 
750 	col_start = hole_start;
751 	col_end = hole_end;
752 	if (mm->color_adjust)
753 		mm->color_adjust(hole, scan->color, &col_start, &col_end);
754 
755 	adj_start = max(col_start, scan->range_start);
756 	adj_end = min(col_end, scan->range_end);
757 	if (adj_end <= adj_start || adj_end - adj_start < scan->size)
758 		return false;
759 
760 	if (scan->mode == DRM_MM_INSERT_HIGH)
761 		adj_start = adj_end - scan->size;
762 
763 	if (scan->alignment) {
764 		u64 rem;
765 
766 		if (likely(scan->remainder_mask))
767 			rem = adj_start & scan->remainder_mask;
768 		else
769 			div64_u64_rem(adj_start, scan->alignment, &rem);
770 		if (rem) {
771 			adj_start -= rem;
772 			if (scan->mode != DRM_MM_INSERT_HIGH)
773 				adj_start += scan->alignment;
774 			if (adj_start < max(col_start, scan->range_start) ||
775 			    min(col_end, scan->range_end) - adj_start < scan->size)
776 				return false;
777 
778 			if (adj_end <= adj_start ||
779 			    adj_end - adj_start < scan->size)
780 				return false;
781 		}
782 	}
783 
784 	scan->hit_start = adj_start;
785 	scan->hit_end = adj_start + scan->size;
786 
787 	DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
788 	DRM_MM_BUG_ON(scan->hit_start < hole_start);
789 	DRM_MM_BUG_ON(scan->hit_end > hole_end);
790 
791 	return true;
792 }
793 EXPORT_SYMBOL(drm_mm_scan_add_block);
794 
795 /**
796  * drm_mm_scan_remove_block - remove a node from the scan list
797  * @scan: the active drm_mm scanner
798  * @node: drm_mm_node to remove
799  *
800  * Nodes **must** be removed in exactly the reverse order from the scan list as
801  * they have been added (e.g. using list_add() as they are added and then
802  * list_for_each() over that eviction list to remove), otherwise the internal
803  * state of the memory manager will be corrupted.
804  *
805  * When the scan list is empty, the selected memory nodes can be freed. An
806  * immediately following drm_mm_insert_node_in_range_generic() or one of the
807  * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
808  * the just freed block (because it's at the top of the free_stack list).
809  *
810  * Returns:
811  * True if this block should be evicted, false otherwise. Will always
812  * return false when no hole has been found.
813  */
814 bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
815 			      struct drm_mm_node *node)
816 {
817 	struct drm_mm_node *prev_node;
818 
819 	DRM_MM_BUG_ON(node->mm != scan->mm);
820 	DRM_MM_BUG_ON(!node->scanned_block);
821 	node->scanned_block = false;
822 
823 	DRM_MM_BUG_ON(!node->mm->scan_active);
824 	node->mm->scan_active--;
825 
826 	/* During drm_mm_scan_add_block() we decoupled this node leaving
827 	 * its pointers intact. Now that the caller is walking back along
828 	 * the eviction list we can restore this block into its rightful
829 	 * place on the full node_list. To confirm that the caller is walking
830 	 * backwards correctly we check that prev_node->next == node->next,
831 	 * i.e. both believe the same node should be on the other side of the
832 	 * hole.
833 	 */
834 	prev_node = list_prev_entry(node, node_list);
835 	DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
836 		      list_next_entry(node, node_list));
837 	list_add(&node->node_list, &prev_node->node_list);
838 
839 	return (node->start + node->size > scan->hit_start &&
840 		node->start < scan->hit_end);
841 }
842 EXPORT_SYMBOL(drm_mm_scan_remove_block);
843 
844 /**
845  * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
846  * @scan: drm_mm scan with target hole
847  *
848  * After completing an eviction scan and removing the selected nodes, we may
849  * need to remove a few more nodes from either side of the target hole if
850  * mm.color_adjust is being used.
851  *
852  * Returns:
853  * A node to evict, or NULL if there are no overlapping nodes.
854  */
855 struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
856 {
857 	struct drm_mm *mm = scan->mm;
858 	struct drm_mm_node *hole;
859 	u64 hole_start, hole_end;
860 
861 	DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
862 
863 	if (!mm->color_adjust)
864 		return NULL;
865 
866 	/*
867 	 * The hole found during scanning should ideally be the first element
868 	 * in the hole_stack list, but due to side-effects in the driver it
869 	 * may not be.
870 	 */
871 	list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
872 		hole_start = __drm_mm_hole_node_start(hole);
873 		hole_end = hole_start + hole->hole_size;
874 
875 		if (hole_start <= scan->hit_start &&
876 		    hole_end >= scan->hit_end)
877 			break;
878 	}
879 
880 	/* We should only be called after we found the hole previously */
881 	DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
882 	if (unlikely(&hole->hole_stack == &mm->hole_stack))
883 		return NULL;
884 
885 	DRM_MM_BUG_ON(hole_start > scan->hit_start);
886 	DRM_MM_BUG_ON(hole_end < scan->hit_end);
887 
888 	mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
889 	if (hole_start > scan->hit_start)
890 		return hole;
891 	if (hole_end < scan->hit_end)
892 		return list_next_entry(hole, node_list);
893 
894 	return NULL;
895 }
896 EXPORT_SYMBOL(drm_mm_scan_color_evict);
897 
898 /**
899  * drm_mm_init - initialize a drm-mm allocator
900  * @mm: the drm_mm structure to initialize
901  * @start: start of the range managed by @mm
902  * @size: end of the range managed by @mm
903  *
904  * Note that @mm must be cleared to 0 before calling this function.
905  */
906 void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
907 {
908 	DRM_MM_BUG_ON(start + size <= start);
909 
910 	mm->color_adjust = NULL;
911 
912 	INIT_LIST_HEAD(&mm->hole_stack);
913 	mm->interval_tree = RB_ROOT_CACHED;
914 	mm->holes_size = RB_ROOT_CACHED;
915 	mm->holes_addr = RB_ROOT;
916 
917 	/* Clever trick to avoid a special case in the free hole tracking. */
918 	INIT_LIST_HEAD(&mm->head_node.node_list);
919 	mm->head_node.allocated = false;
920 	mm->head_node.mm = mm;
921 	mm->head_node.start = start + size;
922 	mm->head_node.size = -size;
923 	add_hole(&mm->head_node);
924 
925 	mm->scan_active = 0;
926 }
927 EXPORT_SYMBOL(drm_mm_init);
928 
929 /**
930  * drm_mm_takedown - clean up a drm_mm allocator
931  * @mm: drm_mm allocator to clean up
932  *
933  * Note that it is a bug to call this function on an allocator which is not
934  * clean.
935  */
936 void drm_mm_takedown(struct drm_mm *mm)
937 {
938 	if (WARN(!drm_mm_clean(mm),
939 		 "Memory manager not clean during takedown.\n"))
940 		show_leaks(mm);
941 }
942 EXPORT_SYMBOL(drm_mm_takedown);
943 
944 static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
945 {
946 	u64 start, size;
947 
948 	size = entry->hole_size;
949 	if (size) {
950 		start = drm_mm_hole_node_start(entry);
951 		drm_printf(p, "%#018llx-%#018llx: %llu: free\n",
952 			   start, start + size, size);
953 	}
954 
955 	return size;
956 }
957 /**
958  * drm_mm_print - print allocator state
959  * @mm: drm_mm allocator to print
960  * @p: DRM printer to use
961  */
962 void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
963 {
964 	const struct drm_mm_node *entry;
965 	u64 total_used = 0, total_free = 0, total = 0;
966 
967 	total_free += drm_mm_dump_hole(p, &mm->head_node);
968 
969 	drm_mm_for_each_node(entry, mm) {
970 		drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
971 			   entry->start + entry->size, entry->size);
972 		total_used += entry->size;
973 		total_free += drm_mm_dump_hole(p, entry);
974 	}
975 	total = total_free + total_used;
976 
977 	drm_printf(p, "total: %llu, used %llu free %llu\n", total,
978 		   total_used, total_free);
979 }
980 EXPORT_SYMBOL(drm_mm_print);
981