xref: /openbmc/linux/drivers/gpu/drm/drm_mm.c (revision 83268fa6)
1 /**************************************************************************
2  *
3  * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
4  * Copyright 2016 Intel Corporation
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  *
28  **************************************************************************/
29 
30 /*
31  * Generic simple memory manager implementation. Intended to be used as a base
32  * class implementation for more advanced memory managers.
33  *
34  * Note that the algorithm used is quite simple and there might be substantial
35  * performance gains if a smarter free list is implemented. Currently it is
36  * just an unordered stack of free regions. This could easily be improved if
37  * an RB-tree is used instead. At least if we expect heavy fragmentation.
38  *
39  * Aligned allocations can also see improvement.
40  *
41  * Authors:
42  * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
43  */
44 
45 #include <drm/drmP.h>
46 #include <drm/drm_mm.h>
47 #include <linux/slab.h>
48 #include <linux/seq_file.h>
49 #include <linux/export.h>
50 #include <linux/interval_tree_generic.h>
51 
52 /**
53  * DOC: Overview
54  *
55  * drm_mm provides a simple range allocator. The drivers are free to use the
56  * resource allocator from the linux core if it suits them, the upside of drm_mm
57  * is that it's in the DRM core. Which means that it's easier to extend for
58  * some of the crazier special purpose needs of gpus.
59  *
60  * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
61  * Drivers are free to embed either of them into their own suitable
62  * datastructures. drm_mm itself will not do any memory allocations of its own,
63  * so if drivers choose not to embed nodes they need to still allocate them
64  * themselves.
65  *
66  * The range allocator also supports reservation of preallocated blocks. This is
67  * useful for taking over initial mode setting configurations from the firmware,
68  * where an object needs to be created which exactly matches the firmware's
69  * scanout target. As long as the range is still free it can be inserted anytime
70  * after the allocator is initialized, which helps with avoiding looped
71  * dependencies in the driver load sequence.
72  *
73  * drm_mm maintains a stack of most recently freed holes, which of all
74  * simplistic datastructures seems to be a fairly decent approach to clustering
75  * allocations and avoiding too much fragmentation. This means free space
76  * searches are O(num_holes). Given that all the fancy features drm_mm supports
77  * something better would be fairly complex and since gfx thrashing is a fairly
78  * steep cliff not a real concern. Removing a node again is O(1).
79  *
80  * drm_mm supports a few features: Alignment and range restrictions can be
81  * supplied. Furthermore every &drm_mm_node has a color value (which is just an
82  * opaque unsigned long) which in conjunction with a driver callback can be used
83  * to implement sophisticated placement restrictions. The i915 DRM driver uses
84  * this to implement guard pages between incompatible caching domains in the
85  * graphics TT.
86  *
87  * Two behaviors are supported for searching and allocating: bottom-up and
88  * top-down. The default is bottom-up. Top-down allocation can be used if the
89  * memory area has different restrictions, or just to reduce fragmentation.
90  *
91  * Finally iteration helpers to walk all nodes and all holes are provided as are
92  * some basic allocator dumpers for debugging.
93  *
94  * Note that this range allocator is not thread-safe, drivers need to protect
95  * modifications with their own locking. The idea behind this is that for a full
96  * memory manager additional data needs to be protected anyway, hence internal
97  * locking would be fully redundant.
98  */
99 
100 #ifdef CONFIG_DRM_DEBUG_MM
101 #include <linux/stackdepot.h>
102 
103 #define STACKDEPTH 32
104 #define BUFSZ 4096
105 
106 static noinline void save_stack(struct drm_mm_node *node)
107 {
108 	unsigned long entries[STACKDEPTH];
109 	struct stack_trace trace = {
110 		.entries = entries,
111 		.max_entries = STACKDEPTH,
112 		.skip = 1
113 	};
114 
115 	save_stack_trace(&trace);
116 	if (trace.nr_entries != 0 &&
117 	    trace.entries[trace.nr_entries-1] == ULONG_MAX)
118 		trace.nr_entries--;
119 
120 	/* May be called under spinlock, so avoid sleeping */
121 	node->stack = depot_save_stack(&trace, GFP_NOWAIT);
122 }
123 
124 static void show_leaks(struct drm_mm *mm)
125 {
126 	struct drm_mm_node *node;
127 	unsigned long entries[STACKDEPTH];
128 	char *buf;
129 
130 	buf = kmalloc(BUFSZ, GFP_KERNEL);
131 	if (!buf)
132 		return;
133 
134 	list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
135 		struct stack_trace trace = {
136 			.entries = entries,
137 			.max_entries = STACKDEPTH
138 		};
139 
140 		if (!node->stack) {
141 			DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
142 				  node->start, node->size);
143 			continue;
144 		}
145 
146 		depot_fetch_stack(node->stack, &trace);
147 		snprint_stack_trace(buf, BUFSZ, &trace, 0);
148 		DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
149 			  node->start, node->size, buf);
150 	}
151 
152 	kfree(buf);
153 }
154 
155 #undef STACKDEPTH
156 #undef BUFSZ
157 #else
158 static void save_stack(struct drm_mm_node *node) { }
159 static void show_leaks(struct drm_mm *mm) { }
160 #endif
161 
162 #define START(node) ((node)->start)
163 #define LAST(node)  ((node)->start + (node)->size - 1)
164 
165 INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
166 		     u64, __subtree_last,
167 		     START, LAST, static inline, drm_mm_interval_tree)
168 
169 struct drm_mm_node *
170 __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
171 {
172 	return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
173 					       start, last) ?: (struct drm_mm_node *)&mm->head_node;
174 }
175 EXPORT_SYMBOL(__drm_mm_interval_first);
176 
177 static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
178 					  struct drm_mm_node *node)
179 {
180 	struct drm_mm *mm = hole_node->mm;
181 	struct rb_node **link, *rb;
182 	struct drm_mm_node *parent;
183 	bool leftmost;
184 
185 	node->__subtree_last = LAST(node);
186 
187 	if (hole_node->allocated) {
188 		rb = &hole_node->rb;
189 		while (rb) {
190 			parent = rb_entry(rb, struct drm_mm_node, rb);
191 			if (parent->__subtree_last >= node->__subtree_last)
192 				break;
193 
194 			parent->__subtree_last = node->__subtree_last;
195 			rb = rb_parent(rb);
196 		}
197 
198 		rb = &hole_node->rb;
199 		link = &hole_node->rb.rb_right;
200 		leftmost = false;
201 	} else {
202 		rb = NULL;
203 		link = &mm->interval_tree.rb_root.rb_node;
204 		leftmost = true;
205 	}
206 
207 	while (*link) {
208 		rb = *link;
209 		parent = rb_entry(rb, struct drm_mm_node, rb);
210 		if (parent->__subtree_last < node->__subtree_last)
211 			parent->__subtree_last = node->__subtree_last;
212 		if (node->start < parent->start) {
213 			link = &parent->rb.rb_left;
214 		} else {
215 			link = &parent->rb.rb_right;
216 			leftmost = false;
217 		}
218 	}
219 
220 	rb_link_node(&node->rb, rb, link);
221 	rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
222 				   &drm_mm_interval_tree_augment);
223 }
224 
225 #define RB_INSERT(root, member, expr) do { \
226 	struct rb_node **link = &root.rb_node, *rb = NULL; \
227 	u64 x = expr(node); \
228 	while (*link) { \
229 		rb = *link; \
230 		if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \
231 			link = &rb->rb_left; \
232 		else \
233 			link = &rb->rb_right; \
234 	} \
235 	rb_link_node(&node->member, rb, link); \
236 	rb_insert_color(&node->member, &root); \
237 } while (0)
238 
239 #define HOLE_SIZE(NODE) ((NODE)->hole_size)
240 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
241 
242 static u64 rb_to_hole_size(struct rb_node *rb)
243 {
244 	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
245 }
246 
247 static void insert_hole_size(struct rb_root_cached *root,
248 			     struct drm_mm_node *node)
249 {
250 	struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
251 	u64 x = node->hole_size;
252 	bool first = true;
253 
254 	while (*link) {
255 		rb = *link;
256 		if (x > rb_to_hole_size(rb)) {
257 			link = &rb->rb_left;
258 		} else {
259 			link = &rb->rb_right;
260 			first = false;
261 		}
262 	}
263 
264 	rb_link_node(&node->rb_hole_size, rb, link);
265 	rb_insert_color_cached(&node->rb_hole_size, root, first);
266 }
267 
268 static void add_hole(struct drm_mm_node *node)
269 {
270 	struct drm_mm *mm = node->mm;
271 
272 	node->hole_size =
273 		__drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
274 	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
275 
276 	insert_hole_size(&mm->holes_size, node);
277 	RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR);
278 
279 	list_add(&node->hole_stack, &mm->hole_stack);
280 }
281 
282 static void rm_hole(struct drm_mm_node *node)
283 {
284 	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
285 
286 	list_del(&node->hole_stack);
287 	rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size);
288 	rb_erase(&node->rb_hole_addr, &node->mm->holes_addr);
289 	node->hole_size = 0;
290 
291 	DRM_MM_BUG_ON(drm_mm_hole_follows(node));
292 }
293 
294 static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
295 {
296 	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
297 }
298 
299 static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
300 {
301 	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
302 }
303 
304 static inline u64 rb_hole_size(struct rb_node *rb)
305 {
306 	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
307 }
308 
309 static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
310 {
311 	struct rb_node *rb = mm->holes_size.rb_root.rb_node;
312 	struct drm_mm_node *best = NULL;
313 
314 	do {
315 		struct drm_mm_node *node =
316 			rb_entry(rb, struct drm_mm_node, rb_hole_size);
317 
318 		if (size <= node->hole_size) {
319 			best = node;
320 			rb = rb->rb_right;
321 		} else {
322 			rb = rb->rb_left;
323 		}
324 	} while (rb);
325 
326 	return best;
327 }
328 
329 static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr)
330 {
331 	struct rb_node *rb = mm->holes_addr.rb_node;
332 	struct drm_mm_node *node = NULL;
333 
334 	while (rb) {
335 		u64 hole_start;
336 
337 		node = rb_hole_addr_to_node(rb);
338 		hole_start = __drm_mm_hole_node_start(node);
339 
340 		if (addr < hole_start)
341 			rb = node->rb_hole_addr.rb_left;
342 		else if (addr > hole_start + node->hole_size)
343 			rb = node->rb_hole_addr.rb_right;
344 		else
345 			break;
346 	}
347 
348 	return node;
349 }
350 
351 static struct drm_mm_node *
352 first_hole(struct drm_mm *mm,
353 	   u64 start, u64 end, u64 size,
354 	   enum drm_mm_insert_mode mode)
355 {
356 	switch (mode) {
357 	default:
358 	case DRM_MM_INSERT_BEST:
359 		return best_hole(mm, size);
360 
361 	case DRM_MM_INSERT_LOW:
362 		return find_hole(mm, start);
363 
364 	case DRM_MM_INSERT_HIGH:
365 		return find_hole(mm, end);
366 
367 	case DRM_MM_INSERT_EVICT:
368 		return list_first_entry_or_null(&mm->hole_stack,
369 						struct drm_mm_node,
370 						hole_stack);
371 	}
372 }
373 
374 static struct drm_mm_node *
375 next_hole(struct drm_mm *mm,
376 	  struct drm_mm_node *node,
377 	  enum drm_mm_insert_mode mode)
378 {
379 	switch (mode) {
380 	default:
381 	case DRM_MM_INSERT_BEST:
382 		return rb_hole_size_to_node(rb_prev(&node->rb_hole_size));
383 
384 	case DRM_MM_INSERT_LOW:
385 		return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr));
386 
387 	case DRM_MM_INSERT_HIGH:
388 		return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr));
389 
390 	case DRM_MM_INSERT_EVICT:
391 		node = list_next_entry(node, hole_stack);
392 		return &node->hole_stack == &mm->hole_stack ? NULL : node;
393 	}
394 }
395 
396 /**
397  * drm_mm_reserve_node - insert an pre-initialized node
398  * @mm: drm_mm allocator to insert @node into
399  * @node: drm_mm_node to insert
400  *
401  * This functions inserts an already set-up &drm_mm_node into the allocator,
402  * meaning that start, size and color must be set by the caller. All other
403  * fields must be cleared to 0. This is useful to initialize the allocator with
404  * preallocated objects which must be set-up before the range allocator can be
405  * set-up, e.g. when taking over a firmware framebuffer.
406  *
407  * Returns:
408  * 0 on success, -ENOSPC if there's no hole where @node is.
409  */
410 int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
411 {
412 	u64 end = node->start + node->size;
413 	struct drm_mm_node *hole;
414 	u64 hole_start, hole_end;
415 	u64 adj_start, adj_end;
416 
417 	end = node->start + node->size;
418 	if (unlikely(end <= node->start))
419 		return -ENOSPC;
420 
421 	/* Find the relevant hole to add our node to */
422 	hole = find_hole(mm, node->start);
423 	if (!hole)
424 		return -ENOSPC;
425 
426 	adj_start = hole_start = __drm_mm_hole_node_start(hole);
427 	adj_end = hole_end = hole_start + hole->hole_size;
428 
429 	if (mm->color_adjust)
430 		mm->color_adjust(hole, node->color, &adj_start, &adj_end);
431 
432 	if (adj_start > node->start || adj_end < end)
433 		return -ENOSPC;
434 
435 	node->mm = mm;
436 
437 	list_add(&node->node_list, &hole->node_list);
438 	drm_mm_interval_tree_add_node(hole, node);
439 	node->allocated = true;
440 	node->hole_size = 0;
441 
442 	rm_hole(hole);
443 	if (node->start > hole_start)
444 		add_hole(hole);
445 	if (end < hole_end)
446 		add_hole(node);
447 
448 	save_stack(node);
449 	return 0;
450 }
451 EXPORT_SYMBOL(drm_mm_reserve_node);
452 
453 static u64 rb_to_hole_size_or_zero(struct rb_node *rb)
454 {
455 	return rb ? rb_to_hole_size(rb) : 0;
456 }
457 
458 /**
459  * drm_mm_insert_node_in_range - ranged search for space and insert @node
460  * @mm: drm_mm to allocate from
461  * @node: preallocate node to insert
462  * @size: size of the allocation
463  * @alignment: alignment of the allocation
464  * @color: opaque tag value to use for this node
465  * @range_start: start of the allowed range for this node
466  * @range_end: end of the allowed range for this node
467  * @mode: fine-tune the allocation search and placement
468  *
469  * The preallocated @node must be cleared to 0.
470  *
471  * Returns:
472  * 0 on success, -ENOSPC if there's no suitable hole.
473  */
474 int drm_mm_insert_node_in_range(struct drm_mm * const mm,
475 				struct drm_mm_node * const node,
476 				u64 size, u64 alignment,
477 				unsigned long color,
478 				u64 range_start, u64 range_end,
479 				enum drm_mm_insert_mode mode)
480 {
481 	struct drm_mm_node *hole;
482 	u64 remainder_mask;
483 	bool once;
484 
485 	DRM_MM_BUG_ON(range_start >= range_end);
486 
487 	if (unlikely(size == 0 || range_end - range_start < size))
488 		return -ENOSPC;
489 
490 	if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size)
491 		return -ENOSPC;
492 
493 	if (alignment <= 1)
494 		alignment = 0;
495 
496 	once = mode & DRM_MM_INSERT_ONCE;
497 	mode &= ~DRM_MM_INSERT_ONCE;
498 
499 	remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
500 	for (hole = first_hole(mm, range_start, range_end, size, mode);
501 	     hole;
502 	     hole = once ? NULL : next_hole(mm, hole, mode)) {
503 		u64 hole_start = __drm_mm_hole_node_start(hole);
504 		u64 hole_end = hole_start + hole->hole_size;
505 		u64 adj_start, adj_end;
506 		u64 col_start, col_end;
507 
508 		if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
509 			break;
510 
511 		if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
512 			break;
513 
514 		col_start = hole_start;
515 		col_end = hole_end;
516 		if (mm->color_adjust)
517 			mm->color_adjust(hole, color, &col_start, &col_end);
518 
519 		adj_start = max(col_start, range_start);
520 		adj_end = min(col_end, range_end);
521 
522 		if (adj_end <= adj_start || adj_end - adj_start < size)
523 			continue;
524 
525 		if (mode == DRM_MM_INSERT_HIGH)
526 			adj_start = adj_end - size;
527 
528 		if (alignment) {
529 			u64 rem;
530 
531 			if (likely(remainder_mask))
532 				rem = adj_start & remainder_mask;
533 			else
534 				div64_u64_rem(adj_start, alignment, &rem);
535 			if (rem) {
536 				adj_start -= rem;
537 				if (mode != DRM_MM_INSERT_HIGH)
538 					adj_start += alignment;
539 
540 				if (adj_start < max(col_start, range_start) ||
541 				    min(col_end, range_end) - adj_start < size)
542 					continue;
543 
544 				if (adj_end <= adj_start ||
545 				    adj_end - adj_start < size)
546 					continue;
547 			}
548 		}
549 
550 		node->mm = mm;
551 		node->size = size;
552 		node->start = adj_start;
553 		node->color = color;
554 		node->hole_size = 0;
555 
556 		list_add(&node->node_list, &hole->node_list);
557 		drm_mm_interval_tree_add_node(hole, node);
558 		node->allocated = true;
559 
560 		rm_hole(hole);
561 		if (adj_start > hole_start)
562 			add_hole(hole);
563 		if (adj_start + size < hole_end)
564 			add_hole(node);
565 
566 		save_stack(node);
567 		return 0;
568 	}
569 
570 	return -ENOSPC;
571 }
572 EXPORT_SYMBOL(drm_mm_insert_node_in_range);
573 
574 /**
575  * drm_mm_remove_node - Remove a memory node from the allocator.
576  * @node: drm_mm_node to remove
577  *
578  * This just removes a node from its drm_mm allocator. The node does not need to
579  * be cleared again before it can be re-inserted into this or any other drm_mm
580  * allocator. It is a bug to call this function on a unallocated node.
581  */
582 void drm_mm_remove_node(struct drm_mm_node *node)
583 {
584 	struct drm_mm *mm = node->mm;
585 	struct drm_mm_node *prev_node;
586 
587 	DRM_MM_BUG_ON(!node->allocated);
588 	DRM_MM_BUG_ON(node->scanned_block);
589 
590 	prev_node = list_prev_entry(node, node_list);
591 
592 	if (drm_mm_hole_follows(node))
593 		rm_hole(node);
594 
595 	drm_mm_interval_tree_remove(node, &mm->interval_tree);
596 	list_del(&node->node_list);
597 	node->allocated = false;
598 
599 	if (drm_mm_hole_follows(prev_node))
600 		rm_hole(prev_node);
601 	add_hole(prev_node);
602 }
603 EXPORT_SYMBOL(drm_mm_remove_node);
604 
605 /**
606  * drm_mm_replace_node - move an allocation from @old to @new
607  * @old: drm_mm_node to remove from the allocator
608  * @new: drm_mm_node which should inherit @old's allocation
609  *
610  * This is useful for when drivers embed the drm_mm_node structure and hence
611  * can't move allocations by reassigning pointers. It's a combination of remove
612  * and insert with the guarantee that the allocation start will match.
613  */
614 void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
615 {
616 	struct drm_mm *mm = old->mm;
617 
618 	DRM_MM_BUG_ON(!old->allocated);
619 
620 	*new = *old;
621 
622 	list_replace(&old->node_list, &new->node_list);
623 	rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree);
624 
625 	if (drm_mm_hole_follows(old)) {
626 		list_replace(&old->hole_stack, &new->hole_stack);
627 		rb_replace_node_cached(&old->rb_hole_size,
628 				       &new->rb_hole_size,
629 				       &mm->holes_size);
630 		rb_replace_node(&old->rb_hole_addr,
631 				&new->rb_hole_addr,
632 				&mm->holes_addr);
633 	}
634 
635 	old->allocated = false;
636 	new->allocated = true;
637 }
638 EXPORT_SYMBOL(drm_mm_replace_node);
639 
640 /**
641  * DOC: lru scan roster
642  *
643  * Very often GPUs need to have continuous allocations for a given object. When
644  * evicting objects to make space for a new one it is therefore not most
645  * efficient when we simply start to select all objects from the tail of an LRU
646  * until there's a suitable hole: Especially for big objects or nodes that
647  * otherwise have special allocation constraints there's a good chance we evict
648  * lots of (smaller) objects unnecessarily.
649  *
650  * The DRM range allocator supports this use-case through the scanning
651  * interfaces. First a scan operation needs to be initialized with
652  * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
653  * objects to the roster, probably by walking an LRU list, but this can be
654  * freely implemented. Eviction candiates are added using
655  * drm_mm_scan_add_block() until a suitable hole is found or there are no
656  * further evictable objects. Eviction roster metadata is tracked in &struct
657  * drm_mm_scan.
658  *
659  * The driver must walk through all objects again in exactly the reverse
660  * order to restore the allocator state. Note that while the allocator is used
661  * in the scan mode no other operation is allowed.
662  *
663  * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
664  * reported true) in the scan, and any overlapping nodes after color adjustment
665  * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
666  * since freeing a node is also O(1) the overall complexity is
667  * O(scanned_objects). So like the free stack which needs to be walked before a
668  * scan operation even begins this is linear in the number of objects. It
669  * doesn't seem to hurt too badly.
670  */
671 
672 /**
673  * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
674  * @scan: scan state
675  * @mm: drm_mm to scan
676  * @size: size of the allocation
677  * @alignment: alignment of the allocation
678  * @color: opaque tag value to use for the allocation
679  * @start: start of the allowed range for the allocation
680  * @end: end of the allowed range for the allocation
681  * @mode: fine-tune the allocation search and placement
682  *
683  * This simply sets up the scanning routines with the parameters for the desired
684  * hole.
685  *
686  * Warning:
687  * As long as the scan list is non-empty, no other operations than
688  * adding/removing nodes to/from the scan list are allowed.
689  */
690 void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
691 				 struct drm_mm *mm,
692 				 u64 size,
693 				 u64 alignment,
694 				 unsigned long color,
695 				 u64 start,
696 				 u64 end,
697 				 enum drm_mm_insert_mode mode)
698 {
699 	DRM_MM_BUG_ON(start >= end);
700 	DRM_MM_BUG_ON(!size || size > end - start);
701 	DRM_MM_BUG_ON(mm->scan_active);
702 
703 	scan->mm = mm;
704 
705 	if (alignment <= 1)
706 		alignment = 0;
707 
708 	scan->color = color;
709 	scan->alignment = alignment;
710 	scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
711 	scan->size = size;
712 	scan->mode = mode;
713 
714 	DRM_MM_BUG_ON(end <= start);
715 	scan->range_start = start;
716 	scan->range_end = end;
717 
718 	scan->hit_start = U64_MAX;
719 	scan->hit_end = 0;
720 }
721 EXPORT_SYMBOL(drm_mm_scan_init_with_range);
722 
723 /**
724  * drm_mm_scan_add_block - add a node to the scan list
725  * @scan: the active drm_mm scanner
726  * @node: drm_mm_node to add
727  *
728  * Add a node to the scan list that might be freed to make space for the desired
729  * hole.
730  *
731  * Returns:
732  * True if a hole has been found, false otherwise.
733  */
734 bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
735 			   struct drm_mm_node *node)
736 {
737 	struct drm_mm *mm = scan->mm;
738 	struct drm_mm_node *hole;
739 	u64 hole_start, hole_end;
740 	u64 col_start, col_end;
741 	u64 adj_start, adj_end;
742 
743 	DRM_MM_BUG_ON(node->mm != mm);
744 	DRM_MM_BUG_ON(!node->allocated);
745 	DRM_MM_BUG_ON(node->scanned_block);
746 	node->scanned_block = true;
747 	mm->scan_active++;
748 
749 	/* Remove this block from the node_list so that we enlarge the hole
750 	 * (distance between the end of our previous node and the start of
751 	 * or next), without poisoning the link so that we can restore it
752 	 * later in drm_mm_scan_remove_block().
753 	 */
754 	hole = list_prev_entry(node, node_list);
755 	DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
756 	__list_del_entry(&node->node_list);
757 
758 	hole_start = __drm_mm_hole_node_start(hole);
759 	hole_end = __drm_mm_hole_node_end(hole);
760 
761 	col_start = hole_start;
762 	col_end = hole_end;
763 	if (mm->color_adjust)
764 		mm->color_adjust(hole, scan->color, &col_start, &col_end);
765 
766 	adj_start = max(col_start, scan->range_start);
767 	adj_end = min(col_end, scan->range_end);
768 	if (adj_end <= adj_start || adj_end - adj_start < scan->size)
769 		return false;
770 
771 	if (scan->mode == DRM_MM_INSERT_HIGH)
772 		adj_start = adj_end - scan->size;
773 
774 	if (scan->alignment) {
775 		u64 rem;
776 
777 		if (likely(scan->remainder_mask))
778 			rem = adj_start & scan->remainder_mask;
779 		else
780 			div64_u64_rem(adj_start, scan->alignment, &rem);
781 		if (rem) {
782 			adj_start -= rem;
783 			if (scan->mode != DRM_MM_INSERT_HIGH)
784 				adj_start += scan->alignment;
785 			if (adj_start < max(col_start, scan->range_start) ||
786 			    min(col_end, scan->range_end) - adj_start < scan->size)
787 				return false;
788 
789 			if (adj_end <= adj_start ||
790 			    adj_end - adj_start < scan->size)
791 				return false;
792 		}
793 	}
794 
795 	scan->hit_start = adj_start;
796 	scan->hit_end = adj_start + scan->size;
797 
798 	DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
799 	DRM_MM_BUG_ON(scan->hit_start < hole_start);
800 	DRM_MM_BUG_ON(scan->hit_end > hole_end);
801 
802 	return true;
803 }
804 EXPORT_SYMBOL(drm_mm_scan_add_block);
805 
806 /**
807  * drm_mm_scan_remove_block - remove a node from the scan list
808  * @scan: the active drm_mm scanner
809  * @node: drm_mm_node to remove
810  *
811  * Nodes **must** be removed in exactly the reverse order from the scan list as
812  * they have been added (e.g. using list_add() as they are added and then
813  * list_for_each() over that eviction list to remove), otherwise the internal
814  * state of the memory manager will be corrupted.
815  *
816  * When the scan list is empty, the selected memory nodes can be freed. An
817  * immediately following drm_mm_insert_node_in_range_generic() or one of the
818  * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
819  * the just freed block (because its at the top of the free_stack list).
820  *
821  * Returns:
822  * True if this block should be evicted, false otherwise. Will always
823  * return false when no hole has been found.
824  */
825 bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
826 			      struct drm_mm_node *node)
827 {
828 	struct drm_mm_node *prev_node;
829 
830 	DRM_MM_BUG_ON(node->mm != scan->mm);
831 	DRM_MM_BUG_ON(!node->scanned_block);
832 	node->scanned_block = false;
833 
834 	DRM_MM_BUG_ON(!node->mm->scan_active);
835 	node->mm->scan_active--;
836 
837 	/* During drm_mm_scan_add_block() we decoupled this node leaving
838 	 * its pointers intact. Now that the caller is walking back along
839 	 * the eviction list we can restore this block into its rightful
840 	 * place on the full node_list. To confirm that the caller is walking
841 	 * backwards correctly we check that prev_node->next == node->next,
842 	 * i.e. both believe the same node should be on the other side of the
843 	 * hole.
844 	 */
845 	prev_node = list_prev_entry(node, node_list);
846 	DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
847 		      list_next_entry(node, node_list));
848 	list_add(&node->node_list, &prev_node->node_list);
849 
850 	return (node->start + node->size > scan->hit_start &&
851 		node->start < scan->hit_end);
852 }
853 EXPORT_SYMBOL(drm_mm_scan_remove_block);
854 
855 /**
856  * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
857  * @scan: drm_mm scan with target hole
858  *
859  * After completing an eviction scan and removing the selected nodes, we may
860  * need to remove a few more nodes from either side of the target hole if
861  * mm.color_adjust is being used.
862  *
863  * Returns:
864  * A node to evict, or NULL if there are no overlapping nodes.
865  */
866 struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
867 {
868 	struct drm_mm *mm = scan->mm;
869 	struct drm_mm_node *hole;
870 	u64 hole_start, hole_end;
871 
872 	DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
873 
874 	if (!mm->color_adjust)
875 		return NULL;
876 
877 	/*
878 	 * The hole found during scanning should ideally be the first element
879 	 * in the hole_stack list, but due to side-effects in the driver it
880 	 * may not be.
881 	 */
882 	list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
883 		hole_start = __drm_mm_hole_node_start(hole);
884 		hole_end = hole_start + hole->hole_size;
885 
886 		if (hole_start <= scan->hit_start &&
887 		    hole_end >= scan->hit_end)
888 			break;
889 	}
890 
891 	/* We should only be called after we found the hole previously */
892 	DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
893 	if (unlikely(&hole->hole_stack == &mm->hole_stack))
894 		return NULL;
895 
896 	DRM_MM_BUG_ON(hole_start > scan->hit_start);
897 	DRM_MM_BUG_ON(hole_end < scan->hit_end);
898 
899 	mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
900 	if (hole_start > scan->hit_start)
901 		return hole;
902 	if (hole_end < scan->hit_end)
903 		return list_next_entry(hole, node_list);
904 
905 	return NULL;
906 }
907 EXPORT_SYMBOL(drm_mm_scan_color_evict);
908 
909 /**
910  * drm_mm_init - initialize a drm-mm allocator
911  * @mm: the drm_mm structure to initialize
912  * @start: start of the range managed by @mm
913  * @size: end of the range managed by @mm
914  *
915  * Note that @mm must be cleared to 0 before calling this function.
916  */
917 void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
918 {
919 	DRM_MM_BUG_ON(start + size <= start);
920 
921 	mm->color_adjust = NULL;
922 
923 	INIT_LIST_HEAD(&mm->hole_stack);
924 	mm->interval_tree = RB_ROOT_CACHED;
925 	mm->holes_size = RB_ROOT_CACHED;
926 	mm->holes_addr = RB_ROOT;
927 
928 	/* Clever trick to avoid a special case in the free hole tracking. */
929 	INIT_LIST_HEAD(&mm->head_node.node_list);
930 	mm->head_node.allocated = false;
931 	mm->head_node.mm = mm;
932 	mm->head_node.start = start + size;
933 	mm->head_node.size = -size;
934 	add_hole(&mm->head_node);
935 
936 	mm->scan_active = 0;
937 }
938 EXPORT_SYMBOL(drm_mm_init);
939 
940 /**
941  * drm_mm_takedown - clean up a drm_mm allocator
942  * @mm: drm_mm allocator to clean up
943  *
944  * Note that it is a bug to call this function on an allocator which is not
945  * clean.
946  */
947 void drm_mm_takedown(struct drm_mm *mm)
948 {
949 	if (WARN(!drm_mm_clean(mm),
950 		 "Memory manager not clean during takedown.\n"))
951 		show_leaks(mm);
952 }
953 EXPORT_SYMBOL(drm_mm_takedown);
954 
955 static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
956 {
957 	u64 start, size;
958 
959 	size = entry->hole_size;
960 	if (size) {
961 		start = drm_mm_hole_node_start(entry);
962 		drm_printf(p, "%#018llx-%#018llx: %llu: free\n",
963 			   start, start + size, size);
964 	}
965 
966 	return size;
967 }
968 /**
969  * drm_mm_print - print allocator state
970  * @mm: drm_mm allocator to print
971  * @p: DRM printer to use
972  */
973 void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
974 {
975 	const struct drm_mm_node *entry;
976 	u64 total_used = 0, total_free = 0, total = 0;
977 
978 	total_free += drm_mm_dump_hole(p, &mm->head_node);
979 
980 	drm_mm_for_each_node(entry, mm) {
981 		drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
982 			   entry->start + entry->size, entry->size);
983 		total_used += entry->size;
984 		total_free += drm_mm_dump_hole(p, entry);
985 	}
986 	total = total_free + total_used;
987 
988 	drm_printf(p, "total: %llu, used %llu free %llu\n", total,
989 		   total_used, total_free);
990 }
991 EXPORT_SYMBOL(drm_mm_print);
992