xref: /openbmc/linux/drivers/gpu/drm/drm_mm.c (revision 82df5b73)
1 /**************************************************************************
2  *
3  * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
4  * Copyright 2016 Intel Corporation
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  *
28  **************************************************************************/
29 
30 /*
31  * Generic simple memory manager implementation. Intended to be used as a base
32  * class implementation for more advanced memory managers.
33  *
34  * Note that the algorithm used is quite simple and there might be substantial
35  * performance gains if a smarter free list is implemented. Currently it is
36  * just an unordered stack of free regions. This could easily be improved if
37  * an RB-tree is used instead. At least if we expect heavy fragmentation.
38  *
39  * Aligned allocations can also see improvement.
40  *
41  * Authors:
42  * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
43  */
44 
45 #include <linux/export.h>
46 #include <linux/interval_tree_generic.h>
47 #include <linux/seq_file.h>
48 #include <linux/slab.h>
49 #include <linux/stacktrace.h>
50 
51 #include <drm/drm_mm.h>
52 
53 /**
54  * DOC: Overview
55  *
56  * drm_mm provides a simple range allocator. The drivers are free to use the
57  * resource allocator from the linux core if it suits them, the upside of drm_mm
58  * is that it's in the DRM core. Which means that it's easier to extend for
59  * some of the crazier special purpose needs of gpus.
60  *
61  * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
62  * Drivers are free to embed either of them into their own suitable
63  * datastructures. drm_mm itself will not do any memory allocations of its own,
64  * so if drivers choose not to embed nodes they need to still allocate them
65  * themselves.
66  *
67  * The range allocator also supports reservation of preallocated blocks. This is
68  * useful for taking over initial mode setting configurations from the firmware,
69  * where an object needs to be created which exactly matches the firmware's
70  * scanout target. As long as the range is still free it can be inserted anytime
71  * after the allocator is initialized, which helps with avoiding looped
72  * dependencies in the driver load sequence.
73  *
74  * drm_mm maintains a stack of most recently freed holes, which of all
75  * simplistic datastructures seems to be a fairly decent approach to clustering
76  * allocations and avoiding too much fragmentation. This means free space
77  * searches are O(num_holes). Given that all the fancy features drm_mm supports
78  * something better would be fairly complex and since gfx thrashing is a fairly
79  * steep cliff not a real concern. Removing a node again is O(1).
80  *
81  * drm_mm supports a few features: Alignment and range restrictions can be
82  * supplied. Furthermore every &drm_mm_node has a color value (which is just an
83  * opaque unsigned long) which in conjunction with a driver callback can be used
84  * to implement sophisticated placement restrictions. The i915 DRM driver uses
85  * this to implement guard pages between incompatible caching domains in the
86  * graphics TT.
87  *
88  * Two behaviors are supported for searching and allocating: bottom-up and
89  * top-down. The default is bottom-up. Top-down allocation can be used if the
90  * memory area has different restrictions, or just to reduce fragmentation.
91  *
92  * Finally iteration helpers to walk all nodes and all holes are provided as are
93  * some basic allocator dumpers for debugging.
94  *
95  * Note that this range allocator is not thread-safe, drivers need to protect
96  * modifications with their own locking. The idea behind this is that for a full
97  * memory manager additional data needs to be protected anyway, hence internal
98  * locking would be fully redundant.
99  */
100 
101 #ifdef CONFIG_DRM_DEBUG_MM
102 #include <linux/stackdepot.h>
103 
104 #define STACKDEPTH 32
105 #define BUFSZ 4096
106 
107 static noinline void save_stack(struct drm_mm_node *node)
108 {
109 	unsigned long entries[STACKDEPTH];
110 	unsigned int n;
111 
112 	n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
113 
114 	/* May be called under spinlock, so avoid sleeping */
115 	node->stack = stack_depot_save(entries, n, GFP_NOWAIT);
116 }
117 
118 static void show_leaks(struct drm_mm *mm)
119 {
120 	struct drm_mm_node *node;
121 	unsigned long *entries;
122 	unsigned int nr_entries;
123 	char *buf;
124 
125 	buf = kmalloc(BUFSZ, GFP_KERNEL);
126 	if (!buf)
127 		return;
128 
129 	list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
130 		if (!node->stack) {
131 			DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
132 				  node->start, node->size);
133 			continue;
134 		}
135 
136 		nr_entries = stack_depot_fetch(node->stack, &entries);
137 		stack_trace_snprint(buf, BUFSZ, entries, nr_entries, 0);
138 		DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
139 			  node->start, node->size, buf);
140 	}
141 
142 	kfree(buf);
143 }
144 
145 #undef STACKDEPTH
146 #undef BUFSZ
147 #else
148 static void save_stack(struct drm_mm_node *node) { }
149 static void show_leaks(struct drm_mm *mm) { }
150 #endif
151 
152 #define START(node) ((node)->start)
153 #define LAST(node)  ((node)->start + (node)->size - 1)
154 
155 INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
156 		     u64, __subtree_last,
157 		     START, LAST, static inline, drm_mm_interval_tree)
158 
159 struct drm_mm_node *
160 __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
161 {
162 	return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
163 					       start, last) ?: (struct drm_mm_node *)&mm->head_node;
164 }
165 EXPORT_SYMBOL(__drm_mm_interval_first);
166 
167 static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
168 					  struct drm_mm_node *node)
169 {
170 	struct drm_mm *mm = hole_node->mm;
171 	struct rb_node **link, *rb;
172 	struct drm_mm_node *parent;
173 	bool leftmost;
174 
175 	node->__subtree_last = LAST(node);
176 
177 	if (drm_mm_node_allocated(hole_node)) {
178 		rb = &hole_node->rb;
179 		while (rb) {
180 			parent = rb_entry(rb, struct drm_mm_node, rb);
181 			if (parent->__subtree_last >= node->__subtree_last)
182 				break;
183 
184 			parent->__subtree_last = node->__subtree_last;
185 			rb = rb_parent(rb);
186 		}
187 
188 		rb = &hole_node->rb;
189 		link = &hole_node->rb.rb_right;
190 		leftmost = false;
191 	} else {
192 		rb = NULL;
193 		link = &mm->interval_tree.rb_root.rb_node;
194 		leftmost = true;
195 	}
196 
197 	while (*link) {
198 		rb = *link;
199 		parent = rb_entry(rb, struct drm_mm_node, rb);
200 		if (parent->__subtree_last < node->__subtree_last)
201 			parent->__subtree_last = node->__subtree_last;
202 		if (node->start < parent->start) {
203 			link = &parent->rb.rb_left;
204 		} else {
205 			link = &parent->rb.rb_right;
206 			leftmost = false;
207 		}
208 	}
209 
210 	rb_link_node(&node->rb, rb, link);
211 	rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
212 				   &drm_mm_interval_tree_augment);
213 }
214 
215 #define HOLE_SIZE(NODE) ((NODE)->hole_size)
216 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
217 
218 static u64 rb_to_hole_size(struct rb_node *rb)
219 {
220 	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
221 }
222 
223 static void insert_hole_size(struct rb_root_cached *root,
224 			     struct drm_mm_node *node)
225 {
226 	struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
227 	u64 x = node->hole_size;
228 	bool first = true;
229 
230 	while (*link) {
231 		rb = *link;
232 		if (x > rb_to_hole_size(rb)) {
233 			link = &rb->rb_left;
234 		} else {
235 			link = &rb->rb_right;
236 			first = false;
237 		}
238 	}
239 
240 	rb_link_node(&node->rb_hole_size, rb, link);
241 	rb_insert_color_cached(&node->rb_hole_size, root, first);
242 }
243 
244 RB_DECLARE_CALLBACKS_MAX(static, augment_callbacks,
245 			 struct drm_mm_node, rb_hole_addr,
246 			 u64, subtree_max_hole, HOLE_SIZE)
247 
248 static void insert_hole_addr(struct rb_root *root, struct drm_mm_node *node)
249 {
250 	struct rb_node **link = &root->rb_node, *rb_parent = NULL;
251 	u64 start = HOLE_ADDR(node), subtree_max_hole = node->subtree_max_hole;
252 	struct drm_mm_node *parent;
253 
254 	while (*link) {
255 		rb_parent = *link;
256 		parent = rb_entry(rb_parent, struct drm_mm_node, rb_hole_addr);
257 		if (parent->subtree_max_hole < subtree_max_hole)
258 			parent->subtree_max_hole = subtree_max_hole;
259 		if (start < HOLE_ADDR(parent))
260 			link = &parent->rb_hole_addr.rb_left;
261 		else
262 			link = &parent->rb_hole_addr.rb_right;
263 	}
264 
265 	rb_link_node(&node->rb_hole_addr, rb_parent, link);
266 	rb_insert_augmented(&node->rb_hole_addr, root, &augment_callbacks);
267 }
268 
269 static void add_hole(struct drm_mm_node *node)
270 {
271 	struct drm_mm *mm = node->mm;
272 
273 	node->hole_size =
274 		__drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
275 	node->subtree_max_hole = node->hole_size;
276 	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
277 
278 	insert_hole_size(&mm->holes_size, node);
279 	insert_hole_addr(&mm->holes_addr, node);
280 
281 	list_add(&node->hole_stack, &mm->hole_stack);
282 }
283 
284 static void rm_hole(struct drm_mm_node *node)
285 {
286 	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
287 
288 	list_del(&node->hole_stack);
289 	rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size);
290 	rb_erase_augmented(&node->rb_hole_addr, &node->mm->holes_addr,
291 			   &augment_callbacks);
292 	node->hole_size = 0;
293 	node->subtree_max_hole = 0;
294 
295 	DRM_MM_BUG_ON(drm_mm_hole_follows(node));
296 }
297 
298 static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
299 {
300 	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
301 }
302 
303 static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
304 {
305 	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
306 }
307 
308 static inline u64 rb_hole_size(struct rb_node *rb)
309 {
310 	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
311 }
312 
313 static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
314 {
315 	struct rb_node *rb = mm->holes_size.rb_root.rb_node;
316 	struct drm_mm_node *best = NULL;
317 
318 	do {
319 		struct drm_mm_node *node =
320 			rb_entry(rb, struct drm_mm_node, rb_hole_size);
321 
322 		if (size <= node->hole_size) {
323 			best = node;
324 			rb = rb->rb_right;
325 		} else {
326 			rb = rb->rb_left;
327 		}
328 	} while (rb);
329 
330 	return best;
331 }
332 
333 static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr)
334 {
335 	struct rb_node *rb = mm->holes_addr.rb_node;
336 	struct drm_mm_node *node = NULL;
337 
338 	while (rb) {
339 		u64 hole_start;
340 
341 		node = rb_hole_addr_to_node(rb);
342 		hole_start = __drm_mm_hole_node_start(node);
343 
344 		if (addr < hole_start)
345 			rb = node->rb_hole_addr.rb_left;
346 		else if (addr > hole_start + node->hole_size)
347 			rb = node->rb_hole_addr.rb_right;
348 		else
349 			break;
350 	}
351 
352 	return node;
353 }
354 
355 static struct drm_mm_node *
356 first_hole(struct drm_mm *mm,
357 	   u64 start, u64 end, u64 size,
358 	   enum drm_mm_insert_mode mode)
359 {
360 	switch (mode) {
361 	default:
362 	case DRM_MM_INSERT_BEST:
363 		return best_hole(mm, size);
364 
365 	case DRM_MM_INSERT_LOW:
366 		return find_hole(mm, start);
367 
368 	case DRM_MM_INSERT_HIGH:
369 		return find_hole(mm, end);
370 
371 	case DRM_MM_INSERT_EVICT:
372 		return list_first_entry_or_null(&mm->hole_stack,
373 						struct drm_mm_node,
374 						hole_stack);
375 	}
376 }
377 
378 /**
379  * next_hole_high_addr - returns next hole for a DRM_MM_INSERT_HIGH mode request
380  * @entry: previously selected drm_mm_node
381  * @size: size of the a hole needed for the request
382  *
383  * This function will verify whether left subtree of @entry has hole big enough
384  * to fit the requtested size. If so, it will return previous node of @entry or
385  * else it will return parent node of @entry
386  *
387  * It will also skip the complete left subtree if subtree_max_hole of that
388  * subtree is same as the subtree_max_hole of the @entry.
389  *
390  * Returns:
391  * previous node of @entry if left subtree of @entry can serve the request or
392  * else return parent of @entry
393  */
394 static struct drm_mm_node *
395 next_hole_high_addr(struct drm_mm_node *entry, u64 size)
396 {
397 	struct rb_node *rb_node, *left_rb_node, *parent_rb_node;
398 	struct drm_mm_node *left_node;
399 
400 	if (!entry)
401 		return NULL;
402 
403 	rb_node = &entry->rb_hole_addr;
404 	if (rb_node->rb_left) {
405 		left_rb_node = rb_node->rb_left;
406 		parent_rb_node = rb_parent(rb_node);
407 		left_node = rb_entry(left_rb_node,
408 				     struct drm_mm_node, rb_hole_addr);
409 		if ((left_node->subtree_max_hole < size ||
410 		     entry->size == entry->subtree_max_hole) &&
411 		    parent_rb_node && parent_rb_node->rb_left != rb_node)
412 			return rb_hole_addr_to_node(parent_rb_node);
413 	}
414 
415 	return rb_hole_addr_to_node(rb_prev(rb_node));
416 }
417 
418 /**
419  * next_hole_low_addr - returns next hole for a DRM_MM_INSERT_LOW mode request
420  * @entry: previously selected drm_mm_node
421  * @size: size of the a hole needed for the request
422  *
423  * This function will verify whether right subtree of @entry has hole big enough
424  * to fit the requtested size. If so, it will return next node of @entry or
425  * else it will return parent node of @entry
426  *
427  * It will also skip the complete right subtree if subtree_max_hole of that
428  * subtree is same as the subtree_max_hole of the @entry.
429  *
430  * Returns:
431  * next node of @entry if right subtree of @entry can serve the request or
432  * else return parent of @entry
433  */
434 static struct drm_mm_node *
435 next_hole_low_addr(struct drm_mm_node *entry, u64 size)
436 {
437 	struct rb_node *rb_node, *right_rb_node, *parent_rb_node;
438 	struct drm_mm_node *right_node;
439 
440 	if (!entry)
441 		return NULL;
442 
443 	rb_node = &entry->rb_hole_addr;
444 	if (rb_node->rb_right) {
445 		right_rb_node = rb_node->rb_right;
446 		parent_rb_node = rb_parent(rb_node);
447 		right_node = rb_entry(right_rb_node,
448 				      struct drm_mm_node, rb_hole_addr);
449 		if ((right_node->subtree_max_hole < size ||
450 		     entry->size == entry->subtree_max_hole) &&
451 		    parent_rb_node && parent_rb_node->rb_right != rb_node)
452 			return rb_hole_addr_to_node(parent_rb_node);
453 	}
454 
455 	return rb_hole_addr_to_node(rb_next(rb_node));
456 }
457 
458 static struct drm_mm_node *
459 next_hole(struct drm_mm *mm,
460 	  struct drm_mm_node *node,
461 	  u64 size,
462 	  enum drm_mm_insert_mode mode)
463 {
464 	switch (mode) {
465 	default:
466 	case DRM_MM_INSERT_BEST:
467 		return rb_hole_size_to_node(rb_prev(&node->rb_hole_size));
468 
469 	case DRM_MM_INSERT_LOW:
470 		return next_hole_low_addr(node, size);
471 
472 	case DRM_MM_INSERT_HIGH:
473 		return next_hole_high_addr(node, size);
474 
475 	case DRM_MM_INSERT_EVICT:
476 		node = list_next_entry(node, hole_stack);
477 		return &node->hole_stack == &mm->hole_stack ? NULL : node;
478 	}
479 }
480 
481 /**
482  * drm_mm_reserve_node - insert an pre-initialized node
483  * @mm: drm_mm allocator to insert @node into
484  * @node: drm_mm_node to insert
485  *
486  * This functions inserts an already set-up &drm_mm_node into the allocator,
487  * meaning that start, size and color must be set by the caller. All other
488  * fields must be cleared to 0. This is useful to initialize the allocator with
489  * preallocated objects which must be set-up before the range allocator can be
490  * set-up, e.g. when taking over a firmware framebuffer.
491  *
492  * Returns:
493  * 0 on success, -ENOSPC if there's no hole where @node is.
494  */
495 int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
496 {
497 	struct drm_mm_node *hole;
498 	u64 hole_start, hole_end;
499 	u64 adj_start, adj_end;
500 	u64 end;
501 
502 	end = node->start + node->size;
503 	if (unlikely(end <= node->start))
504 		return -ENOSPC;
505 
506 	/* Find the relevant hole to add our node to */
507 	hole = find_hole(mm, node->start);
508 	if (!hole)
509 		return -ENOSPC;
510 
511 	adj_start = hole_start = __drm_mm_hole_node_start(hole);
512 	adj_end = hole_end = hole_start + hole->hole_size;
513 
514 	if (mm->color_adjust)
515 		mm->color_adjust(hole, node->color, &adj_start, &adj_end);
516 
517 	if (adj_start > node->start || adj_end < end)
518 		return -ENOSPC;
519 
520 	node->mm = mm;
521 
522 	__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
523 	list_add(&node->node_list, &hole->node_list);
524 	drm_mm_interval_tree_add_node(hole, node);
525 	node->hole_size = 0;
526 
527 	rm_hole(hole);
528 	if (node->start > hole_start)
529 		add_hole(hole);
530 	if (end < hole_end)
531 		add_hole(node);
532 
533 	save_stack(node);
534 	return 0;
535 }
536 EXPORT_SYMBOL(drm_mm_reserve_node);
537 
538 static u64 rb_to_hole_size_or_zero(struct rb_node *rb)
539 {
540 	return rb ? rb_to_hole_size(rb) : 0;
541 }
542 
543 /**
544  * drm_mm_insert_node_in_range - ranged search for space and insert @node
545  * @mm: drm_mm to allocate from
546  * @node: preallocate node to insert
547  * @size: size of the allocation
548  * @alignment: alignment of the allocation
549  * @color: opaque tag value to use for this node
550  * @range_start: start of the allowed range for this node
551  * @range_end: end of the allowed range for this node
552  * @mode: fine-tune the allocation search and placement
553  *
554  * The preallocated @node must be cleared to 0.
555  *
556  * Returns:
557  * 0 on success, -ENOSPC if there's no suitable hole.
558  */
559 int drm_mm_insert_node_in_range(struct drm_mm * const mm,
560 				struct drm_mm_node * const node,
561 				u64 size, u64 alignment,
562 				unsigned long color,
563 				u64 range_start, u64 range_end,
564 				enum drm_mm_insert_mode mode)
565 {
566 	struct drm_mm_node *hole;
567 	u64 remainder_mask;
568 	bool once;
569 
570 	DRM_MM_BUG_ON(range_start > range_end);
571 
572 	if (unlikely(size == 0 || range_end - range_start < size))
573 		return -ENOSPC;
574 
575 	if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size)
576 		return -ENOSPC;
577 
578 	if (alignment <= 1)
579 		alignment = 0;
580 
581 	once = mode & DRM_MM_INSERT_ONCE;
582 	mode &= ~DRM_MM_INSERT_ONCE;
583 
584 	remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
585 	for (hole = first_hole(mm, range_start, range_end, size, mode);
586 	     hole;
587 	     hole = once ? NULL : next_hole(mm, hole, size, mode)) {
588 		u64 hole_start = __drm_mm_hole_node_start(hole);
589 		u64 hole_end = hole_start + hole->hole_size;
590 		u64 adj_start, adj_end;
591 		u64 col_start, col_end;
592 
593 		if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
594 			break;
595 
596 		if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
597 			break;
598 
599 		col_start = hole_start;
600 		col_end = hole_end;
601 		if (mm->color_adjust)
602 			mm->color_adjust(hole, color, &col_start, &col_end);
603 
604 		adj_start = max(col_start, range_start);
605 		adj_end = min(col_end, range_end);
606 
607 		if (adj_end <= adj_start || adj_end - adj_start < size)
608 			continue;
609 
610 		if (mode == DRM_MM_INSERT_HIGH)
611 			adj_start = adj_end - size;
612 
613 		if (alignment) {
614 			u64 rem;
615 
616 			if (likely(remainder_mask))
617 				rem = adj_start & remainder_mask;
618 			else
619 				div64_u64_rem(adj_start, alignment, &rem);
620 			if (rem) {
621 				adj_start -= rem;
622 				if (mode != DRM_MM_INSERT_HIGH)
623 					adj_start += alignment;
624 
625 				if (adj_start < max(col_start, range_start) ||
626 				    min(col_end, range_end) - adj_start < size)
627 					continue;
628 
629 				if (adj_end <= adj_start ||
630 				    adj_end - adj_start < size)
631 					continue;
632 			}
633 		}
634 
635 		node->mm = mm;
636 		node->size = size;
637 		node->start = adj_start;
638 		node->color = color;
639 		node->hole_size = 0;
640 
641 		__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
642 		list_add(&node->node_list, &hole->node_list);
643 		drm_mm_interval_tree_add_node(hole, node);
644 
645 		rm_hole(hole);
646 		if (adj_start > hole_start)
647 			add_hole(hole);
648 		if (adj_start + size < hole_end)
649 			add_hole(node);
650 
651 		save_stack(node);
652 		return 0;
653 	}
654 
655 	return -ENOSPC;
656 }
657 EXPORT_SYMBOL(drm_mm_insert_node_in_range);
658 
659 static inline bool drm_mm_node_scanned_block(const struct drm_mm_node *node)
660 {
661 	return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
662 }
663 
664 /**
665  * drm_mm_remove_node - Remove a memory node from the allocator.
666  * @node: drm_mm_node to remove
667  *
668  * This just removes a node from its drm_mm allocator. The node does not need to
669  * be cleared again before it can be re-inserted into this or any other drm_mm
670  * allocator. It is a bug to call this function on a unallocated node.
671  */
672 void drm_mm_remove_node(struct drm_mm_node *node)
673 {
674 	struct drm_mm *mm = node->mm;
675 	struct drm_mm_node *prev_node;
676 
677 	DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
678 	DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
679 
680 	prev_node = list_prev_entry(node, node_list);
681 
682 	if (drm_mm_hole_follows(node))
683 		rm_hole(node);
684 
685 	drm_mm_interval_tree_remove(node, &mm->interval_tree);
686 	list_del(&node->node_list);
687 
688 	if (drm_mm_hole_follows(prev_node))
689 		rm_hole(prev_node);
690 	add_hole(prev_node);
691 
692 	clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
693 }
694 EXPORT_SYMBOL(drm_mm_remove_node);
695 
696 /**
697  * drm_mm_replace_node - move an allocation from @old to @new
698  * @old: drm_mm_node to remove from the allocator
699  * @new: drm_mm_node which should inherit @old's allocation
700  *
701  * This is useful for when drivers embed the drm_mm_node structure and hence
702  * can't move allocations by reassigning pointers. It's a combination of remove
703  * and insert with the guarantee that the allocation start will match.
704  */
705 void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
706 {
707 	struct drm_mm *mm = old->mm;
708 
709 	DRM_MM_BUG_ON(!drm_mm_node_allocated(old));
710 
711 	*new = *old;
712 
713 	__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &new->flags);
714 	list_replace(&old->node_list, &new->node_list);
715 	rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree);
716 
717 	if (drm_mm_hole_follows(old)) {
718 		list_replace(&old->hole_stack, &new->hole_stack);
719 		rb_replace_node_cached(&old->rb_hole_size,
720 				       &new->rb_hole_size,
721 				       &mm->holes_size);
722 		rb_replace_node(&old->rb_hole_addr,
723 				&new->rb_hole_addr,
724 				&mm->holes_addr);
725 	}
726 
727 	clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &old->flags);
728 }
729 EXPORT_SYMBOL(drm_mm_replace_node);
730 
731 /**
732  * DOC: lru scan roster
733  *
734  * Very often GPUs need to have continuous allocations for a given object. When
735  * evicting objects to make space for a new one it is therefore not most
736  * efficient when we simply start to select all objects from the tail of an LRU
737  * until there's a suitable hole: Especially for big objects or nodes that
738  * otherwise have special allocation constraints there's a good chance we evict
739  * lots of (smaller) objects unnecessarily.
740  *
741  * The DRM range allocator supports this use-case through the scanning
742  * interfaces. First a scan operation needs to be initialized with
743  * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
744  * objects to the roster, probably by walking an LRU list, but this can be
745  * freely implemented. Eviction candiates are added using
746  * drm_mm_scan_add_block() until a suitable hole is found or there are no
747  * further evictable objects. Eviction roster metadata is tracked in &struct
748  * drm_mm_scan.
749  *
750  * The driver must walk through all objects again in exactly the reverse
751  * order to restore the allocator state. Note that while the allocator is used
752  * in the scan mode no other operation is allowed.
753  *
754  * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
755  * reported true) in the scan, and any overlapping nodes after color adjustment
756  * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
757  * since freeing a node is also O(1) the overall complexity is
758  * O(scanned_objects). So like the free stack which needs to be walked before a
759  * scan operation even begins this is linear in the number of objects. It
760  * doesn't seem to hurt too badly.
761  */
762 
763 /**
764  * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
765  * @scan: scan state
766  * @mm: drm_mm to scan
767  * @size: size of the allocation
768  * @alignment: alignment of the allocation
769  * @color: opaque tag value to use for the allocation
770  * @start: start of the allowed range for the allocation
771  * @end: end of the allowed range for the allocation
772  * @mode: fine-tune the allocation search and placement
773  *
774  * This simply sets up the scanning routines with the parameters for the desired
775  * hole.
776  *
777  * Warning:
778  * As long as the scan list is non-empty, no other operations than
779  * adding/removing nodes to/from the scan list are allowed.
780  */
781 void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
782 				 struct drm_mm *mm,
783 				 u64 size,
784 				 u64 alignment,
785 				 unsigned long color,
786 				 u64 start,
787 				 u64 end,
788 				 enum drm_mm_insert_mode mode)
789 {
790 	DRM_MM_BUG_ON(start >= end);
791 	DRM_MM_BUG_ON(!size || size > end - start);
792 	DRM_MM_BUG_ON(mm->scan_active);
793 
794 	scan->mm = mm;
795 
796 	if (alignment <= 1)
797 		alignment = 0;
798 
799 	scan->color = color;
800 	scan->alignment = alignment;
801 	scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
802 	scan->size = size;
803 	scan->mode = mode;
804 
805 	DRM_MM_BUG_ON(end <= start);
806 	scan->range_start = start;
807 	scan->range_end = end;
808 
809 	scan->hit_start = U64_MAX;
810 	scan->hit_end = 0;
811 }
812 EXPORT_SYMBOL(drm_mm_scan_init_with_range);
813 
814 /**
815  * drm_mm_scan_add_block - add a node to the scan list
816  * @scan: the active drm_mm scanner
817  * @node: drm_mm_node to add
818  *
819  * Add a node to the scan list that might be freed to make space for the desired
820  * hole.
821  *
822  * Returns:
823  * True if a hole has been found, false otherwise.
824  */
825 bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
826 			   struct drm_mm_node *node)
827 {
828 	struct drm_mm *mm = scan->mm;
829 	struct drm_mm_node *hole;
830 	u64 hole_start, hole_end;
831 	u64 col_start, col_end;
832 	u64 adj_start, adj_end;
833 
834 	DRM_MM_BUG_ON(node->mm != mm);
835 	DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
836 	DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
837 	__set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
838 	mm->scan_active++;
839 
840 	/* Remove this block from the node_list so that we enlarge the hole
841 	 * (distance between the end of our previous node and the start of
842 	 * or next), without poisoning the link so that we can restore it
843 	 * later in drm_mm_scan_remove_block().
844 	 */
845 	hole = list_prev_entry(node, node_list);
846 	DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
847 	__list_del_entry(&node->node_list);
848 
849 	hole_start = __drm_mm_hole_node_start(hole);
850 	hole_end = __drm_mm_hole_node_end(hole);
851 
852 	col_start = hole_start;
853 	col_end = hole_end;
854 	if (mm->color_adjust)
855 		mm->color_adjust(hole, scan->color, &col_start, &col_end);
856 
857 	adj_start = max(col_start, scan->range_start);
858 	adj_end = min(col_end, scan->range_end);
859 	if (adj_end <= adj_start || adj_end - adj_start < scan->size)
860 		return false;
861 
862 	if (scan->mode == DRM_MM_INSERT_HIGH)
863 		adj_start = adj_end - scan->size;
864 
865 	if (scan->alignment) {
866 		u64 rem;
867 
868 		if (likely(scan->remainder_mask))
869 			rem = adj_start & scan->remainder_mask;
870 		else
871 			div64_u64_rem(adj_start, scan->alignment, &rem);
872 		if (rem) {
873 			adj_start -= rem;
874 			if (scan->mode != DRM_MM_INSERT_HIGH)
875 				adj_start += scan->alignment;
876 			if (adj_start < max(col_start, scan->range_start) ||
877 			    min(col_end, scan->range_end) - adj_start < scan->size)
878 				return false;
879 
880 			if (adj_end <= adj_start ||
881 			    adj_end - adj_start < scan->size)
882 				return false;
883 		}
884 	}
885 
886 	scan->hit_start = adj_start;
887 	scan->hit_end = adj_start + scan->size;
888 
889 	DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
890 	DRM_MM_BUG_ON(scan->hit_start < hole_start);
891 	DRM_MM_BUG_ON(scan->hit_end > hole_end);
892 
893 	return true;
894 }
895 EXPORT_SYMBOL(drm_mm_scan_add_block);
896 
897 /**
898  * drm_mm_scan_remove_block - remove a node from the scan list
899  * @scan: the active drm_mm scanner
900  * @node: drm_mm_node to remove
901  *
902  * Nodes **must** be removed in exactly the reverse order from the scan list as
903  * they have been added (e.g. using list_add() as they are added and then
904  * list_for_each() over that eviction list to remove), otherwise the internal
905  * state of the memory manager will be corrupted.
906  *
907  * When the scan list is empty, the selected memory nodes can be freed. An
908  * immediately following drm_mm_insert_node_in_range_generic() or one of the
909  * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
910  * the just freed block (because it's at the top of the free_stack list).
911  *
912  * Returns:
913  * True if this block should be evicted, false otherwise. Will always
914  * return false when no hole has been found.
915  */
916 bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
917 			      struct drm_mm_node *node)
918 {
919 	struct drm_mm_node *prev_node;
920 
921 	DRM_MM_BUG_ON(node->mm != scan->mm);
922 	DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node));
923 	__clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
924 
925 	DRM_MM_BUG_ON(!node->mm->scan_active);
926 	node->mm->scan_active--;
927 
928 	/* During drm_mm_scan_add_block() we decoupled this node leaving
929 	 * its pointers intact. Now that the caller is walking back along
930 	 * the eviction list we can restore this block into its rightful
931 	 * place on the full node_list. To confirm that the caller is walking
932 	 * backwards correctly we check that prev_node->next == node->next,
933 	 * i.e. both believe the same node should be on the other side of the
934 	 * hole.
935 	 */
936 	prev_node = list_prev_entry(node, node_list);
937 	DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
938 		      list_next_entry(node, node_list));
939 	list_add(&node->node_list, &prev_node->node_list);
940 
941 	return (node->start + node->size > scan->hit_start &&
942 		node->start < scan->hit_end);
943 }
944 EXPORT_SYMBOL(drm_mm_scan_remove_block);
945 
946 /**
947  * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
948  * @scan: drm_mm scan with target hole
949  *
950  * After completing an eviction scan and removing the selected nodes, we may
951  * need to remove a few more nodes from either side of the target hole if
952  * mm.color_adjust is being used.
953  *
954  * Returns:
955  * A node to evict, or NULL if there are no overlapping nodes.
956  */
957 struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
958 {
959 	struct drm_mm *mm = scan->mm;
960 	struct drm_mm_node *hole;
961 	u64 hole_start, hole_end;
962 
963 	DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
964 
965 	if (!mm->color_adjust)
966 		return NULL;
967 
968 	/*
969 	 * The hole found during scanning should ideally be the first element
970 	 * in the hole_stack list, but due to side-effects in the driver it
971 	 * may not be.
972 	 */
973 	list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
974 		hole_start = __drm_mm_hole_node_start(hole);
975 		hole_end = hole_start + hole->hole_size;
976 
977 		if (hole_start <= scan->hit_start &&
978 		    hole_end >= scan->hit_end)
979 			break;
980 	}
981 
982 	/* We should only be called after we found the hole previously */
983 	DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
984 	if (unlikely(&hole->hole_stack == &mm->hole_stack))
985 		return NULL;
986 
987 	DRM_MM_BUG_ON(hole_start > scan->hit_start);
988 	DRM_MM_BUG_ON(hole_end < scan->hit_end);
989 
990 	mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
991 	if (hole_start > scan->hit_start)
992 		return hole;
993 	if (hole_end < scan->hit_end)
994 		return list_next_entry(hole, node_list);
995 
996 	return NULL;
997 }
998 EXPORT_SYMBOL(drm_mm_scan_color_evict);
999 
1000 /**
1001  * drm_mm_init - initialize a drm-mm allocator
1002  * @mm: the drm_mm structure to initialize
1003  * @start: start of the range managed by @mm
1004  * @size: end of the range managed by @mm
1005  *
1006  * Note that @mm must be cleared to 0 before calling this function.
1007  */
1008 void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
1009 {
1010 	DRM_MM_BUG_ON(start + size <= start);
1011 
1012 	mm->color_adjust = NULL;
1013 
1014 	INIT_LIST_HEAD(&mm->hole_stack);
1015 	mm->interval_tree = RB_ROOT_CACHED;
1016 	mm->holes_size = RB_ROOT_CACHED;
1017 	mm->holes_addr = RB_ROOT;
1018 
1019 	/* Clever trick to avoid a special case in the free hole tracking. */
1020 	INIT_LIST_HEAD(&mm->head_node.node_list);
1021 	mm->head_node.flags = 0;
1022 	mm->head_node.mm = mm;
1023 	mm->head_node.start = start + size;
1024 	mm->head_node.size = -size;
1025 	add_hole(&mm->head_node);
1026 
1027 	mm->scan_active = 0;
1028 }
1029 EXPORT_SYMBOL(drm_mm_init);
1030 
1031 /**
1032  * drm_mm_takedown - clean up a drm_mm allocator
1033  * @mm: drm_mm allocator to clean up
1034  *
1035  * Note that it is a bug to call this function on an allocator which is not
1036  * clean.
1037  */
1038 void drm_mm_takedown(struct drm_mm *mm)
1039 {
1040 	if (WARN(!drm_mm_clean(mm),
1041 		 "Memory manager not clean during takedown.\n"))
1042 		show_leaks(mm);
1043 }
1044 EXPORT_SYMBOL(drm_mm_takedown);
1045 
1046 static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
1047 {
1048 	u64 start, size;
1049 
1050 	size = entry->hole_size;
1051 	if (size) {
1052 		start = drm_mm_hole_node_start(entry);
1053 		drm_printf(p, "%#018llx-%#018llx: %llu: free\n",
1054 			   start, start + size, size);
1055 	}
1056 
1057 	return size;
1058 }
1059 /**
1060  * drm_mm_print - print allocator state
1061  * @mm: drm_mm allocator to print
1062  * @p: DRM printer to use
1063  */
1064 void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
1065 {
1066 	const struct drm_mm_node *entry;
1067 	u64 total_used = 0, total_free = 0, total = 0;
1068 
1069 	total_free += drm_mm_dump_hole(p, &mm->head_node);
1070 
1071 	drm_mm_for_each_node(entry, mm) {
1072 		drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
1073 			   entry->start + entry->size, entry->size);
1074 		total_used += entry->size;
1075 		total_free += drm_mm_dump_hole(p, entry);
1076 	}
1077 	total = total_free + total_used;
1078 
1079 	drm_printf(p, "total: %llu, used %llu free %llu\n", total,
1080 		   total_used, total_free);
1081 }
1082 EXPORT_SYMBOL(drm_mm_print);
1083