1 /**************************************************************************
2 *
3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
4 * Copyright 2016 Intel Corporation
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 *
28 **************************************************************************/
29
30 /*
31 * Generic simple memory manager implementation. Intended to be used as a base
32 * class implementation for more advanced memory managers.
33 *
34 * Note that the algorithm used is quite simple and there might be substantial
35 * performance gains if a smarter free list is implemented. Currently it is
36 * just an unordered stack of free regions. This could easily be improved if
37 * an RB-tree is used instead. At least if we expect heavy fragmentation.
38 *
39 * Aligned allocations can also see improvement.
40 *
41 * Authors:
42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
43 */
44
45 #include <linux/export.h>
46 #include <linux/interval_tree_generic.h>
47 #include <linux/seq_file.h>
48 #include <linux/slab.h>
49 #include <linux/stacktrace.h>
50
51 #include <drm/drm_mm.h>
52
53 /**
54 * DOC: Overview
55 *
56 * drm_mm provides a simple range allocator. The drivers are free to use the
57 * resource allocator from the linux core if it suits them, the upside of drm_mm
58 * is that it's in the DRM core. Which means that it's easier to extend for
59 * some of the crazier special purpose needs of gpus.
60 *
61 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
62 * Drivers are free to embed either of them into their own suitable
63 * datastructures. drm_mm itself will not do any memory allocations of its own,
64 * so if drivers choose not to embed nodes they need to still allocate them
65 * themselves.
66 *
67 * The range allocator also supports reservation of preallocated blocks. This is
68 * useful for taking over initial mode setting configurations from the firmware,
69 * where an object needs to be created which exactly matches the firmware's
70 * scanout target. As long as the range is still free it can be inserted anytime
71 * after the allocator is initialized, which helps with avoiding looped
72 * dependencies in the driver load sequence.
73 *
74 * drm_mm maintains a stack of most recently freed holes, which of all
75 * simplistic datastructures seems to be a fairly decent approach to clustering
76 * allocations and avoiding too much fragmentation. This means free space
77 * searches are O(num_holes). Given that all the fancy features drm_mm supports
78 * something better would be fairly complex and since gfx thrashing is a fairly
79 * steep cliff not a real concern. Removing a node again is O(1).
80 *
81 * drm_mm supports a few features: Alignment and range restrictions can be
82 * supplied. Furthermore every &drm_mm_node has a color value (which is just an
83 * opaque unsigned long) which in conjunction with a driver callback can be used
84 * to implement sophisticated placement restrictions. The i915 DRM driver uses
85 * this to implement guard pages between incompatible caching domains in the
86 * graphics TT.
87 *
88 * Two behaviors are supported for searching and allocating: bottom-up and
89 * top-down. The default is bottom-up. Top-down allocation can be used if the
90 * memory area has different restrictions, or just to reduce fragmentation.
91 *
92 * Finally iteration helpers to walk all nodes and all holes are provided as are
93 * some basic allocator dumpers for debugging.
94 *
95 * Note that this range allocator is not thread-safe, drivers need to protect
96 * modifications with their own locking. The idea behind this is that for a full
97 * memory manager additional data needs to be protected anyway, hence internal
98 * locking would be fully redundant.
99 */
100
101 #ifdef CONFIG_DRM_DEBUG_MM
102 #include <linux/stackdepot.h>
103
104 #define STACKDEPTH 32
105 #define BUFSZ 4096
106
save_stack(struct drm_mm_node * node)107 static noinline void save_stack(struct drm_mm_node *node)
108 {
109 unsigned long entries[STACKDEPTH];
110 unsigned int n;
111
112 n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
113
114 /* May be called under spinlock, so avoid sleeping */
115 node->stack = stack_depot_save(entries, n, GFP_NOWAIT);
116 }
117
show_leaks(struct drm_mm * mm)118 static void show_leaks(struct drm_mm *mm)
119 {
120 struct drm_mm_node *node;
121 char *buf;
122
123 buf = kmalloc(BUFSZ, GFP_KERNEL);
124 if (!buf)
125 return;
126
127 list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
128 if (!node->stack) {
129 DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
130 node->start, node->size);
131 continue;
132 }
133
134 stack_depot_snprint(node->stack, buf, BUFSZ, 0);
135 DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
136 node->start, node->size, buf);
137 }
138
139 kfree(buf);
140 }
141
142 #undef STACKDEPTH
143 #undef BUFSZ
144 #else
save_stack(struct drm_mm_node * node)145 static void save_stack(struct drm_mm_node *node) { }
show_leaks(struct drm_mm * mm)146 static void show_leaks(struct drm_mm *mm) { }
147 #endif
148
149 #define START(node) ((node)->start)
150 #define LAST(node) ((node)->start + (node)->size - 1)
151
INTERVAL_TREE_DEFINE(struct drm_mm_node,rb,u64,__subtree_last,START,LAST,static inline,drm_mm_interval_tree)152 INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
153 u64, __subtree_last,
154 START, LAST, static inline, drm_mm_interval_tree)
155
156 struct drm_mm_node *
157 __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
158 {
159 return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
160 start, last) ?: (struct drm_mm_node *)&mm->head_node;
161 }
162 EXPORT_SYMBOL(__drm_mm_interval_first);
163
drm_mm_interval_tree_add_node(struct drm_mm_node * hole_node,struct drm_mm_node * node)164 static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
165 struct drm_mm_node *node)
166 {
167 struct drm_mm *mm = hole_node->mm;
168 struct rb_node **link, *rb;
169 struct drm_mm_node *parent;
170 bool leftmost;
171
172 node->__subtree_last = LAST(node);
173
174 if (drm_mm_node_allocated(hole_node)) {
175 rb = &hole_node->rb;
176 while (rb) {
177 parent = rb_entry(rb, struct drm_mm_node, rb);
178 if (parent->__subtree_last >= node->__subtree_last)
179 break;
180
181 parent->__subtree_last = node->__subtree_last;
182 rb = rb_parent(rb);
183 }
184
185 rb = &hole_node->rb;
186 link = &hole_node->rb.rb_right;
187 leftmost = false;
188 } else {
189 rb = NULL;
190 link = &mm->interval_tree.rb_root.rb_node;
191 leftmost = true;
192 }
193
194 while (*link) {
195 rb = *link;
196 parent = rb_entry(rb, struct drm_mm_node, rb);
197 if (parent->__subtree_last < node->__subtree_last)
198 parent->__subtree_last = node->__subtree_last;
199 if (node->start < parent->start) {
200 link = &parent->rb.rb_left;
201 } else {
202 link = &parent->rb.rb_right;
203 leftmost = false;
204 }
205 }
206
207 rb_link_node(&node->rb, rb, link);
208 rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
209 &drm_mm_interval_tree_augment);
210 }
211
212 #define HOLE_SIZE(NODE) ((NODE)->hole_size)
213 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
214
rb_to_hole_size(struct rb_node * rb)215 static u64 rb_to_hole_size(struct rb_node *rb)
216 {
217 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
218 }
219
insert_hole_size(struct rb_root_cached * root,struct drm_mm_node * node)220 static void insert_hole_size(struct rb_root_cached *root,
221 struct drm_mm_node *node)
222 {
223 struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
224 u64 x = node->hole_size;
225 bool first = true;
226
227 while (*link) {
228 rb = *link;
229 if (x > rb_to_hole_size(rb)) {
230 link = &rb->rb_left;
231 } else {
232 link = &rb->rb_right;
233 first = false;
234 }
235 }
236
237 rb_link_node(&node->rb_hole_size, rb, link);
238 rb_insert_color_cached(&node->rb_hole_size, root, first);
239 }
240
RB_DECLARE_CALLBACKS_MAX(static,augment_callbacks,struct drm_mm_node,rb_hole_addr,u64,subtree_max_hole,HOLE_SIZE)241 RB_DECLARE_CALLBACKS_MAX(static, augment_callbacks,
242 struct drm_mm_node, rb_hole_addr,
243 u64, subtree_max_hole, HOLE_SIZE)
244
245 static void insert_hole_addr(struct rb_root *root, struct drm_mm_node *node)
246 {
247 struct rb_node **link = &root->rb_node, *rb_parent = NULL;
248 u64 start = HOLE_ADDR(node), subtree_max_hole = node->subtree_max_hole;
249 struct drm_mm_node *parent;
250
251 while (*link) {
252 rb_parent = *link;
253 parent = rb_entry(rb_parent, struct drm_mm_node, rb_hole_addr);
254 if (parent->subtree_max_hole < subtree_max_hole)
255 parent->subtree_max_hole = subtree_max_hole;
256 if (start < HOLE_ADDR(parent))
257 link = &parent->rb_hole_addr.rb_left;
258 else
259 link = &parent->rb_hole_addr.rb_right;
260 }
261
262 rb_link_node(&node->rb_hole_addr, rb_parent, link);
263 rb_insert_augmented(&node->rb_hole_addr, root, &augment_callbacks);
264 }
265
add_hole(struct drm_mm_node * node)266 static void add_hole(struct drm_mm_node *node)
267 {
268 struct drm_mm *mm = node->mm;
269
270 node->hole_size =
271 __drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
272 node->subtree_max_hole = node->hole_size;
273 DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
274
275 insert_hole_size(&mm->holes_size, node);
276 insert_hole_addr(&mm->holes_addr, node);
277
278 list_add(&node->hole_stack, &mm->hole_stack);
279 }
280
rm_hole(struct drm_mm_node * node)281 static void rm_hole(struct drm_mm_node *node)
282 {
283 DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
284
285 list_del(&node->hole_stack);
286 rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size);
287 rb_erase_augmented(&node->rb_hole_addr, &node->mm->holes_addr,
288 &augment_callbacks);
289 node->hole_size = 0;
290 node->subtree_max_hole = 0;
291
292 DRM_MM_BUG_ON(drm_mm_hole_follows(node));
293 }
294
rb_hole_size_to_node(struct rb_node * rb)295 static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
296 {
297 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
298 }
299
rb_hole_addr_to_node(struct rb_node * rb)300 static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
301 {
302 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
303 }
304
best_hole(struct drm_mm * mm,u64 size)305 static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
306 {
307 struct rb_node *rb = mm->holes_size.rb_root.rb_node;
308 struct drm_mm_node *best = NULL;
309
310 do {
311 struct drm_mm_node *node =
312 rb_entry(rb, struct drm_mm_node, rb_hole_size);
313
314 if (size <= node->hole_size) {
315 best = node;
316 rb = rb->rb_right;
317 } else {
318 rb = rb->rb_left;
319 }
320 } while (rb);
321
322 return best;
323 }
324
usable_hole_addr(struct rb_node * rb,u64 size)325 static bool usable_hole_addr(struct rb_node *rb, u64 size)
326 {
327 return rb && rb_hole_addr_to_node(rb)->subtree_max_hole >= size;
328 }
329
find_hole_addr(struct drm_mm * mm,u64 addr,u64 size)330 static struct drm_mm_node *find_hole_addr(struct drm_mm *mm, u64 addr, u64 size)
331 {
332 struct rb_node *rb = mm->holes_addr.rb_node;
333 struct drm_mm_node *node = NULL;
334
335 while (rb) {
336 u64 hole_start;
337
338 if (!usable_hole_addr(rb, size))
339 break;
340
341 node = rb_hole_addr_to_node(rb);
342 hole_start = __drm_mm_hole_node_start(node);
343
344 if (addr < hole_start)
345 rb = node->rb_hole_addr.rb_left;
346 else if (addr > hole_start + node->hole_size)
347 rb = node->rb_hole_addr.rb_right;
348 else
349 break;
350 }
351
352 return node;
353 }
354
355 static struct drm_mm_node *
first_hole(struct drm_mm * mm,u64 start,u64 end,u64 size,enum drm_mm_insert_mode mode)356 first_hole(struct drm_mm *mm,
357 u64 start, u64 end, u64 size,
358 enum drm_mm_insert_mode mode)
359 {
360 switch (mode) {
361 default:
362 case DRM_MM_INSERT_BEST:
363 return best_hole(mm, size);
364
365 case DRM_MM_INSERT_LOW:
366 return find_hole_addr(mm, start, size);
367
368 case DRM_MM_INSERT_HIGH:
369 return find_hole_addr(mm, end, size);
370
371 case DRM_MM_INSERT_EVICT:
372 return list_first_entry_or_null(&mm->hole_stack,
373 struct drm_mm_node,
374 hole_stack);
375 }
376 }
377
378 /**
379 * DECLARE_NEXT_HOLE_ADDR - macro to declare next hole functions
380 * @name: name of function to declare
381 * @first: first rb member to traverse (either rb_left or rb_right).
382 * @last: last rb member to traverse (either rb_right or rb_left).
383 *
384 * This macro declares a function to return the next hole of the addr rb tree.
385 * While traversing the tree we take the searched size into account and only
386 * visit branches with potential big enough holes.
387 */
388
389 #define DECLARE_NEXT_HOLE_ADDR(name, first, last) \
390 static struct drm_mm_node *name(struct drm_mm_node *entry, u64 size) \
391 { \
392 struct rb_node *parent, *node = &entry->rb_hole_addr; \
393 \
394 if (!entry || RB_EMPTY_NODE(node)) \
395 return NULL; \
396 \
397 if (usable_hole_addr(node->first, size)) { \
398 node = node->first; \
399 while (usable_hole_addr(node->last, size)) \
400 node = node->last; \
401 return rb_hole_addr_to_node(node); \
402 } \
403 \
404 while ((parent = rb_parent(node)) && node == parent->first) \
405 node = parent; \
406 \
407 return rb_hole_addr_to_node(parent); \
408 }
409
DECLARE_NEXT_HOLE_ADDR(next_hole_high_addr,rb_left,rb_right)410 DECLARE_NEXT_HOLE_ADDR(next_hole_high_addr, rb_left, rb_right)
411 DECLARE_NEXT_HOLE_ADDR(next_hole_low_addr, rb_right, rb_left)
412
413 static struct drm_mm_node *
414 next_hole(struct drm_mm *mm,
415 struct drm_mm_node *node,
416 u64 size,
417 enum drm_mm_insert_mode mode)
418 {
419 switch (mode) {
420 default:
421 case DRM_MM_INSERT_BEST:
422 return rb_hole_size_to_node(rb_prev(&node->rb_hole_size));
423
424 case DRM_MM_INSERT_LOW:
425 return next_hole_low_addr(node, size);
426
427 case DRM_MM_INSERT_HIGH:
428 return next_hole_high_addr(node, size);
429
430 case DRM_MM_INSERT_EVICT:
431 node = list_next_entry(node, hole_stack);
432 return &node->hole_stack == &mm->hole_stack ? NULL : node;
433 }
434 }
435
436 /**
437 * drm_mm_reserve_node - insert an pre-initialized node
438 * @mm: drm_mm allocator to insert @node into
439 * @node: drm_mm_node to insert
440 *
441 * This functions inserts an already set-up &drm_mm_node into the allocator,
442 * meaning that start, size and color must be set by the caller. All other
443 * fields must be cleared to 0. This is useful to initialize the allocator with
444 * preallocated objects which must be set-up before the range allocator can be
445 * set-up, e.g. when taking over a firmware framebuffer.
446 *
447 * Returns:
448 * 0 on success, -ENOSPC if there's no hole where @node is.
449 */
drm_mm_reserve_node(struct drm_mm * mm,struct drm_mm_node * node)450 int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
451 {
452 struct drm_mm_node *hole;
453 u64 hole_start, hole_end;
454 u64 adj_start, adj_end;
455 u64 end;
456
457 end = node->start + node->size;
458 if (unlikely(end <= node->start))
459 return -ENOSPC;
460
461 /* Find the relevant hole to add our node to */
462 hole = find_hole_addr(mm, node->start, 0);
463 if (!hole)
464 return -ENOSPC;
465
466 adj_start = hole_start = __drm_mm_hole_node_start(hole);
467 adj_end = hole_end = hole_start + hole->hole_size;
468
469 if (mm->color_adjust)
470 mm->color_adjust(hole, node->color, &adj_start, &adj_end);
471
472 if (adj_start > node->start || adj_end < end)
473 return -ENOSPC;
474
475 node->mm = mm;
476
477 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
478 list_add(&node->node_list, &hole->node_list);
479 drm_mm_interval_tree_add_node(hole, node);
480 node->hole_size = 0;
481
482 rm_hole(hole);
483 if (node->start > hole_start)
484 add_hole(hole);
485 if (end < hole_end)
486 add_hole(node);
487
488 save_stack(node);
489 return 0;
490 }
491 EXPORT_SYMBOL(drm_mm_reserve_node);
492
rb_to_hole_size_or_zero(struct rb_node * rb)493 static u64 rb_to_hole_size_or_zero(struct rb_node *rb)
494 {
495 return rb ? rb_to_hole_size(rb) : 0;
496 }
497
498 /**
499 * drm_mm_insert_node_in_range - ranged search for space and insert @node
500 * @mm: drm_mm to allocate from
501 * @node: preallocate node to insert
502 * @size: size of the allocation
503 * @alignment: alignment of the allocation
504 * @color: opaque tag value to use for this node
505 * @range_start: start of the allowed range for this node
506 * @range_end: end of the allowed range for this node
507 * @mode: fine-tune the allocation search and placement
508 *
509 * The preallocated @node must be cleared to 0.
510 *
511 * Returns:
512 * 0 on success, -ENOSPC if there's no suitable hole.
513 */
drm_mm_insert_node_in_range(struct drm_mm * const mm,struct drm_mm_node * const node,u64 size,u64 alignment,unsigned long color,u64 range_start,u64 range_end,enum drm_mm_insert_mode mode)514 int drm_mm_insert_node_in_range(struct drm_mm * const mm,
515 struct drm_mm_node * const node,
516 u64 size, u64 alignment,
517 unsigned long color,
518 u64 range_start, u64 range_end,
519 enum drm_mm_insert_mode mode)
520 {
521 struct drm_mm_node *hole;
522 u64 remainder_mask;
523 bool once;
524
525 DRM_MM_BUG_ON(range_start > range_end);
526
527 if (unlikely(size == 0 || range_end - range_start < size))
528 return -ENOSPC;
529
530 if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size)
531 return -ENOSPC;
532
533 if (alignment <= 1)
534 alignment = 0;
535
536 once = mode & DRM_MM_INSERT_ONCE;
537 mode &= ~DRM_MM_INSERT_ONCE;
538
539 remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
540 for (hole = first_hole(mm, range_start, range_end, size, mode);
541 hole;
542 hole = once ? NULL : next_hole(mm, hole, size, mode)) {
543 u64 hole_start = __drm_mm_hole_node_start(hole);
544 u64 hole_end = hole_start + hole->hole_size;
545 u64 adj_start, adj_end;
546 u64 col_start, col_end;
547
548 if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
549 break;
550
551 if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
552 break;
553
554 col_start = hole_start;
555 col_end = hole_end;
556 if (mm->color_adjust)
557 mm->color_adjust(hole, color, &col_start, &col_end);
558
559 adj_start = max(col_start, range_start);
560 adj_end = min(col_end, range_end);
561
562 if (adj_end <= adj_start || adj_end - adj_start < size)
563 continue;
564
565 if (mode == DRM_MM_INSERT_HIGH)
566 adj_start = adj_end - size;
567
568 if (alignment) {
569 u64 rem;
570
571 if (likely(remainder_mask))
572 rem = adj_start & remainder_mask;
573 else
574 div64_u64_rem(adj_start, alignment, &rem);
575 if (rem) {
576 adj_start -= rem;
577 if (mode != DRM_MM_INSERT_HIGH)
578 adj_start += alignment;
579
580 if (adj_start < max(col_start, range_start) ||
581 min(col_end, range_end) - adj_start < size)
582 continue;
583
584 if (adj_end <= adj_start ||
585 adj_end - adj_start < size)
586 continue;
587 }
588 }
589
590 node->mm = mm;
591 node->size = size;
592 node->start = adj_start;
593 node->color = color;
594 node->hole_size = 0;
595
596 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
597 list_add(&node->node_list, &hole->node_list);
598 drm_mm_interval_tree_add_node(hole, node);
599
600 rm_hole(hole);
601 if (adj_start > hole_start)
602 add_hole(hole);
603 if (adj_start + size < hole_end)
604 add_hole(node);
605
606 save_stack(node);
607 return 0;
608 }
609
610 return -ENOSPC;
611 }
612 EXPORT_SYMBOL(drm_mm_insert_node_in_range);
613
drm_mm_node_scanned_block(const struct drm_mm_node * node)614 static inline bool drm_mm_node_scanned_block(const struct drm_mm_node *node)
615 {
616 return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
617 }
618
619 /**
620 * drm_mm_remove_node - Remove a memory node from the allocator.
621 * @node: drm_mm_node to remove
622 *
623 * This just removes a node from its drm_mm allocator. The node does not need to
624 * be cleared again before it can be re-inserted into this or any other drm_mm
625 * allocator. It is a bug to call this function on a unallocated node.
626 */
drm_mm_remove_node(struct drm_mm_node * node)627 void drm_mm_remove_node(struct drm_mm_node *node)
628 {
629 struct drm_mm *mm = node->mm;
630 struct drm_mm_node *prev_node;
631
632 DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
633 DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
634
635 prev_node = list_prev_entry(node, node_list);
636
637 if (drm_mm_hole_follows(node))
638 rm_hole(node);
639
640 drm_mm_interval_tree_remove(node, &mm->interval_tree);
641 list_del(&node->node_list);
642
643 if (drm_mm_hole_follows(prev_node))
644 rm_hole(prev_node);
645 add_hole(prev_node);
646
647 clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
648 }
649 EXPORT_SYMBOL(drm_mm_remove_node);
650
651 /**
652 * drm_mm_replace_node - move an allocation from @old to @new
653 * @old: drm_mm_node to remove from the allocator
654 * @new: drm_mm_node which should inherit @old's allocation
655 *
656 * This is useful for when drivers embed the drm_mm_node structure and hence
657 * can't move allocations by reassigning pointers. It's a combination of remove
658 * and insert with the guarantee that the allocation start will match.
659 */
drm_mm_replace_node(struct drm_mm_node * old,struct drm_mm_node * new)660 void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
661 {
662 struct drm_mm *mm = old->mm;
663
664 DRM_MM_BUG_ON(!drm_mm_node_allocated(old));
665
666 *new = *old;
667
668 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &new->flags);
669 list_replace(&old->node_list, &new->node_list);
670 rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree);
671
672 if (drm_mm_hole_follows(old)) {
673 list_replace(&old->hole_stack, &new->hole_stack);
674 rb_replace_node_cached(&old->rb_hole_size,
675 &new->rb_hole_size,
676 &mm->holes_size);
677 rb_replace_node(&old->rb_hole_addr,
678 &new->rb_hole_addr,
679 &mm->holes_addr);
680 }
681
682 clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &old->flags);
683 }
684 EXPORT_SYMBOL(drm_mm_replace_node);
685
686 /**
687 * DOC: lru scan roster
688 *
689 * Very often GPUs need to have continuous allocations for a given object. When
690 * evicting objects to make space for a new one it is therefore not most
691 * efficient when we simply start to select all objects from the tail of an LRU
692 * until there's a suitable hole: Especially for big objects or nodes that
693 * otherwise have special allocation constraints there's a good chance we evict
694 * lots of (smaller) objects unnecessarily.
695 *
696 * The DRM range allocator supports this use-case through the scanning
697 * interfaces. First a scan operation needs to be initialized with
698 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
699 * objects to the roster, probably by walking an LRU list, but this can be
700 * freely implemented. Eviction candidates are added using
701 * drm_mm_scan_add_block() until a suitable hole is found or there are no
702 * further evictable objects. Eviction roster metadata is tracked in &struct
703 * drm_mm_scan.
704 *
705 * The driver must walk through all objects again in exactly the reverse
706 * order to restore the allocator state. Note that while the allocator is used
707 * in the scan mode no other operation is allowed.
708 *
709 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
710 * reported true) in the scan, and any overlapping nodes after color adjustment
711 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
712 * since freeing a node is also O(1) the overall complexity is
713 * O(scanned_objects). So like the free stack which needs to be walked before a
714 * scan operation even begins this is linear in the number of objects. It
715 * doesn't seem to hurt too badly.
716 */
717
718 /**
719 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
720 * @scan: scan state
721 * @mm: drm_mm to scan
722 * @size: size of the allocation
723 * @alignment: alignment of the allocation
724 * @color: opaque tag value to use for the allocation
725 * @start: start of the allowed range for the allocation
726 * @end: end of the allowed range for the allocation
727 * @mode: fine-tune the allocation search and placement
728 *
729 * This simply sets up the scanning routines with the parameters for the desired
730 * hole.
731 *
732 * Warning:
733 * As long as the scan list is non-empty, no other operations than
734 * adding/removing nodes to/from the scan list are allowed.
735 */
drm_mm_scan_init_with_range(struct drm_mm_scan * scan,struct drm_mm * mm,u64 size,u64 alignment,unsigned long color,u64 start,u64 end,enum drm_mm_insert_mode mode)736 void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
737 struct drm_mm *mm,
738 u64 size,
739 u64 alignment,
740 unsigned long color,
741 u64 start,
742 u64 end,
743 enum drm_mm_insert_mode mode)
744 {
745 DRM_MM_BUG_ON(start >= end);
746 DRM_MM_BUG_ON(!size || size > end - start);
747 DRM_MM_BUG_ON(mm->scan_active);
748
749 scan->mm = mm;
750
751 if (alignment <= 1)
752 alignment = 0;
753
754 scan->color = color;
755 scan->alignment = alignment;
756 scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
757 scan->size = size;
758 scan->mode = mode;
759
760 DRM_MM_BUG_ON(end <= start);
761 scan->range_start = start;
762 scan->range_end = end;
763
764 scan->hit_start = U64_MAX;
765 scan->hit_end = 0;
766 }
767 EXPORT_SYMBOL(drm_mm_scan_init_with_range);
768
769 /**
770 * drm_mm_scan_add_block - add a node to the scan list
771 * @scan: the active drm_mm scanner
772 * @node: drm_mm_node to add
773 *
774 * Add a node to the scan list that might be freed to make space for the desired
775 * hole.
776 *
777 * Returns:
778 * True if a hole has been found, false otherwise.
779 */
drm_mm_scan_add_block(struct drm_mm_scan * scan,struct drm_mm_node * node)780 bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
781 struct drm_mm_node *node)
782 {
783 struct drm_mm *mm = scan->mm;
784 struct drm_mm_node *hole;
785 u64 hole_start, hole_end;
786 u64 col_start, col_end;
787 u64 adj_start, adj_end;
788
789 DRM_MM_BUG_ON(node->mm != mm);
790 DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
791 DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
792 __set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
793 mm->scan_active++;
794
795 /* Remove this block from the node_list so that we enlarge the hole
796 * (distance between the end of our previous node and the start of
797 * or next), without poisoning the link so that we can restore it
798 * later in drm_mm_scan_remove_block().
799 */
800 hole = list_prev_entry(node, node_list);
801 DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
802 __list_del_entry(&node->node_list);
803
804 hole_start = __drm_mm_hole_node_start(hole);
805 hole_end = __drm_mm_hole_node_end(hole);
806
807 col_start = hole_start;
808 col_end = hole_end;
809 if (mm->color_adjust)
810 mm->color_adjust(hole, scan->color, &col_start, &col_end);
811
812 adj_start = max(col_start, scan->range_start);
813 adj_end = min(col_end, scan->range_end);
814 if (adj_end <= adj_start || adj_end - adj_start < scan->size)
815 return false;
816
817 if (scan->mode == DRM_MM_INSERT_HIGH)
818 adj_start = adj_end - scan->size;
819
820 if (scan->alignment) {
821 u64 rem;
822
823 if (likely(scan->remainder_mask))
824 rem = adj_start & scan->remainder_mask;
825 else
826 div64_u64_rem(adj_start, scan->alignment, &rem);
827 if (rem) {
828 adj_start -= rem;
829 if (scan->mode != DRM_MM_INSERT_HIGH)
830 adj_start += scan->alignment;
831 if (adj_start < max(col_start, scan->range_start) ||
832 min(col_end, scan->range_end) - adj_start < scan->size)
833 return false;
834
835 if (adj_end <= adj_start ||
836 adj_end - adj_start < scan->size)
837 return false;
838 }
839 }
840
841 scan->hit_start = adj_start;
842 scan->hit_end = adj_start + scan->size;
843
844 DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
845 DRM_MM_BUG_ON(scan->hit_start < hole_start);
846 DRM_MM_BUG_ON(scan->hit_end > hole_end);
847
848 return true;
849 }
850 EXPORT_SYMBOL(drm_mm_scan_add_block);
851
852 /**
853 * drm_mm_scan_remove_block - remove a node from the scan list
854 * @scan: the active drm_mm scanner
855 * @node: drm_mm_node to remove
856 *
857 * Nodes **must** be removed in exactly the reverse order from the scan list as
858 * they have been added (e.g. using list_add() as they are added and then
859 * list_for_each() over that eviction list to remove), otherwise the internal
860 * state of the memory manager will be corrupted.
861 *
862 * When the scan list is empty, the selected memory nodes can be freed. An
863 * immediately following drm_mm_insert_node_in_range_generic() or one of the
864 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
865 * the just freed block (because it's at the top of the free_stack list).
866 *
867 * Returns:
868 * True if this block should be evicted, false otherwise. Will always
869 * return false when no hole has been found.
870 */
drm_mm_scan_remove_block(struct drm_mm_scan * scan,struct drm_mm_node * node)871 bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
872 struct drm_mm_node *node)
873 {
874 struct drm_mm_node *prev_node;
875
876 DRM_MM_BUG_ON(node->mm != scan->mm);
877 DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node));
878 __clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
879
880 DRM_MM_BUG_ON(!node->mm->scan_active);
881 node->mm->scan_active--;
882
883 /* During drm_mm_scan_add_block() we decoupled this node leaving
884 * its pointers intact. Now that the caller is walking back along
885 * the eviction list we can restore this block into its rightful
886 * place on the full node_list. To confirm that the caller is walking
887 * backwards correctly we check that prev_node->next == node->next,
888 * i.e. both believe the same node should be on the other side of the
889 * hole.
890 */
891 prev_node = list_prev_entry(node, node_list);
892 DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
893 list_next_entry(node, node_list));
894 list_add(&node->node_list, &prev_node->node_list);
895
896 return (node->start + node->size > scan->hit_start &&
897 node->start < scan->hit_end);
898 }
899 EXPORT_SYMBOL(drm_mm_scan_remove_block);
900
901 /**
902 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
903 * @scan: drm_mm scan with target hole
904 *
905 * After completing an eviction scan and removing the selected nodes, we may
906 * need to remove a few more nodes from either side of the target hole if
907 * mm.color_adjust is being used.
908 *
909 * Returns:
910 * A node to evict, or NULL if there are no overlapping nodes.
911 */
drm_mm_scan_color_evict(struct drm_mm_scan * scan)912 struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
913 {
914 struct drm_mm *mm = scan->mm;
915 struct drm_mm_node *hole;
916 u64 hole_start, hole_end;
917
918 DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
919
920 if (!mm->color_adjust)
921 return NULL;
922
923 /*
924 * The hole found during scanning should ideally be the first element
925 * in the hole_stack list, but due to side-effects in the driver it
926 * may not be.
927 */
928 list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
929 hole_start = __drm_mm_hole_node_start(hole);
930 hole_end = hole_start + hole->hole_size;
931
932 if (hole_start <= scan->hit_start &&
933 hole_end >= scan->hit_end)
934 break;
935 }
936
937 /* We should only be called after we found the hole previously */
938 DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
939 if (unlikely(&hole->hole_stack == &mm->hole_stack))
940 return NULL;
941
942 DRM_MM_BUG_ON(hole_start > scan->hit_start);
943 DRM_MM_BUG_ON(hole_end < scan->hit_end);
944
945 mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
946 if (hole_start > scan->hit_start)
947 return hole;
948 if (hole_end < scan->hit_end)
949 return list_next_entry(hole, node_list);
950
951 return NULL;
952 }
953 EXPORT_SYMBOL(drm_mm_scan_color_evict);
954
955 /**
956 * drm_mm_init - initialize a drm-mm allocator
957 * @mm: the drm_mm structure to initialize
958 * @start: start of the range managed by @mm
959 * @size: end of the range managed by @mm
960 *
961 * Note that @mm must be cleared to 0 before calling this function.
962 */
drm_mm_init(struct drm_mm * mm,u64 start,u64 size)963 void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
964 {
965 DRM_MM_BUG_ON(start + size <= start);
966
967 mm->color_adjust = NULL;
968
969 INIT_LIST_HEAD(&mm->hole_stack);
970 mm->interval_tree = RB_ROOT_CACHED;
971 mm->holes_size = RB_ROOT_CACHED;
972 mm->holes_addr = RB_ROOT;
973
974 /* Clever trick to avoid a special case in the free hole tracking. */
975 INIT_LIST_HEAD(&mm->head_node.node_list);
976 mm->head_node.flags = 0;
977 mm->head_node.mm = mm;
978 mm->head_node.start = start + size;
979 mm->head_node.size = -size;
980 add_hole(&mm->head_node);
981
982 mm->scan_active = 0;
983
984 #ifdef CONFIG_DRM_DEBUG_MM
985 stack_depot_init();
986 #endif
987 }
988 EXPORT_SYMBOL(drm_mm_init);
989
990 /**
991 * drm_mm_takedown - clean up a drm_mm allocator
992 * @mm: drm_mm allocator to clean up
993 *
994 * Note that it is a bug to call this function on an allocator which is not
995 * clean.
996 */
drm_mm_takedown(struct drm_mm * mm)997 void drm_mm_takedown(struct drm_mm *mm)
998 {
999 if (WARN(!drm_mm_clean(mm),
1000 "Memory manager not clean during takedown.\n"))
1001 show_leaks(mm);
1002 }
1003 EXPORT_SYMBOL(drm_mm_takedown);
1004
drm_mm_dump_hole(struct drm_printer * p,const struct drm_mm_node * entry)1005 static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
1006 {
1007 u64 start, size;
1008
1009 size = entry->hole_size;
1010 if (size) {
1011 start = drm_mm_hole_node_start(entry);
1012 drm_printf(p, "%#018llx-%#018llx: %llu: free\n",
1013 start, start + size, size);
1014 }
1015
1016 return size;
1017 }
1018 /**
1019 * drm_mm_print - print allocator state
1020 * @mm: drm_mm allocator to print
1021 * @p: DRM printer to use
1022 */
drm_mm_print(const struct drm_mm * mm,struct drm_printer * p)1023 void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
1024 {
1025 const struct drm_mm_node *entry;
1026 u64 total_used = 0, total_free = 0, total = 0;
1027
1028 total_free += drm_mm_dump_hole(p, &mm->head_node);
1029
1030 drm_mm_for_each_node(entry, mm) {
1031 drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
1032 entry->start + entry->size, entry->size);
1033 total_used += entry->size;
1034 total_free += drm_mm_dump_hole(p, entry);
1035 }
1036 total = total_free + total_used;
1037
1038 drm_printf(p, "total: %llu, used %llu free %llu\n", total,
1039 total_used, total_free);
1040 }
1041 EXPORT_SYMBOL(drm_mm_print);
1042