1 /************************************************************************** 2 * 3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA. 4 * Copyright 2016 Intel Corporation 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 * 28 **************************************************************************/ 29 30 /* 31 * Generic simple memory manager implementation. Intended to be used as a base 32 * class implementation for more advanced memory managers. 33 * 34 * Note that the algorithm used is quite simple and there might be substantial 35 * performance gains if a smarter free list is implemented. Currently it is 36 * just an unordered stack of free regions. This could easily be improved if 37 * an RB-tree is used instead. At least if we expect heavy fragmentation. 38 * 39 * Aligned allocations can also see improvement. 40 * 41 * Authors: 42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com> 43 */ 44 45 #include <linux/export.h> 46 #include <linux/interval_tree_generic.h> 47 #include <linux/seq_file.h> 48 #include <linux/slab.h> 49 #include <linux/stacktrace.h> 50 51 #include <drm/drm_mm.h> 52 53 /** 54 * DOC: Overview 55 * 56 * drm_mm provides a simple range allocator. The drivers are free to use the 57 * resource allocator from the linux core if it suits them, the upside of drm_mm 58 * is that it's in the DRM core. Which means that it's easier to extend for 59 * some of the crazier special purpose needs of gpus. 60 * 61 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node. 62 * Drivers are free to embed either of them into their own suitable 63 * datastructures. drm_mm itself will not do any memory allocations of its own, 64 * so if drivers choose not to embed nodes they need to still allocate them 65 * themselves. 66 * 67 * The range allocator also supports reservation of preallocated blocks. This is 68 * useful for taking over initial mode setting configurations from the firmware, 69 * where an object needs to be created which exactly matches the firmware's 70 * scanout target. As long as the range is still free it can be inserted anytime 71 * after the allocator is initialized, which helps with avoiding looped 72 * dependencies in the driver load sequence. 73 * 74 * drm_mm maintains a stack of most recently freed holes, which of all 75 * simplistic datastructures seems to be a fairly decent approach to clustering 76 * allocations and avoiding too much fragmentation. This means free space 77 * searches are O(num_holes). Given that all the fancy features drm_mm supports 78 * something better would be fairly complex and since gfx thrashing is a fairly 79 * steep cliff not a real concern. Removing a node again is O(1). 80 * 81 * drm_mm supports a few features: Alignment and range restrictions can be 82 * supplied. Furthermore every &drm_mm_node has a color value (which is just an 83 * opaque unsigned long) which in conjunction with a driver callback can be used 84 * to implement sophisticated placement restrictions. The i915 DRM driver uses 85 * this to implement guard pages between incompatible caching domains in the 86 * graphics TT. 87 * 88 * Two behaviors are supported for searching and allocating: bottom-up and 89 * top-down. The default is bottom-up. Top-down allocation can be used if the 90 * memory area has different restrictions, or just to reduce fragmentation. 91 * 92 * Finally iteration helpers to walk all nodes and all holes are provided as are 93 * some basic allocator dumpers for debugging. 94 * 95 * Note that this range allocator is not thread-safe, drivers need to protect 96 * modifications with their own locking. The idea behind this is that for a full 97 * memory manager additional data needs to be protected anyway, hence internal 98 * locking would be fully redundant. 99 */ 100 101 #ifdef CONFIG_DRM_DEBUG_MM 102 #include <linux/stackdepot.h> 103 104 #define STACKDEPTH 32 105 #define BUFSZ 4096 106 107 static noinline void save_stack(struct drm_mm_node *node) 108 { 109 unsigned long entries[STACKDEPTH]; 110 unsigned int n; 111 112 n = stack_trace_save(entries, ARRAY_SIZE(entries), 1); 113 114 /* May be called under spinlock, so avoid sleeping */ 115 node->stack = stack_depot_save(entries, n, GFP_NOWAIT); 116 } 117 118 static void show_leaks(struct drm_mm *mm) 119 { 120 struct drm_mm_node *node; 121 unsigned long *entries; 122 unsigned int nr_entries; 123 char *buf; 124 125 buf = kmalloc(BUFSZ, GFP_KERNEL); 126 if (!buf) 127 return; 128 129 list_for_each_entry(node, drm_mm_nodes(mm), node_list) { 130 if (!node->stack) { 131 DRM_ERROR("node [%08llx + %08llx]: unknown owner\n", 132 node->start, node->size); 133 continue; 134 } 135 136 nr_entries = stack_depot_fetch(node->stack, &entries); 137 stack_trace_snprint(buf, BUFSZ, entries, nr_entries, 0); 138 DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s", 139 node->start, node->size, buf); 140 } 141 142 kfree(buf); 143 } 144 145 #undef STACKDEPTH 146 #undef BUFSZ 147 #else 148 static void save_stack(struct drm_mm_node *node) { } 149 static void show_leaks(struct drm_mm *mm) { } 150 #endif 151 152 #define START(node) ((node)->start) 153 #define LAST(node) ((node)->start + (node)->size - 1) 154 155 INTERVAL_TREE_DEFINE(struct drm_mm_node, rb, 156 u64, __subtree_last, 157 START, LAST, static inline, drm_mm_interval_tree) 158 159 struct drm_mm_node * 160 __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last) 161 { 162 return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree, 163 start, last) ?: (struct drm_mm_node *)&mm->head_node; 164 } 165 EXPORT_SYMBOL(__drm_mm_interval_first); 166 167 static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node, 168 struct drm_mm_node *node) 169 { 170 struct drm_mm *mm = hole_node->mm; 171 struct rb_node **link, *rb; 172 struct drm_mm_node *parent; 173 bool leftmost; 174 175 node->__subtree_last = LAST(node); 176 177 if (drm_mm_node_allocated(hole_node)) { 178 rb = &hole_node->rb; 179 while (rb) { 180 parent = rb_entry(rb, struct drm_mm_node, rb); 181 if (parent->__subtree_last >= node->__subtree_last) 182 break; 183 184 parent->__subtree_last = node->__subtree_last; 185 rb = rb_parent(rb); 186 } 187 188 rb = &hole_node->rb; 189 link = &hole_node->rb.rb_right; 190 leftmost = false; 191 } else { 192 rb = NULL; 193 link = &mm->interval_tree.rb_root.rb_node; 194 leftmost = true; 195 } 196 197 while (*link) { 198 rb = *link; 199 parent = rb_entry(rb, struct drm_mm_node, rb); 200 if (parent->__subtree_last < node->__subtree_last) 201 parent->__subtree_last = node->__subtree_last; 202 if (node->start < parent->start) { 203 link = &parent->rb.rb_left; 204 } else { 205 link = &parent->rb.rb_right; 206 leftmost = false; 207 } 208 } 209 210 rb_link_node(&node->rb, rb, link); 211 rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost, 212 &drm_mm_interval_tree_augment); 213 } 214 215 #define HOLE_SIZE(NODE) ((NODE)->hole_size) 216 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE)) 217 218 static u64 rb_to_hole_size(struct rb_node *rb) 219 { 220 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size; 221 } 222 223 static void insert_hole_size(struct rb_root_cached *root, 224 struct drm_mm_node *node) 225 { 226 struct rb_node **link = &root->rb_root.rb_node, *rb = NULL; 227 u64 x = node->hole_size; 228 bool first = true; 229 230 while (*link) { 231 rb = *link; 232 if (x > rb_to_hole_size(rb)) { 233 link = &rb->rb_left; 234 } else { 235 link = &rb->rb_right; 236 first = false; 237 } 238 } 239 240 rb_link_node(&node->rb_hole_size, rb, link); 241 rb_insert_color_cached(&node->rb_hole_size, root, first); 242 } 243 244 RB_DECLARE_CALLBACKS_MAX(static, augment_callbacks, 245 struct drm_mm_node, rb_hole_addr, 246 u64, subtree_max_hole, HOLE_SIZE) 247 248 static void insert_hole_addr(struct rb_root *root, struct drm_mm_node *node) 249 { 250 struct rb_node **link = &root->rb_node, *rb_parent = NULL; 251 u64 start = HOLE_ADDR(node), subtree_max_hole = node->subtree_max_hole; 252 struct drm_mm_node *parent; 253 254 while (*link) { 255 rb_parent = *link; 256 parent = rb_entry(rb_parent, struct drm_mm_node, rb_hole_addr); 257 if (parent->subtree_max_hole < subtree_max_hole) 258 parent->subtree_max_hole = subtree_max_hole; 259 if (start < HOLE_ADDR(parent)) 260 link = &parent->rb_hole_addr.rb_left; 261 else 262 link = &parent->rb_hole_addr.rb_right; 263 } 264 265 rb_link_node(&node->rb_hole_addr, rb_parent, link); 266 rb_insert_augmented(&node->rb_hole_addr, root, &augment_callbacks); 267 } 268 269 static void add_hole(struct drm_mm_node *node) 270 { 271 struct drm_mm *mm = node->mm; 272 273 node->hole_size = 274 __drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node); 275 node->subtree_max_hole = node->hole_size; 276 DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); 277 278 insert_hole_size(&mm->holes_size, node); 279 insert_hole_addr(&mm->holes_addr, node); 280 281 list_add(&node->hole_stack, &mm->hole_stack); 282 } 283 284 static void rm_hole(struct drm_mm_node *node) 285 { 286 DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); 287 288 list_del(&node->hole_stack); 289 rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size); 290 rb_erase_augmented(&node->rb_hole_addr, &node->mm->holes_addr, 291 &augment_callbacks); 292 node->hole_size = 0; 293 node->subtree_max_hole = 0; 294 295 DRM_MM_BUG_ON(drm_mm_hole_follows(node)); 296 } 297 298 static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb) 299 { 300 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size); 301 } 302 303 static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb) 304 { 305 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr); 306 } 307 308 static inline u64 rb_hole_size(struct rb_node *rb) 309 { 310 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size; 311 } 312 313 static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size) 314 { 315 struct rb_node *rb = mm->holes_size.rb_root.rb_node; 316 struct drm_mm_node *best = NULL; 317 318 do { 319 struct drm_mm_node *node = 320 rb_entry(rb, struct drm_mm_node, rb_hole_size); 321 322 if (size <= node->hole_size) { 323 best = node; 324 rb = rb->rb_right; 325 } else { 326 rb = rb->rb_left; 327 } 328 } while (rb); 329 330 return best; 331 } 332 333 static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr) 334 { 335 struct rb_node *rb = mm->holes_addr.rb_node; 336 struct drm_mm_node *node = NULL; 337 338 while (rb) { 339 u64 hole_start; 340 341 node = rb_hole_addr_to_node(rb); 342 hole_start = __drm_mm_hole_node_start(node); 343 344 if (addr < hole_start) 345 rb = node->rb_hole_addr.rb_left; 346 else if (addr > hole_start + node->hole_size) 347 rb = node->rb_hole_addr.rb_right; 348 else 349 break; 350 } 351 352 return node; 353 } 354 355 static struct drm_mm_node * 356 first_hole(struct drm_mm *mm, 357 u64 start, u64 end, u64 size, 358 enum drm_mm_insert_mode mode) 359 { 360 switch (mode) { 361 default: 362 case DRM_MM_INSERT_BEST: 363 return best_hole(mm, size); 364 365 case DRM_MM_INSERT_LOW: 366 return find_hole(mm, start); 367 368 case DRM_MM_INSERT_HIGH: 369 return find_hole(mm, end); 370 371 case DRM_MM_INSERT_EVICT: 372 return list_first_entry_or_null(&mm->hole_stack, 373 struct drm_mm_node, 374 hole_stack); 375 } 376 } 377 378 /** 379 * next_hole_high_addr - returns next hole for a DRM_MM_INSERT_HIGH mode request 380 * @entry: previously selected drm_mm_node 381 * @size: size of the a hole needed for the request 382 * 383 * This function will verify whether left subtree of @entry has hole big enough 384 * to fit the requtested size. If so, it will return previous node of @entry or 385 * else it will return parent node of @entry 386 * 387 * It will also skip the complete left subtree if subtree_max_hole of that 388 * subtree is same as the subtree_max_hole of the @entry. 389 * 390 * Returns: 391 * previous node of @entry if left subtree of @entry can serve the request or 392 * else return parent of @entry 393 */ 394 static struct drm_mm_node * 395 next_hole_high_addr(struct drm_mm_node *entry, u64 size) 396 { 397 struct rb_node *rb_node, *left_rb_node, *parent_rb_node; 398 struct drm_mm_node *left_node; 399 400 if (!entry) 401 return NULL; 402 403 rb_node = &entry->rb_hole_addr; 404 if (rb_node->rb_left) { 405 left_rb_node = rb_node->rb_left; 406 parent_rb_node = rb_parent(rb_node); 407 left_node = rb_entry(left_rb_node, 408 struct drm_mm_node, rb_hole_addr); 409 if ((left_node->subtree_max_hole < size || 410 entry->size == entry->subtree_max_hole) && 411 parent_rb_node && parent_rb_node->rb_left != rb_node) 412 return rb_hole_addr_to_node(parent_rb_node); 413 } 414 415 return rb_hole_addr_to_node(rb_prev(rb_node)); 416 } 417 418 /** 419 * next_hole_low_addr - returns next hole for a DRM_MM_INSERT_LOW mode request 420 * @entry: previously selected drm_mm_node 421 * @size: size of the a hole needed for the request 422 * 423 * This function will verify whether right subtree of @entry has hole big enough 424 * to fit the requtested size. If so, it will return next node of @entry or 425 * else it will return parent node of @entry 426 * 427 * It will also skip the complete right subtree if subtree_max_hole of that 428 * subtree is same as the subtree_max_hole of the @entry. 429 * 430 * Returns: 431 * next node of @entry if right subtree of @entry can serve the request or 432 * else return parent of @entry 433 */ 434 static struct drm_mm_node * 435 next_hole_low_addr(struct drm_mm_node *entry, u64 size) 436 { 437 struct rb_node *rb_node, *right_rb_node, *parent_rb_node; 438 struct drm_mm_node *right_node; 439 440 if (!entry) 441 return NULL; 442 443 rb_node = &entry->rb_hole_addr; 444 if (rb_node->rb_right) { 445 right_rb_node = rb_node->rb_right; 446 parent_rb_node = rb_parent(rb_node); 447 right_node = rb_entry(right_rb_node, 448 struct drm_mm_node, rb_hole_addr); 449 if ((right_node->subtree_max_hole < size || 450 entry->size == entry->subtree_max_hole) && 451 parent_rb_node && parent_rb_node->rb_right != rb_node) 452 return rb_hole_addr_to_node(parent_rb_node); 453 } 454 455 return rb_hole_addr_to_node(rb_next(rb_node)); 456 } 457 458 static struct drm_mm_node * 459 next_hole(struct drm_mm *mm, 460 struct drm_mm_node *node, 461 u64 size, 462 enum drm_mm_insert_mode mode) 463 { 464 switch (mode) { 465 default: 466 case DRM_MM_INSERT_BEST: 467 return rb_hole_size_to_node(rb_prev(&node->rb_hole_size)); 468 469 case DRM_MM_INSERT_LOW: 470 return next_hole_low_addr(node, size); 471 472 case DRM_MM_INSERT_HIGH: 473 return next_hole_high_addr(node, size); 474 475 case DRM_MM_INSERT_EVICT: 476 node = list_next_entry(node, hole_stack); 477 return &node->hole_stack == &mm->hole_stack ? NULL : node; 478 } 479 } 480 481 /** 482 * drm_mm_reserve_node - insert an pre-initialized node 483 * @mm: drm_mm allocator to insert @node into 484 * @node: drm_mm_node to insert 485 * 486 * This functions inserts an already set-up &drm_mm_node into the allocator, 487 * meaning that start, size and color must be set by the caller. All other 488 * fields must be cleared to 0. This is useful to initialize the allocator with 489 * preallocated objects which must be set-up before the range allocator can be 490 * set-up, e.g. when taking over a firmware framebuffer. 491 * 492 * Returns: 493 * 0 on success, -ENOSPC if there's no hole where @node is. 494 */ 495 int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node) 496 { 497 struct drm_mm_node *hole; 498 u64 hole_start, hole_end; 499 u64 adj_start, adj_end; 500 u64 end; 501 502 end = node->start + node->size; 503 if (unlikely(end <= node->start)) 504 return -ENOSPC; 505 506 /* Find the relevant hole to add our node to */ 507 hole = find_hole(mm, node->start); 508 if (!hole) 509 return -ENOSPC; 510 511 adj_start = hole_start = __drm_mm_hole_node_start(hole); 512 adj_end = hole_end = hole_start + hole->hole_size; 513 514 if (mm->color_adjust) 515 mm->color_adjust(hole, node->color, &adj_start, &adj_end); 516 517 if (adj_start > node->start || adj_end < end) 518 return -ENOSPC; 519 520 node->mm = mm; 521 522 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); 523 list_add(&node->node_list, &hole->node_list); 524 drm_mm_interval_tree_add_node(hole, node); 525 node->hole_size = 0; 526 527 rm_hole(hole); 528 if (node->start > hole_start) 529 add_hole(hole); 530 if (end < hole_end) 531 add_hole(node); 532 533 save_stack(node); 534 return 0; 535 } 536 EXPORT_SYMBOL(drm_mm_reserve_node); 537 538 static u64 rb_to_hole_size_or_zero(struct rb_node *rb) 539 { 540 return rb ? rb_to_hole_size(rb) : 0; 541 } 542 543 /** 544 * drm_mm_insert_node_in_range - ranged search for space and insert @node 545 * @mm: drm_mm to allocate from 546 * @node: preallocate node to insert 547 * @size: size of the allocation 548 * @alignment: alignment of the allocation 549 * @color: opaque tag value to use for this node 550 * @range_start: start of the allowed range for this node 551 * @range_end: end of the allowed range for this node 552 * @mode: fine-tune the allocation search and placement 553 * 554 * The preallocated @node must be cleared to 0. 555 * 556 * Returns: 557 * 0 on success, -ENOSPC if there's no suitable hole. 558 */ 559 int drm_mm_insert_node_in_range(struct drm_mm * const mm, 560 struct drm_mm_node * const node, 561 u64 size, u64 alignment, 562 unsigned long color, 563 u64 range_start, u64 range_end, 564 enum drm_mm_insert_mode mode) 565 { 566 struct drm_mm_node *hole; 567 u64 remainder_mask; 568 bool once; 569 570 DRM_MM_BUG_ON(range_start > range_end); 571 572 if (unlikely(size == 0 || range_end - range_start < size)) 573 return -ENOSPC; 574 575 if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size) 576 return -ENOSPC; 577 578 if (alignment <= 1) 579 alignment = 0; 580 581 once = mode & DRM_MM_INSERT_ONCE; 582 mode &= ~DRM_MM_INSERT_ONCE; 583 584 remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; 585 for (hole = first_hole(mm, range_start, range_end, size, mode); 586 hole; 587 hole = once ? NULL : next_hole(mm, hole, size, mode)) { 588 u64 hole_start = __drm_mm_hole_node_start(hole); 589 u64 hole_end = hole_start + hole->hole_size; 590 u64 adj_start, adj_end; 591 u64 col_start, col_end; 592 593 if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end) 594 break; 595 596 if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start) 597 break; 598 599 col_start = hole_start; 600 col_end = hole_end; 601 if (mm->color_adjust) 602 mm->color_adjust(hole, color, &col_start, &col_end); 603 604 adj_start = max(col_start, range_start); 605 adj_end = min(col_end, range_end); 606 607 if (adj_end <= adj_start || adj_end - adj_start < size) 608 continue; 609 610 if (mode == DRM_MM_INSERT_HIGH) 611 adj_start = adj_end - size; 612 613 if (alignment) { 614 u64 rem; 615 616 if (likely(remainder_mask)) 617 rem = adj_start & remainder_mask; 618 else 619 div64_u64_rem(adj_start, alignment, &rem); 620 if (rem) { 621 adj_start -= rem; 622 if (mode != DRM_MM_INSERT_HIGH) 623 adj_start += alignment; 624 625 if (adj_start < max(col_start, range_start) || 626 min(col_end, range_end) - adj_start < size) 627 continue; 628 629 if (adj_end <= adj_start || 630 adj_end - adj_start < size) 631 continue; 632 } 633 } 634 635 node->mm = mm; 636 node->size = size; 637 node->start = adj_start; 638 node->color = color; 639 node->hole_size = 0; 640 641 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); 642 list_add(&node->node_list, &hole->node_list); 643 drm_mm_interval_tree_add_node(hole, node); 644 645 rm_hole(hole); 646 if (adj_start > hole_start) 647 add_hole(hole); 648 if (adj_start + size < hole_end) 649 add_hole(node); 650 651 save_stack(node); 652 return 0; 653 } 654 655 return -ENOSPC; 656 } 657 EXPORT_SYMBOL(drm_mm_insert_node_in_range); 658 659 static inline bool drm_mm_node_scanned_block(const struct drm_mm_node *node) 660 { 661 return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); 662 } 663 664 /** 665 * drm_mm_remove_node - Remove a memory node from the allocator. 666 * @node: drm_mm_node to remove 667 * 668 * This just removes a node from its drm_mm allocator. The node does not need to 669 * be cleared again before it can be re-inserted into this or any other drm_mm 670 * allocator. It is a bug to call this function on a unallocated node. 671 */ 672 void drm_mm_remove_node(struct drm_mm_node *node) 673 { 674 struct drm_mm *mm = node->mm; 675 struct drm_mm_node *prev_node; 676 677 DRM_MM_BUG_ON(!drm_mm_node_allocated(node)); 678 DRM_MM_BUG_ON(drm_mm_node_scanned_block(node)); 679 680 prev_node = list_prev_entry(node, node_list); 681 682 if (drm_mm_hole_follows(node)) 683 rm_hole(node); 684 685 drm_mm_interval_tree_remove(node, &mm->interval_tree); 686 list_del(&node->node_list); 687 688 if (drm_mm_hole_follows(prev_node)) 689 rm_hole(prev_node); 690 add_hole(prev_node); 691 692 clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); 693 } 694 EXPORT_SYMBOL(drm_mm_remove_node); 695 696 /** 697 * drm_mm_replace_node - move an allocation from @old to @new 698 * @old: drm_mm_node to remove from the allocator 699 * @new: drm_mm_node which should inherit @old's allocation 700 * 701 * This is useful for when drivers embed the drm_mm_node structure and hence 702 * can't move allocations by reassigning pointers. It's a combination of remove 703 * and insert with the guarantee that the allocation start will match. 704 */ 705 void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new) 706 { 707 struct drm_mm *mm = old->mm; 708 709 DRM_MM_BUG_ON(!drm_mm_node_allocated(old)); 710 711 *new = *old; 712 713 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &new->flags); 714 list_replace(&old->node_list, &new->node_list); 715 rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree); 716 717 if (drm_mm_hole_follows(old)) { 718 list_replace(&old->hole_stack, &new->hole_stack); 719 rb_replace_node_cached(&old->rb_hole_size, 720 &new->rb_hole_size, 721 &mm->holes_size); 722 rb_replace_node(&old->rb_hole_addr, 723 &new->rb_hole_addr, 724 &mm->holes_addr); 725 } 726 727 clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &old->flags); 728 } 729 EXPORT_SYMBOL(drm_mm_replace_node); 730 731 /** 732 * DOC: lru scan roster 733 * 734 * Very often GPUs need to have continuous allocations for a given object. When 735 * evicting objects to make space for a new one it is therefore not most 736 * efficient when we simply start to select all objects from the tail of an LRU 737 * until there's a suitable hole: Especially for big objects or nodes that 738 * otherwise have special allocation constraints there's a good chance we evict 739 * lots of (smaller) objects unnecessarily. 740 * 741 * The DRM range allocator supports this use-case through the scanning 742 * interfaces. First a scan operation needs to be initialized with 743 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds 744 * objects to the roster, probably by walking an LRU list, but this can be 745 * freely implemented. Eviction candiates are added using 746 * drm_mm_scan_add_block() until a suitable hole is found or there are no 747 * further evictable objects. Eviction roster metadata is tracked in &struct 748 * drm_mm_scan. 749 * 750 * The driver must walk through all objects again in exactly the reverse 751 * order to restore the allocator state. Note that while the allocator is used 752 * in the scan mode no other operation is allowed. 753 * 754 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block() 755 * reported true) in the scan, and any overlapping nodes after color adjustment 756 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and 757 * since freeing a node is also O(1) the overall complexity is 758 * O(scanned_objects). So like the free stack which needs to be walked before a 759 * scan operation even begins this is linear in the number of objects. It 760 * doesn't seem to hurt too badly. 761 */ 762 763 /** 764 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning 765 * @scan: scan state 766 * @mm: drm_mm to scan 767 * @size: size of the allocation 768 * @alignment: alignment of the allocation 769 * @color: opaque tag value to use for the allocation 770 * @start: start of the allowed range for the allocation 771 * @end: end of the allowed range for the allocation 772 * @mode: fine-tune the allocation search and placement 773 * 774 * This simply sets up the scanning routines with the parameters for the desired 775 * hole. 776 * 777 * Warning: 778 * As long as the scan list is non-empty, no other operations than 779 * adding/removing nodes to/from the scan list are allowed. 780 */ 781 void drm_mm_scan_init_with_range(struct drm_mm_scan *scan, 782 struct drm_mm *mm, 783 u64 size, 784 u64 alignment, 785 unsigned long color, 786 u64 start, 787 u64 end, 788 enum drm_mm_insert_mode mode) 789 { 790 DRM_MM_BUG_ON(start >= end); 791 DRM_MM_BUG_ON(!size || size > end - start); 792 DRM_MM_BUG_ON(mm->scan_active); 793 794 scan->mm = mm; 795 796 if (alignment <= 1) 797 alignment = 0; 798 799 scan->color = color; 800 scan->alignment = alignment; 801 scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; 802 scan->size = size; 803 scan->mode = mode; 804 805 DRM_MM_BUG_ON(end <= start); 806 scan->range_start = start; 807 scan->range_end = end; 808 809 scan->hit_start = U64_MAX; 810 scan->hit_end = 0; 811 } 812 EXPORT_SYMBOL(drm_mm_scan_init_with_range); 813 814 /** 815 * drm_mm_scan_add_block - add a node to the scan list 816 * @scan: the active drm_mm scanner 817 * @node: drm_mm_node to add 818 * 819 * Add a node to the scan list that might be freed to make space for the desired 820 * hole. 821 * 822 * Returns: 823 * True if a hole has been found, false otherwise. 824 */ 825 bool drm_mm_scan_add_block(struct drm_mm_scan *scan, 826 struct drm_mm_node *node) 827 { 828 struct drm_mm *mm = scan->mm; 829 struct drm_mm_node *hole; 830 u64 hole_start, hole_end; 831 u64 col_start, col_end; 832 u64 adj_start, adj_end; 833 834 DRM_MM_BUG_ON(node->mm != mm); 835 DRM_MM_BUG_ON(!drm_mm_node_allocated(node)); 836 DRM_MM_BUG_ON(drm_mm_node_scanned_block(node)); 837 __set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); 838 mm->scan_active++; 839 840 /* Remove this block from the node_list so that we enlarge the hole 841 * (distance between the end of our previous node and the start of 842 * or next), without poisoning the link so that we can restore it 843 * later in drm_mm_scan_remove_block(). 844 */ 845 hole = list_prev_entry(node, node_list); 846 DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node); 847 __list_del_entry(&node->node_list); 848 849 hole_start = __drm_mm_hole_node_start(hole); 850 hole_end = __drm_mm_hole_node_end(hole); 851 852 col_start = hole_start; 853 col_end = hole_end; 854 if (mm->color_adjust) 855 mm->color_adjust(hole, scan->color, &col_start, &col_end); 856 857 adj_start = max(col_start, scan->range_start); 858 adj_end = min(col_end, scan->range_end); 859 if (adj_end <= adj_start || adj_end - adj_start < scan->size) 860 return false; 861 862 if (scan->mode == DRM_MM_INSERT_HIGH) 863 adj_start = adj_end - scan->size; 864 865 if (scan->alignment) { 866 u64 rem; 867 868 if (likely(scan->remainder_mask)) 869 rem = adj_start & scan->remainder_mask; 870 else 871 div64_u64_rem(adj_start, scan->alignment, &rem); 872 if (rem) { 873 adj_start -= rem; 874 if (scan->mode != DRM_MM_INSERT_HIGH) 875 adj_start += scan->alignment; 876 if (adj_start < max(col_start, scan->range_start) || 877 min(col_end, scan->range_end) - adj_start < scan->size) 878 return false; 879 880 if (adj_end <= adj_start || 881 adj_end - adj_start < scan->size) 882 return false; 883 } 884 } 885 886 scan->hit_start = adj_start; 887 scan->hit_end = adj_start + scan->size; 888 889 DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end); 890 DRM_MM_BUG_ON(scan->hit_start < hole_start); 891 DRM_MM_BUG_ON(scan->hit_end > hole_end); 892 893 return true; 894 } 895 EXPORT_SYMBOL(drm_mm_scan_add_block); 896 897 /** 898 * drm_mm_scan_remove_block - remove a node from the scan list 899 * @scan: the active drm_mm scanner 900 * @node: drm_mm_node to remove 901 * 902 * Nodes **must** be removed in exactly the reverse order from the scan list as 903 * they have been added (e.g. using list_add() as they are added and then 904 * list_for_each() over that eviction list to remove), otherwise the internal 905 * state of the memory manager will be corrupted. 906 * 907 * When the scan list is empty, the selected memory nodes can be freed. An 908 * immediately following drm_mm_insert_node_in_range_generic() or one of the 909 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return 910 * the just freed block (because it's at the top of the free_stack list). 911 * 912 * Returns: 913 * True if this block should be evicted, false otherwise. Will always 914 * return false when no hole has been found. 915 */ 916 bool drm_mm_scan_remove_block(struct drm_mm_scan *scan, 917 struct drm_mm_node *node) 918 { 919 struct drm_mm_node *prev_node; 920 921 DRM_MM_BUG_ON(node->mm != scan->mm); 922 DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node)); 923 __clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); 924 925 DRM_MM_BUG_ON(!node->mm->scan_active); 926 node->mm->scan_active--; 927 928 /* During drm_mm_scan_add_block() we decoupled this node leaving 929 * its pointers intact. Now that the caller is walking back along 930 * the eviction list we can restore this block into its rightful 931 * place on the full node_list. To confirm that the caller is walking 932 * backwards correctly we check that prev_node->next == node->next, 933 * i.e. both believe the same node should be on the other side of the 934 * hole. 935 */ 936 prev_node = list_prev_entry(node, node_list); 937 DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) != 938 list_next_entry(node, node_list)); 939 list_add(&node->node_list, &prev_node->node_list); 940 941 return (node->start + node->size > scan->hit_start && 942 node->start < scan->hit_end); 943 } 944 EXPORT_SYMBOL(drm_mm_scan_remove_block); 945 946 /** 947 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole 948 * @scan: drm_mm scan with target hole 949 * 950 * After completing an eviction scan and removing the selected nodes, we may 951 * need to remove a few more nodes from either side of the target hole if 952 * mm.color_adjust is being used. 953 * 954 * Returns: 955 * A node to evict, or NULL if there are no overlapping nodes. 956 */ 957 struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan) 958 { 959 struct drm_mm *mm = scan->mm; 960 struct drm_mm_node *hole; 961 u64 hole_start, hole_end; 962 963 DRM_MM_BUG_ON(list_empty(&mm->hole_stack)); 964 965 if (!mm->color_adjust) 966 return NULL; 967 968 /* 969 * The hole found during scanning should ideally be the first element 970 * in the hole_stack list, but due to side-effects in the driver it 971 * may not be. 972 */ 973 list_for_each_entry(hole, &mm->hole_stack, hole_stack) { 974 hole_start = __drm_mm_hole_node_start(hole); 975 hole_end = hole_start + hole->hole_size; 976 977 if (hole_start <= scan->hit_start && 978 hole_end >= scan->hit_end) 979 break; 980 } 981 982 /* We should only be called after we found the hole previously */ 983 DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack); 984 if (unlikely(&hole->hole_stack == &mm->hole_stack)) 985 return NULL; 986 987 DRM_MM_BUG_ON(hole_start > scan->hit_start); 988 DRM_MM_BUG_ON(hole_end < scan->hit_end); 989 990 mm->color_adjust(hole, scan->color, &hole_start, &hole_end); 991 if (hole_start > scan->hit_start) 992 return hole; 993 if (hole_end < scan->hit_end) 994 return list_next_entry(hole, node_list); 995 996 return NULL; 997 } 998 EXPORT_SYMBOL(drm_mm_scan_color_evict); 999 1000 /** 1001 * drm_mm_init - initialize a drm-mm allocator 1002 * @mm: the drm_mm structure to initialize 1003 * @start: start of the range managed by @mm 1004 * @size: end of the range managed by @mm 1005 * 1006 * Note that @mm must be cleared to 0 before calling this function. 1007 */ 1008 void drm_mm_init(struct drm_mm *mm, u64 start, u64 size) 1009 { 1010 DRM_MM_BUG_ON(start + size <= start); 1011 1012 mm->color_adjust = NULL; 1013 1014 INIT_LIST_HEAD(&mm->hole_stack); 1015 mm->interval_tree = RB_ROOT_CACHED; 1016 mm->holes_size = RB_ROOT_CACHED; 1017 mm->holes_addr = RB_ROOT; 1018 1019 /* Clever trick to avoid a special case in the free hole tracking. */ 1020 INIT_LIST_HEAD(&mm->head_node.node_list); 1021 mm->head_node.flags = 0; 1022 mm->head_node.mm = mm; 1023 mm->head_node.start = start + size; 1024 mm->head_node.size = -size; 1025 add_hole(&mm->head_node); 1026 1027 mm->scan_active = 0; 1028 } 1029 EXPORT_SYMBOL(drm_mm_init); 1030 1031 /** 1032 * drm_mm_takedown - clean up a drm_mm allocator 1033 * @mm: drm_mm allocator to clean up 1034 * 1035 * Note that it is a bug to call this function on an allocator which is not 1036 * clean. 1037 */ 1038 void drm_mm_takedown(struct drm_mm *mm) 1039 { 1040 if (WARN(!drm_mm_clean(mm), 1041 "Memory manager not clean during takedown.\n")) 1042 show_leaks(mm); 1043 } 1044 EXPORT_SYMBOL(drm_mm_takedown); 1045 1046 static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry) 1047 { 1048 u64 start, size; 1049 1050 size = entry->hole_size; 1051 if (size) { 1052 start = drm_mm_hole_node_start(entry); 1053 drm_printf(p, "%#018llx-%#018llx: %llu: free\n", 1054 start, start + size, size); 1055 } 1056 1057 return size; 1058 } 1059 /** 1060 * drm_mm_print - print allocator state 1061 * @mm: drm_mm allocator to print 1062 * @p: DRM printer to use 1063 */ 1064 void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p) 1065 { 1066 const struct drm_mm_node *entry; 1067 u64 total_used = 0, total_free = 0, total = 0; 1068 1069 total_free += drm_mm_dump_hole(p, &mm->head_node); 1070 1071 drm_mm_for_each_node(entry, mm) { 1072 drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start, 1073 entry->start + entry->size, entry->size); 1074 total_used += entry->size; 1075 total_free += drm_mm_dump_hole(p, entry); 1076 } 1077 total = total_free + total_used; 1078 1079 drm_printf(p, "total: %llu, used %llu free %llu\n", total, 1080 total_used, total_free); 1081 } 1082 EXPORT_SYMBOL(drm_mm_print); 1083