xref: /openbmc/linux/drivers/gpu/drm/drm_mm.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /**************************************************************************
2  *
3  * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
4  * Copyright 2016 Intel Corporation
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  *
28  **************************************************************************/
29 
30 /*
31  * Generic simple memory manager implementation. Intended to be used as a base
32  * class implementation for more advanced memory managers.
33  *
34  * Note that the algorithm used is quite simple and there might be substantial
35  * performance gains if a smarter free list is implemented. Currently it is
36  * just an unordered stack of free regions. This could easily be improved if
37  * an RB-tree is used instead. At least if we expect heavy fragmentation.
38  *
39  * Aligned allocations can also see improvement.
40  *
41  * Authors:
42  * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
43  */
44 
45 #include <drm/drmP.h>
46 #include <drm/drm_mm.h>
47 #include <linux/slab.h>
48 #include <linux/seq_file.h>
49 #include <linux/export.h>
50 #include <linux/interval_tree_generic.h>
51 
52 /**
53  * DOC: Overview
54  *
55  * drm_mm provides a simple range allocator. The drivers are free to use the
56  * resource allocator from the linux core if it suits them, the upside of drm_mm
57  * is that it's in the DRM core. Which means that it's easier to extend for
58  * some of the crazier special purpose needs of gpus.
59  *
60  * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
61  * Drivers are free to embed either of them into their own suitable
62  * datastructures. drm_mm itself will not do any memory allocations of its own,
63  * so if drivers choose not to embed nodes they need to still allocate them
64  * themselves.
65  *
66  * The range allocator also supports reservation of preallocated blocks. This is
67  * useful for taking over initial mode setting configurations from the firmware,
68  * where an object needs to be created which exactly matches the firmware's
69  * scanout target. As long as the range is still free it can be inserted anytime
70  * after the allocator is initialized, which helps with avoiding looped
71  * dependencies in the driver load sequence.
72  *
73  * drm_mm maintains a stack of most recently freed holes, which of all
74  * simplistic datastructures seems to be a fairly decent approach to clustering
75  * allocations and avoiding too much fragmentation. This means free space
76  * searches are O(num_holes). Given that all the fancy features drm_mm supports
77  * something better would be fairly complex and since gfx thrashing is a fairly
78  * steep cliff not a real concern. Removing a node again is O(1).
79  *
80  * drm_mm supports a few features: Alignment and range restrictions can be
81  * supplied. Furthermore every &drm_mm_node has a color value (which is just an
82  * opaque unsigned long) which in conjunction with a driver callback can be used
83  * to implement sophisticated placement restrictions. The i915 DRM driver uses
84  * this to implement guard pages between incompatible caching domains in the
85  * graphics TT.
86  *
87  * Two behaviors are supported for searching and allocating: bottom-up and
88  * top-down. The default is bottom-up. Top-down allocation can be used if the
89  * memory area has different restrictions, or just to reduce fragmentation.
90  *
91  * Finally iteration helpers to walk all nodes and all holes are provided as are
92  * some basic allocator dumpers for debugging.
93  *
94  * Note that this range allocator is not thread-safe, drivers need to protect
95  * modifications with their on locking. The idea behind this is that for a full
96  * memory manager additional data needs to be protected anyway, hence internal
97  * locking would be fully redundant.
98  */
99 
100 #ifdef CONFIG_DRM_DEBUG_MM
101 #include <linux/stackdepot.h>
102 
103 #define STACKDEPTH 32
104 #define BUFSZ 4096
105 
106 static noinline void save_stack(struct drm_mm_node *node)
107 {
108 	unsigned long entries[STACKDEPTH];
109 	struct stack_trace trace = {
110 		.entries = entries,
111 		.max_entries = STACKDEPTH,
112 		.skip = 1
113 	};
114 
115 	save_stack_trace(&trace);
116 	if (trace.nr_entries != 0 &&
117 	    trace.entries[trace.nr_entries-1] == ULONG_MAX)
118 		trace.nr_entries--;
119 
120 	/* May be called under spinlock, so avoid sleeping */
121 	node->stack = depot_save_stack(&trace, GFP_NOWAIT);
122 }
123 
124 static void show_leaks(struct drm_mm *mm)
125 {
126 	struct drm_mm_node *node;
127 	unsigned long entries[STACKDEPTH];
128 	char *buf;
129 
130 	buf = kmalloc(BUFSZ, GFP_KERNEL);
131 	if (!buf)
132 		return;
133 
134 	list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
135 		struct stack_trace trace = {
136 			.entries = entries,
137 			.max_entries = STACKDEPTH
138 		};
139 
140 		if (!node->stack) {
141 			DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
142 				  node->start, node->size);
143 			continue;
144 		}
145 
146 		depot_fetch_stack(node->stack, &trace);
147 		snprint_stack_trace(buf, BUFSZ, &trace, 0);
148 		DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
149 			  node->start, node->size, buf);
150 	}
151 
152 	kfree(buf);
153 }
154 
155 #undef STACKDEPTH
156 #undef BUFSZ
157 #else
158 static void save_stack(struct drm_mm_node *node) { }
159 static void show_leaks(struct drm_mm *mm) { }
160 #endif
161 
162 #define START(node) ((node)->start)
163 #define LAST(node)  ((node)->start + (node)->size - 1)
164 
165 INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
166 		     u64, __subtree_last,
167 		     START, LAST, static inline, drm_mm_interval_tree)
168 
169 struct drm_mm_node *
170 __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
171 {
172 	return drm_mm_interval_tree_iter_first((struct rb_root *)&mm->interval_tree,
173 					       start, last) ?: (struct drm_mm_node *)&mm->head_node;
174 }
175 EXPORT_SYMBOL(__drm_mm_interval_first);
176 
177 static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
178 					  struct drm_mm_node *node)
179 {
180 	struct drm_mm *mm = hole_node->mm;
181 	struct rb_node **link, *rb;
182 	struct drm_mm_node *parent;
183 
184 	node->__subtree_last = LAST(node);
185 
186 	if (hole_node->allocated) {
187 		rb = &hole_node->rb;
188 		while (rb) {
189 			parent = rb_entry(rb, struct drm_mm_node, rb);
190 			if (parent->__subtree_last >= node->__subtree_last)
191 				break;
192 
193 			parent->__subtree_last = node->__subtree_last;
194 			rb = rb_parent(rb);
195 		}
196 
197 		rb = &hole_node->rb;
198 		link = &hole_node->rb.rb_right;
199 	} else {
200 		rb = NULL;
201 		link = &mm->interval_tree.rb_node;
202 	}
203 
204 	while (*link) {
205 		rb = *link;
206 		parent = rb_entry(rb, struct drm_mm_node, rb);
207 		if (parent->__subtree_last < node->__subtree_last)
208 			parent->__subtree_last = node->__subtree_last;
209 		if (node->start < parent->start)
210 			link = &parent->rb.rb_left;
211 		else
212 			link = &parent->rb.rb_right;
213 	}
214 
215 	rb_link_node(&node->rb, rb, link);
216 	rb_insert_augmented(&node->rb,
217 			    &mm->interval_tree,
218 			    &drm_mm_interval_tree_augment);
219 }
220 
221 #define RB_INSERT(root, member, expr) do { \
222 	struct rb_node **link = &root.rb_node, *rb = NULL; \
223 	u64 x = expr(node); \
224 	while (*link) { \
225 		rb = *link; \
226 		if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \
227 			link = &rb->rb_left; \
228 		else \
229 			link = &rb->rb_right; \
230 	} \
231 	rb_link_node(&node->member, rb, link); \
232 	rb_insert_color(&node->member, &root); \
233 } while (0)
234 
235 #define HOLE_SIZE(NODE) ((NODE)->hole_size)
236 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
237 
238 static void add_hole(struct drm_mm_node *node)
239 {
240 	struct drm_mm *mm = node->mm;
241 
242 	node->hole_size =
243 		__drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
244 	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
245 
246 	RB_INSERT(mm->holes_size, rb_hole_size, HOLE_SIZE);
247 	RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR);
248 
249 	list_add(&node->hole_stack, &mm->hole_stack);
250 }
251 
252 static void rm_hole(struct drm_mm_node *node)
253 {
254 	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
255 
256 	list_del(&node->hole_stack);
257 	rb_erase(&node->rb_hole_size, &node->mm->holes_size);
258 	rb_erase(&node->rb_hole_addr, &node->mm->holes_addr);
259 	node->hole_size = 0;
260 
261 	DRM_MM_BUG_ON(drm_mm_hole_follows(node));
262 }
263 
264 static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
265 {
266 	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
267 }
268 
269 static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
270 {
271 	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
272 }
273 
274 static inline u64 rb_hole_size(struct rb_node *rb)
275 {
276 	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
277 }
278 
279 static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
280 {
281 	struct rb_node *best = NULL;
282 	struct rb_node **link = &mm->holes_size.rb_node;
283 
284 	while (*link) {
285 		struct rb_node *rb = *link;
286 
287 		if (size <= rb_hole_size(rb)) {
288 			link = &rb->rb_left;
289 			best = rb;
290 		} else {
291 			link = &rb->rb_right;
292 		}
293 	}
294 
295 	return rb_hole_size_to_node(best);
296 }
297 
298 static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr)
299 {
300 	struct drm_mm_node *node = NULL;
301 	struct rb_node **link = &mm->holes_addr.rb_node;
302 
303 	while (*link) {
304 		u64 hole_start;
305 
306 		node = rb_hole_addr_to_node(*link);
307 		hole_start = __drm_mm_hole_node_start(node);
308 
309 		if (addr < hole_start)
310 			link = &node->rb_hole_addr.rb_left;
311 		else if (addr > hole_start + node->hole_size)
312 			link = &node->rb_hole_addr.rb_right;
313 		else
314 			break;
315 	}
316 
317 	return node;
318 }
319 
320 static struct drm_mm_node *
321 first_hole(struct drm_mm *mm,
322 	   u64 start, u64 end, u64 size,
323 	   enum drm_mm_insert_mode mode)
324 {
325 	if (RB_EMPTY_ROOT(&mm->holes_size))
326 		return NULL;
327 
328 	switch (mode) {
329 	default:
330 	case DRM_MM_INSERT_BEST:
331 		return best_hole(mm, size);
332 
333 	case DRM_MM_INSERT_LOW:
334 		return find_hole(mm, start);
335 
336 	case DRM_MM_INSERT_HIGH:
337 		return find_hole(mm, end);
338 
339 	case DRM_MM_INSERT_EVICT:
340 		return list_first_entry_or_null(&mm->hole_stack,
341 						struct drm_mm_node,
342 						hole_stack);
343 	}
344 }
345 
346 static struct drm_mm_node *
347 next_hole(struct drm_mm *mm,
348 	  struct drm_mm_node *node,
349 	  enum drm_mm_insert_mode mode)
350 {
351 	switch (mode) {
352 	default:
353 	case DRM_MM_INSERT_BEST:
354 		return rb_hole_size_to_node(rb_next(&node->rb_hole_size));
355 
356 	case DRM_MM_INSERT_LOW:
357 		return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr));
358 
359 	case DRM_MM_INSERT_HIGH:
360 		return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr));
361 
362 	case DRM_MM_INSERT_EVICT:
363 		node = list_next_entry(node, hole_stack);
364 		return &node->hole_stack == &mm->hole_stack ? NULL : node;
365 	}
366 }
367 
368 /**
369  * drm_mm_reserve_node - insert an pre-initialized node
370  * @mm: drm_mm allocator to insert @node into
371  * @node: drm_mm_node to insert
372  *
373  * This functions inserts an already set-up &drm_mm_node into the allocator,
374  * meaning that start, size and color must be set by the caller. All other
375  * fields must be cleared to 0. This is useful to initialize the allocator with
376  * preallocated objects which must be set-up before the range allocator can be
377  * set-up, e.g. when taking over a firmware framebuffer.
378  *
379  * Returns:
380  * 0 on success, -ENOSPC if there's no hole where @node is.
381  */
382 int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
383 {
384 	u64 end = node->start + node->size;
385 	struct drm_mm_node *hole;
386 	u64 hole_start, hole_end;
387 	u64 adj_start, adj_end;
388 
389 	end = node->start + node->size;
390 	if (unlikely(end <= node->start))
391 		return -ENOSPC;
392 
393 	/* Find the relevant hole to add our node to */
394 	hole = find_hole(mm, node->start);
395 	if (!hole)
396 		return -ENOSPC;
397 
398 	adj_start = hole_start = __drm_mm_hole_node_start(hole);
399 	adj_end = hole_end = hole_start + hole->hole_size;
400 
401 	if (mm->color_adjust)
402 		mm->color_adjust(hole, node->color, &adj_start, &adj_end);
403 
404 	if (adj_start > node->start || adj_end < end)
405 		return -ENOSPC;
406 
407 	node->mm = mm;
408 
409 	list_add(&node->node_list, &hole->node_list);
410 	drm_mm_interval_tree_add_node(hole, node);
411 	node->allocated = true;
412 	node->hole_size = 0;
413 
414 	rm_hole(hole);
415 	if (node->start > hole_start)
416 		add_hole(hole);
417 	if (end < hole_end)
418 		add_hole(node);
419 
420 	save_stack(node);
421 	return 0;
422 }
423 EXPORT_SYMBOL(drm_mm_reserve_node);
424 
425 /**
426  * drm_mm_insert_node_in_range - ranged search for space and insert @node
427  * @mm: drm_mm to allocate from
428  * @node: preallocate node to insert
429  * @size: size of the allocation
430  * @alignment: alignment of the allocation
431  * @color: opaque tag value to use for this node
432  * @range_start: start of the allowed range for this node
433  * @range_end: end of the allowed range for this node
434  * @mode: fine-tune the allocation search and placement
435  *
436  * The preallocated @node must be cleared to 0.
437  *
438  * Returns:
439  * 0 on success, -ENOSPC if there's no suitable hole.
440  */
441 int drm_mm_insert_node_in_range(struct drm_mm * const mm,
442 				struct drm_mm_node * const node,
443 				u64 size, u64 alignment,
444 				unsigned long color,
445 				u64 range_start, u64 range_end,
446 				enum drm_mm_insert_mode mode)
447 {
448 	struct drm_mm_node *hole;
449 	u64 remainder_mask;
450 
451 	DRM_MM_BUG_ON(range_start >= range_end);
452 
453 	if (unlikely(size == 0 || range_end - range_start < size))
454 		return -ENOSPC;
455 
456 	if (alignment <= 1)
457 		alignment = 0;
458 
459 	remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
460 	for (hole = first_hole(mm, range_start, range_end, size, mode); hole;
461 	     hole = next_hole(mm, hole, mode)) {
462 		u64 hole_start = __drm_mm_hole_node_start(hole);
463 		u64 hole_end = hole_start + hole->hole_size;
464 		u64 adj_start, adj_end;
465 		u64 col_start, col_end;
466 
467 		if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
468 			break;
469 
470 		if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
471 			break;
472 
473 		col_start = hole_start;
474 		col_end = hole_end;
475 		if (mm->color_adjust)
476 			mm->color_adjust(hole, color, &col_start, &col_end);
477 
478 		adj_start = max(col_start, range_start);
479 		adj_end = min(col_end, range_end);
480 
481 		if (adj_end <= adj_start || adj_end - adj_start < size)
482 			continue;
483 
484 		if (mode == DRM_MM_INSERT_HIGH)
485 			adj_start = adj_end - size;
486 
487 		if (alignment) {
488 			u64 rem;
489 
490 			if (likely(remainder_mask))
491 				rem = adj_start & remainder_mask;
492 			else
493 				div64_u64_rem(adj_start, alignment, &rem);
494 			if (rem) {
495 				adj_start -= rem;
496 				if (mode != DRM_MM_INSERT_HIGH)
497 					adj_start += alignment;
498 
499 				if (adj_start < max(col_start, range_start) ||
500 				    min(col_end, range_end) - adj_start < size)
501 					continue;
502 
503 				if (adj_end <= adj_start ||
504 				    adj_end - adj_start < size)
505 					continue;
506 			}
507 		}
508 
509 		node->mm = mm;
510 		node->size = size;
511 		node->start = adj_start;
512 		node->color = color;
513 		node->hole_size = 0;
514 
515 		list_add(&node->node_list, &hole->node_list);
516 		drm_mm_interval_tree_add_node(hole, node);
517 		node->allocated = true;
518 
519 		rm_hole(hole);
520 		if (adj_start > hole_start)
521 			add_hole(hole);
522 		if (adj_start + size < hole_end)
523 			add_hole(node);
524 
525 		save_stack(node);
526 		return 0;
527 	}
528 
529 	return -ENOSPC;
530 }
531 EXPORT_SYMBOL(drm_mm_insert_node_in_range);
532 
533 /**
534  * drm_mm_remove_node - Remove a memory node from the allocator.
535  * @node: drm_mm_node to remove
536  *
537  * This just removes a node from its drm_mm allocator. The node does not need to
538  * be cleared again before it can be re-inserted into this or any other drm_mm
539  * allocator. It is a bug to call this function on a unallocated node.
540  */
541 void drm_mm_remove_node(struct drm_mm_node *node)
542 {
543 	struct drm_mm *mm = node->mm;
544 	struct drm_mm_node *prev_node;
545 
546 	DRM_MM_BUG_ON(!node->allocated);
547 	DRM_MM_BUG_ON(node->scanned_block);
548 
549 	prev_node = list_prev_entry(node, node_list);
550 
551 	if (drm_mm_hole_follows(node))
552 		rm_hole(node);
553 
554 	drm_mm_interval_tree_remove(node, &mm->interval_tree);
555 	list_del(&node->node_list);
556 	node->allocated = false;
557 
558 	if (drm_mm_hole_follows(prev_node))
559 		rm_hole(prev_node);
560 	add_hole(prev_node);
561 }
562 EXPORT_SYMBOL(drm_mm_remove_node);
563 
564 /**
565  * drm_mm_replace_node - move an allocation from @old to @new
566  * @old: drm_mm_node to remove from the allocator
567  * @new: drm_mm_node which should inherit @old's allocation
568  *
569  * This is useful for when drivers embed the drm_mm_node structure and hence
570  * can't move allocations by reassigning pointers. It's a combination of remove
571  * and insert with the guarantee that the allocation start will match.
572  */
573 void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
574 {
575 	DRM_MM_BUG_ON(!old->allocated);
576 
577 	*new = *old;
578 
579 	list_replace(&old->node_list, &new->node_list);
580 	rb_replace_node(&old->rb, &new->rb, &old->mm->interval_tree);
581 
582 	if (drm_mm_hole_follows(old)) {
583 		list_replace(&old->hole_stack, &new->hole_stack);
584 		rb_replace_node(&old->rb_hole_size,
585 				&new->rb_hole_size,
586 				&old->mm->holes_size);
587 		rb_replace_node(&old->rb_hole_addr,
588 				&new->rb_hole_addr,
589 				&old->mm->holes_addr);
590 	}
591 
592 	old->allocated = false;
593 	new->allocated = true;
594 }
595 EXPORT_SYMBOL(drm_mm_replace_node);
596 
597 /**
598  * DOC: lru scan roster
599  *
600  * Very often GPUs need to have continuous allocations for a given object. When
601  * evicting objects to make space for a new one it is therefore not most
602  * efficient when we simply start to select all objects from the tail of an LRU
603  * until there's a suitable hole: Especially for big objects or nodes that
604  * otherwise have special allocation constraints there's a good chance we evict
605  * lots of (smaller) objects unnecessarily.
606  *
607  * The DRM range allocator supports this use-case through the scanning
608  * interfaces. First a scan operation needs to be initialized with
609  * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
610  * objects to the roster, probably by walking an LRU list, but this can be
611  * freely implemented. Eviction candiates are added using
612  * drm_mm_scan_add_block() until a suitable hole is found or there are no
613  * further evictable objects. Eviction roster metadata is tracked in &struct
614  * drm_mm_scan.
615  *
616  * The driver must walk through all objects again in exactly the reverse
617  * order to restore the allocator state. Note that while the allocator is used
618  * in the scan mode no other operation is allowed.
619  *
620  * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
621  * reported true) in the scan, and any overlapping nodes after color adjustment
622  * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
623  * since freeing a node is also O(1) the overall complexity is
624  * O(scanned_objects). So like the free stack which needs to be walked before a
625  * scan operation even begins this is linear in the number of objects. It
626  * doesn't seem to hurt too badly.
627  */
628 
629 /**
630  * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
631  * @scan: scan state
632  * @mm: drm_mm to scan
633  * @size: size of the allocation
634  * @alignment: alignment of the allocation
635  * @color: opaque tag value to use for the allocation
636  * @start: start of the allowed range for the allocation
637  * @end: end of the allowed range for the allocation
638  * @mode: fine-tune the allocation search and placement
639  *
640  * This simply sets up the scanning routines with the parameters for the desired
641  * hole.
642  *
643  * Warning:
644  * As long as the scan list is non-empty, no other operations than
645  * adding/removing nodes to/from the scan list are allowed.
646  */
647 void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
648 				 struct drm_mm *mm,
649 				 u64 size,
650 				 u64 alignment,
651 				 unsigned long color,
652 				 u64 start,
653 				 u64 end,
654 				 enum drm_mm_insert_mode mode)
655 {
656 	DRM_MM_BUG_ON(start >= end);
657 	DRM_MM_BUG_ON(!size || size > end - start);
658 	DRM_MM_BUG_ON(mm->scan_active);
659 
660 	scan->mm = mm;
661 
662 	if (alignment <= 1)
663 		alignment = 0;
664 
665 	scan->color = color;
666 	scan->alignment = alignment;
667 	scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
668 	scan->size = size;
669 	scan->mode = mode;
670 
671 	DRM_MM_BUG_ON(end <= start);
672 	scan->range_start = start;
673 	scan->range_end = end;
674 
675 	scan->hit_start = U64_MAX;
676 	scan->hit_end = 0;
677 }
678 EXPORT_SYMBOL(drm_mm_scan_init_with_range);
679 
680 /**
681  * drm_mm_scan_add_block - add a node to the scan list
682  * @scan: the active drm_mm scanner
683  * @node: drm_mm_node to add
684  *
685  * Add a node to the scan list that might be freed to make space for the desired
686  * hole.
687  *
688  * Returns:
689  * True if a hole has been found, false otherwise.
690  */
691 bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
692 			   struct drm_mm_node *node)
693 {
694 	struct drm_mm *mm = scan->mm;
695 	struct drm_mm_node *hole;
696 	u64 hole_start, hole_end;
697 	u64 col_start, col_end;
698 	u64 adj_start, adj_end;
699 
700 	DRM_MM_BUG_ON(node->mm != mm);
701 	DRM_MM_BUG_ON(!node->allocated);
702 	DRM_MM_BUG_ON(node->scanned_block);
703 	node->scanned_block = true;
704 	mm->scan_active++;
705 
706 	/* Remove this block from the node_list so that we enlarge the hole
707 	 * (distance between the end of our previous node and the start of
708 	 * or next), without poisoning the link so that we can restore it
709 	 * later in drm_mm_scan_remove_block().
710 	 */
711 	hole = list_prev_entry(node, node_list);
712 	DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
713 	__list_del_entry(&node->node_list);
714 
715 	hole_start = __drm_mm_hole_node_start(hole);
716 	hole_end = __drm_mm_hole_node_end(hole);
717 
718 	col_start = hole_start;
719 	col_end = hole_end;
720 	if (mm->color_adjust)
721 		mm->color_adjust(hole, scan->color, &col_start, &col_end);
722 
723 	adj_start = max(col_start, scan->range_start);
724 	adj_end = min(col_end, scan->range_end);
725 	if (adj_end <= adj_start || adj_end - adj_start < scan->size)
726 		return false;
727 
728 	if (scan->mode == DRM_MM_INSERT_HIGH)
729 		adj_start = adj_end - scan->size;
730 
731 	if (scan->alignment) {
732 		u64 rem;
733 
734 		if (likely(scan->remainder_mask))
735 			rem = adj_start & scan->remainder_mask;
736 		else
737 			div64_u64_rem(adj_start, scan->alignment, &rem);
738 		if (rem) {
739 			adj_start -= rem;
740 			if (scan->mode != DRM_MM_INSERT_HIGH)
741 				adj_start += scan->alignment;
742 			if (adj_start < max(col_start, scan->range_start) ||
743 			    min(col_end, scan->range_end) - adj_start < scan->size)
744 				return false;
745 
746 			if (adj_end <= adj_start ||
747 			    adj_end - adj_start < scan->size)
748 				return false;
749 		}
750 	}
751 
752 	scan->hit_start = adj_start;
753 	scan->hit_end = adj_start + scan->size;
754 
755 	DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
756 	DRM_MM_BUG_ON(scan->hit_start < hole_start);
757 	DRM_MM_BUG_ON(scan->hit_end > hole_end);
758 
759 	return true;
760 }
761 EXPORT_SYMBOL(drm_mm_scan_add_block);
762 
763 /**
764  * drm_mm_scan_remove_block - remove a node from the scan list
765  * @scan: the active drm_mm scanner
766  * @node: drm_mm_node to remove
767  *
768  * Nodes **must** be removed in exactly the reverse order from the scan list as
769  * they have been added (e.g. using list_add() as they are added and then
770  * list_for_each() over that eviction list to remove), otherwise the internal
771  * state of the memory manager will be corrupted.
772  *
773  * When the scan list is empty, the selected memory nodes can be freed. An
774  * immediately following drm_mm_insert_node_in_range_generic() or one of the
775  * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
776  * the just freed block (because its at the top of the free_stack list).
777  *
778  * Returns:
779  * True if this block should be evicted, false otherwise. Will always
780  * return false when no hole has been found.
781  */
782 bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
783 			      struct drm_mm_node *node)
784 {
785 	struct drm_mm_node *prev_node;
786 
787 	DRM_MM_BUG_ON(node->mm != scan->mm);
788 	DRM_MM_BUG_ON(!node->scanned_block);
789 	node->scanned_block = false;
790 
791 	DRM_MM_BUG_ON(!node->mm->scan_active);
792 	node->mm->scan_active--;
793 
794 	/* During drm_mm_scan_add_block() we decoupled this node leaving
795 	 * its pointers intact. Now that the caller is walking back along
796 	 * the eviction list we can restore this block into its rightful
797 	 * place on the full node_list. To confirm that the caller is walking
798 	 * backwards correctly we check that prev_node->next == node->next,
799 	 * i.e. both believe the same node should be on the other side of the
800 	 * hole.
801 	 */
802 	prev_node = list_prev_entry(node, node_list);
803 	DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
804 		      list_next_entry(node, node_list));
805 	list_add(&node->node_list, &prev_node->node_list);
806 
807 	return (node->start + node->size > scan->hit_start &&
808 		node->start < scan->hit_end);
809 }
810 EXPORT_SYMBOL(drm_mm_scan_remove_block);
811 
812 /**
813  * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
814  * @scan: drm_mm scan with target hole
815  *
816  * After completing an eviction scan and removing the selected nodes, we may
817  * need to remove a few more nodes from either side of the target hole if
818  * mm.color_adjust is being used.
819  *
820  * Returns:
821  * A node to evict, or NULL if there are no overlapping nodes.
822  */
823 struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
824 {
825 	struct drm_mm *mm = scan->mm;
826 	struct drm_mm_node *hole;
827 	u64 hole_start, hole_end;
828 
829 	DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
830 
831 	if (!mm->color_adjust)
832 		return NULL;
833 
834 	hole = list_first_entry(&mm->hole_stack, typeof(*hole), hole_stack);
835 	hole_start = __drm_mm_hole_node_start(hole);
836 	hole_end = hole_start + hole->hole_size;
837 
838 	DRM_MM_BUG_ON(hole_start > scan->hit_start);
839 	DRM_MM_BUG_ON(hole_end < scan->hit_end);
840 
841 	mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
842 	if (hole_start > scan->hit_start)
843 		return hole;
844 	if (hole_end < scan->hit_end)
845 		return list_next_entry(hole, node_list);
846 
847 	return NULL;
848 }
849 EXPORT_SYMBOL(drm_mm_scan_color_evict);
850 
851 /**
852  * drm_mm_init - initialize a drm-mm allocator
853  * @mm: the drm_mm structure to initialize
854  * @start: start of the range managed by @mm
855  * @size: end of the range managed by @mm
856  *
857  * Note that @mm must be cleared to 0 before calling this function.
858  */
859 void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
860 {
861 	DRM_MM_BUG_ON(start + size <= start);
862 
863 	mm->color_adjust = NULL;
864 
865 	INIT_LIST_HEAD(&mm->hole_stack);
866 	mm->interval_tree = RB_ROOT;
867 	mm->holes_size = RB_ROOT;
868 	mm->holes_addr = RB_ROOT;
869 
870 	/* Clever trick to avoid a special case in the free hole tracking. */
871 	INIT_LIST_HEAD(&mm->head_node.node_list);
872 	mm->head_node.allocated = false;
873 	mm->head_node.mm = mm;
874 	mm->head_node.start = start + size;
875 	mm->head_node.size = -size;
876 	add_hole(&mm->head_node);
877 
878 	mm->scan_active = 0;
879 }
880 EXPORT_SYMBOL(drm_mm_init);
881 
882 /**
883  * drm_mm_takedown - clean up a drm_mm allocator
884  * @mm: drm_mm allocator to clean up
885  *
886  * Note that it is a bug to call this function on an allocator which is not
887  * clean.
888  */
889 void drm_mm_takedown(struct drm_mm *mm)
890 {
891 	if (WARN(!drm_mm_clean(mm),
892 		 "Memory manager not clean during takedown.\n"))
893 		show_leaks(mm);
894 }
895 EXPORT_SYMBOL(drm_mm_takedown);
896 
897 static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
898 {
899 	u64 start, size;
900 
901 	size = entry->hole_size;
902 	if (size) {
903 		start = drm_mm_hole_node_start(entry);
904 		drm_printf(p, "%#018llx-%#018llx: %llu: free\n",
905 			   start, start + size, size);
906 	}
907 
908 	return size;
909 }
910 /**
911  * drm_mm_print - print allocator state
912  * @mm: drm_mm allocator to print
913  * @p: DRM printer to use
914  */
915 void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
916 {
917 	const struct drm_mm_node *entry;
918 	u64 total_used = 0, total_free = 0, total = 0;
919 
920 	total_free += drm_mm_dump_hole(p, &mm->head_node);
921 
922 	drm_mm_for_each_node(entry, mm) {
923 		drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
924 			   entry->start + entry->size, entry->size);
925 		total_used += entry->size;
926 		total_free += drm_mm_dump_hole(p, entry);
927 	}
928 	total = total_free + total_used;
929 
930 	drm_printf(p, "total: %llu, used %llu free %llu\n", total,
931 		   total_used, total_free);
932 }
933 EXPORT_SYMBOL(drm_mm_print);
934