1 /************************************************************************** 2 * 3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA. 4 * Copyright 2016 Intel Corporation 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 * 28 **************************************************************************/ 29 30 /* 31 * Generic simple memory manager implementation. Intended to be used as a base 32 * class implementation for more advanced memory managers. 33 * 34 * Note that the algorithm used is quite simple and there might be substantial 35 * performance gains if a smarter free list is implemented. Currently it is 36 * just an unordered stack of free regions. This could easily be improved if 37 * an RB-tree is used instead. At least if we expect heavy fragmentation. 38 * 39 * Aligned allocations can also see improvement. 40 * 41 * Authors: 42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com> 43 */ 44 45 #include <drm/drmP.h> 46 #include <drm/drm_mm.h> 47 #include <linux/slab.h> 48 #include <linux/seq_file.h> 49 #include <linux/export.h> 50 #include <linux/interval_tree_generic.h> 51 52 /** 53 * DOC: Overview 54 * 55 * drm_mm provides a simple range allocator. The drivers are free to use the 56 * resource allocator from the linux core if it suits them, the upside of drm_mm 57 * is that it's in the DRM core. Which means that it's easier to extend for 58 * some of the crazier special purpose needs of gpus. 59 * 60 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node. 61 * Drivers are free to embed either of them into their own suitable 62 * datastructures. drm_mm itself will not do any memory allocations of its own, 63 * so if drivers choose not to embed nodes they need to still allocate them 64 * themselves. 65 * 66 * The range allocator also supports reservation of preallocated blocks. This is 67 * useful for taking over initial mode setting configurations from the firmware, 68 * where an object needs to be created which exactly matches the firmware's 69 * scanout target. As long as the range is still free it can be inserted anytime 70 * after the allocator is initialized, which helps with avoiding looped 71 * dependencies in the driver load sequence. 72 * 73 * drm_mm maintains a stack of most recently freed holes, which of all 74 * simplistic datastructures seems to be a fairly decent approach to clustering 75 * allocations and avoiding too much fragmentation. This means free space 76 * searches are O(num_holes). Given that all the fancy features drm_mm supports 77 * something better would be fairly complex and since gfx thrashing is a fairly 78 * steep cliff not a real concern. Removing a node again is O(1). 79 * 80 * drm_mm supports a few features: Alignment and range restrictions can be 81 * supplied. Furthermore every &drm_mm_node has a color value (which is just an 82 * opaque unsigned long) which in conjunction with a driver callback can be used 83 * to implement sophisticated placement restrictions. The i915 DRM driver uses 84 * this to implement guard pages between incompatible caching domains in the 85 * graphics TT. 86 * 87 * Two behaviors are supported for searching and allocating: bottom-up and 88 * top-down. The default is bottom-up. Top-down allocation can be used if the 89 * memory area has different restrictions, or just to reduce fragmentation. 90 * 91 * Finally iteration helpers to walk all nodes and all holes are provided as are 92 * some basic allocator dumpers for debugging. 93 * 94 * Note that this range allocator is not thread-safe, drivers need to protect 95 * modifications with their own locking. The idea behind this is that for a full 96 * memory manager additional data needs to be protected anyway, hence internal 97 * locking would be fully redundant. 98 */ 99 100 #ifdef CONFIG_DRM_DEBUG_MM 101 #include <linux/stackdepot.h> 102 103 #define STACKDEPTH 32 104 #define BUFSZ 4096 105 106 static noinline void save_stack(struct drm_mm_node *node) 107 { 108 unsigned long entries[STACKDEPTH]; 109 unsigned int n; 110 111 n = stack_trace_save(entries, ARRAY_SIZE(entries), 1); 112 113 /* May be called under spinlock, so avoid sleeping */ 114 node->stack = stack_depot_save(entries, n, GFP_NOWAIT); 115 } 116 117 static void show_leaks(struct drm_mm *mm) 118 { 119 struct drm_mm_node *node; 120 unsigned long *entries; 121 unsigned int nr_entries; 122 char *buf; 123 124 buf = kmalloc(BUFSZ, GFP_KERNEL); 125 if (!buf) 126 return; 127 128 list_for_each_entry(node, drm_mm_nodes(mm), node_list) { 129 if (!node->stack) { 130 DRM_ERROR("node [%08llx + %08llx]: unknown owner\n", 131 node->start, node->size); 132 continue; 133 } 134 135 nr_entries = stack_depot_fetch(node->stack, &entries); 136 stack_trace_snprint(buf, BUFSZ, entries, nr_entries, 0); 137 DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s", 138 node->start, node->size, buf); 139 } 140 141 kfree(buf); 142 } 143 144 #undef STACKDEPTH 145 #undef BUFSZ 146 #else 147 static void save_stack(struct drm_mm_node *node) { } 148 static void show_leaks(struct drm_mm *mm) { } 149 #endif 150 151 #define START(node) ((node)->start) 152 #define LAST(node) ((node)->start + (node)->size - 1) 153 154 INTERVAL_TREE_DEFINE(struct drm_mm_node, rb, 155 u64, __subtree_last, 156 START, LAST, static inline, drm_mm_interval_tree) 157 158 struct drm_mm_node * 159 __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last) 160 { 161 return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree, 162 start, last) ?: (struct drm_mm_node *)&mm->head_node; 163 } 164 EXPORT_SYMBOL(__drm_mm_interval_first); 165 166 static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node, 167 struct drm_mm_node *node) 168 { 169 struct drm_mm *mm = hole_node->mm; 170 struct rb_node **link, *rb; 171 struct drm_mm_node *parent; 172 bool leftmost; 173 174 node->__subtree_last = LAST(node); 175 176 if (hole_node->allocated) { 177 rb = &hole_node->rb; 178 while (rb) { 179 parent = rb_entry(rb, struct drm_mm_node, rb); 180 if (parent->__subtree_last >= node->__subtree_last) 181 break; 182 183 parent->__subtree_last = node->__subtree_last; 184 rb = rb_parent(rb); 185 } 186 187 rb = &hole_node->rb; 188 link = &hole_node->rb.rb_right; 189 leftmost = false; 190 } else { 191 rb = NULL; 192 link = &mm->interval_tree.rb_root.rb_node; 193 leftmost = true; 194 } 195 196 while (*link) { 197 rb = *link; 198 parent = rb_entry(rb, struct drm_mm_node, rb); 199 if (parent->__subtree_last < node->__subtree_last) 200 parent->__subtree_last = node->__subtree_last; 201 if (node->start < parent->start) { 202 link = &parent->rb.rb_left; 203 } else { 204 link = &parent->rb.rb_right; 205 leftmost = false; 206 } 207 } 208 209 rb_link_node(&node->rb, rb, link); 210 rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost, 211 &drm_mm_interval_tree_augment); 212 } 213 214 #define RB_INSERT(root, member, expr) do { \ 215 struct rb_node **link = &root.rb_node, *rb = NULL; \ 216 u64 x = expr(node); \ 217 while (*link) { \ 218 rb = *link; \ 219 if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \ 220 link = &rb->rb_left; \ 221 else \ 222 link = &rb->rb_right; \ 223 } \ 224 rb_link_node(&node->member, rb, link); \ 225 rb_insert_color(&node->member, &root); \ 226 } while (0) 227 228 #define HOLE_SIZE(NODE) ((NODE)->hole_size) 229 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE)) 230 231 static u64 rb_to_hole_size(struct rb_node *rb) 232 { 233 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size; 234 } 235 236 static void insert_hole_size(struct rb_root_cached *root, 237 struct drm_mm_node *node) 238 { 239 struct rb_node **link = &root->rb_root.rb_node, *rb = NULL; 240 u64 x = node->hole_size; 241 bool first = true; 242 243 while (*link) { 244 rb = *link; 245 if (x > rb_to_hole_size(rb)) { 246 link = &rb->rb_left; 247 } else { 248 link = &rb->rb_right; 249 first = false; 250 } 251 } 252 253 rb_link_node(&node->rb_hole_size, rb, link); 254 rb_insert_color_cached(&node->rb_hole_size, root, first); 255 } 256 257 static void add_hole(struct drm_mm_node *node) 258 { 259 struct drm_mm *mm = node->mm; 260 261 node->hole_size = 262 __drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node); 263 DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); 264 265 insert_hole_size(&mm->holes_size, node); 266 RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR); 267 268 list_add(&node->hole_stack, &mm->hole_stack); 269 } 270 271 static void rm_hole(struct drm_mm_node *node) 272 { 273 DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); 274 275 list_del(&node->hole_stack); 276 rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size); 277 rb_erase(&node->rb_hole_addr, &node->mm->holes_addr); 278 node->hole_size = 0; 279 280 DRM_MM_BUG_ON(drm_mm_hole_follows(node)); 281 } 282 283 static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb) 284 { 285 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size); 286 } 287 288 static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb) 289 { 290 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr); 291 } 292 293 static inline u64 rb_hole_size(struct rb_node *rb) 294 { 295 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size; 296 } 297 298 static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size) 299 { 300 struct rb_node *rb = mm->holes_size.rb_root.rb_node; 301 struct drm_mm_node *best = NULL; 302 303 do { 304 struct drm_mm_node *node = 305 rb_entry(rb, struct drm_mm_node, rb_hole_size); 306 307 if (size <= node->hole_size) { 308 best = node; 309 rb = rb->rb_right; 310 } else { 311 rb = rb->rb_left; 312 } 313 } while (rb); 314 315 return best; 316 } 317 318 static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr) 319 { 320 struct rb_node *rb = mm->holes_addr.rb_node; 321 struct drm_mm_node *node = NULL; 322 323 while (rb) { 324 u64 hole_start; 325 326 node = rb_hole_addr_to_node(rb); 327 hole_start = __drm_mm_hole_node_start(node); 328 329 if (addr < hole_start) 330 rb = node->rb_hole_addr.rb_left; 331 else if (addr > hole_start + node->hole_size) 332 rb = node->rb_hole_addr.rb_right; 333 else 334 break; 335 } 336 337 return node; 338 } 339 340 static struct drm_mm_node * 341 first_hole(struct drm_mm *mm, 342 u64 start, u64 end, u64 size, 343 enum drm_mm_insert_mode mode) 344 { 345 switch (mode) { 346 default: 347 case DRM_MM_INSERT_BEST: 348 return best_hole(mm, size); 349 350 case DRM_MM_INSERT_LOW: 351 return find_hole(mm, start); 352 353 case DRM_MM_INSERT_HIGH: 354 return find_hole(mm, end); 355 356 case DRM_MM_INSERT_EVICT: 357 return list_first_entry_or_null(&mm->hole_stack, 358 struct drm_mm_node, 359 hole_stack); 360 } 361 } 362 363 static struct drm_mm_node * 364 next_hole(struct drm_mm *mm, 365 struct drm_mm_node *node, 366 enum drm_mm_insert_mode mode) 367 { 368 switch (mode) { 369 default: 370 case DRM_MM_INSERT_BEST: 371 return rb_hole_size_to_node(rb_prev(&node->rb_hole_size)); 372 373 case DRM_MM_INSERT_LOW: 374 return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr)); 375 376 case DRM_MM_INSERT_HIGH: 377 return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr)); 378 379 case DRM_MM_INSERT_EVICT: 380 node = list_next_entry(node, hole_stack); 381 return &node->hole_stack == &mm->hole_stack ? NULL : node; 382 } 383 } 384 385 /** 386 * drm_mm_reserve_node - insert an pre-initialized node 387 * @mm: drm_mm allocator to insert @node into 388 * @node: drm_mm_node to insert 389 * 390 * This functions inserts an already set-up &drm_mm_node into the allocator, 391 * meaning that start, size and color must be set by the caller. All other 392 * fields must be cleared to 0. This is useful to initialize the allocator with 393 * preallocated objects which must be set-up before the range allocator can be 394 * set-up, e.g. when taking over a firmware framebuffer. 395 * 396 * Returns: 397 * 0 on success, -ENOSPC if there's no hole where @node is. 398 */ 399 int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node) 400 { 401 u64 end = node->start + node->size; 402 struct drm_mm_node *hole; 403 u64 hole_start, hole_end; 404 u64 adj_start, adj_end; 405 406 end = node->start + node->size; 407 if (unlikely(end <= node->start)) 408 return -ENOSPC; 409 410 /* Find the relevant hole to add our node to */ 411 hole = find_hole(mm, node->start); 412 if (!hole) 413 return -ENOSPC; 414 415 adj_start = hole_start = __drm_mm_hole_node_start(hole); 416 adj_end = hole_end = hole_start + hole->hole_size; 417 418 if (mm->color_adjust) 419 mm->color_adjust(hole, node->color, &adj_start, &adj_end); 420 421 if (adj_start > node->start || adj_end < end) 422 return -ENOSPC; 423 424 node->mm = mm; 425 426 list_add(&node->node_list, &hole->node_list); 427 drm_mm_interval_tree_add_node(hole, node); 428 node->allocated = true; 429 node->hole_size = 0; 430 431 rm_hole(hole); 432 if (node->start > hole_start) 433 add_hole(hole); 434 if (end < hole_end) 435 add_hole(node); 436 437 save_stack(node); 438 return 0; 439 } 440 EXPORT_SYMBOL(drm_mm_reserve_node); 441 442 static u64 rb_to_hole_size_or_zero(struct rb_node *rb) 443 { 444 return rb ? rb_to_hole_size(rb) : 0; 445 } 446 447 /** 448 * drm_mm_insert_node_in_range - ranged search for space and insert @node 449 * @mm: drm_mm to allocate from 450 * @node: preallocate node to insert 451 * @size: size of the allocation 452 * @alignment: alignment of the allocation 453 * @color: opaque tag value to use for this node 454 * @range_start: start of the allowed range for this node 455 * @range_end: end of the allowed range for this node 456 * @mode: fine-tune the allocation search and placement 457 * 458 * The preallocated @node must be cleared to 0. 459 * 460 * Returns: 461 * 0 on success, -ENOSPC if there's no suitable hole. 462 */ 463 int drm_mm_insert_node_in_range(struct drm_mm * const mm, 464 struct drm_mm_node * const node, 465 u64 size, u64 alignment, 466 unsigned long color, 467 u64 range_start, u64 range_end, 468 enum drm_mm_insert_mode mode) 469 { 470 struct drm_mm_node *hole; 471 u64 remainder_mask; 472 bool once; 473 474 DRM_MM_BUG_ON(range_start >= range_end); 475 476 if (unlikely(size == 0 || range_end - range_start < size)) 477 return -ENOSPC; 478 479 if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size) 480 return -ENOSPC; 481 482 if (alignment <= 1) 483 alignment = 0; 484 485 once = mode & DRM_MM_INSERT_ONCE; 486 mode &= ~DRM_MM_INSERT_ONCE; 487 488 remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; 489 for (hole = first_hole(mm, range_start, range_end, size, mode); 490 hole; 491 hole = once ? NULL : next_hole(mm, hole, mode)) { 492 u64 hole_start = __drm_mm_hole_node_start(hole); 493 u64 hole_end = hole_start + hole->hole_size; 494 u64 adj_start, adj_end; 495 u64 col_start, col_end; 496 497 if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end) 498 break; 499 500 if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start) 501 break; 502 503 col_start = hole_start; 504 col_end = hole_end; 505 if (mm->color_adjust) 506 mm->color_adjust(hole, color, &col_start, &col_end); 507 508 adj_start = max(col_start, range_start); 509 adj_end = min(col_end, range_end); 510 511 if (adj_end <= adj_start || adj_end - adj_start < size) 512 continue; 513 514 if (mode == DRM_MM_INSERT_HIGH) 515 adj_start = adj_end - size; 516 517 if (alignment) { 518 u64 rem; 519 520 if (likely(remainder_mask)) 521 rem = adj_start & remainder_mask; 522 else 523 div64_u64_rem(adj_start, alignment, &rem); 524 if (rem) { 525 adj_start -= rem; 526 if (mode != DRM_MM_INSERT_HIGH) 527 adj_start += alignment; 528 529 if (adj_start < max(col_start, range_start) || 530 min(col_end, range_end) - adj_start < size) 531 continue; 532 533 if (adj_end <= adj_start || 534 adj_end - adj_start < size) 535 continue; 536 } 537 } 538 539 node->mm = mm; 540 node->size = size; 541 node->start = adj_start; 542 node->color = color; 543 node->hole_size = 0; 544 545 list_add(&node->node_list, &hole->node_list); 546 drm_mm_interval_tree_add_node(hole, node); 547 node->allocated = true; 548 549 rm_hole(hole); 550 if (adj_start > hole_start) 551 add_hole(hole); 552 if (adj_start + size < hole_end) 553 add_hole(node); 554 555 save_stack(node); 556 return 0; 557 } 558 559 return -ENOSPC; 560 } 561 EXPORT_SYMBOL(drm_mm_insert_node_in_range); 562 563 /** 564 * drm_mm_remove_node - Remove a memory node from the allocator. 565 * @node: drm_mm_node to remove 566 * 567 * This just removes a node from its drm_mm allocator. The node does not need to 568 * be cleared again before it can be re-inserted into this or any other drm_mm 569 * allocator. It is a bug to call this function on a unallocated node. 570 */ 571 void drm_mm_remove_node(struct drm_mm_node *node) 572 { 573 struct drm_mm *mm = node->mm; 574 struct drm_mm_node *prev_node; 575 576 DRM_MM_BUG_ON(!node->allocated); 577 DRM_MM_BUG_ON(node->scanned_block); 578 579 prev_node = list_prev_entry(node, node_list); 580 581 if (drm_mm_hole_follows(node)) 582 rm_hole(node); 583 584 drm_mm_interval_tree_remove(node, &mm->interval_tree); 585 list_del(&node->node_list); 586 node->allocated = false; 587 588 if (drm_mm_hole_follows(prev_node)) 589 rm_hole(prev_node); 590 add_hole(prev_node); 591 } 592 EXPORT_SYMBOL(drm_mm_remove_node); 593 594 /** 595 * drm_mm_replace_node - move an allocation from @old to @new 596 * @old: drm_mm_node to remove from the allocator 597 * @new: drm_mm_node which should inherit @old's allocation 598 * 599 * This is useful for when drivers embed the drm_mm_node structure and hence 600 * can't move allocations by reassigning pointers. It's a combination of remove 601 * and insert with the guarantee that the allocation start will match. 602 */ 603 void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new) 604 { 605 struct drm_mm *mm = old->mm; 606 607 DRM_MM_BUG_ON(!old->allocated); 608 609 *new = *old; 610 611 list_replace(&old->node_list, &new->node_list); 612 rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree); 613 614 if (drm_mm_hole_follows(old)) { 615 list_replace(&old->hole_stack, &new->hole_stack); 616 rb_replace_node_cached(&old->rb_hole_size, 617 &new->rb_hole_size, 618 &mm->holes_size); 619 rb_replace_node(&old->rb_hole_addr, 620 &new->rb_hole_addr, 621 &mm->holes_addr); 622 } 623 624 old->allocated = false; 625 new->allocated = true; 626 } 627 EXPORT_SYMBOL(drm_mm_replace_node); 628 629 /** 630 * DOC: lru scan roster 631 * 632 * Very often GPUs need to have continuous allocations for a given object. When 633 * evicting objects to make space for a new one it is therefore not most 634 * efficient when we simply start to select all objects from the tail of an LRU 635 * until there's a suitable hole: Especially for big objects or nodes that 636 * otherwise have special allocation constraints there's a good chance we evict 637 * lots of (smaller) objects unnecessarily. 638 * 639 * The DRM range allocator supports this use-case through the scanning 640 * interfaces. First a scan operation needs to be initialized with 641 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds 642 * objects to the roster, probably by walking an LRU list, but this can be 643 * freely implemented. Eviction candiates are added using 644 * drm_mm_scan_add_block() until a suitable hole is found or there are no 645 * further evictable objects. Eviction roster metadata is tracked in &struct 646 * drm_mm_scan. 647 * 648 * The driver must walk through all objects again in exactly the reverse 649 * order to restore the allocator state. Note that while the allocator is used 650 * in the scan mode no other operation is allowed. 651 * 652 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block() 653 * reported true) in the scan, and any overlapping nodes after color adjustment 654 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and 655 * since freeing a node is also O(1) the overall complexity is 656 * O(scanned_objects). So like the free stack which needs to be walked before a 657 * scan operation even begins this is linear in the number of objects. It 658 * doesn't seem to hurt too badly. 659 */ 660 661 /** 662 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning 663 * @scan: scan state 664 * @mm: drm_mm to scan 665 * @size: size of the allocation 666 * @alignment: alignment of the allocation 667 * @color: opaque tag value to use for the allocation 668 * @start: start of the allowed range for the allocation 669 * @end: end of the allowed range for the allocation 670 * @mode: fine-tune the allocation search and placement 671 * 672 * This simply sets up the scanning routines with the parameters for the desired 673 * hole. 674 * 675 * Warning: 676 * As long as the scan list is non-empty, no other operations than 677 * adding/removing nodes to/from the scan list are allowed. 678 */ 679 void drm_mm_scan_init_with_range(struct drm_mm_scan *scan, 680 struct drm_mm *mm, 681 u64 size, 682 u64 alignment, 683 unsigned long color, 684 u64 start, 685 u64 end, 686 enum drm_mm_insert_mode mode) 687 { 688 DRM_MM_BUG_ON(start >= end); 689 DRM_MM_BUG_ON(!size || size > end - start); 690 DRM_MM_BUG_ON(mm->scan_active); 691 692 scan->mm = mm; 693 694 if (alignment <= 1) 695 alignment = 0; 696 697 scan->color = color; 698 scan->alignment = alignment; 699 scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; 700 scan->size = size; 701 scan->mode = mode; 702 703 DRM_MM_BUG_ON(end <= start); 704 scan->range_start = start; 705 scan->range_end = end; 706 707 scan->hit_start = U64_MAX; 708 scan->hit_end = 0; 709 } 710 EXPORT_SYMBOL(drm_mm_scan_init_with_range); 711 712 /** 713 * drm_mm_scan_add_block - add a node to the scan list 714 * @scan: the active drm_mm scanner 715 * @node: drm_mm_node to add 716 * 717 * Add a node to the scan list that might be freed to make space for the desired 718 * hole. 719 * 720 * Returns: 721 * True if a hole has been found, false otherwise. 722 */ 723 bool drm_mm_scan_add_block(struct drm_mm_scan *scan, 724 struct drm_mm_node *node) 725 { 726 struct drm_mm *mm = scan->mm; 727 struct drm_mm_node *hole; 728 u64 hole_start, hole_end; 729 u64 col_start, col_end; 730 u64 adj_start, adj_end; 731 732 DRM_MM_BUG_ON(node->mm != mm); 733 DRM_MM_BUG_ON(!node->allocated); 734 DRM_MM_BUG_ON(node->scanned_block); 735 node->scanned_block = true; 736 mm->scan_active++; 737 738 /* Remove this block from the node_list so that we enlarge the hole 739 * (distance between the end of our previous node and the start of 740 * or next), without poisoning the link so that we can restore it 741 * later in drm_mm_scan_remove_block(). 742 */ 743 hole = list_prev_entry(node, node_list); 744 DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node); 745 __list_del_entry(&node->node_list); 746 747 hole_start = __drm_mm_hole_node_start(hole); 748 hole_end = __drm_mm_hole_node_end(hole); 749 750 col_start = hole_start; 751 col_end = hole_end; 752 if (mm->color_adjust) 753 mm->color_adjust(hole, scan->color, &col_start, &col_end); 754 755 adj_start = max(col_start, scan->range_start); 756 adj_end = min(col_end, scan->range_end); 757 if (adj_end <= adj_start || adj_end - adj_start < scan->size) 758 return false; 759 760 if (scan->mode == DRM_MM_INSERT_HIGH) 761 adj_start = adj_end - scan->size; 762 763 if (scan->alignment) { 764 u64 rem; 765 766 if (likely(scan->remainder_mask)) 767 rem = adj_start & scan->remainder_mask; 768 else 769 div64_u64_rem(adj_start, scan->alignment, &rem); 770 if (rem) { 771 adj_start -= rem; 772 if (scan->mode != DRM_MM_INSERT_HIGH) 773 adj_start += scan->alignment; 774 if (adj_start < max(col_start, scan->range_start) || 775 min(col_end, scan->range_end) - adj_start < scan->size) 776 return false; 777 778 if (adj_end <= adj_start || 779 adj_end - adj_start < scan->size) 780 return false; 781 } 782 } 783 784 scan->hit_start = adj_start; 785 scan->hit_end = adj_start + scan->size; 786 787 DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end); 788 DRM_MM_BUG_ON(scan->hit_start < hole_start); 789 DRM_MM_BUG_ON(scan->hit_end > hole_end); 790 791 return true; 792 } 793 EXPORT_SYMBOL(drm_mm_scan_add_block); 794 795 /** 796 * drm_mm_scan_remove_block - remove a node from the scan list 797 * @scan: the active drm_mm scanner 798 * @node: drm_mm_node to remove 799 * 800 * Nodes **must** be removed in exactly the reverse order from the scan list as 801 * they have been added (e.g. using list_add() as they are added and then 802 * list_for_each() over that eviction list to remove), otherwise the internal 803 * state of the memory manager will be corrupted. 804 * 805 * When the scan list is empty, the selected memory nodes can be freed. An 806 * immediately following drm_mm_insert_node_in_range_generic() or one of the 807 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return 808 * the just freed block (because it's at the top of the free_stack list). 809 * 810 * Returns: 811 * True if this block should be evicted, false otherwise. Will always 812 * return false when no hole has been found. 813 */ 814 bool drm_mm_scan_remove_block(struct drm_mm_scan *scan, 815 struct drm_mm_node *node) 816 { 817 struct drm_mm_node *prev_node; 818 819 DRM_MM_BUG_ON(node->mm != scan->mm); 820 DRM_MM_BUG_ON(!node->scanned_block); 821 node->scanned_block = false; 822 823 DRM_MM_BUG_ON(!node->mm->scan_active); 824 node->mm->scan_active--; 825 826 /* During drm_mm_scan_add_block() we decoupled this node leaving 827 * its pointers intact. Now that the caller is walking back along 828 * the eviction list we can restore this block into its rightful 829 * place on the full node_list. To confirm that the caller is walking 830 * backwards correctly we check that prev_node->next == node->next, 831 * i.e. both believe the same node should be on the other side of the 832 * hole. 833 */ 834 prev_node = list_prev_entry(node, node_list); 835 DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) != 836 list_next_entry(node, node_list)); 837 list_add(&node->node_list, &prev_node->node_list); 838 839 return (node->start + node->size > scan->hit_start && 840 node->start < scan->hit_end); 841 } 842 EXPORT_SYMBOL(drm_mm_scan_remove_block); 843 844 /** 845 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole 846 * @scan: drm_mm scan with target hole 847 * 848 * After completing an eviction scan and removing the selected nodes, we may 849 * need to remove a few more nodes from either side of the target hole if 850 * mm.color_adjust is being used. 851 * 852 * Returns: 853 * A node to evict, or NULL if there are no overlapping nodes. 854 */ 855 struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan) 856 { 857 struct drm_mm *mm = scan->mm; 858 struct drm_mm_node *hole; 859 u64 hole_start, hole_end; 860 861 DRM_MM_BUG_ON(list_empty(&mm->hole_stack)); 862 863 if (!mm->color_adjust) 864 return NULL; 865 866 /* 867 * The hole found during scanning should ideally be the first element 868 * in the hole_stack list, but due to side-effects in the driver it 869 * may not be. 870 */ 871 list_for_each_entry(hole, &mm->hole_stack, hole_stack) { 872 hole_start = __drm_mm_hole_node_start(hole); 873 hole_end = hole_start + hole->hole_size; 874 875 if (hole_start <= scan->hit_start && 876 hole_end >= scan->hit_end) 877 break; 878 } 879 880 /* We should only be called after we found the hole previously */ 881 DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack); 882 if (unlikely(&hole->hole_stack == &mm->hole_stack)) 883 return NULL; 884 885 DRM_MM_BUG_ON(hole_start > scan->hit_start); 886 DRM_MM_BUG_ON(hole_end < scan->hit_end); 887 888 mm->color_adjust(hole, scan->color, &hole_start, &hole_end); 889 if (hole_start > scan->hit_start) 890 return hole; 891 if (hole_end < scan->hit_end) 892 return list_next_entry(hole, node_list); 893 894 return NULL; 895 } 896 EXPORT_SYMBOL(drm_mm_scan_color_evict); 897 898 /** 899 * drm_mm_init - initialize a drm-mm allocator 900 * @mm: the drm_mm structure to initialize 901 * @start: start of the range managed by @mm 902 * @size: end of the range managed by @mm 903 * 904 * Note that @mm must be cleared to 0 before calling this function. 905 */ 906 void drm_mm_init(struct drm_mm *mm, u64 start, u64 size) 907 { 908 DRM_MM_BUG_ON(start + size <= start); 909 910 mm->color_adjust = NULL; 911 912 INIT_LIST_HEAD(&mm->hole_stack); 913 mm->interval_tree = RB_ROOT_CACHED; 914 mm->holes_size = RB_ROOT_CACHED; 915 mm->holes_addr = RB_ROOT; 916 917 /* Clever trick to avoid a special case in the free hole tracking. */ 918 INIT_LIST_HEAD(&mm->head_node.node_list); 919 mm->head_node.allocated = false; 920 mm->head_node.mm = mm; 921 mm->head_node.start = start + size; 922 mm->head_node.size = -size; 923 add_hole(&mm->head_node); 924 925 mm->scan_active = 0; 926 } 927 EXPORT_SYMBOL(drm_mm_init); 928 929 /** 930 * drm_mm_takedown - clean up a drm_mm allocator 931 * @mm: drm_mm allocator to clean up 932 * 933 * Note that it is a bug to call this function on an allocator which is not 934 * clean. 935 */ 936 void drm_mm_takedown(struct drm_mm *mm) 937 { 938 if (WARN(!drm_mm_clean(mm), 939 "Memory manager not clean during takedown.\n")) 940 show_leaks(mm); 941 } 942 EXPORT_SYMBOL(drm_mm_takedown); 943 944 static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry) 945 { 946 u64 start, size; 947 948 size = entry->hole_size; 949 if (size) { 950 start = drm_mm_hole_node_start(entry); 951 drm_printf(p, "%#018llx-%#018llx: %llu: free\n", 952 start, start + size, size); 953 } 954 955 return size; 956 } 957 /** 958 * drm_mm_print - print allocator state 959 * @mm: drm_mm allocator to print 960 * @p: DRM printer to use 961 */ 962 void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p) 963 { 964 const struct drm_mm_node *entry; 965 u64 total_used = 0, total_free = 0, total = 0; 966 967 total_free += drm_mm_dump_hole(p, &mm->head_node); 968 969 drm_mm_for_each_node(entry, mm) { 970 drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start, 971 entry->start + entry->size, entry->size); 972 total_used += entry->size; 973 total_free += drm_mm_dump_hole(p, entry); 974 } 975 total = total_free + total_used; 976 977 drm_printf(p, "total: %llu, used %llu free %llu\n", total, 978 total_used, total_free); 979 } 980 EXPORT_SYMBOL(drm_mm_print); 981