1 /************************************************************************** 2 * 3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA. 4 * Copyright 2016 Intel Corporation 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 * 28 **************************************************************************/ 29 30 /* 31 * Generic simple memory manager implementation. Intended to be used as a base 32 * class implementation for more advanced memory managers. 33 * 34 * Note that the algorithm used is quite simple and there might be substantial 35 * performance gains if a smarter free list is implemented. Currently it is 36 * just an unordered stack of free regions. This could easily be improved if 37 * an RB-tree is used instead. At least if we expect heavy fragmentation. 38 * 39 * Aligned allocations can also see improvement. 40 * 41 * Authors: 42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com> 43 */ 44 45 #include <linux/export.h> 46 #include <linux/interval_tree_generic.h> 47 #include <linux/seq_file.h> 48 #include <linux/slab.h> 49 #include <linux/stacktrace.h> 50 51 #include <drm/drm_mm.h> 52 53 /** 54 * DOC: Overview 55 * 56 * drm_mm provides a simple range allocator. The drivers are free to use the 57 * resource allocator from the linux core if it suits them, the upside of drm_mm 58 * is that it's in the DRM core. Which means that it's easier to extend for 59 * some of the crazier special purpose needs of gpus. 60 * 61 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node. 62 * Drivers are free to embed either of them into their own suitable 63 * datastructures. drm_mm itself will not do any memory allocations of its own, 64 * so if drivers choose not to embed nodes they need to still allocate them 65 * themselves. 66 * 67 * The range allocator also supports reservation of preallocated blocks. This is 68 * useful for taking over initial mode setting configurations from the firmware, 69 * where an object needs to be created which exactly matches the firmware's 70 * scanout target. As long as the range is still free it can be inserted anytime 71 * after the allocator is initialized, which helps with avoiding looped 72 * dependencies in the driver load sequence. 73 * 74 * drm_mm maintains a stack of most recently freed holes, which of all 75 * simplistic datastructures seems to be a fairly decent approach to clustering 76 * allocations and avoiding too much fragmentation. This means free space 77 * searches are O(num_holes). Given that all the fancy features drm_mm supports 78 * something better would be fairly complex and since gfx thrashing is a fairly 79 * steep cliff not a real concern. Removing a node again is O(1). 80 * 81 * drm_mm supports a few features: Alignment and range restrictions can be 82 * supplied. Furthermore every &drm_mm_node has a color value (which is just an 83 * opaque unsigned long) which in conjunction with a driver callback can be used 84 * to implement sophisticated placement restrictions. The i915 DRM driver uses 85 * this to implement guard pages between incompatible caching domains in the 86 * graphics TT. 87 * 88 * Two behaviors are supported for searching and allocating: bottom-up and 89 * top-down. The default is bottom-up. Top-down allocation can be used if the 90 * memory area has different restrictions, or just to reduce fragmentation. 91 * 92 * Finally iteration helpers to walk all nodes and all holes are provided as are 93 * some basic allocator dumpers for debugging. 94 * 95 * Note that this range allocator is not thread-safe, drivers need to protect 96 * modifications with their own locking. The idea behind this is that for a full 97 * memory manager additional data needs to be protected anyway, hence internal 98 * locking would be fully redundant. 99 */ 100 101 #ifdef CONFIG_DRM_DEBUG_MM 102 #include <linux/stackdepot.h> 103 104 #define STACKDEPTH 32 105 #define BUFSZ 4096 106 107 static noinline void save_stack(struct drm_mm_node *node) 108 { 109 unsigned long entries[STACKDEPTH]; 110 unsigned int n; 111 112 n = stack_trace_save(entries, ARRAY_SIZE(entries), 1); 113 114 /* May be called under spinlock, so avoid sleeping */ 115 node->stack = stack_depot_save(entries, n, GFP_NOWAIT); 116 } 117 118 static void show_leaks(struct drm_mm *mm) 119 { 120 struct drm_mm_node *node; 121 unsigned long *entries; 122 unsigned int nr_entries; 123 char *buf; 124 125 buf = kmalloc(BUFSZ, GFP_KERNEL); 126 if (!buf) 127 return; 128 129 list_for_each_entry(node, drm_mm_nodes(mm), node_list) { 130 if (!node->stack) { 131 DRM_ERROR("node [%08llx + %08llx]: unknown owner\n", 132 node->start, node->size); 133 continue; 134 } 135 136 nr_entries = stack_depot_fetch(node->stack, &entries); 137 stack_trace_snprint(buf, BUFSZ, entries, nr_entries, 0); 138 DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s", 139 node->start, node->size, buf); 140 } 141 142 kfree(buf); 143 } 144 145 #undef STACKDEPTH 146 #undef BUFSZ 147 #else 148 static void save_stack(struct drm_mm_node *node) { } 149 static void show_leaks(struct drm_mm *mm) { } 150 #endif 151 152 #define START(node) ((node)->start) 153 #define LAST(node) ((node)->start + (node)->size - 1) 154 155 INTERVAL_TREE_DEFINE(struct drm_mm_node, rb, 156 u64, __subtree_last, 157 START, LAST, static inline, drm_mm_interval_tree) 158 159 struct drm_mm_node * 160 __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last) 161 { 162 return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree, 163 start, last) ?: (struct drm_mm_node *)&mm->head_node; 164 } 165 EXPORT_SYMBOL(__drm_mm_interval_first); 166 167 static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node, 168 struct drm_mm_node *node) 169 { 170 struct drm_mm *mm = hole_node->mm; 171 struct rb_node **link, *rb; 172 struct drm_mm_node *parent; 173 bool leftmost; 174 175 node->__subtree_last = LAST(node); 176 177 if (drm_mm_node_allocated(hole_node)) { 178 rb = &hole_node->rb; 179 while (rb) { 180 parent = rb_entry(rb, struct drm_mm_node, rb); 181 if (parent->__subtree_last >= node->__subtree_last) 182 break; 183 184 parent->__subtree_last = node->__subtree_last; 185 rb = rb_parent(rb); 186 } 187 188 rb = &hole_node->rb; 189 link = &hole_node->rb.rb_right; 190 leftmost = false; 191 } else { 192 rb = NULL; 193 link = &mm->interval_tree.rb_root.rb_node; 194 leftmost = true; 195 } 196 197 while (*link) { 198 rb = *link; 199 parent = rb_entry(rb, struct drm_mm_node, rb); 200 if (parent->__subtree_last < node->__subtree_last) 201 parent->__subtree_last = node->__subtree_last; 202 if (node->start < parent->start) { 203 link = &parent->rb.rb_left; 204 } else { 205 link = &parent->rb.rb_right; 206 leftmost = false; 207 } 208 } 209 210 rb_link_node(&node->rb, rb, link); 211 rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost, 212 &drm_mm_interval_tree_augment); 213 } 214 215 #define HOLE_SIZE(NODE) ((NODE)->hole_size) 216 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE)) 217 218 static u64 rb_to_hole_size(struct rb_node *rb) 219 { 220 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size; 221 } 222 223 static void insert_hole_size(struct rb_root_cached *root, 224 struct drm_mm_node *node) 225 { 226 struct rb_node **link = &root->rb_root.rb_node, *rb = NULL; 227 u64 x = node->hole_size; 228 bool first = true; 229 230 while (*link) { 231 rb = *link; 232 if (x > rb_to_hole_size(rb)) { 233 link = &rb->rb_left; 234 } else { 235 link = &rb->rb_right; 236 first = false; 237 } 238 } 239 240 rb_link_node(&node->rb_hole_size, rb, link); 241 rb_insert_color_cached(&node->rb_hole_size, root, first); 242 } 243 244 RB_DECLARE_CALLBACKS_MAX(static, augment_callbacks, 245 struct drm_mm_node, rb_hole_addr, 246 u64, subtree_max_hole, HOLE_SIZE) 247 248 static void insert_hole_addr(struct rb_root *root, struct drm_mm_node *node) 249 { 250 struct rb_node **link = &root->rb_node, *rb_parent = NULL; 251 u64 start = HOLE_ADDR(node), subtree_max_hole = node->subtree_max_hole; 252 struct drm_mm_node *parent; 253 254 while (*link) { 255 rb_parent = *link; 256 parent = rb_entry(rb_parent, struct drm_mm_node, rb_hole_addr); 257 if (parent->subtree_max_hole < subtree_max_hole) 258 parent->subtree_max_hole = subtree_max_hole; 259 if (start < HOLE_ADDR(parent)) 260 link = &parent->rb_hole_addr.rb_left; 261 else 262 link = &parent->rb_hole_addr.rb_right; 263 } 264 265 rb_link_node(&node->rb_hole_addr, rb_parent, link); 266 rb_insert_augmented(&node->rb_hole_addr, root, &augment_callbacks); 267 } 268 269 static void add_hole(struct drm_mm_node *node) 270 { 271 struct drm_mm *mm = node->mm; 272 273 node->hole_size = 274 __drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node); 275 node->subtree_max_hole = node->hole_size; 276 DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); 277 278 insert_hole_size(&mm->holes_size, node); 279 insert_hole_addr(&mm->holes_addr, node); 280 281 list_add(&node->hole_stack, &mm->hole_stack); 282 } 283 284 static void rm_hole(struct drm_mm_node *node) 285 { 286 DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); 287 288 list_del(&node->hole_stack); 289 rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size); 290 rb_erase_augmented(&node->rb_hole_addr, &node->mm->holes_addr, 291 &augment_callbacks); 292 node->hole_size = 0; 293 node->subtree_max_hole = 0; 294 295 DRM_MM_BUG_ON(drm_mm_hole_follows(node)); 296 } 297 298 static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb) 299 { 300 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size); 301 } 302 303 static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb) 304 { 305 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr); 306 } 307 308 static inline u64 rb_hole_size(struct rb_node *rb) 309 { 310 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size; 311 } 312 313 static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size) 314 { 315 struct rb_node *rb = mm->holes_size.rb_root.rb_node; 316 struct drm_mm_node *best = NULL; 317 318 do { 319 struct drm_mm_node *node = 320 rb_entry(rb, struct drm_mm_node, rb_hole_size); 321 322 if (size <= node->hole_size) { 323 best = node; 324 rb = rb->rb_right; 325 } else { 326 rb = rb->rb_left; 327 } 328 } while (rb); 329 330 return best; 331 } 332 333 static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr) 334 { 335 struct rb_node *rb = mm->holes_addr.rb_node; 336 struct drm_mm_node *node = NULL; 337 338 while (rb) { 339 u64 hole_start; 340 341 node = rb_hole_addr_to_node(rb); 342 hole_start = __drm_mm_hole_node_start(node); 343 344 if (addr < hole_start) 345 rb = node->rb_hole_addr.rb_left; 346 else if (addr > hole_start + node->hole_size) 347 rb = node->rb_hole_addr.rb_right; 348 else 349 break; 350 } 351 352 return node; 353 } 354 355 static struct drm_mm_node * 356 first_hole(struct drm_mm *mm, 357 u64 start, u64 end, u64 size, 358 enum drm_mm_insert_mode mode) 359 { 360 switch (mode) { 361 default: 362 case DRM_MM_INSERT_BEST: 363 return best_hole(mm, size); 364 365 case DRM_MM_INSERT_LOW: 366 return find_hole(mm, start); 367 368 case DRM_MM_INSERT_HIGH: 369 return find_hole(mm, end); 370 371 case DRM_MM_INSERT_EVICT: 372 return list_first_entry_or_null(&mm->hole_stack, 373 struct drm_mm_node, 374 hole_stack); 375 } 376 } 377 378 /** 379 * next_hole_high_addr - returns next hole for a DRM_MM_INSERT_HIGH mode request 380 * @entry: previously selected drm_mm_node 381 * @size: size of the a hole needed for the request 382 * 383 * This function will verify whether left subtree of @entry has hole big enough 384 * to fit the requtested size. If so, it will return previous node of @entry or 385 * else it will return parent node of @entry 386 * 387 * It will also skip the complete left subtree if subtree_max_hole of that 388 * subtree is same as the subtree_max_hole of the @entry. 389 * 390 * Returns: 391 * previous node of @entry if left subtree of @entry can serve the request or 392 * else return parent of @entry 393 */ 394 static struct drm_mm_node * 395 next_hole_high_addr(struct drm_mm_node *entry, u64 size) 396 { 397 struct rb_node *rb_node, *left_rb_node, *parent_rb_node; 398 struct drm_mm_node *left_node; 399 400 if (!entry) 401 return NULL; 402 403 rb_node = &entry->rb_hole_addr; 404 if (rb_node->rb_left) { 405 left_rb_node = rb_node->rb_left; 406 parent_rb_node = rb_parent(rb_node); 407 left_node = rb_entry(left_rb_node, 408 struct drm_mm_node, rb_hole_addr); 409 if (left_node->subtree_max_hole < size && 410 parent_rb_node && parent_rb_node->rb_left != rb_node) 411 return rb_hole_addr_to_node(parent_rb_node); 412 } 413 414 return rb_hole_addr_to_node(rb_prev(rb_node)); 415 } 416 417 /** 418 * next_hole_low_addr - returns next hole for a DRM_MM_INSERT_LOW mode request 419 * @entry: previously selected drm_mm_node 420 * @size: size of the a hole needed for the request 421 * 422 * This function will verify whether right subtree of @entry has hole big enough 423 * to fit the requtested size. If so, it will return next node of @entry or 424 * else it will return parent node of @entry 425 * 426 * It will also skip the complete right subtree if subtree_max_hole of that 427 * subtree is same as the subtree_max_hole of the @entry. 428 * 429 * Returns: 430 * next node of @entry if right subtree of @entry can serve the request or 431 * else return parent of @entry 432 */ 433 static struct drm_mm_node * 434 next_hole_low_addr(struct drm_mm_node *entry, u64 size) 435 { 436 struct rb_node *rb_node, *right_rb_node, *parent_rb_node; 437 struct drm_mm_node *right_node; 438 439 if (!entry) 440 return NULL; 441 442 rb_node = &entry->rb_hole_addr; 443 if (rb_node->rb_right) { 444 right_rb_node = rb_node->rb_right; 445 parent_rb_node = rb_parent(rb_node); 446 right_node = rb_entry(right_rb_node, 447 struct drm_mm_node, rb_hole_addr); 448 if (right_node->subtree_max_hole < size && 449 parent_rb_node && parent_rb_node->rb_right != rb_node) 450 return rb_hole_addr_to_node(parent_rb_node); 451 } 452 453 return rb_hole_addr_to_node(rb_next(rb_node)); 454 } 455 456 static struct drm_mm_node * 457 next_hole(struct drm_mm *mm, 458 struct drm_mm_node *node, 459 u64 size, 460 enum drm_mm_insert_mode mode) 461 { 462 switch (mode) { 463 default: 464 case DRM_MM_INSERT_BEST: 465 return rb_hole_size_to_node(rb_prev(&node->rb_hole_size)); 466 467 case DRM_MM_INSERT_LOW: 468 return next_hole_low_addr(node, size); 469 470 case DRM_MM_INSERT_HIGH: 471 return next_hole_high_addr(node, size); 472 473 case DRM_MM_INSERT_EVICT: 474 node = list_next_entry(node, hole_stack); 475 return &node->hole_stack == &mm->hole_stack ? NULL : node; 476 } 477 } 478 479 /** 480 * drm_mm_reserve_node - insert an pre-initialized node 481 * @mm: drm_mm allocator to insert @node into 482 * @node: drm_mm_node to insert 483 * 484 * This functions inserts an already set-up &drm_mm_node into the allocator, 485 * meaning that start, size and color must be set by the caller. All other 486 * fields must be cleared to 0. This is useful to initialize the allocator with 487 * preallocated objects which must be set-up before the range allocator can be 488 * set-up, e.g. when taking over a firmware framebuffer. 489 * 490 * Returns: 491 * 0 on success, -ENOSPC if there's no hole where @node is. 492 */ 493 int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node) 494 { 495 struct drm_mm_node *hole; 496 u64 hole_start, hole_end; 497 u64 adj_start, adj_end; 498 u64 end; 499 500 end = node->start + node->size; 501 if (unlikely(end <= node->start)) 502 return -ENOSPC; 503 504 /* Find the relevant hole to add our node to */ 505 hole = find_hole(mm, node->start); 506 if (!hole) 507 return -ENOSPC; 508 509 adj_start = hole_start = __drm_mm_hole_node_start(hole); 510 adj_end = hole_end = hole_start + hole->hole_size; 511 512 if (mm->color_adjust) 513 mm->color_adjust(hole, node->color, &adj_start, &adj_end); 514 515 if (adj_start > node->start || adj_end < end) 516 return -ENOSPC; 517 518 node->mm = mm; 519 520 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); 521 list_add(&node->node_list, &hole->node_list); 522 drm_mm_interval_tree_add_node(hole, node); 523 node->hole_size = 0; 524 525 rm_hole(hole); 526 if (node->start > hole_start) 527 add_hole(hole); 528 if (end < hole_end) 529 add_hole(node); 530 531 save_stack(node); 532 return 0; 533 } 534 EXPORT_SYMBOL(drm_mm_reserve_node); 535 536 static u64 rb_to_hole_size_or_zero(struct rb_node *rb) 537 { 538 return rb ? rb_to_hole_size(rb) : 0; 539 } 540 541 /** 542 * drm_mm_insert_node_in_range - ranged search for space and insert @node 543 * @mm: drm_mm to allocate from 544 * @node: preallocate node to insert 545 * @size: size of the allocation 546 * @alignment: alignment of the allocation 547 * @color: opaque tag value to use for this node 548 * @range_start: start of the allowed range for this node 549 * @range_end: end of the allowed range for this node 550 * @mode: fine-tune the allocation search and placement 551 * 552 * The preallocated @node must be cleared to 0. 553 * 554 * Returns: 555 * 0 on success, -ENOSPC if there's no suitable hole. 556 */ 557 int drm_mm_insert_node_in_range(struct drm_mm * const mm, 558 struct drm_mm_node * const node, 559 u64 size, u64 alignment, 560 unsigned long color, 561 u64 range_start, u64 range_end, 562 enum drm_mm_insert_mode mode) 563 { 564 struct drm_mm_node *hole; 565 u64 remainder_mask; 566 bool once; 567 568 DRM_MM_BUG_ON(range_start > range_end); 569 570 if (unlikely(size == 0 || range_end - range_start < size)) 571 return -ENOSPC; 572 573 if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size) 574 return -ENOSPC; 575 576 if (alignment <= 1) 577 alignment = 0; 578 579 once = mode & DRM_MM_INSERT_ONCE; 580 mode &= ~DRM_MM_INSERT_ONCE; 581 582 remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; 583 for (hole = first_hole(mm, range_start, range_end, size, mode); 584 hole; 585 hole = once ? NULL : next_hole(mm, hole, size, mode)) { 586 u64 hole_start = __drm_mm_hole_node_start(hole); 587 u64 hole_end = hole_start + hole->hole_size; 588 u64 adj_start, adj_end; 589 u64 col_start, col_end; 590 591 if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end) 592 break; 593 594 if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start) 595 break; 596 597 col_start = hole_start; 598 col_end = hole_end; 599 if (mm->color_adjust) 600 mm->color_adjust(hole, color, &col_start, &col_end); 601 602 adj_start = max(col_start, range_start); 603 adj_end = min(col_end, range_end); 604 605 if (adj_end <= adj_start || adj_end - adj_start < size) 606 continue; 607 608 if (mode == DRM_MM_INSERT_HIGH) 609 adj_start = adj_end - size; 610 611 if (alignment) { 612 u64 rem; 613 614 if (likely(remainder_mask)) 615 rem = adj_start & remainder_mask; 616 else 617 div64_u64_rem(adj_start, alignment, &rem); 618 if (rem) { 619 adj_start -= rem; 620 if (mode != DRM_MM_INSERT_HIGH) 621 adj_start += alignment; 622 623 if (adj_start < max(col_start, range_start) || 624 min(col_end, range_end) - adj_start < size) 625 continue; 626 627 if (adj_end <= adj_start || 628 adj_end - adj_start < size) 629 continue; 630 } 631 } 632 633 node->mm = mm; 634 node->size = size; 635 node->start = adj_start; 636 node->color = color; 637 node->hole_size = 0; 638 639 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); 640 list_add(&node->node_list, &hole->node_list); 641 drm_mm_interval_tree_add_node(hole, node); 642 643 rm_hole(hole); 644 if (adj_start > hole_start) 645 add_hole(hole); 646 if (adj_start + size < hole_end) 647 add_hole(node); 648 649 save_stack(node); 650 return 0; 651 } 652 653 return -ENOSPC; 654 } 655 EXPORT_SYMBOL(drm_mm_insert_node_in_range); 656 657 static inline bool drm_mm_node_scanned_block(const struct drm_mm_node *node) 658 { 659 return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); 660 } 661 662 /** 663 * drm_mm_remove_node - Remove a memory node from the allocator. 664 * @node: drm_mm_node to remove 665 * 666 * This just removes a node from its drm_mm allocator. The node does not need to 667 * be cleared again before it can be re-inserted into this or any other drm_mm 668 * allocator. It is a bug to call this function on a unallocated node. 669 */ 670 void drm_mm_remove_node(struct drm_mm_node *node) 671 { 672 struct drm_mm *mm = node->mm; 673 struct drm_mm_node *prev_node; 674 675 DRM_MM_BUG_ON(!drm_mm_node_allocated(node)); 676 DRM_MM_BUG_ON(drm_mm_node_scanned_block(node)); 677 678 prev_node = list_prev_entry(node, node_list); 679 680 if (drm_mm_hole_follows(node)) 681 rm_hole(node); 682 683 drm_mm_interval_tree_remove(node, &mm->interval_tree); 684 list_del(&node->node_list); 685 686 if (drm_mm_hole_follows(prev_node)) 687 rm_hole(prev_node); 688 add_hole(prev_node); 689 690 clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); 691 } 692 EXPORT_SYMBOL(drm_mm_remove_node); 693 694 /** 695 * drm_mm_replace_node - move an allocation from @old to @new 696 * @old: drm_mm_node to remove from the allocator 697 * @new: drm_mm_node which should inherit @old's allocation 698 * 699 * This is useful for when drivers embed the drm_mm_node structure and hence 700 * can't move allocations by reassigning pointers. It's a combination of remove 701 * and insert with the guarantee that the allocation start will match. 702 */ 703 void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new) 704 { 705 struct drm_mm *mm = old->mm; 706 707 DRM_MM_BUG_ON(!drm_mm_node_allocated(old)); 708 709 *new = *old; 710 711 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &new->flags); 712 list_replace(&old->node_list, &new->node_list); 713 rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree); 714 715 if (drm_mm_hole_follows(old)) { 716 list_replace(&old->hole_stack, &new->hole_stack); 717 rb_replace_node_cached(&old->rb_hole_size, 718 &new->rb_hole_size, 719 &mm->holes_size); 720 rb_replace_node(&old->rb_hole_addr, 721 &new->rb_hole_addr, 722 &mm->holes_addr); 723 } 724 725 clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &old->flags); 726 } 727 EXPORT_SYMBOL(drm_mm_replace_node); 728 729 /** 730 * DOC: lru scan roster 731 * 732 * Very often GPUs need to have continuous allocations for a given object. When 733 * evicting objects to make space for a new one it is therefore not most 734 * efficient when we simply start to select all objects from the tail of an LRU 735 * until there's a suitable hole: Especially for big objects or nodes that 736 * otherwise have special allocation constraints there's a good chance we evict 737 * lots of (smaller) objects unnecessarily. 738 * 739 * The DRM range allocator supports this use-case through the scanning 740 * interfaces. First a scan operation needs to be initialized with 741 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds 742 * objects to the roster, probably by walking an LRU list, but this can be 743 * freely implemented. Eviction candiates are added using 744 * drm_mm_scan_add_block() until a suitable hole is found or there are no 745 * further evictable objects. Eviction roster metadata is tracked in &struct 746 * drm_mm_scan. 747 * 748 * The driver must walk through all objects again in exactly the reverse 749 * order to restore the allocator state. Note that while the allocator is used 750 * in the scan mode no other operation is allowed. 751 * 752 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block() 753 * reported true) in the scan, and any overlapping nodes after color adjustment 754 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and 755 * since freeing a node is also O(1) the overall complexity is 756 * O(scanned_objects). So like the free stack which needs to be walked before a 757 * scan operation even begins this is linear in the number of objects. It 758 * doesn't seem to hurt too badly. 759 */ 760 761 /** 762 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning 763 * @scan: scan state 764 * @mm: drm_mm to scan 765 * @size: size of the allocation 766 * @alignment: alignment of the allocation 767 * @color: opaque tag value to use for the allocation 768 * @start: start of the allowed range for the allocation 769 * @end: end of the allowed range for the allocation 770 * @mode: fine-tune the allocation search and placement 771 * 772 * This simply sets up the scanning routines with the parameters for the desired 773 * hole. 774 * 775 * Warning: 776 * As long as the scan list is non-empty, no other operations than 777 * adding/removing nodes to/from the scan list are allowed. 778 */ 779 void drm_mm_scan_init_with_range(struct drm_mm_scan *scan, 780 struct drm_mm *mm, 781 u64 size, 782 u64 alignment, 783 unsigned long color, 784 u64 start, 785 u64 end, 786 enum drm_mm_insert_mode mode) 787 { 788 DRM_MM_BUG_ON(start >= end); 789 DRM_MM_BUG_ON(!size || size > end - start); 790 DRM_MM_BUG_ON(mm->scan_active); 791 792 scan->mm = mm; 793 794 if (alignment <= 1) 795 alignment = 0; 796 797 scan->color = color; 798 scan->alignment = alignment; 799 scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; 800 scan->size = size; 801 scan->mode = mode; 802 803 DRM_MM_BUG_ON(end <= start); 804 scan->range_start = start; 805 scan->range_end = end; 806 807 scan->hit_start = U64_MAX; 808 scan->hit_end = 0; 809 } 810 EXPORT_SYMBOL(drm_mm_scan_init_with_range); 811 812 /** 813 * drm_mm_scan_add_block - add a node to the scan list 814 * @scan: the active drm_mm scanner 815 * @node: drm_mm_node to add 816 * 817 * Add a node to the scan list that might be freed to make space for the desired 818 * hole. 819 * 820 * Returns: 821 * True if a hole has been found, false otherwise. 822 */ 823 bool drm_mm_scan_add_block(struct drm_mm_scan *scan, 824 struct drm_mm_node *node) 825 { 826 struct drm_mm *mm = scan->mm; 827 struct drm_mm_node *hole; 828 u64 hole_start, hole_end; 829 u64 col_start, col_end; 830 u64 adj_start, adj_end; 831 832 DRM_MM_BUG_ON(node->mm != mm); 833 DRM_MM_BUG_ON(!drm_mm_node_allocated(node)); 834 DRM_MM_BUG_ON(drm_mm_node_scanned_block(node)); 835 __set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); 836 mm->scan_active++; 837 838 /* Remove this block from the node_list so that we enlarge the hole 839 * (distance between the end of our previous node and the start of 840 * or next), without poisoning the link so that we can restore it 841 * later in drm_mm_scan_remove_block(). 842 */ 843 hole = list_prev_entry(node, node_list); 844 DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node); 845 __list_del_entry(&node->node_list); 846 847 hole_start = __drm_mm_hole_node_start(hole); 848 hole_end = __drm_mm_hole_node_end(hole); 849 850 col_start = hole_start; 851 col_end = hole_end; 852 if (mm->color_adjust) 853 mm->color_adjust(hole, scan->color, &col_start, &col_end); 854 855 adj_start = max(col_start, scan->range_start); 856 adj_end = min(col_end, scan->range_end); 857 if (adj_end <= adj_start || adj_end - adj_start < scan->size) 858 return false; 859 860 if (scan->mode == DRM_MM_INSERT_HIGH) 861 adj_start = adj_end - scan->size; 862 863 if (scan->alignment) { 864 u64 rem; 865 866 if (likely(scan->remainder_mask)) 867 rem = adj_start & scan->remainder_mask; 868 else 869 div64_u64_rem(adj_start, scan->alignment, &rem); 870 if (rem) { 871 adj_start -= rem; 872 if (scan->mode != DRM_MM_INSERT_HIGH) 873 adj_start += scan->alignment; 874 if (adj_start < max(col_start, scan->range_start) || 875 min(col_end, scan->range_end) - adj_start < scan->size) 876 return false; 877 878 if (adj_end <= adj_start || 879 adj_end - adj_start < scan->size) 880 return false; 881 } 882 } 883 884 scan->hit_start = adj_start; 885 scan->hit_end = adj_start + scan->size; 886 887 DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end); 888 DRM_MM_BUG_ON(scan->hit_start < hole_start); 889 DRM_MM_BUG_ON(scan->hit_end > hole_end); 890 891 return true; 892 } 893 EXPORT_SYMBOL(drm_mm_scan_add_block); 894 895 /** 896 * drm_mm_scan_remove_block - remove a node from the scan list 897 * @scan: the active drm_mm scanner 898 * @node: drm_mm_node to remove 899 * 900 * Nodes **must** be removed in exactly the reverse order from the scan list as 901 * they have been added (e.g. using list_add() as they are added and then 902 * list_for_each() over that eviction list to remove), otherwise the internal 903 * state of the memory manager will be corrupted. 904 * 905 * When the scan list is empty, the selected memory nodes can be freed. An 906 * immediately following drm_mm_insert_node_in_range_generic() or one of the 907 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return 908 * the just freed block (because it's at the top of the free_stack list). 909 * 910 * Returns: 911 * True if this block should be evicted, false otherwise. Will always 912 * return false when no hole has been found. 913 */ 914 bool drm_mm_scan_remove_block(struct drm_mm_scan *scan, 915 struct drm_mm_node *node) 916 { 917 struct drm_mm_node *prev_node; 918 919 DRM_MM_BUG_ON(node->mm != scan->mm); 920 DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node)); 921 __clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); 922 923 DRM_MM_BUG_ON(!node->mm->scan_active); 924 node->mm->scan_active--; 925 926 /* During drm_mm_scan_add_block() we decoupled this node leaving 927 * its pointers intact. Now that the caller is walking back along 928 * the eviction list we can restore this block into its rightful 929 * place on the full node_list. To confirm that the caller is walking 930 * backwards correctly we check that prev_node->next == node->next, 931 * i.e. both believe the same node should be on the other side of the 932 * hole. 933 */ 934 prev_node = list_prev_entry(node, node_list); 935 DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) != 936 list_next_entry(node, node_list)); 937 list_add(&node->node_list, &prev_node->node_list); 938 939 return (node->start + node->size > scan->hit_start && 940 node->start < scan->hit_end); 941 } 942 EXPORT_SYMBOL(drm_mm_scan_remove_block); 943 944 /** 945 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole 946 * @scan: drm_mm scan with target hole 947 * 948 * After completing an eviction scan and removing the selected nodes, we may 949 * need to remove a few more nodes from either side of the target hole if 950 * mm.color_adjust is being used. 951 * 952 * Returns: 953 * A node to evict, or NULL if there are no overlapping nodes. 954 */ 955 struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan) 956 { 957 struct drm_mm *mm = scan->mm; 958 struct drm_mm_node *hole; 959 u64 hole_start, hole_end; 960 961 DRM_MM_BUG_ON(list_empty(&mm->hole_stack)); 962 963 if (!mm->color_adjust) 964 return NULL; 965 966 /* 967 * The hole found during scanning should ideally be the first element 968 * in the hole_stack list, but due to side-effects in the driver it 969 * may not be. 970 */ 971 list_for_each_entry(hole, &mm->hole_stack, hole_stack) { 972 hole_start = __drm_mm_hole_node_start(hole); 973 hole_end = hole_start + hole->hole_size; 974 975 if (hole_start <= scan->hit_start && 976 hole_end >= scan->hit_end) 977 break; 978 } 979 980 /* We should only be called after we found the hole previously */ 981 DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack); 982 if (unlikely(&hole->hole_stack == &mm->hole_stack)) 983 return NULL; 984 985 DRM_MM_BUG_ON(hole_start > scan->hit_start); 986 DRM_MM_BUG_ON(hole_end < scan->hit_end); 987 988 mm->color_adjust(hole, scan->color, &hole_start, &hole_end); 989 if (hole_start > scan->hit_start) 990 return hole; 991 if (hole_end < scan->hit_end) 992 return list_next_entry(hole, node_list); 993 994 return NULL; 995 } 996 EXPORT_SYMBOL(drm_mm_scan_color_evict); 997 998 /** 999 * drm_mm_init - initialize a drm-mm allocator 1000 * @mm: the drm_mm structure to initialize 1001 * @start: start of the range managed by @mm 1002 * @size: end of the range managed by @mm 1003 * 1004 * Note that @mm must be cleared to 0 before calling this function. 1005 */ 1006 void drm_mm_init(struct drm_mm *mm, u64 start, u64 size) 1007 { 1008 DRM_MM_BUG_ON(start + size <= start); 1009 1010 mm->color_adjust = NULL; 1011 1012 INIT_LIST_HEAD(&mm->hole_stack); 1013 mm->interval_tree = RB_ROOT_CACHED; 1014 mm->holes_size = RB_ROOT_CACHED; 1015 mm->holes_addr = RB_ROOT; 1016 1017 /* Clever trick to avoid a special case in the free hole tracking. */ 1018 INIT_LIST_HEAD(&mm->head_node.node_list); 1019 mm->head_node.flags = 0; 1020 mm->head_node.mm = mm; 1021 mm->head_node.start = start + size; 1022 mm->head_node.size = -size; 1023 add_hole(&mm->head_node); 1024 1025 mm->scan_active = 0; 1026 } 1027 EXPORT_SYMBOL(drm_mm_init); 1028 1029 /** 1030 * drm_mm_takedown - clean up a drm_mm allocator 1031 * @mm: drm_mm allocator to clean up 1032 * 1033 * Note that it is a bug to call this function on an allocator which is not 1034 * clean. 1035 */ 1036 void drm_mm_takedown(struct drm_mm *mm) 1037 { 1038 if (WARN(!drm_mm_clean(mm), 1039 "Memory manager not clean during takedown.\n")) 1040 show_leaks(mm); 1041 } 1042 EXPORT_SYMBOL(drm_mm_takedown); 1043 1044 static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry) 1045 { 1046 u64 start, size; 1047 1048 size = entry->hole_size; 1049 if (size) { 1050 start = drm_mm_hole_node_start(entry); 1051 drm_printf(p, "%#018llx-%#018llx: %llu: free\n", 1052 start, start + size, size); 1053 } 1054 1055 return size; 1056 } 1057 /** 1058 * drm_mm_print - print allocator state 1059 * @mm: drm_mm allocator to print 1060 * @p: DRM printer to use 1061 */ 1062 void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p) 1063 { 1064 const struct drm_mm_node *entry; 1065 u64 total_used = 0, total_free = 0, total = 0; 1066 1067 total_free += drm_mm_dump_hole(p, &mm->head_node); 1068 1069 drm_mm_for_each_node(entry, mm) { 1070 drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start, 1071 entry->start + entry->size, entry->size); 1072 total_used += entry->size; 1073 total_free += drm_mm_dump_hole(p, entry); 1074 } 1075 total = total_free + total_used; 1076 1077 drm_printf(p, "total: %llu, used %llu free %llu\n", total, 1078 total_used, total_free); 1079 } 1080 EXPORT_SYMBOL(drm_mm_print); 1081