1 /************************************************************************** 2 * 3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA. 4 * Copyright 2016 Intel Corporation 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 * 28 **************************************************************************/ 29 30 /* 31 * Generic simple memory manager implementation. Intended to be used as a base 32 * class implementation for more advanced memory managers. 33 * 34 * Note that the algorithm used is quite simple and there might be substantial 35 * performance gains if a smarter free list is implemented. Currently it is 36 * just an unordered stack of free regions. This could easily be improved if 37 * an RB-tree is used instead. At least if we expect heavy fragmentation. 38 * 39 * Aligned allocations can also see improvement. 40 * 41 * Authors: 42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com> 43 */ 44 45 #include <drm/drmP.h> 46 #include <drm/drm_mm.h> 47 #include <linux/slab.h> 48 #include <linux/seq_file.h> 49 #include <linux/export.h> 50 #include <linux/interval_tree_generic.h> 51 52 /** 53 * DOC: Overview 54 * 55 * drm_mm provides a simple range allocator. The drivers are free to use the 56 * resource allocator from the linux core if it suits them, the upside of drm_mm 57 * is that it's in the DRM core. Which means that it's easier to extend for 58 * some of the crazier special purpose needs of gpus. 59 * 60 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node. 61 * Drivers are free to embed either of them into their own suitable 62 * datastructures. drm_mm itself will not do any memory allocations of its own, 63 * so if drivers choose not to embed nodes they need to still allocate them 64 * themselves. 65 * 66 * The range allocator also supports reservation of preallocated blocks. This is 67 * useful for taking over initial mode setting configurations from the firmware, 68 * where an object needs to be created which exactly matches the firmware's 69 * scanout target. As long as the range is still free it can be inserted anytime 70 * after the allocator is initialized, which helps with avoiding looped 71 * dependencies in the driver load sequence. 72 * 73 * drm_mm maintains a stack of most recently freed holes, which of all 74 * simplistic datastructures seems to be a fairly decent approach to clustering 75 * allocations and avoiding too much fragmentation. This means free space 76 * searches are O(num_holes). Given that all the fancy features drm_mm supports 77 * something better would be fairly complex and since gfx thrashing is a fairly 78 * steep cliff not a real concern. Removing a node again is O(1). 79 * 80 * drm_mm supports a few features: Alignment and range restrictions can be 81 * supplied. Furthermore every &drm_mm_node has a color value (which is just an 82 * opaque unsigned long) which in conjunction with a driver callback can be used 83 * to implement sophisticated placement restrictions. The i915 DRM driver uses 84 * this to implement guard pages between incompatible caching domains in the 85 * graphics TT. 86 * 87 * Two behaviors are supported for searching and allocating: bottom-up and 88 * top-down. The default is bottom-up. Top-down allocation can be used if the 89 * memory area has different restrictions, or just to reduce fragmentation. 90 * 91 * Finally iteration helpers to walk all nodes and all holes are provided as are 92 * some basic allocator dumpers for debugging. 93 * 94 * Note that this range allocator is not thread-safe, drivers need to protect 95 * modifications with their own locking. The idea behind this is that for a full 96 * memory manager additional data needs to be protected anyway, hence internal 97 * locking would be fully redundant. 98 */ 99 100 #ifdef CONFIG_DRM_DEBUG_MM 101 #include <linux/stackdepot.h> 102 103 #define STACKDEPTH 32 104 #define BUFSZ 4096 105 106 static noinline void save_stack(struct drm_mm_node *node) 107 { 108 unsigned long entries[STACKDEPTH]; 109 struct stack_trace trace = { 110 .entries = entries, 111 .max_entries = STACKDEPTH, 112 .skip = 1 113 }; 114 115 save_stack_trace(&trace); 116 if (trace.nr_entries != 0 && 117 trace.entries[trace.nr_entries-1] == ULONG_MAX) 118 trace.nr_entries--; 119 120 /* May be called under spinlock, so avoid sleeping */ 121 node->stack = depot_save_stack(&trace, GFP_NOWAIT); 122 } 123 124 static void show_leaks(struct drm_mm *mm) 125 { 126 struct drm_mm_node *node; 127 unsigned long entries[STACKDEPTH]; 128 char *buf; 129 130 buf = kmalloc(BUFSZ, GFP_KERNEL); 131 if (!buf) 132 return; 133 134 list_for_each_entry(node, drm_mm_nodes(mm), node_list) { 135 struct stack_trace trace = { 136 .entries = entries, 137 .max_entries = STACKDEPTH 138 }; 139 140 if (!node->stack) { 141 DRM_ERROR("node [%08llx + %08llx]: unknown owner\n", 142 node->start, node->size); 143 continue; 144 } 145 146 depot_fetch_stack(node->stack, &trace); 147 snprint_stack_trace(buf, BUFSZ, &trace, 0); 148 DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s", 149 node->start, node->size, buf); 150 } 151 152 kfree(buf); 153 } 154 155 #undef STACKDEPTH 156 #undef BUFSZ 157 #else 158 static void save_stack(struct drm_mm_node *node) { } 159 static void show_leaks(struct drm_mm *mm) { } 160 #endif 161 162 #define START(node) ((node)->start) 163 #define LAST(node) ((node)->start + (node)->size - 1) 164 165 INTERVAL_TREE_DEFINE(struct drm_mm_node, rb, 166 u64, __subtree_last, 167 START, LAST, static inline, drm_mm_interval_tree) 168 169 struct drm_mm_node * 170 __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last) 171 { 172 return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree, 173 start, last) ?: (struct drm_mm_node *)&mm->head_node; 174 } 175 EXPORT_SYMBOL(__drm_mm_interval_first); 176 177 static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node, 178 struct drm_mm_node *node) 179 { 180 struct drm_mm *mm = hole_node->mm; 181 struct rb_node **link, *rb; 182 struct drm_mm_node *parent; 183 bool leftmost; 184 185 node->__subtree_last = LAST(node); 186 187 if (hole_node->allocated) { 188 rb = &hole_node->rb; 189 while (rb) { 190 parent = rb_entry(rb, struct drm_mm_node, rb); 191 if (parent->__subtree_last >= node->__subtree_last) 192 break; 193 194 parent->__subtree_last = node->__subtree_last; 195 rb = rb_parent(rb); 196 } 197 198 rb = &hole_node->rb; 199 link = &hole_node->rb.rb_right; 200 leftmost = false; 201 } else { 202 rb = NULL; 203 link = &mm->interval_tree.rb_root.rb_node; 204 leftmost = true; 205 } 206 207 while (*link) { 208 rb = *link; 209 parent = rb_entry(rb, struct drm_mm_node, rb); 210 if (parent->__subtree_last < node->__subtree_last) 211 parent->__subtree_last = node->__subtree_last; 212 if (node->start < parent->start) { 213 link = &parent->rb.rb_left; 214 } else { 215 link = &parent->rb.rb_right; 216 leftmost = false; 217 } 218 } 219 220 rb_link_node(&node->rb, rb, link); 221 rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost, 222 &drm_mm_interval_tree_augment); 223 } 224 225 #define RB_INSERT(root, member, expr) do { \ 226 struct rb_node **link = &root.rb_node, *rb = NULL; \ 227 u64 x = expr(node); \ 228 while (*link) { \ 229 rb = *link; \ 230 if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \ 231 link = &rb->rb_left; \ 232 else \ 233 link = &rb->rb_right; \ 234 } \ 235 rb_link_node(&node->member, rb, link); \ 236 rb_insert_color(&node->member, &root); \ 237 } while (0) 238 239 #define HOLE_SIZE(NODE) ((NODE)->hole_size) 240 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE)) 241 242 static u64 rb_to_hole_size(struct rb_node *rb) 243 { 244 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size; 245 } 246 247 static void insert_hole_size(struct rb_root_cached *root, 248 struct drm_mm_node *node) 249 { 250 struct rb_node **link = &root->rb_root.rb_node, *rb = NULL; 251 u64 x = node->hole_size; 252 bool first = true; 253 254 while (*link) { 255 rb = *link; 256 if (x > rb_to_hole_size(rb)) { 257 link = &rb->rb_left; 258 } else { 259 link = &rb->rb_right; 260 first = false; 261 } 262 } 263 264 rb_link_node(&node->rb_hole_size, rb, link); 265 rb_insert_color_cached(&node->rb_hole_size, root, first); 266 } 267 268 static void add_hole(struct drm_mm_node *node) 269 { 270 struct drm_mm *mm = node->mm; 271 272 node->hole_size = 273 __drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node); 274 DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); 275 276 insert_hole_size(&mm->holes_size, node); 277 RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR); 278 279 list_add(&node->hole_stack, &mm->hole_stack); 280 } 281 282 static void rm_hole(struct drm_mm_node *node) 283 { 284 DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); 285 286 list_del(&node->hole_stack); 287 rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size); 288 rb_erase(&node->rb_hole_addr, &node->mm->holes_addr); 289 node->hole_size = 0; 290 291 DRM_MM_BUG_ON(drm_mm_hole_follows(node)); 292 } 293 294 static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb) 295 { 296 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size); 297 } 298 299 static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb) 300 { 301 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr); 302 } 303 304 static inline u64 rb_hole_size(struct rb_node *rb) 305 { 306 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size; 307 } 308 309 static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size) 310 { 311 struct rb_node *rb = mm->holes_size.rb_root.rb_node; 312 struct drm_mm_node *best = NULL; 313 314 do { 315 struct drm_mm_node *node = 316 rb_entry(rb, struct drm_mm_node, rb_hole_size); 317 318 if (size <= node->hole_size) { 319 best = node; 320 rb = rb->rb_right; 321 } else { 322 rb = rb->rb_left; 323 } 324 } while (rb); 325 326 return best; 327 } 328 329 static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr) 330 { 331 struct rb_node *rb = mm->holes_addr.rb_node; 332 struct drm_mm_node *node = NULL; 333 334 while (rb) { 335 u64 hole_start; 336 337 node = rb_hole_addr_to_node(rb); 338 hole_start = __drm_mm_hole_node_start(node); 339 340 if (addr < hole_start) 341 rb = node->rb_hole_addr.rb_left; 342 else if (addr > hole_start + node->hole_size) 343 rb = node->rb_hole_addr.rb_right; 344 else 345 break; 346 } 347 348 return node; 349 } 350 351 static struct drm_mm_node * 352 first_hole(struct drm_mm *mm, 353 u64 start, u64 end, u64 size, 354 enum drm_mm_insert_mode mode) 355 { 356 switch (mode) { 357 default: 358 case DRM_MM_INSERT_BEST: 359 return best_hole(mm, size); 360 361 case DRM_MM_INSERT_LOW: 362 return find_hole(mm, start); 363 364 case DRM_MM_INSERT_HIGH: 365 return find_hole(mm, end); 366 367 case DRM_MM_INSERT_EVICT: 368 return list_first_entry_or_null(&mm->hole_stack, 369 struct drm_mm_node, 370 hole_stack); 371 } 372 } 373 374 static struct drm_mm_node * 375 next_hole(struct drm_mm *mm, 376 struct drm_mm_node *node, 377 enum drm_mm_insert_mode mode) 378 { 379 switch (mode) { 380 default: 381 case DRM_MM_INSERT_BEST: 382 return rb_hole_size_to_node(rb_prev(&node->rb_hole_size)); 383 384 case DRM_MM_INSERT_LOW: 385 return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr)); 386 387 case DRM_MM_INSERT_HIGH: 388 return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr)); 389 390 case DRM_MM_INSERT_EVICT: 391 node = list_next_entry(node, hole_stack); 392 return &node->hole_stack == &mm->hole_stack ? NULL : node; 393 } 394 } 395 396 /** 397 * drm_mm_reserve_node - insert an pre-initialized node 398 * @mm: drm_mm allocator to insert @node into 399 * @node: drm_mm_node to insert 400 * 401 * This functions inserts an already set-up &drm_mm_node into the allocator, 402 * meaning that start, size and color must be set by the caller. All other 403 * fields must be cleared to 0. This is useful to initialize the allocator with 404 * preallocated objects which must be set-up before the range allocator can be 405 * set-up, e.g. when taking over a firmware framebuffer. 406 * 407 * Returns: 408 * 0 on success, -ENOSPC if there's no hole where @node is. 409 */ 410 int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node) 411 { 412 u64 end = node->start + node->size; 413 struct drm_mm_node *hole; 414 u64 hole_start, hole_end; 415 u64 adj_start, adj_end; 416 417 end = node->start + node->size; 418 if (unlikely(end <= node->start)) 419 return -ENOSPC; 420 421 /* Find the relevant hole to add our node to */ 422 hole = find_hole(mm, node->start); 423 if (!hole) 424 return -ENOSPC; 425 426 adj_start = hole_start = __drm_mm_hole_node_start(hole); 427 adj_end = hole_end = hole_start + hole->hole_size; 428 429 if (mm->color_adjust) 430 mm->color_adjust(hole, node->color, &adj_start, &adj_end); 431 432 if (adj_start > node->start || adj_end < end) 433 return -ENOSPC; 434 435 node->mm = mm; 436 437 list_add(&node->node_list, &hole->node_list); 438 drm_mm_interval_tree_add_node(hole, node); 439 node->allocated = true; 440 node->hole_size = 0; 441 442 rm_hole(hole); 443 if (node->start > hole_start) 444 add_hole(hole); 445 if (end < hole_end) 446 add_hole(node); 447 448 save_stack(node); 449 return 0; 450 } 451 EXPORT_SYMBOL(drm_mm_reserve_node); 452 453 static u64 rb_to_hole_size_or_zero(struct rb_node *rb) 454 { 455 return rb ? rb_to_hole_size(rb) : 0; 456 } 457 458 /** 459 * drm_mm_insert_node_in_range - ranged search for space and insert @node 460 * @mm: drm_mm to allocate from 461 * @node: preallocate node to insert 462 * @size: size of the allocation 463 * @alignment: alignment of the allocation 464 * @color: opaque tag value to use for this node 465 * @range_start: start of the allowed range for this node 466 * @range_end: end of the allowed range for this node 467 * @mode: fine-tune the allocation search and placement 468 * 469 * The preallocated @node must be cleared to 0. 470 * 471 * Returns: 472 * 0 on success, -ENOSPC if there's no suitable hole. 473 */ 474 int drm_mm_insert_node_in_range(struct drm_mm * const mm, 475 struct drm_mm_node * const node, 476 u64 size, u64 alignment, 477 unsigned long color, 478 u64 range_start, u64 range_end, 479 enum drm_mm_insert_mode mode) 480 { 481 struct drm_mm_node *hole; 482 u64 remainder_mask; 483 bool once; 484 485 DRM_MM_BUG_ON(range_start >= range_end); 486 487 if (unlikely(size == 0 || range_end - range_start < size)) 488 return -ENOSPC; 489 490 if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size) 491 return -ENOSPC; 492 493 if (alignment <= 1) 494 alignment = 0; 495 496 once = mode & DRM_MM_INSERT_ONCE; 497 mode &= ~DRM_MM_INSERT_ONCE; 498 499 remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; 500 for (hole = first_hole(mm, range_start, range_end, size, mode); 501 hole; 502 hole = once ? NULL : next_hole(mm, hole, mode)) { 503 u64 hole_start = __drm_mm_hole_node_start(hole); 504 u64 hole_end = hole_start + hole->hole_size; 505 u64 adj_start, adj_end; 506 u64 col_start, col_end; 507 508 if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end) 509 break; 510 511 if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start) 512 break; 513 514 col_start = hole_start; 515 col_end = hole_end; 516 if (mm->color_adjust) 517 mm->color_adjust(hole, color, &col_start, &col_end); 518 519 adj_start = max(col_start, range_start); 520 adj_end = min(col_end, range_end); 521 522 if (adj_end <= adj_start || adj_end - adj_start < size) 523 continue; 524 525 if (mode == DRM_MM_INSERT_HIGH) 526 adj_start = adj_end - size; 527 528 if (alignment) { 529 u64 rem; 530 531 if (likely(remainder_mask)) 532 rem = adj_start & remainder_mask; 533 else 534 div64_u64_rem(adj_start, alignment, &rem); 535 if (rem) { 536 adj_start -= rem; 537 if (mode != DRM_MM_INSERT_HIGH) 538 adj_start += alignment; 539 540 if (adj_start < max(col_start, range_start) || 541 min(col_end, range_end) - adj_start < size) 542 continue; 543 544 if (adj_end <= adj_start || 545 adj_end - adj_start < size) 546 continue; 547 } 548 } 549 550 node->mm = mm; 551 node->size = size; 552 node->start = adj_start; 553 node->color = color; 554 node->hole_size = 0; 555 556 list_add(&node->node_list, &hole->node_list); 557 drm_mm_interval_tree_add_node(hole, node); 558 node->allocated = true; 559 560 rm_hole(hole); 561 if (adj_start > hole_start) 562 add_hole(hole); 563 if (adj_start + size < hole_end) 564 add_hole(node); 565 566 save_stack(node); 567 return 0; 568 } 569 570 return -ENOSPC; 571 } 572 EXPORT_SYMBOL(drm_mm_insert_node_in_range); 573 574 /** 575 * drm_mm_remove_node - Remove a memory node from the allocator. 576 * @node: drm_mm_node to remove 577 * 578 * This just removes a node from its drm_mm allocator. The node does not need to 579 * be cleared again before it can be re-inserted into this or any other drm_mm 580 * allocator. It is a bug to call this function on a unallocated node. 581 */ 582 void drm_mm_remove_node(struct drm_mm_node *node) 583 { 584 struct drm_mm *mm = node->mm; 585 struct drm_mm_node *prev_node; 586 587 DRM_MM_BUG_ON(!node->allocated); 588 DRM_MM_BUG_ON(node->scanned_block); 589 590 prev_node = list_prev_entry(node, node_list); 591 592 if (drm_mm_hole_follows(node)) 593 rm_hole(node); 594 595 drm_mm_interval_tree_remove(node, &mm->interval_tree); 596 list_del(&node->node_list); 597 node->allocated = false; 598 599 if (drm_mm_hole_follows(prev_node)) 600 rm_hole(prev_node); 601 add_hole(prev_node); 602 } 603 EXPORT_SYMBOL(drm_mm_remove_node); 604 605 /** 606 * drm_mm_replace_node - move an allocation from @old to @new 607 * @old: drm_mm_node to remove from the allocator 608 * @new: drm_mm_node which should inherit @old's allocation 609 * 610 * This is useful for when drivers embed the drm_mm_node structure and hence 611 * can't move allocations by reassigning pointers. It's a combination of remove 612 * and insert with the guarantee that the allocation start will match. 613 */ 614 void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new) 615 { 616 struct drm_mm *mm = old->mm; 617 618 DRM_MM_BUG_ON(!old->allocated); 619 620 *new = *old; 621 622 list_replace(&old->node_list, &new->node_list); 623 rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree); 624 625 if (drm_mm_hole_follows(old)) { 626 list_replace(&old->hole_stack, &new->hole_stack); 627 rb_replace_node_cached(&old->rb_hole_size, 628 &new->rb_hole_size, 629 &mm->holes_size); 630 rb_replace_node(&old->rb_hole_addr, 631 &new->rb_hole_addr, 632 &mm->holes_addr); 633 } 634 635 old->allocated = false; 636 new->allocated = true; 637 } 638 EXPORT_SYMBOL(drm_mm_replace_node); 639 640 /** 641 * DOC: lru scan roster 642 * 643 * Very often GPUs need to have continuous allocations for a given object. When 644 * evicting objects to make space for a new one it is therefore not most 645 * efficient when we simply start to select all objects from the tail of an LRU 646 * until there's a suitable hole: Especially for big objects or nodes that 647 * otherwise have special allocation constraints there's a good chance we evict 648 * lots of (smaller) objects unnecessarily. 649 * 650 * The DRM range allocator supports this use-case through the scanning 651 * interfaces. First a scan operation needs to be initialized with 652 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds 653 * objects to the roster, probably by walking an LRU list, but this can be 654 * freely implemented. Eviction candiates are added using 655 * drm_mm_scan_add_block() until a suitable hole is found or there are no 656 * further evictable objects. Eviction roster metadata is tracked in &struct 657 * drm_mm_scan. 658 * 659 * The driver must walk through all objects again in exactly the reverse 660 * order to restore the allocator state. Note that while the allocator is used 661 * in the scan mode no other operation is allowed. 662 * 663 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block() 664 * reported true) in the scan, and any overlapping nodes after color adjustment 665 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and 666 * since freeing a node is also O(1) the overall complexity is 667 * O(scanned_objects). So like the free stack which needs to be walked before a 668 * scan operation even begins this is linear in the number of objects. It 669 * doesn't seem to hurt too badly. 670 */ 671 672 /** 673 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning 674 * @scan: scan state 675 * @mm: drm_mm to scan 676 * @size: size of the allocation 677 * @alignment: alignment of the allocation 678 * @color: opaque tag value to use for the allocation 679 * @start: start of the allowed range for the allocation 680 * @end: end of the allowed range for the allocation 681 * @mode: fine-tune the allocation search and placement 682 * 683 * This simply sets up the scanning routines with the parameters for the desired 684 * hole. 685 * 686 * Warning: 687 * As long as the scan list is non-empty, no other operations than 688 * adding/removing nodes to/from the scan list are allowed. 689 */ 690 void drm_mm_scan_init_with_range(struct drm_mm_scan *scan, 691 struct drm_mm *mm, 692 u64 size, 693 u64 alignment, 694 unsigned long color, 695 u64 start, 696 u64 end, 697 enum drm_mm_insert_mode mode) 698 { 699 DRM_MM_BUG_ON(start >= end); 700 DRM_MM_BUG_ON(!size || size > end - start); 701 DRM_MM_BUG_ON(mm->scan_active); 702 703 scan->mm = mm; 704 705 if (alignment <= 1) 706 alignment = 0; 707 708 scan->color = color; 709 scan->alignment = alignment; 710 scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; 711 scan->size = size; 712 scan->mode = mode; 713 714 DRM_MM_BUG_ON(end <= start); 715 scan->range_start = start; 716 scan->range_end = end; 717 718 scan->hit_start = U64_MAX; 719 scan->hit_end = 0; 720 } 721 EXPORT_SYMBOL(drm_mm_scan_init_with_range); 722 723 /** 724 * drm_mm_scan_add_block - add a node to the scan list 725 * @scan: the active drm_mm scanner 726 * @node: drm_mm_node to add 727 * 728 * Add a node to the scan list that might be freed to make space for the desired 729 * hole. 730 * 731 * Returns: 732 * True if a hole has been found, false otherwise. 733 */ 734 bool drm_mm_scan_add_block(struct drm_mm_scan *scan, 735 struct drm_mm_node *node) 736 { 737 struct drm_mm *mm = scan->mm; 738 struct drm_mm_node *hole; 739 u64 hole_start, hole_end; 740 u64 col_start, col_end; 741 u64 adj_start, adj_end; 742 743 DRM_MM_BUG_ON(node->mm != mm); 744 DRM_MM_BUG_ON(!node->allocated); 745 DRM_MM_BUG_ON(node->scanned_block); 746 node->scanned_block = true; 747 mm->scan_active++; 748 749 /* Remove this block from the node_list so that we enlarge the hole 750 * (distance between the end of our previous node and the start of 751 * or next), without poisoning the link so that we can restore it 752 * later in drm_mm_scan_remove_block(). 753 */ 754 hole = list_prev_entry(node, node_list); 755 DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node); 756 __list_del_entry(&node->node_list); 757 758 hole_start = __drm_mm_hole_node_start(hole); 759 hole_end = __drm_mm_hole_node_end(hole); 760 761 col_start = hole_start; 762 col_end = hole_end; 763 if (mm->color_adjust) 764 mm->color_adjust(hole, scan->color, &col_start, &col_end); 765 766 adj_start = max(col_start, scan->range_start); 767 adj_end = min(col_end, scan->range_end); 768 if (adj_end <= adj_start || adj_end - adj_start < scan->size) 769 return false; 770 771 if (scan->mode == DRM_MM_INSERT_HIGH) 772 adj_start = adj_end - scan->size; 773 774 if (scan->alignment) { 775 u64 rem; 776 777 if (likely(scan->remainder_mask)) 778 rem = adj_start & scan->remainder_mask; 779 else 780 div64_u64_rem(adj_start, scan->alignment, &rem); 781 if (rem) { 782 adj_start -= rem; 783 if (scan->mode != DRM_MM_INSERT_HIGH) 784 adj_start += scan->alignment; 785 if (adj_start < max(col_start, scan->range_start) || 786 min(col_end, scan->range_end) - adj_start < scan->size) 787 return false; 788 789 if (adj_end <= adj_start || 790 adj_end - adj_start < scan->size) 791 return false; 792 } 793 } 794 795 scan->hit_start = adj_start; 796 scan->hit_end = adj_start + scan->size; 797 798 DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end); 799 DRM_MM_BUG_ON(scan->hit_start < hole_start); 800 DRM_MM_BUG_ON(scan->hit_end > hole_end); 801 802 return true; 803 } 804 EXPORT_SYMBOL(drm_mm_scan_add_block); 805 806 /** 807 * drm_mm_scan_remove_block - remove a node from the scan list 808 * @scan: the active drm_mm scanner 809 * @node: drm_mm_node to remove 810 * 811 * Nodes **must** be removed in exactly the reverse order from the scan list as 812 * they have been added (e.g. using list_add() as they are added and then 813 * list_for_each() over that eviction list to remove), otherwise the internal 814 * state of the memory manager will be corrupted. 815 * 816 * When the scan list is empty, the selected memory nodes can be freed. An 817 * immediately following drm_mm_insert_node_in_range_generic() or one of the 818 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return 819 * the just freed block (because it's at the top of the free_stack list). 820 * 821 * Returns: 822 * True if this block should be evicted, false otherwise. Will always 823 * return false when no hole has been found. 824 */ 825 bool drm_mm_scan_remove_block(struct drm_mm_scan *scan, 826 struct drm_mm_node *node) 827 { 828 struct drm_mm_node *prev_node; 829 830 DRM_MM_BUG_ON(node->mm != scan->mm); 831 DRM_MM_BUG_ON(!node->scanned_block); 832 node->scanned_block = false; 833 834 DRM_MM_BUG_ON(!node->mm->scan_active); 835 node->mm->scan_active--; 836 837 /* During drm_mm_scan_add_block() we decoupled this node leaving 838 * its pointers intact. Now that the caller is walking back along 839 * the eviction list we can restore this block into its rightful 840 * place on the full node_list. To confirm that the caller is walking 841 * backwards correctly we check that prev_node->next == node->next, 842 * i.e. both believe the same node should be on the other side of the 843 * hole. 844 */ 845 prev_node = list_prev_entry(node, node_list); 846 DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) != 847 list_next_entry(node, node_list)); 848 list_add(&node->node_list, &prev_node->node_list); 849 850 return (node->start + node->size > scan->hit_start && 851 node->start < scan->hit_end); 852 } 853 EXPORT_SYMBOL(drm_mm_scan_remove_block); 854 855 /** 856 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole 857 * @scan: drm_mm scan with target hole 858 * 859 * After completing an eviction scan and removing the selected nodes, we may 860 * need to remove a few more nodes from either side of the target hole if 861 * mm.color_adjust is being used. 862 * 863 * Returns: 864 * A node to evict, or NULL if there are no overlapping nodes. 865 */ 866 struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan) 867 { 868 struct drm_mm *mm = scan->mm; 869 struct drm_mm_node *hole; 870 u64 hole_start, hole_end; 871 872 DRM_MM_BUG_ON(list_empty(&mm->hole_stack)); 873 874 if (!mm->color_adjust) 875 return NULL; 876 877 /* 878 * The hole found during scanning should ideally be the first element 879 * in the hole_stack list, but due to side-effects in the driver it 880 * may not be. 881 */ 882 list_for_each_entry(hole, &mm->hole_stack, hole_stack) { 883 hole_start = __drm_mm_hole_node_start(hole); 884 hole_end = hole_start + hole->hole_size; 885 886 if (hole_start <= scan->hit_start && 887 hole_end >= scan->hit_end) 888 break; 889 } 890 891 /* We should only be called after we found the hole previously */ 892 DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack); 893 if (unlikely(&hole->hole_stack == &mm->hole_stack)) 894 return NULL; 895 896 DRM_MM_BUG_ON(hole_start > scan->hit_start); 897 DRM_MM_BUG_ON(hole_end < scan->hit_end); 898 899 mm->color_adjust(hole, scan->color, &hole_start, &hole_end); 900 if (hole_start > scan->hit_start) 901 return hole; 902 if (hole_end < scan->hit_end) 903 return list_next_entry(hole, node_list); 904 905 return NULL; 906 } 907 EXPORT_SYMBOL(drm_mm_scan_color_evict); 908 909 /** 910 * drm_mm_init - initialize a drm-mm allocator 911 * @mm: the drm_mm structure to initialize 912 * @start: start of the range managed by @mm 913 * @size: end of the range managed by @mm 914 * 915 * Note that @mm must be cleared to 0 before calling this function. 916 */ 917 void drm_mm_init(struct drm_mm *mm, u64 start, u64 size) 918 { 919 DRM_MM_BUG_ON(start + size <= start); 920 921 mm->color_adjust = NULL; 922 923 INIT_LIST_HEAD(&mm->hole_stack); 924 mm->interval_tree = RB_ROOT_CACHED; 925 mm->holes_size = RB_ROOT_CACHED; 926 mm->holes_addr = RB_ROOT; 927 928 /* Clever trick to avoid a special case in the free hole tracking. */ 929 INIT_LIST_HEAD(&mm->head_node.node_list); 930 mm->head_node.allocated = false; 931 mm->head_node.mm = mm; 932 mm->head_node.start = start + size; 933 mm->head_node.size = -size; 934 add_hole(&mm->head_node); 935 936 mm->scan_active = 0; 937 } 938 EXPORT_SYMBOL(drm_mm_init); 939 940 /** 941 * drm_mm_takedown - clean up a drm_mm allocator 942 * @mm: drm_mm allocator to clean up 943 * 944 * Note that it is a bug to call this function on an allocator which is not 945 * clean. 946 */ 947 void drm_mm_takedown(struct drm_mm *mm) 948 { 949 if (WARN(!drm_mm_clean(mm), 950 "Memory manager not clean during takedown.\n")) 951 show_leaks(mm); 952 } 953 EXPORT_SYMBOL(drm_mm_takedown); 954 955 static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry) 956 { 957 u64 start, size; 958 959 size = entry->hole_size; 960 if (size) { 961 start = drm_mm_hole_node_start(entry); 962 drm_printf(p, "%#018llx-%#018llx: %llu: free\n", 963 start, start + size, size); 964 } 965 966 return size; 967 } 968 /** 969 * drm_mm_print - print allocator state 970 * @mm: drm_mm allocator to print 971 * @p: DRM printer to use 972 */ 973 void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p) 974 { 975 const struct drm_mm_node *entry; 976 u64 total_used = 0, total_free = 0, total = 0; 977 978 total_free += drm_mm_dump_hole(p, &mm->head_node); 979 980 drm_mm_for_each_node(entry, mm) { 981 drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start, 982 entry->start + entry->size, entry->size); 983 total_used += entry->size; 984 total_free += drm_mm_dump_hole(p, entry); 985 } 986 total = total_free + total_used; 987 988 drm_printf(p, "total: %llu, used %llu free %llu\n", total, 989 total_used, total_free); 990 } 991 EXPORT_SYMBOL(drm_mm_print); 992