xref: /openbmc/linux/drivers/gpu/drm/drm_mm.c (revision 1dd89152)
1 /**************************************************************************
2  *
3  * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
4  * Copyright 2016 Intel Corporation
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  *
28  **************************************************************************/
29 
30 /*
31  * Generic simple memory manager implementation. Intended to be used as a base
32  * class implementation for more advanced memory managers.
33  *
34  * Note that the algorithm used is quite simple and there might be substantial
35  * performance gains if a smarter free list is implemented. Currently it is
36  * just an unordered stack of free regions. This could easily be improved if
37  * an RB-tree is used instead. At least if we expect heavy fragmentation.
38  *
39  * Aligned allocations can also see improvement.
40  *
41  * Authors:
42  * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
43  */
44 
45 #include <linux/export.h>
46 #include <linux/interval_tree_generic.h>
47 #include <linux/seq_file.h>
48 #include <linux/slab.h>
49 #include <linux/stacktrace.h>
50 
51 #include <drm/drm_mm.h>
52 
53 /**
54  * DOC: Overview
55  *
56  * drm_mm provides a simple range allocator. The drivers are free to use the
57  * resource allocator from the linux core if it suits them, the upside of drm_mm
58  * is that it's in the DRM core. Which means that it's easier to extend for
59  * some of the crazier special purpose needs of gpus.
60  *
61  * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
62  * Drivers are free to embed either of them into their own suitable
63  * datastructures. drm_mm itself will not do any memory allocations of its own,
64  * so if drivers choose not to embed nodes they need to still allocate them
65  * themselves.
66  *
67  * The range allocator also supports reservation of preallocated blocks. This is
68  * useful for taking over initial mode setting configurations from the firmware,
69  * where an object needs to be created which exactly matches the firmware's
70  * scanout target. As long as the range is still free it can be inserted anytime
71  * after the allocator is initialized, which helps with avoiding looped
72  * dependencies in the driver load sequence.
73  *
74  * drm_mm maintains a stack of most recently freed holes, which of all
75  * simplistic datastructures seems to be a fairly decent approach to clustering
76  * allocations and avoiding too much fragmentation. This means free space
77  * searches are O(num_holes). Given that all the fancy features drm_mm supports
78  * something better would be fairly complex and since gfx thrashing is a fairly
79  * steep cliff not a real concern. Removing a node again is O(1).
80  *
81  * drm_mm supports a few features: Alignment and range restrictions can be
82  * supplied. Furthermore every &drm_mm_node has a color value (which is just an
83  * opaque unsigned long) which in conjunction with a driver callback can be used
84  * to implement sophisticated placement restrictions. The i915 DRM driver uses
85  * this to implement guard pages between incompatible caching domains in the
86  * graphics TT.
87  *
88  * Two behaviors are supported for searching and allocating: bottom-up and
89  * top-down. The default is bottom-up. Top-down allocation can be used if the
90  * memory area has different restrictions, or just to reduce fragmentation.
91  *
92  * Finally iteration helpers to walk all nodes and all holes are provided as are
93  * some basic allocator dumpers for debugging.
94  *
95  * Note that this range allocator is not thread-safe, drivers need to protect
96  * modifications with their own locking. The idea behind this is that for a full
97  * memory manager additional data needs to be protected anyway, hence internal
98  * locking would be fully redundant.
99  */
100 
101 #ifdef CONFIG_DRM_DEBUG_MM
102 #include <linux/stackdepot.h>
103 
104 #define STACKDEPTH 32
105 #define BUFSZ 4096
106 
107 static noinline void save_stack(struct drm_mm_node *node)
108 {
109 	unsigned long entries[STACKDEPTH];
110 	unsigned int n;
111 
112 	n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
113 
114 	/* May be called under spinlock, so avoid sleeping */
115 	node->stack = stack_depot_save(entries, n, GFP_NOWAIT);
116 }
117 
118 static void show_leaks(struct drm_mm *mm)
119 {
120 	struct drm_mm_node *node;
121 	unsigned long *entries;
122 	unsigned int nr_entries;
123 	char *buf;
124 
125 	buf = kmalloc(BUFSZ, GFP_KERNEL);
126 	if (!buf)
127 		return;
128 
129 	list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
130 		if (!node->stack) {
131 			DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
132 				  node->start, node->size);
133 			continue;
134 		}
135 
136 		nr_entries = stack_depot_fetch(node->stack, &entries);
137 		stack_trace_snprint(buf, BUFSZ, entries, nr_entries, 0);
138 		DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
139 			  node->start, node->size, buf);
140 	}
141 
142 	kfree(buf);
143 }
144 
145 #undef STACKDEPTH
146 #undef BUFSZ
147 #else
148 static void save_stack(struct drm_mm_node *node) { }
149 static void show_leaks(struct drm_mm *mm) { }
150 #endif
151 
152 #define START(node) ((node)->start)
153 #define LAST(node)  ((node)->start + (node)->size - 1)
154 
155 INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
156 		     u64, __subtree_last,
157 		     START, LAST, static inline, drm_mm_interval_tree)
158 
159 struct drm_mm_node *
160 __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
161 {
162 	return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
163 					       start, last) ?: (struct drm_mm_node *)&mm->head_node;
164 }
165 EXPORT_SYMBOL(__drm_mm_interval_first);
166 
167 static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
168 					  struct drm_mm_node *node)
169 {
170 	struct drm_mm *mm = hole_node->mm;
171 	struct rb_node **link, *rb;
172 	struct drm_mm_node *parent;
173 	bool leftmost;
174 
175 	node->__subtree_last = LAST(node);
176 
177 	if (drm_mm_node_allocated(hole_node)) {
178 		rb = &hole_node->rb;
179 		while (rb) {
180 			parent = rb_entry(rb, struct drm_mm_node, rb);
181 			if (parent->__subtree_last >= node->__subtree_last)
182 				break;
183 
184 			parent->__subtree_last = node->__subtree_last;
185 			rb = rb_parent(rb);
186 		}
187 
188 		rb = &hole_node->rb;
189 		link = &hole_node->rb.rb_right;
190 		leftmost = false;
191 	} else {
192 		rb = NULL;
193 		link = &mm->interval_tree.rb_root.rb_node;
194 		leftmost = true;
195 	}
196 
197 	while (*link) {
198 		rb = *link;
199 		parent = rb_entry(rb, struct drm_mm_node, rb);
200 		if (parent->__subtree_last < node->__subtree_last)
201 			parent->__subtree_last = node->__subtree_last;
202 		if (node->start < parent->start) {
203 			link = &parent->rb.rb_left;
204 		} else {
205 			link = &parent->rb.rb_right;
206 			leftmost = false;
207 		}
208 	}
209 
210 	rb_link_node(&node->rb, rb, link);
211 	rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
212 				   &drm_mm_interval_tree_augment);
213 }
214 
215 #define HOLE_SIZE(NODE) ((NODE)->hole_size)
216 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
217 
218 static u64 rb_to_hole_size(struct rb_node *rb)
219 {
220 	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
221 }
222 
223 static void insert_hole_size(struct rb_root_cached *root,
224 			     struct drm_mm_node *node)
225 {
226 	struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
227 	u64 x = node->hole_size;
228 	bool first = true;
229 
230 	while (*link) {
231 		rb = *link;
232 		if (x > rb_to_hole_size(rb)) {
233 			link = &rb->rb_left;
234 		} else {
235 			link = &rb->rb_right;
236 			first = false;
237 		}
238 	}
239 
240 	rb_link_node(&node->rb_hole_size, rb, link);
241 	rb_insert_color_cached(&node->rb_hole_size, root, first);
242 }
243 
244 RB_DECLARE_CALLBACKS_MAX(static, augment_callbacks,
245 			 struct drm_mm_node, rb_hole_addr,
246 			 u64, subtree_max_hole, HOLE_SIZE)
247 
248 static void insert_hole_addr(struct rb_root *root, struct drm_mm_node *node)
249 {
250 	struct rb_node **link = &root->rb_node, *rb_parent = NULL;
251 	u64 start = HOLE_ADDR(node), subtree_max_hole = node->subtree_max_hole;
252 	struct drm_mm_node *parent;
253 
254 	while (*link) {
255 		rb_parent = *link;
256 		parent = rb_entry(rb_parent, struct drm_mm_node, rb_hole_addr);
257 		if (parent->subtree_max_hole < subtree_max_hole)
258 			parent->subtree_max_hole = subtree_max_hole;
259 		if (start < HOLE_ADDR(parent))
260 			link = &parent->rb_hole_addr.rb_left;
261 		else
262 			link = &parent->rb_hole_addr.rb_right;
263 	}
264 
265 	rb_link_node(&node->rb_hole_addr, rb_parent, link);
266 	rb_insert_augmented(&node->rb_hole_addr, root, &augment_callbacks);
267 }
268 
269 static void add_hole(struct drm_mm_node *node)
270 {
271 	struct drm_mm *mm = node->mm;
272 
273 	node->hole_size =
274 		__drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
275 	node->subtree_max_hole = node->hole_size;
276 	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
277 
278 	insert_hole_size(&mm->holes_size, node);
279 	insert_hole_addr(&mm->holes_addr, node);
280 
281 	list_add(&node->hole_stack, &mm->hole_stack);
282 }
283 
284 static void rm_hole(struct drm_mm_node *node)
285 {
286 	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
287 
288 	list_del(&node->hole_stack);
289 	rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size);
290 	rb_erase_augmented(&node->rb_hole_addr, &node->mm->holes_addr,
291 			   &augment_callbacks);
292 	node->hole_size = 0;
293 	node->subtree_max_hole = 0;
294 
295 	DRM_MM_BUG_ON(drm_mm_hole_follows(node));
296 }
297 
298 static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
299 {
300 	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
301 }
302 
303 static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
304 {
305 	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
306 }
307 
308 static inline u64 rb_hole_size(struct rb_node *rb)
309 {
310 	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
311 }
312 
313 static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
314 {
315 	struct rb_node *rb = mm->holes_size.rb_root.rb_node;
316 	struct drm_mm_node *best = NULL;
317 
318 	do {
319 		struct drm_mm_node *node =
320 			rb_entry(rb, struct drm_mm_node, rb_hole_size);
321 
322 		if (size <= node->hole_size) {
323 			best = node;
324 			rb = rb->rb_right;
325 		} else {
326 			rb = rb->rb_left;
327 		}
328 	} while (rb);
329 
330 	return best;
331 }
332 
333 static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr)
334 {
335 	struct rb_node *rb = mm->holes_addr.rb_node;
336 	struct drm_mm_node *node = NULL;
337 
338 	while (rb) {
339 		u64 hole_start;
340 
341 		node = rb_hole_addr_to_node(rb);
342 		hole_start = __drm_mm_hole_node_start(node);
343 
344 		if (addr < hole_start)
345 			rb = node->rb_hole_addr.rb_left;
346 		else if (addr > hole_start + node->hole_size)
347 			rb = node->rb_hole_addr.rb_right;
348 		else
349 			break;
350 	}
351 
352 	return node;
353 }
354 
355 static struct drm_mm_node *
356 first_hole(struct drm_mm *mm,
357 	   u64 start, u64 end, u64 size,
358 	   enum drm_mm_insert_mode mode)
359 {
360 	switch (mode) {
361 	default:
362 	case DRM_MM_INSERT_BEST:
363 		return best_hole(mm, size);
364 
365 	case DRM_MM_INSERT_LOW:
366 		return find_hole(mm, start);
367 
368 	case DRM_MM_INSERT_HIGH:
369 		return find_hole(mm, end);
370 
371 	case DRM_MM_INSERT_EVICT:
372 		return list_first_entry_or_null(&mm->hole_stack,
373 						struct drm_mm_node,
374 						hole_stack);
375 	}
376 }
377 
378 /**
379  * next_hole_high_addr - returns next hole for a DRM_MM_INSERT_HIGH mode request
380  * @entry: previously selected drm_mm_node
381  * @size: size of the a hole needed for the request
382  *
383  * This function will verify whether left subtree of @entry has hole big enough
384  * to fit the requtested size. If so, it will return previous node of @entry or
385  * else it will return parent node of @entry
386  *
387  * It will also skip the complete left subtree if subtree_max_hole of that
388  * subtree is same as the subtree_max_hole of the @entry.
389  *
390  * Returns:
391  * previous node of @entry if left subtree of @entry can serve the request or
392  * else return parent of @entry
393  */
394 static struct drm_mm_node *
395 next_hole_high_addr(struct drm_mm_node *entry, u64 size)
396 {
397 	struct rb_node *rb_node, *left_rb_node, *parent_rb_node;
398 	struct drm_mm_node *left_node;
399 
400 	if (!entry)
401 		return NULL;
402 
403 	rb_node = &entry->rb_hole_addr;
404 	if (rb_node->rb_left) {
405 		left_rb_node = rb_node->rb_left;
406 		parent_rb_node = rb_parent(rb_node);
407 		left_node = rb_entry(left_rb_node,
408 				     struct drm_mm_node, rb_hole_addr);
409 		if (left_node->subtree_max_hole < size &&
410 		    parent_rb_node && parent_rb_node->rb_left != rb_node)
411 			return rb_hole_addr_to_node(parent_rb_node);
412 	}
413 
414 	return rb_hole_addr_to_node(rb_prev(rb_node));
415 }
416 
417 /**
418  * next_hole_low_addr - returns next hole for a DRM_MM_INSERT_LOW mode request
419  * @entry: previously selected drm_mm_node
420  * @size: size of the a hole needed for the request
421  *
422  * This function will verify whether right subtree of @entry has hole big enough
423  * to fit the requtested size. If so, it will return next node of @entry or
424  * else it will return parent node of @entry
425  *
426  * It will also skip the complete right subtree if subtree_max_hole of that
427  * subtree is same as the subtree_max_hole of the @entry.
428  *
429  * Returns:
430  * next node of @entry if right subtree of @entry can serve the request or
431  * else return parent of @entry
432  */
433 static struct drm_mm_node *
434 next_hole_low_addr(struct drm_mm_node *entry, u64 size)
435 {
436 	struct rb_node *rb_node, *right_rb_node, *parent_rb_node;
437 	struct drm_mm_node *right_node;
438 
439 	if (!entry)
440 		return NULL;
441 
442 	rb_node = &entry->rb_hole_addr;
443 	if (rb_node->rb_right) {
444 		right_rb_node = rb_node->rb_right;
445 		parent_rb_node = rb_parent(rb_node);
446 		right_node = rb_entry(right_rb_node,
447 				      struct drm_mm_node, rb_hole_addr);
448 		if (right_node->subtree_max_hole < size &&
449 		    parent_rb_node && parent_rb_node->rb_right != rb_node)
450 			return rb_hole_addr_to_node(parent_rb_node);
451 	}
452 
453 	return rb_hole_addr_to_node(rb_next(rb_node));
454 }
455 
456 static struct drm_mm_node *
457 next_hole(struct drm_mm *mm,
458 	  struct drm_mm_node *node,
459 	  u64 size,
460 	  enum drm_mm_insert_mode mode)
461 {
462 	switch (mode) {
463 	default:
464 	case DRM_MM_INSERT_BEST:
465 		return rb_hole_size_to_node(rb_prev(&node->rb_hole_size));
466 
467 	case DRM_MM_INSERT_LOW:
468 		return next_hole_low_addr(node, size);
469 
470 	case DRM_MM_INSERT_HIGH:
471 		return next_hole_high_addr(node, size);
472 
473 	case DRM_MM_INSERT_EVICT:
474 		node = list_next_entry(node, hole_stack);
475 		return &node->hole_stack == &mm->hole_stack ? NULL : node;
476 	}
477 }
478 
479 /**
480  * drm_mm_reserve_node - insert an pre-initialized node
481  * @mm: drm_mm allocator to insert @node into
482  * @node: drm_mm_node to insert
483  *
484  * This functions inserts an already set-up &drm_mm_node into the allocator,
485  * meaning that start, size and color must be set by the caller. All other
486  * fields must be cleared to 0. This is useful to initialize the allocator with
487  * preallocated objects which must be set-up before the range allocator can be
488  * set-up, e.g. when taking over a firmware framebuffer.
489  *
490  * Returns:
491  * 0 on success, -ENOSPC if there's no hole where @node is.
492  */
493 int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
494 {
495 	struct drm_mm_node *hole;
496 	u64 hole_start, hole_end;
497 	u64 adj_start, adj_end;
498 	u64 end;
499 
500 	end = node->start + node->size;
501 	if (unlikely(end <= node->start))
502 		return -ENOSPC;
503 
504 	/* Find the relevant hole to add our node to */
505 	hole = find_hole(mm, node->start);
506 	if (!hole)
507 		return -ENOSPC;
508 
509 	adj_start = hole_start = __drm_mm_hole_node_start(hole);
510 	adj_end = hole_end = hole_start + hole->hole_size;
511 
512 	if (mm->color_adjust)
513 		mm->color_adjust(hole, node->color, &adj_start, &adj_end);
514 
515 	if (adj_start > node->start || adj_end < end)
516 		return -ENOSPC;
517 
518 	node->mm = mm;
519 
520 	__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
521 	list_add(&node->node_list, &hole->node_list);
522 	drm_mm_interval_tree_add_node(hole, node);
523 	node->hole_size = 0;
524 
525 	rm_hole(hole);
526 	if (node->start > hole_start)
527 		add_hole(hole);
528 	if (end < hole_end)
529 		add_hole(node);
530 
531 	save_stack(node);
532 	return 0;
533 }
534 EXPORT_SYMBOL(drm_mm_reserve_node);
535 
536 static u64 rb_to_hole_size_or_zero(struct rb_node *rb)
537 {
538 	return rb ? rb_to_hole_size(rb) : 0;
539 }
540 
541 /**
542  * drm_mm_insert_node_in_range - ranged search for space and insert @node
543  * @mm: drm_mm to allocate from
544  * @node: preallocate node to insert
545  * @size: size of the allocation
546  * @alignment: alignment of the allocation
547  * @color: opaque tag value to use for this node
548  * @range_start: start of the allowed range for this node
549  * @range_end: end of the allowed range for this node
550  * @mode: fine-tune the allocation search and placement
551  *
552  * The preallocated @node must be cleared to 0.
553  *
554  * Returns:
555  * 0 on success, -ENOSPC if there's no suitable hole.
556  */
557 int drm_mm_insert_node_in_range(struct drm_mm * const mm,
558 				struct drm_mm_node * const node,
559 				u64 size, u64 alignment,
560 				unsigned long color,
561 				u64 range_start, u64 range_end,
562 				enum drm_mm_insert_mode mode)
563 {
564 	struct drm_mm_node *hole;
565 	u64 remainder_mask;
566 	bool once;
567 
568 	DRM_MM_BUG_ON(range_start > range_end);
569 
570 	if (unlikely(size == 0 || range_end - range_start < size))
571 		return -ENOSPC;
572 
573 	if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size)
574 		return -ENOSPC;
575 
576 	if (alignment <= 1)
577 		alignment = 0;
578 
579 	once = mode & DRM_MM_INSERT_ONCE;
580 	mode &= ~DRM_MM_INSERT_ONCE;
581 
582 	remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
583 	for (hole = first_hole(mm, range_start, range_end, size, mode);
584 	     hole;
585 	     hole = once ? NULL : next_hole(mm, hole, size, mode)) {
586 		u64 hole_start = __drm_mm_hole_node_start(hole);
587 		u64 hole_end = hole_start + hole->hole_size;
588 		u64 adj_start, adj_end;
589 		u64 col_start, col_end;
590 
591 		if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
592 			break;
593 
594 		if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
595 			break;
596 
597 		col_start = hole_start;
598 		col_end = hole_end;
599 		if (mm->color_adjust)
600 			mm->color_adjust(hole, color, &col_start, &col_end);
601 
602 		adj_start = max(col_start, range_start);
603 		adj_end = min(col_end, range_end);
604 
605 		if (adj_end <= adj_start || adj_end - adj_start < size)
606 			continue;
607 
608 		if (mode == DRM_MM_INSERT_HIGH)
609 			adj_start = adj_end - size;
610 
611 		if (alignment) {
612 			u64 rem;
613 
614 			if (likely(remainder_mask))
615 				rem = adj_start & remainder_mask;
616 			else
617 				div64_u64_rem(adj_start, alignment, &rem);
618 			if (rem) {
619 				adj_start -= rem;
620 				if (mode != DRM_MM_INSERT_HIGH)
621 					adj_start += alignment;
622 
623 				if (adj_start < max(col_start, range_start) ||
624 				    min(col_end, range_end) - adj_start < size)
625 					continue;
626 
627 				if (adj_end <= adj_start ||
628 				    adj_end - adj_start < size)
629 					continue;
630 			}
631 		}
632 
633 		node->mm = mm;
634 		node->size = size;
635 		node->start = adj_start;
636 		node->color = color;
637 		node->hole_size = 0;
638 
639 		__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
640 		list_add(&node->node_list, &hole->node_list);
641 		drm_mm_interval_tree_add_node(hole, node);
642 
643 		rm_hole(hole);
644 		if (adj_start > hole_start)
645 			add_hole(hole);
646 		if (adj_start + size < hole_end)
647 			add_hole(node);
648 
649 		save_stack(node);
650 		return 0;
651 	}
652 
653 	return -ENOSPC;
654 }
655 EXPORT_SYMBOL(drm_mm_insert_node_in_range);
656 
657 static inline bool drm_mm_node_scanned_block(const struct drm_mm_node *node)
658 {
659 	return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
660 }
661 
662 /**
663  * drm_mm_remove_node - Remove a memory node from the allocator.
664  * @node: drm_mm_node to remove
665  *
666  * This just removes a node from its drm_mm allocator. The node does not need to
667  * be cleared again before it can be re-inserted into this or any other drm_mm
668  * allocator. It is a bug to call this function on a unallocated node.
669  */
670 void drm_mm_remove_node(struct drm_mm_node *node)
671 {
672 	struct drm_mm *mm = node->mm;
673 	struct drm_mm_node *prev_node;
674 
675 	DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
676 	DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
677 
678 	prev_node = list_prev_entry(node, node_list);
679 
680 	if (drm_mm_hole_follows(node))
681 		rm_hole(node);
682 
683 	drm_mm_interval_tree_remove(node, &mm->interval_tree);
684 	list_del(&node->node_list);
685 
686 	if (drm_mm_hole_follows(prev_node))
687 		rm_hole(prev_node);
688 	add_hole(prev_node);
689 
690 	clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
691 }
692 EXPORT_SYMBOL(drm_mm_remove_node);
693 
694 /**
695  * drm_mm_replace_node - move an allocation from @old to @new
696  * @old: drm_mm_node to remove from the allocator
697  * @new: drm_mm_node which should inherit @old's allocation
698  *
699  * This is useful for when drivers embed the drm_mm_node structure and hence
700  * can't move allocations by reassigning pointers. It's a combination of remove
701  * and insert with the guarantee that the allocation start will match.
702  */
703 void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
704 {
705 	struct drm_mm *mm = old->mm;
706 
707 	DRM_MM_BUG_ON(!drm_mm_node_allocated(old));
708 
709 	*new = *old;
710 
711 	__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &new->flags);
712 	list_replace(&old->node_list, &new->node_list);
713 	rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree);
714 
715 	if (drm_mm_hole_follows(old)) {
716 		list_replace(&old->hole_stack, &new->hole_stack);
717 		rb_replace_node_cached(&old->rb_hole_size,
718 				       &new->rb_hole_size,
719 				       &mm->holes_size);
720 		rb_replace_node(&old->rb_hole_addr,
721 				&new->rb_hole_addr,
722 				&mm->holes_addr);
723 	}
724 
725 	clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &old->flags);
726 }
727 EXPORT_SYMBOL(drm_mm_replace_node);
728 
729 /**
730  * DOC: lru scan roster
731  *
732  * Very often GPUs need to have continuous allocations for a given object. When
733  * evicting objects to make space for a new one it is therefore not most
734  * efficient when we simply start to select all objects from the tail of an LRU
735  * until there's a suitable hole: Especially for big objects or nodes that
736  * otherwise have special allocation constraints there's a good chance we evict
737  * lots of (smaller) objects unnecessarily.
738  *
739  * The DRM range allocator supports this use-case through the scanning
740  * interfaces. First a scan operation needs to be initialized with
741  * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
742  * objects to the roster, probably by walking an LRU list, but this can be
743  * freely implemented. Eviction candiates are added using
744  * drm_mm_scan_add_block() until a suitable hole is found or there are no
745  * further evictable objects. Eviction roster metadata is tracked in &struct
746  * drm_mm_scan.
747  *
748  * The driver must walk through all objects again in exactly the reverse
749  * order to restore the allocator state. Note that while the allocator is used
750  * in the scan mode no other operation is allowed.
751  *
752  * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
753  * reported true) in the scan, and any overlapping nodes after color adjustment
754  * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
755  * since freeing a node is also O(1) the overall complexity is
756  * O(scanned_objects). So like the free stack which needs to be walked before a
757  * scan operation even begins this is linear in the number of objects. It
758  * doesn't seem to hurt too badly.
759  */
760 
761 /**
762  * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
763  * @scan: scan state
764  * @mm: drm_mm to scan
765  * @size: size of the allocation
766  * @alignment: alignment of the allocation
767  * @color: opaque tag value to use for the allocation
768  * @start: start of the allowed range for the allocation
769  * @end: end of the allowed range for the allocation
770  * @mode: fine-tune the allocation search and placement
771  *
772  * This simply sets up the scanning routines with the parameters for the desired
773  * hole.
774  *
775  * Warning:
776  * As long as the scan list is non-empty, no other operations than
777  * adding/removing nodes to/from the scan list are allowed.
778  */
779 void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
780 				 struct drm_mm *mm,
781 				 u64 size,
782 				 u64 alignment,
783 				 unsigned long color,
784 				 u64 start,
785 				 u64 end,
786 				 enum drm_mm_insert_mode mode)
787 {
788 	DRM_MM_BUG_ON(start >= end);
789 	DRM_MM_BUG_ON(!size || size > end - start);
790 	DRM_MM_BUG_ON(mm->scan_active);
791 
792 	scan->mm = mm;
793 
794 	if (alignment <= 1)
795 		alignment = 0;
796 
797 	scan->color = color;
798 	scan->alignment = alignment;
799 	scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
800 	scan->size = size;
801 	scan->mode = mode;
802 
803 	DRM_MM_BUG_ON(end <= start);
804 	scan->range_start = start;
805 	scan->range_end = end;
806 
807 	scan->hit_start = U64_MAX;
808 	scan->hit_end = 0;
809 }
810 EXPORT_SYMBOL(drm_mm_scan_init_with_range);
811 
812 /**
813  * drm_mm_scan_add_block - add a node to the scan list
814  * @scan: the active drm_mm scanner
815  * @node: drm_mm_node to add
816  *
817  * Add a node to the scan list that might be freed to make space for the desired
818  * hole.
819  *
820  * Returns:
821  * True if a hole has been found, false otherwise.
822  */
823 bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
824 			   struct drm_mm_node *node)
825 {
826 	struct drm_mm *mm = scan->mm;
827 	struct drm_mm_node *hole;
828 	u64 hole_start, hole_end;
829 	u64 col_start, col_end;
830 	u64 adj_start, adj_end;
831 
832 	DRM_MM_BUG_ON(node->mm != mm);
833 	DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
834 	DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
835 	__set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
836 	mm->scan_active++;
837 
838 	/* Remove this block from the node_list so that we enlarge the hole
839 	 * (distance between the end of our previous node and the start of
840 	 * or next), without poisoning the link so that we can restore it
841 	 * later in drm_mm_scan_remove_block().
842 	 */
843 	hole = list_prev_entry(node, node_list);
844 	DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
845 	__list_del_entry(&node->node_list);
846 
847 	hole_start = __drm_mm_hole_node_start(hole);
848 	hole_end = __drm_mm_hole_node_end(hole);
849 
850 	col_start = hole_start;
851 	col_end = hole_end;
852 	if (mm->color_adjust)
853 		mm->color_adjust(hole, scan->color, &col_start, &col_end);
854 
855 	adj_start = max(col_start, scan->range_start);
856 	adj_end = min(col_end, scan->range_end);
857 	if (adj_end <= adj_start || adj_end - adj_start < scan->size)
858 		return false;
859 
860 	if (scan->mode == DRM_MM_INSERT_HIGH)
861 		adj_start = adj_end - scan->size;
862 
863 	if (scan->alignment) {
864 		u64 rem;
865 
866 		if (likely(scan->remainder_mask))
867 			rem = adj_start & scan->remainder_mask;
868 		else
869 			div64_u64_rem(adj_start, scan->alignment, &rem);
870 		if (rem) {
871 			adj_start -= rem;
872 			if (scan->mode != DRM_MM_INSERT_HIGH)
873 				adj_start += scan->alignment;
874 			if (adj_start < max(col_start, scan->range_start) ||
875 			    min(col_end, scan->range_end) - adj_start < scan->size)
876 				return false;
877 
878 			if (adj_end <= adj_start ||
879 			    adj_end - adj_start < scan->size)
880 				return false;
881 		}
882 	}
883 
884 	scan->hit_start = adj_start;
885 	scan->hit_end = adj_start + scan->size;
886 
887 	DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
888 	DRM_MM_BUG_ON(scan->hit_start < hole_start);
889 	DRM_MM_BUG_ON(scan->hit_end > hole_end);
890 
891 	return true;
892 }
893 EXPORT_SYMBOL(drm_mm_scan_add_block);
894 
895 /**
896  * drm_mm_scan_remove_block - remove a node from the scan list
897  * @scan: the active drm_mm scanner
898  * @node: drm_mm_node to remove
899  *
900  * Nodes **must** be removed in exactly the reverse order from the scan list as
901  * they have been added (e.g. using list_add() as they are added and then
902  * list_for_each() over that eviction list to remove), otherwise the internal
903  * state of the memory manager will be corrupted.
904  *
905  * When the scan list is empty, the selected memory nodes can be freed. An
906  * immediately following drm_mm_insert_node_in_range_generic() or one of the
907  * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
908  * the just freed block (because it's at the top of the free_stack list).
909  *
910  * Returns:
911  * True if this block should be evicted, false otherwise. Will always
912  * return false when no hole has been found.
913  */
914 bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
915 			      struct drm_mm_node *node)
916 {
917 	struct drm_mm_node *prev_node;
918 
919 	DRM_MM_BUG_ON(node->mm != scan->mm);
920 	DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node));
921 	__clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
922 
923 	DRM_MM_BUG_ON(!node->mm->scan_active);
924 	node->mm->scan_active--;
925 
926 	/* During drm_mm_scan_add_block() we decoupled this node leaving
927 	 * its pointers intact. Now that the caller is walking back along
928 	 * the eviction list we can restore this block into its rightful
929 	 * place on the full node_list. To confirm that the caller is walking
930 	 * backwards correctly we check that prev_node->next == node->next,
931 	 * i.e. both believe the same node should be on the other side of the
932 	 * hole.
933 	 */
934 	prev_node = list_prev_entry(node, node_list);
935 	DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
936 		      list_next_entry(node, node_list));
937 	list_add(&node->node_list, &prev_node->node_list);
938 
939 	return (node->start + node->size > scan->hit_start &&
940 		node->start < scan->hit_end);
941 }
942 EXPORT_SYMBOL(drm_mm_scan_remove_block);
943 
944 /**
945  * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
946  * @scan: drm_mm scan with target hole
947  *
948  * After completing an eviction scan and removing the selected nodes, we may
949  * need to remove a few more nodes from either side of the target hole if
950  * mm.color_adjust is being used.
951  *
952  * Returns:
953  * A node to evict, or NULL if there are no overlapping nodes.
954  */
955 struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
956 {
957 	struct drm_mm *mm = scan->mm;
958 	struct drm_mm_node *hole;
959 	u64 hole_start, hole_end;
960 
961 	DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
962 
963 	if (!mm->color_adjust)
964 		return NULL;
965 
966 	/*
967 	 * The hole found during scanning should ideally be the first element
968 	 * in the hole_stack list, but due to side-effects in the driver it
969 	 * may not be.
970 	 */
971 	list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
972 		hole_start = __drm_mm_hole_node_start(hole);
973 		hole_end = hole_start + hole->hole_size;
974 
975 		if (hole_start <= scan->hit_start &&
976 		    hole_end >= scan->hit_end)
977 			break;
978 	}
979 
980 	/* We should only be called after we found the hole previously */
981 	DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
982 	if (unlikely(&hole->hole_stack == &mm->hole_stack))
983 		return NULL;
984 
985 	DRM_MM_BUG_ON(hole_start > scan->hit_start);
986 	DRM_MM_BUG_ON(hole_end < scan->hit_end);
987 
988 	mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
989 	if (hole_start > scan->hit_start)
990 		return hole;
991 	if (hole_end < scan->hit_end)
992 		return list_next_entry(hole, node_list);
993 
994 	return NULL;
995 }
996 EXPORT_SYMBOL(drm_mm_scan_color_evict);
997 
998 /**
999  * drm_mm_init - initialize a drm-mm allocator
1000  * @mm: the drm_mm structure to initialize
1001  * @start: start of the range managed by @mm
1002  * @size: end of the range managed by @mm
1003  *
1004  * Note that @mm must be cleared to 0 before calling this function.
1005  */
1006 void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
1007 {
1008 	DRM_MM_BUG_ON(start + size <= start);
1009 
1010 	mm->color_adjust = NULL;
1011 
1012 	INIT_LIST_HEAD(&mm->hole_stack);
1013 	mm->interval_tree = RB_ROOT_CACHED;
1014 	mm->holes_size = RB_ROOT_CACHED;
1015 	mm->holes_addr = RB_ROOT;
1016 
1017 	/* Clever trick to avoid a special case in the free hole tracking. */
1018 	INIT_LIST_HEAD(&mm->head_node.node_list);
1019 	mm->head_node.flags = 0;
1020 	mm->head_node.mm = mm;
1021 	mm->head_node.start = start + size;
1022 	mm->head_node.size = -size;
1023 	add_hole(&mm->head_node);
1024 
1025 	mm->scan_active = 0;
1026 }
1027 EXPORT_SYMBOL(drm_mm_init);
1028 
1029 /**
1030  * drm_mm_takedown - clean up a drm_mm allocator
1031  * @mm: drm_mm allocator to clean up
1032  *
1033  * Note that it is a bug to call this function on an allocator which is not
1034  * clean.
1035  */
1036 void drm_mm_takedown(struct drm_mm *mm)
1037 {
1038 	if (WARN(!drm_mm_clean(mm),
1039 		 "Memory manager not clean during takedown.\n"))
1040 		show_leaks(mm);
1041 }
1042 EXPORT_SYMBOL(drm_mm_takedown);
1043 
1044 static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
1045 {
1046 	u64 start, size;
1047 
1048 	size = entry->hole_size;
1049 	if (size) {
1050 		start = drm_mm_hole_node_start(entry);
1051 		drm_printf(p, "%#018llx-%#018llx: %llu: free\n",
1052 			   start, start + size, size);
1053 	}
1054 
1055 	return size;
1056 }
1057 /**
1058  * drm_mm_print - print allocator state
1059  * @mm: drm_mm allocator to print
1060  * @p: DRM printer to use
1061  */
1062 void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
1063 {
1064 	const struct drm_mm_node *entry;
1065 	u64 total_used = 0, total_free = 0, total = 0;
1066 
1067 	total_free += drm_mm_dump_hole(p, &mm->head_node);
1068 
1069 	drm_mm_for_each_node(entry, mm) {
1070 		drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
1071 			   entry->start + entry->size, entry->size);
1072 		total_used += entry->size;
1073 		total_free += drm_mm_dump_hole(p, entry);
1074 	}
1075 	total = total_free + total_used;
1076 
1077 	drm_printf(p, "total: %llu, used %llu free %llu\n", total,
1078 		   total_used, total_free);
1079 }
1080 EXPORT_SYMBOL(drm_mm_print);
1081