1 /** 2 * \file drm_irq.c 3 * IRQ support 4 * 5 * \author Rickard E. (Rik) Faith <faith@valinux.com> 6 * \author Gareth Hughes <gareth@valinux.com> 7 */ 8 9 /* 10 * Created: Fri Mar 19 14:30:16 1999 by faith@valinux.com 11 * 12 * Copyright 1999, 2000 Precision Insight, Inc., Cedar Park, Texas. 13 * Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California. 14 * All Rights Reserved. 15 * 16 * Permission is hereby granted, free of charge, to any person obtaining a 17 * copy of this software and associated documentation files (the "Software"), 18 * to deal in the Software without restriction, including without limitation 19 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 20 * and/or sell copies of the Software, and to permit persons to whom the 21 * Software is furnished to do so, subject to the following conditions: 22 * 23 * The above copyright notice and this permission notice (including the next 24 * paragraph) shall be included in all copies or substantial portions of the 25 * Software. 26 * 27 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 28 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 29 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 30 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 31 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 32 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 33 * OTHER DEALINGS IN THE SOFTWARE. 34 */ 35 36 #include <drm/drmP.h> 37 #include "drm_trace.h" 38 39 #include <linux/interrupt.h> /* For task queue support */ 40 #include <linux/slab.h> 41 42 #include <linux/vgaarb.h> 43 #include <linux/export.h> 44 45 /* Access macro for slots in vblank timestamp ringbuffer. */ 46 #define vblanktimestamp(dev, crtc, count) \ 47 ((dev)->vblank[crtc].time[(count) % DRM_VBLANKTIME_RBSIZE]) 48 49 /* Retry timestamp calculation up to 3 times to satisfy 50 * drm_timestamp_precision before giving up. 51 */ 52 #define DRM_TIMESTAMP_MAXRETRIES 3 53 54 /* Threshold in nanoseconds for detection of redundant 55 * vblank irq in drm_handle_vblank(). 1 msec should be ok. 56 */ 57 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 58 59 /** 60 * Get interrupt from bus id. 61 * 62 * \param inode device inode. 63 * \param file_priv DRM file private. 64 * \param cmd command. 65 * \param arg user argument, pointing to a drm_irq_busid structure. 66 * \return zero on success or a negative number on failure. 67 * 68 * Finds the PCI device with the specified bus id and gets its IRQ number. 69 * This IOCTL is deprecated, and will now return EINVAL for any busid not equal 70 * to that of the device that this DRM instance attached to. 71 */ 72 int drm_irq_by_busid(struct drm_device *dev, void *data, 73 struct drm_file *file_priv) 74 { 75 struct drm_irq_busid *p = data; 76 77 if (!dev->driver->bus->irq_by_busid) 78 return -EINVAL; 79 80 if (!drm_core_check_feature(dev, DRIVER_HAVE_IRQ)) 81 return -EINVAL; 82 83 return dev->driver->bus->irq_by_busid(dev, p); 84 } 85 86 /* 87 * Clear vblank timestamp buffer for a crtc. 88 */ 89 static void clear_vblank_timestamps(struct drm_device *dev, int crtc) 90 { 91 memset(dev->vblank[crtc].time, 0, sizeof(dev->vblank[crtc].time)); 92 } 93 94 /* 95 * Disable vblank irq's on crtc, make sure that last vblank count 96 * of hardware and corresponding consistent software vblank counter 97 * are preserved, even if there are any spurious vblank irq's after 98 * disable. 99 */ 100 static void vblank_disable_and_save(struct drm_device *dev, int crtc) 101 { 102 unsigned long irqflags; 103 u32 vblcount; 104 s64 diff_ns; 105 int vblrc; 106 struct timeval tvblank; 107 int count = DRM_TIMESTAMP_MAXRETRIES; 108 109 /* Prevent vblank irq processing while disabling vblank irqs, 110 * so no updates of timestamps or count can happen after we've 111 * disabled. Needed to prevent races in case of delayed irq's. 112 */ 113 spin_lock_irqsave(&dev->vblank_time_lock, irqflags); 114 115 dev->driver->disable_vblank(dev, crtc); 116 dev->vblank[crtc].enabled = false; 117 118 /* No further vblank irq's will be processed after 119 * this point. Get current hardware vblank count and 120 * vblank timestamp, repeat until they are consistent. 121 * 122 * FIXME: There is still a race condition here and in 123 * drm_update_vblank_count() which can cause off-by-one 124 * reinitialization of software vblank counter. If gpu 125 * vblank counter doesn't increment exactly at the leading 126 * edge of a vblank interval, then we can lose 1 count if 127 * we happen to execute between start of vblank and the 128 * delayed gpu counter increment. 129 */ 130 do { 131 dev->vblank[crtc].last = dev->driver->get_vblank_counter(dev, crtc); 132 vblrc = drm_get_last_vbltimestamp(dev, crtc, &tvblank, 0); 133 } while (dev->vblank[crtc].last != dev->driver->get_vblank_counter(dev, crtc) && (--count) && vblrc); 134 135 if (!count) 136 vblrc = 0; 137 138 /* Compute time difference to stored timestamp of last vblank 139 * as updated by last invocation of drm_handle_vblank() in vblank irq. 140 */ 141 vblcount = atomic_read(&dev->vblank[crtc].count); 142 diff_ns = timeval_to_ns(&tvblank) - 143 timeval_to_ns(&vblanktimestamp(dev, crtc, vblcount)); 144 145 /* If there is at least 1 msec difference between the last stored 146 * timestamp and tvblank, then we are currently executing our 147 * disable inside a new vblank interval, the tvblank timestamp 148 * corresponds to this new vblank interval and the irq handler 149 * for this vblank didn't run yet and won't run due to our disable. 150 * Therefore we need to do the job of drm_handle_vblank() and 151 * increment the vblank counter by one to account for this vblank. 152 * 153 * Skip this step if there isn't any high precision timestamp 154 * available. In that case we can't account for this and just 155 * hope for the best. 156 */ 157 if ((vblrc > 0) && (abs64(diff_ns) > 1000000)) { 158 atomic_inc(&dev->vblank[crtc].count); 159 smp_mb__after_atomic_inc(); 160 } 161 162 /* Invalidate all timestamps while vblank irq's are off. */ 163 clear_vblank_timestamps(dev, crtc); 164 165 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 166 } 167 168 static void vblank_disable_fn(unsigned long arg) 169 { 170 struct drm_device *dev = (struct drm_device *)arg; 171 unsigned long irqflags; 172 int i; 173 174 if (!dev->vblank_disable_allowed) 175 return; 176 177 for (i = 0; i < dev->num_crtcs; i++) { 178 spin_lock_irqsave(&dev->vbl_lock, irqflags); 179 if (atomic_read(&dev->vblank[i].refcount) == 0 && 180 dev->vblank[i].enabled) { 181 DRM_DEBUG("disabling vblank on crtc %d\n", i); 182 vblank_disable_and_save(dev, i); 183 } 184 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 185 } 186 } 187 188 void drm_vblank_cleanup(struct drm_device *dev) 189 { 190 /* Bail if the driver didn't call drm_vblank_init() */ 191 if (dev->num_crtcs == 0) 192 return; 193 194 del_timer_sync(&dev->vblank_disable_timer); 195 196 vblank_disable_fn((unsigned long)dev); 197 198 kfree(dev->vblank); 199 200 dev->num_crtcs = 0; 201 } 202 EXPORT_SYMBOL(drm_vblank_cleanup); 203 204 int drm_vblank_init(struct drm_device *dev, int num_crtcs) 205 { 206 int i, ret = -ENOMEM; 207 208 setup_timer(&dev->vblank_disable_timer, vblank_disable_fn, 209 (unsigned long)dev); 210 spin_lock_init(&dev->vbl_lock); 211 spin_lock_init(&dev->vblank_time_lock); 212 213 dev->num_crtcs = num_crtcs; 214 215 dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL); 216 if (!dev->vblank) 217 goto err; 218 219 for (i = 0; i < num_crtcs; i++) 220 init_waitqueue_head(&dev->vblank[i].queue); 221 222 DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n"); 223 224 /* Driver specific high-precision vblank timestamping supported? */ 225 if (dev->driver->get_vblank_timestamp) 226 DRM_INFO("Driver supports precise vblank timestamp query.\n"); 227 else 228 DRM_INFO("No driver support for vblank timestamp query.\n"); 229 230 dev->vblank_disable_allowed = false; 231 232 return 0; 233 234 err: 235 drm_vblank_cleanup(dev); 236 return ret; 237 } 238 EXPORT_SYMBOL(drm_vblank_init); 239 240 static void drm_irq_vgaarb_nokms(void *cookie, bool state) 241 { 242 struct drm_device *dev = cookie; 243 244 if (dev->driver->vgaarb_irq) { 245 dev->driver->vgaarb_irq(dev, state); 246 return; 247 } 248 249 if (!dev->irq_enabled) 250 return; 251 252 if (state) { 253 if (dev->driver->irq_uninstall) 254 dev->driver->irq_uninstall(dev); 255 } else { 256 if (dev->driver->irq_preinstall) 257 dev->driver->irq_preinstall(dev); 258 if (dev->driver->irq_postinstall) 259 dev->driver->irq_postinstall(dev); 260 } 261 } 262 263 /** 264 * Install IRQ handler. 265 * 266 * \param dev DRM device. 267 * 268 * Initializes the IRQ related data. Installs the handler, calling the driver 269 * \c irq_preinstall() and \c irq_postinstall() functions 270 * before and after the installation. 271 */ 272 int drm_irq_install(struct drm_device *dev) 273 { 274 int ret; 275 unsigned long sh_flags = 0; 276 char *irqname; 277 278 if (!drm_core_check_feature(dev, DRIVER_HAVE_IRQ)) 279 return -EINVAL; 280 281 if (drm_dev_to_irq(dev) == 0) 282 return -EINVAL; 283 284 mutex_lock(&dev->struct_mutex); 285 286 /* Driver must have been initialized */ 287 if (!dev->dev_private) { 288 mutex_unlock(&dev->struct_mutex); 289 return -EINVAL; 290 } 291 292 if (dev->irq_enabled) { 293 mutex_unlock(&dev->struct_mutex); 294 return -EBUSY; 295 } 296 dev->irq_enabled = true; 297 mutex_unlock(&dev->struct_mutex); 298 299 DRM_DEBUG("irq=%d\n", drm_dev_to_irq(dev)); 300 301 /* Before installing handler */ 302 if (dev->driver->irq_preinstall) 303 dev->driver->irq_preinstall(dev); 304 305 /* Install handler */ 306 if (drm_core_check_feature(dev, DRIVER_IRQ_SHARED)) 307 sh_flags = IRQF_SHARED; 308 309 if (dev->devname) 310 irqname = dev->devname; 311 else 312 irqname = dev->driver->name; 313 314 ret = request_irq(drm_dev_to_irq(dev), dev->driver->irq_handler, 315 sh_flags, irqname, dev); 316 317 if (ret < 0) { 318 mutex_lock(&dev->struct_mutex); 319 dev->irq_enabled = false; 320 mutex_unlock(&dev->struct_mutex); 321 return ret; 322 } 323 324 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 325 vga_client_register(dev->pdev, (void *)dev, drm_irq_vgaarb_nokms, NULL); 326 327 /* After installing handler */ 328 if (dev->driver->irq_postinstall) 329 ret = dev->driver->irq_postinstall(dev); 330 331 if (ret < 0) { 332 mutex_lock(&dev->struct_mutex); 333 dev->irq_enabled = false; 334 mutex_unlock(&dev->struct_mutex); 335 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 336 vga_client_register(dev->pdev, NULL, NULL, NULL); 337 free_irq(drm_dev_to_irq(dev), dev); 338 } 339 340 return ret; 341 } 342 EXPORT_SYMBOL(drm_irq_install); 343 344 /** 345 * Uninstall the IRQ handler. 346 * 347 * \param dev DRM device. 348 * 349 * Calls the driver's \c irq_uninstall() function, and stops the irq. 350 */ 351 int drm_irq_uninstall(struct drm_device *dev) 352 { 353 unsigned long irqflags; 354 bool irq_enabled; 355 int i; 356 357 if (!drm_core_check_feature(dev, DRIVER_HAVE_IRQ)) 358 return -EINVAL; 359 360 mutex_lock(&dev->struct_mutex); 361 irq_enabled = dev->irq_enabled; 362 dev->irq_enabled = false; 363 mutex_unlock(&dev->struct_mutex); 364 365 /* 366 * Wake up any waiters so they don't hang. 367 */ 368 if (dev->num_crtcs) { 369 spin_lock_irqsave(&dev->vbl_lock, irqflags); 370 for (i = 0; i < dev->num_crtcs; i++) { 371 DRM_WAKEUP(&dev->vblank[i].queue); 372 dev->vblank[i].enabled = false; 373 dev->vblank[i].last = 374 dev->driver->get_vblank_counter(dev, i); 375 } 376 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 377 } 378 379 if (!irq_enabled) 380 return -EINVAL; 381 382 DRM_DEBUG("irq=%d\n", drm_dev_to_irq(dev)); 383 384 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 385 vga_client_register(dev->pdev, NULL, NULL, NULL); 386 387 if (dev->driver->irq_uninstall) 388 dev->driver->irq_uninstall(dev); 389 390 free_irq(drm_dev_to_irq(dev), dev); 391 392 return 0; 393 } 394 EXPORT_SYMBOL(drm_irq_uninstall); 395 396 /** 397 * IRQ control ioctl. 398 * 399 * \param inode device inode. 400 * \param file_priv DRM file private. 401 * \param cmd command. 402 * \param arg user argument, pointing to a drm_control structure. 403 * \return zero on success or a negative number on failure. 404 * 405 * Calls irq_install() or irq_uninstall() according to \p arg. 406 */ 407 int drm_control(struct drm_device *dev, void *data, 408 struct drm_file *file_priv) 409 { 410 struct drm_control *ctl = data; 411 412 /* if we haven't irq we fallback for compatibility reasons - 413 * this used to be a separate function in drm_dma.h 414 */ 415 416 417 switch (ctl->func) { 418 case DRM_INST_HANDLER: 419 if (!drm_core_check_feature(dev, DRIVER_HAVE_IRQ)) 420 return 0; 421 if (drm_core_check_feature(dev, DRIVER_MODESET)) 422 return 0; 423 if (dev->if_version < DRM_IF_VERSION(1, 2) && 424 ctl->irq != drm_dev_to_irq(dev)) 425 return -EINVAL; 426 return drm_irq_install(dev); 427 case DRM_UNINST_HANDLER: 428 if (!drm_core_check_feature(dev, DRIVER_HAVE_IRQ)) 429 return 0; 430 if (drm_core_check_feature(dev, DRIVER_MODESET)) 431 return 0; 432 return drm_irq_uninstall(dev); 433 default: 434 return -EINVAL; 435 } 436 } 437 438 /** 439 * drm_calc_timestamping_constants - Calculate and 440 * store various constants which are later needed by 441 * vblank and swap-completion timestamping, e.g, by 442 * drm_calc_vbltimestamp_from_scanoutpos(). 443 * They are derived from crtc's true scanout timing, 444 * so they take things like panel scaling or other 445 * adjustments into account. 446 * 447 * @crtc drm_crtc whose timestamp constants should be updated. 448 * 449 */ 450 void drm_calc_timestamping_constants(struct drm_crtc *crtc) 451 { 452 s64 linedur_ns = 0, pixeldur_ns = 0, framedur_ns = 0; 453 u64 dotclock; 454 455 /* Dot clock in Hz: */ 456 dotclock = (u64) crtc->hwmode.clock * 1000; 457 458 /* Fields of interlaced scanout modes are only half a frame duration. 459 * Double the dotclock to get half the frame-/line-/pixelduration. 460 */ 461 if (crtc->hwmode.flags & DRM_MODE_FLAG_INTERLACE) 462 dotclock *= 2; 463 464 /* Valid dotclock? */ 465 if (dotclock > 0) { 466 int frame_size; 467 /* Convert scanline length in pixels and video dot clock to 468 * line duration, frame duration and pixel duration in 469 * nanoseconds: 470 */ 471 pixeldur_ns = (s64) div64_u64(1000000000, dotclock); 472 linedur_ns = (s64) div64_u64(((u64) crtc->hwmode.crtc_htotal * 473 1000000000), dotclock); 474 frame_size = crtc->hwmode.crtc_htotal * 475 crtc->hwmode.crtc_vtotal; 476 framedur_ns = (s64) div64_u64((u64) frame_size * 1000000000, 477 dotclock); 478 } else 479 DRM_ERROR("crtc %d: Can't calculate constants, dotclock = 0!\n", 480 crtc->base.id); 481 482 crtc->pixeldur_ns = pixeldur_ns; 483 crtc->linedur_ns = linedur_ns; 484 crtc->framedur_ns = framedur_ns; 485 486 DRM_DEBUG("crtc %d: hwmode: htotal %d, vtotal %d, vdisplay %d\n", 487 crtc->base.id, crtc->hwmode.crtc_htotal, 488 crtc->hwmode.crtc_vtotal, crtc->hwmode.crtc_vdisplay); 489 DRM_DEBUG("crtc %d: clock %d kHz framedur %d linedur %d, pixeldur %d\n", 490 crtc->base.id, (int) dotclock/1000, (int) framedur_ns, 491 (int) linedur_ns, (int) pixeldur_ns); 492 } 493 EXPORT_SYMBOL(drm_calc_timestamping_constants); 494 495 /** 496 * drm_calc_vbltimestamp_from_scanoutpos - helper routine for kms 497 * drivers. Implements calculation of exact vblank timestamps from 498 * given drm_display_mode timings and current video scanout position 499 * of a crtc. This can be called from within get_vblank_timestamp() 500 * implementation of a kms driver to implement the actual timestamping. 501 * 502 * Should return timestamps conforming to the OML_sync_control OpenML 503 * extension specification. The timestamp corresponds to the end of 504 * the vblank interval, aka start of scanout of topmost-leftmost display 505 * pixel in the following video frame. 506 * 507 * Requires support for optional dev->driver->get_scanout_position() 508 * in kms driver, plus a bit of setup code to provide a drm_display_mode 509 * that corresponds to the true scanout timing. 510 * 511 * The current implementation only handles standard video modes. It 512 * returns as no operation if a doublescan or interlaced video mode is 513 * active. Higher level code is expected to handle this. 514 * 515 * @dev: DRM device. 516 * @crtc: Which crtc's vblank timestamp to retrieve. 517 * @max_error: Desired maximum allowable error in timestamps (nanosecs). 518 * On return contains true maximum error of timestamp. 519 * @vblank_time: Pointer to struct timeval which should receive the timestamp. 520 * @flags: Flags to pass to driver: 521 * 0 = Default. 522 * DRM_CALLED_FROM_VBLIRQ = If function is called from vbl irq handler. 523 * @refcrtc: drm_crtc* of crtc which defines scanout timing. 524 * 525 * Returns negative value on error, failure or if not supported in current 526 * video mode: 527 * 528 * -EINVAL - Invalid crtc. 529 * -EAGAIN - Temporary unavailable, e.g., called before initial modeset. 530 * -ENOTSUPP - Function not supported in current display mode. 531 * -EIO - Failed, e.g., due to failed scanout position query. 532 * 533 * Returns or'ed positive status flags on success: 534 * 535 * DRM_VBLANKTIME_SCANOUTPOS_METHOD - Signal this method used for timestamping. 536 * DRM_VBLANKTIME_INVBL - Timestamp taken while scanout was in vblank interval. 537 * 538 */ 539 int drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev, int crtc, 540 int *max_error, 541 struct timeval *vblank_time, 542 unsigned flags, 543 struct drm_crtc *refcrtc) 544 { 545 ktime_t stime, etime, mono_time_offset; 546 struct timeval tv_etime; 547 struct drm_display_mode *mode; 548 int vbl_status, vtotal, vdisplay; 549 int vpos, hpos, i; 550 s64 framedur_ns, linedur_ns, pixeldur_ns, delta_ns, duration_ns; 551 bool invbl; 552 553 if (crtc < 0 || crtc >= dev->num_crtcs) { 554 DRM_ERROR("Invalid crtc %d\n", crtc); 555 return -EINVAL; 556 } 557 558 /* Scanout position query not supported? Should not happen. */ 559 if (!dev->driver->get_scanout_position) { 560 DRM_ERROR("Called from driver w/o get_scanout_position()!?\n"); 561 return -EIO; 562 } 563 564 mode = &refcrtc->hwmode; 565 vtotal = mode->crtc_vtotal; 566 vdisplay = mode->crtc_vdisplay; 567 568 /* Durations of frames, lines, pixels in nanoseconds. */ 569 framedur_ns = refcrtc->framedur_ns; 570 linedur_ns = refcrtc->linedur_ns; 571 pixeldur_ns = refcrtc->pixeldur_ns; 572 573 /* If mode timing undefined, just return as no-op: 574 * Happens during initial modesetting of a crtc. 575 */ 576 if (vtotal <= 0 || vdisplay <= 0 || framedur_ns == 0) { 577 DRM_DEBUG("crtc %d: Noop due to uninitialized mode.\n", crtc); 578 return -EAGAIN; 579 } 580 581 /* Get current scanout position with system timestamp. 582 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times 583 * if single query takes longer than max_error nanoseconds. 584 * 585 * This guarantees a tight bound on maximum error if 586 * code gets preempted or delayed for some reason. 587 */ 588 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { 589 /* 590 * Get vertical and horizontal scanout position vpos, hpos, 591 * and bounding timestamps stime, etime, pre/post query. 592 */ 593 vbl_status = dev->driver->get_scanout_position(dev, crtc, &vpos, 594 &hpos, &stime, &etime); 595 596 /* 597 * Get correction for CLOCK_MONOTONIC -> CLOCK_REALTIME if 598 * CLOCK_REALTIME is requested. 599 */ 600 if (!drm_timestamp_monotonic) 601 mono_time_offset = ktime_get_monotonic_offset(); 602 603 /* Return as no-op if scanout query unsupported or failed. */ 604 if (!(vbl_status & DRM_SCANOUTPOS_VALID)) { 605 DRM_DEBUG("crtc %d : scanoutpos query failed [%d].\n", 606 crtc, vbl_status); 607 return -EIO; 608 } 609 610 /* Compute uncertainty in timestamp of scanout position query. */ 611 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime); 612 613 /* Accept result with < max_error nsecs timing uncertainty. */ 614 if (duration_ns <= (s64) *max_error) 615 break; 616 } 617 618 /* Noisy system timing? */ 619 if (i == DRM_TIMESTAMP_MAXRETRIES) { 620 DRM_DEBUG("crtc %d: Noisy timestamp %d us > %d us [%d reps].\n", 621 crtc, (int) duration_ns/1000, *max_error/1000, i); 622 } 623 624 /* Return upper bound of timestamp precision error. */ 625 *max_error = (int) duration_ns; 626 627 /* Check if in vblank area: 628 * vpos is >=0 in video scanout area, but negative 629 * within vblank area, counting down the number of lines until 630 * start of scanout. 631 */ 632 invbl = vbl_status & DRM_SCANOUTPOS_INVBL; 633 634 /* Convert scanout position into elapsed time at raw_time query 635 * since start of scanout at first display scanline. delta_ns 636 * can be negative if start of scanout hasn't happened yet. 637 */ 638 delta_ns = (s64) vpos * linedur_ns + (s64) hpos * pixeldur_ns; 639 640 /* Is vpos outside nominal vblank area, but less than 641 * 1/100 of a frame height away from start of vblank? 642 * If so, assume this isn't a massively delayed vblank 643 * interrupt, but a vblank interrupt that fired a few 644 * microseconds before true start of vblank. Compensate 645 * by adding a full frame duration to the final timestamp. 646 * Happens, e.g., on ATI R500, R600. 647 * 648 * We only do this if DRM_CALLED_FROM_VBLIRQ. 649 */ 650 if ((flags & DRM_CALLED_FROM_VBLIRQ) && !invbl && 651 ((vdisplay - vpos) < vtotal / 100)) { 652 delta_ns = delta_ns - framedur_ns; 653 654 /* Signal this correction as "applied". */ 655 vbl_status |= 0x8; 656 } 657 658 if (!drm_timestamp_monotonic) 659 etime = ktime_sub(etime, mono_time_offset); 660 661 /* save this only for debugging purposes */ 662 tv_etime = ktime_to_timeval(etime); 663 /* Subtract time delta from raw timestamp to get final 664 * vblank_time timestamp for end of vblank. 665 */ 666 if (delta_ns < 0) 667 etime = ktime_add_ns(etime, -delta_ns); 668 else 669 etime = ktime_sub_ns(etime, delta_ns); 670 *vblank_time = ktime_to_timeval(etime); 671 672 DRM_DEBUG("crtc %d : v %d p(%d,%d)@ %ld.%ld -> %ld.%ld [e %d us, %d rep]\n", 673 crtc, (int)vbl_status, hpos, vpos, 674 (long)tv_etime.tv_sec, (long)tv_etime.tv_usec, 675 (long)vblank_time->tv_sec, (long)vblank_time->tv_usec, 676 (int)duration_ns/1000, i); 677 678 vbl_status = DRM_VBLANKTIME_SCANOUTPOS_METHOD; 679 if (invbl) 680 vbl_status |= DRM_VBLANKTIME_INVBL; 681 682 return vbl_status; 683 } 684 EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos); 685 686 static struct timeval get_drm_timestamp(void) 687 { 688 ktime_t now; 689 690 now = ktime_get(); 691 if (!drm_timestamp_monotonic) 692 now = ktime_sub(now, ktime_get_monotonic_offset()); 693 694 return ktime_to_timeval(now); 695 } 696 697 /** 698 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent 699 * vblank interval. 700 * 701 * @dev: DRM device 702 * @crtc: which crtc's vblank timestamp to retrieve 703 * @tvblank: Pointer to target struct timeval which should receive the timestamp 704 * @flags: Flags to pass to driver: 705 * 0 = Default. 706 * DRM_CALLED_FROM_VBLIRQ = If function is called from vbl irq handler. 707 * 708 * Fetches the system timestamp corresponding to the time of the most recent 709 * vblank interval on specified crtc. May call into kms-driver to 710 * compute the timestamp with a high-precision GPU specific method. 711 * 712 * Returns zero if timestamp originates from uncorrected do_gettimeofday() 713 * call, i.e., it isn't very precisely locked to the true vblank. 714 * 715 * Returns non-zero if timestamp is considered to be very precise. 716 */ 717 u32 drm_get_last_vbltimestamp(struct drm_device *dev, int crtc, 718 struct timeval *tvblank, unsigned flags) 719 { 720 int ret; 721 722 /* Define requested maximum error on timestamps (nanoseconds). */ 723 int max_error = (int) drm_timestamp_precision * 1000; 724 725 /* Query driver if possible and precision timestamping enabled. */ 726 if (dev->driver->get_vblank_timestamp && (max_error > 0)) { 727 ret = dev->driver->get_vblank_timestamp(dev, crtc, &max_error, 728 tvblank, flags); 729 if (ret > 0) 730 return (u32) ret; 731 } 732 733 /* GPU high precision timestamp query unsupported or failed. 734 * Return current monotonic/gettimeofday timestamp as best estimate. 735 */ 736 *tvblank = get_drm_timestamp(); 737 738 return 0; 739 } 740 EXPORT_SYMBOL(drm_get_last_vbltimestamp); 741 742 /** 743 * drm_vblank_count - retrieve "cooked" vblank counter value 744 * @dev: DRM device 745 * @crtc: which counter to retrieve 746 * 747 * Fetches the "cooked" vblank count value that represents the number of 748 * vblank events since the system was booted, including lost events due to 749 * modesetting activity. 750 */ 751 u32 drm_vblank_count(struct drm_device *dev, int crtc) 752 { 753 return atomic_read(&dev->vblank[crtc].count); 754 } 755 EXPORT_SYMBOL(drm_vblank_count); 756 757 /** 758 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value 759 * and the system timestamp corresponding to that vblank counter value. 760 * 761 * @dev: DRM device 762 * @crtc: which counter to retrieve 763 * @vblanktime: Pointer to struct timeval to receive the vblank timestamp. 764 * 765 * Fetches the "cooked" vblank count value that represents the number of 766 * vblank events since the system was booted, including lost events due to 767 * modesetting activity. Returns corresponding system timestamp of the time 768 * of the vblank interval that corresponds to the current value vblank counter 769 * value. 770 */ 771 u32 drm_vblank_count_and_time(struct drm_device *dev, int crtc, 772 struct timeval *vblanktime) 773 { 774 u32 cur_vblank; 775 776 /* Read timestamp from slot of _vblank_time ringbuffer 777 * that corresponds to current vblank count. Retry if 778 * count has incremented during readout. This works like 779 * a seqlock. 780 */ 781 do { 782 cur_vblank = atomic_read(&dev->vblank[crtc].count); 783 *vblanktime = vblanktimestamp(dev, crtc, cur_vblank); 784 smp_rmb(); 785 } while (cur_vblank != atomic_read(&dev->vblank[crtc].count)); 786 787 return cur_vblank; 788 } 789 EXPORT_SYMBOL(drm_vblank_count_and_time); 790 791 static void send_vblank_event(struct drm_device *dev, 792 struct drm_pending_vblank_event *e, 793 unsigned long seq, struct timeval *now) 794 { 795 WARN_ON_SMP(!spin_is_locked(&dev->event_lock)); 796 e->event.sequence = seq; 797 e->event.tv_sec = now->tv_sec; 798 e->event.tv_usec = now->tv_usec; 799 800 list_add_tail(&e->base.link, 801 &e->base.file_priv->event_list); 802 wake_up_interruptible(&e->base.file_priv->event_wait); 803 trace_drm_vblank_event_delivered(e->base.pid, e->pipe, 804 e->event.sequence); 805 } 806 807 /** 808 * drm_send_vblank_event - helper to send vblank event after pageflip 809 * @dev: DRM device 810 * @crtc: CRTC in question 811 * @e: the event to send 812 * 813 * Updates sequence # and timestamp on event, and sends it to userspace. 814 * Caller must hold event lock. 815 */ 816 void drm_send_vblank_event(struct drm_device *dev, int crtc, 817 struct drm_pending_vblank_event *e) 818 { 819 struct timeval now; 820 unsigned int seq; 821 if (crtc >= 0) { 822 seq = drm_vblank_count_and_time(dev, crtc, &now); 823 } else { 824 seq = 0; 825 826 now = get_drm_timestamp(); 827 } 828 e->pipe = crtc; 829 send_vblank_event(dev, e, seq, &now); 830 } 831 EXPORT_SYMBOL(drm_send_vblank_event); 832 833 /** 834 * drm_update_vblank_count - update the master vblank counter 835 * @dev: DRM device 836 * @crtc: counter to update 837 * 838 * Call back into the driver to update the appropriate vblank counter 839 * (specified by @crtc). Deal with wraparound, if it occurred, and 840 * update the last read value so we can deal with wraparound on the next 841 * call if necessary. 842 * 843 * Only necessary when going from off->on, to account for frames we 844 * didn't get an interrupt for. 845 * 846 * Note: caller must hold dev->vbl_lock since this reads & writes 847 * device vblank fields. 848 */ 849 static void drm_update_vblank_count(struct drm_device *dev, int crtc) 850 { 851 u32 cur_vblank, diff, tslot, rc; 852 struct timeval t_vblank; 853 854 /* 855 * Interrupts were disabled prior to this call, so deal with counter 856 * wrap if needed. 857 * NOTE! It's possible we lost a full dev->max_vblank_count events 858 * here if the register is small or we had vblank interrupts off for 859 * a long time. 860 * 861 * We repeat the hardware vblank counter & timestamp query until 862 * we get consistent results. This to prevent races between gpu 863 * updating its hardware counter while we are retrieving the 864 * corresponding vblank timestamp. 865 */ 866 do { 867 cur_vblank = dev->driver->get_vblank_counter(dev, crtc); 868 rc = drm_get_last_vbltimestamp(dev, crtc, &t_vblank, 0); 869 } while (cur_vblank != dev->driver->get_vblank_counter(dev, crtc)); 870 871 /* Deal with counter wrap */ 872 diff = cur_vblank - dev->vblank[crtc].last; 873 if (cur_vblank < dev->vblank[crtc].last) { 874 diff += dev->max_vblank_count; 875 876 DRM_DEBUG("last_vblank[%d]=0x%x, cur_vblank=0x%x => diff=0x%x\n", 877 crtc, dev->vblank[crtc].last, cur_vblank, diff); 878 } 879 880 DRM_DEBUG("enabling vblank interrupts on crtc %d, missed %d\n", 881 crtc, diff); 882 883 /* Reinitialize corresponding vblank timestamp if high-precision query 884 * available. Skip this step if query unsupported or failed. Will 885 * reinitialize delayed at next vblank interrupt in that case. 886 */ 887 if (rc) { 888 tslot = atomic_read(&dev->vblank[crtc].count) + diff; 889 vblanktimestamp(dev, crtc, tslot) = t_vblank; 890 } 891 892 smp_mb__before_atomic_inc(); 893 atomic_add(diff, &dev->vblank[crtc].count); 894 smp_mb__after_atomic_inc(); 895 } 896 897 /** 898 * drm_vblank_get - get a reference count on vblank events 899 * @dev: DRM device 900 * @crtc: which CRTC to own 901 * 902 * Acquire a reference count on vblank events to avoid having them disabled 903 * while in use. 904 * 905 * RETURNS 906 * Zero on success, nonzero on failure. 907 */ 908 int drm_vblank_get(struct drm_device *dev, int crtc) 909 { 910 unsigned long irqflags, irqflags2; 911 int ret = 0; 912 913 spin_lock_irqsave(&dev->vbl_lock, irqflags); 914 /* Going from 0->1 means we have to enable interrupts again */ 915 if (atomic_add_return(1, &dev->vblank[crtc].refcount) == 1) { 916 spin_lock_irqsave(&dev->vblank_time_lock, irqflags2); 917 if (!dev->vblank[crtc].enabled) { 918 /* Enable vblank irqs under vblank_time_lock protection. 919 * All vblank count & timestamp updates are held off 920 * until we are done reinitializing master counter and 921 * timestamps. Filtercode in drm_handle_vblank() will 922 * prevent double-accounting of same vblank interval. 923 */ 924 ret = dev->driver->enable_vblank(dev, crtc); 925 DRM_DEBUG("enabling vblank on crtc %d, ret: %d\n", 926 crtc, ret); 927 if (ret) 928 atomic_dec(&dev->vblank[crtc].refcount); 929 else { 930 dev->vblank[crtc].enabled = true; 931 drm_update_vblank_count(dev, crtc); 932 } 933 } 934 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags2); 935 } else { 936 if (!dev->vblank[crtc].enabled) { 937 atomic_dec(&dev->vblank[crtc].refcount); 938 ret = -EINVAL; 939 } 940 } 941 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 942 943 return ret; 944 } 945 EXPORT_SYMBOL(drm_vblank_get); 946 947 /** 948 * drm_vblank_put - give up ownership of vblank events 949 * @dev: DRM device 950 * @crtc: which counter to give up 951 * 952 * Release ownership of a given vblank counter, turning off interrupts 953 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds. 954 */ 955 void drm_vblank_put(struct drm_device *dev, int crtc) 956 { 957 BUG_ON(atomic_read(&dev->vblank[crtc].refcount) == 0); 958 959 /* Last user schedules interrupt disable */ 960 if (atomic_dec_and_test(&dev->vblank[crtc].refcount) && 961 (drm_vblank_offdelay > 0)) 962 mod_timer(&dev->vblank_disable_timer, 963 jiffies + ((drm_vblank_offdelay * DRM_HZ)/1000)); 964 } 965 EXPORT_SYMBOL(drm_vblank_put); 966 967 /** 968 * drm_vblank_off - disable vblank events on a CRTC 969 * @dev: DRM device 970 * @crtc: CRTC in question 971 * 972 * Caller must hold event lock. 973 */ 974 void drm_vblank_off(struct drm_device *dev, int crtc) 975 { 976 struct drm_pending_vblank_event *e, *t; 977 struct timeval now; 978 unsigned long irqflags; 979 unsigned int seq; 980 981 spin_lock_irqsave(&dev->vbl_lock, irqflags); 982 vblank_disable_and_save(dev, crtc); 983 DRM_WAKEUP(&dev->vblank[crtc].queue); 984 985 /* Send any queued vblank events, lest the natives grow disquiet */ 986 seq = drm_vblank_count_and_time(dev, crtc, &now); 987 988 spin_lock(&dev->event_lock); 989 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 990 if (e->pipe != crtc) 991 continue; 992 DRM_DEBUG("Sending premature vblank event on disable: \ 993 wanted %d, current %d\n", 994 e->event.sequence, seq); 995 list_del(&e->base.link); 996 drm_vblank_put(dev, e->pipe); 997 send_vblank_event(dev, e, seq, &now); 998 } 999 spin_unlock(&dev->event_lock); 1000 1001 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1002 } 1003 EXPORT_SYMBOL(drm_vblank_off); 1004 1005 /** 1006 * drm_vblank_pre_modeset - account for vblanks across mode sets 1007 * @dev: DRM device 1008 * @crtc: CRTC in question 1009 * 1010 * Account for vblank events across mode setting events, which will likely 1011 * reset the hardware frame counter. 1012 */ 1013 void drm_vblank_pre_modeset(struct drm_device *dev, int crtc) 1014 { 1015 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1016 if (!dev->num_crtcs) 1017 return; 1018 /* 1019 * To avoid all the problems that might happen if interrupts 1020 * were enabled/disabled around or between these calls, we just 1021 * have the kernel take a reference on the CRTC (just once though 1022 * to avoid corrupting the count if multiple, mismatch calls occur), 1023 * so that interrupts remain enabled in the interim. 1024 */ 1025 if (!dev->vblank[crtc].inmodeset) { 1026 dev->vblank[crtc].inmodeset = 0x1; 1027 if (drm_vblank_get(dev, crtc) == 0) 1028 dev->vblank[crtc].inmodeset |= 0x2; 1029 } 1030 } 1031 EXPORT_SYMBOL(drm_vblank_pre_modeset); 1032 1033 void drm_vblank_post_modeset(struct drm_device *dev, int crtc) 1034 { 1035 unsigned long irqflags; 1036 1037 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1038 if (!dev->num_crtcs) 1039 return; 1040 1041 if (dev->vblank[crtc].inmodeset) { 1042 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1043 dev->vblank_disable_allowed = true; 1044 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1045 1046 if (dev->vblank[crtc].inmodeset & 0x2) 1047 drm_vblank_put(dev, crtc); 1048 1049 dev->vblank[crtc].inmodeset = 0; 1050 } 1051 } 1052 EXPORT_SYMBOL(drm_vblank_post_modeset); 1053 1054 /** 1055 * drm_modeset_ctl - handle vblank event counter changes across mode switch 1056 * @DRM_IOCTL_ARGS: standard ioctl arguments 1057 * 1058 * Applications should call the %_DRM_PRE_MODESET and %_DRM_POST_MODESET 1059 * ioctls around modesetting so that any lost vblank events are accounted for. 1060 * 1061 * Generally the counter will reset across mode sets. If interrupts are 1062 * enabled around this call, we don't have to do anything since the counter 1063 * will have already been incremented. 1064 */ 1065 int drm_modeset_ctl(struct drm_device *dev, void *data, 1066 struct drm_file *file_priv) 1067 { 1068 struct drm_modeset_ctl *modeset = data; 1069 unsigned int crtc; 1070 1071 /* If drm_vblank_init() hasn't been called yet, just no-op */ 1072 if (!dev->num_crtcs) 1073 return 0; 1074 1075 /* KMS drivers handle this internally */ 1076 if (drm_core_check_feature(dev, DRIVER_MODESET)) 1077 return 0; 1078 1079 crtc = modeset->crtc; 1080 if (crtc >= dev->num_crtcs) 1081 return -EINVAL; 1082 1083 switch (modeset->cmd) { 1084 case _DRM_PRE_MODESET: 1085 drm_vblank_pre_modeset(dev, crtc); 1086 break; 1087 case _DRM_POST_MODESET: 1088 drm_vblank_post_modeset(dev, crtc); 1089 break; 1090 default: 1091 return -EINVAL; 1092 } 1093 1094 return 0; 1095 } 1096 1097 static int drm_queue_vblank_event(struct drm_device *dev, int pipe, 1098 union drm_wait_vblank *vblwait, 1099 struct drm_file *file_priv) 1100 { 1101 struct drm_pending_vblank_event *e; 1102 struct timeval now; 1103 unsigned long flags; 1104 unsigned int seq; 1105 int ret; 1106 1107 e = kzalloc(sizeof *e, GFP_KERNEL); 1108 if (e == NULL) { 1109 ret = -ENOMEM; 1110 goto err_put; 1111 } 1112 1113 e->pipe = pipe; 1114 e->base.pid = current->pid; 1115 e->event.base.type = DRM_EVENT_VBLANK; 1116 e->event.base.length = sizeof e->event; 1117 e->event.user_data = vblwait->request.signal; 1118 e->base.event = &e->event.base; 1119 e->base.file_priv = file_priv; 1120 e->base.destroy = (void (*) (struct drm_pending_event *)) kfree; 1121 1122 spin_lock_irqsave(&dev->event_lock, flags); 1123 1124 if (file_priv->event_space < sizeof e->event) { 1125 ret = -EBUSY; 1126 goto err_unlock; 1127 } 1128 1129 file_priv->event_space -= sizeof e->event; 1130 seq = drm_vblank_count_and_time(dev, pipe, &now); 1131 1132 if ((vblwait->request.type & _DRM_VBLANK_NEXTONMISS) && 1133 (seq - vblwait->request.sequence) <= (1 << 23)) { 1134 vblwait->request.sequence = seq + 1; 1135 vblwait->reply.sequence = vblwait->request.sequence; 1136 } 1137 1138 DRM_DEBUG("event on vblank count %d, current %d, crtc %d\n", 1139 vblwait->request.sequence, seq, pipe); 1140 1141 trace_drm_vblank_event_queued(current->pid, pipe, 1142 vblwait->request.sequence); 1143 1144 e->event.sequence = vblwait->request.sequence; 1145 if ((seq - vblwait->request.sequence) <= (1 << 23)) { 1146 drm_vblank_put(dev, pipe); 1147 send_vblank_event(dev, e, seq, &now); 1148 vblwait->reply.sequence = seq; 1149 } else { 1150 /* drm_handle_vblank_events will call drm_vblank_put */ 1151 list_add_tail(&e->base.link, &dev->vblank_event_list); 1152 vblwait->reply.sequence = vblwait->request.sequence; 1153 } 1154 1155 spin_unlock_irqrestore(&dev->event_lock, flags); 1156 1157 return 0; 1158 1159 err_unlock: 1160 spin_unlock_irqrestore(&dev->event_lock, flags); 1161 kfree(e); 1162 err_put: 1163 drm_vblank_put(dev, pipe); 1164 return ret; 1165 } 1166 1167 /** 1168 * Wait for VBLANK. 1169 * 1170 * \param inode device inode. 1171 * \param file_priv DRM file private. 1172 * \param cmd command. 1173 * \param data user argument, pointing to a drm_wait_vblank structure. 1174 * \return zero on success or a negative number on failure. 1175 * 1176 * This function enables the vblank interrupt on the pipe requested, then 1177 * sleeps waiting for the requested sequence number to occur, and drops 1178 * the vblank interrupt refcount afterwards. (vblank irq disable follows that 1179 * after a timeout with no further vblank waits scheduled). 1180 */ 1181 int drm_wait_vblank(struct drm_device *dev, void *data, 1182 struct drm_file *file_priv) 1183 { 1184 union drm_wait_vblank *vblwait = data; 1185 int ret; 1186 unsigned int flags, seq, crtc, high_crtc; 1187 1188 if (drm_core_check_feature(dev, DRIVER_HAVE_IRQ)) 1189 if ((!drm_dev_to_irq(dev)) || (!dev->irq_enabled)) 1190 return -EINVAL; 1191 1192 if (vblwait->request.type & _DRM_VBLANK_SIGNAL) 1193 return -EINVAL; 1194 1195 if (vblwait->request.type & 1196 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1197 _DRM_VBLANK_HIGH_CRTC_MASK)) { 1198 DRM_ERROR("Unsupported type value 0x%x, supported mask 0x%x\n", 1199 vblwait->request.type, 1200 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1201 _DRM_VBLANK_HIGH_CRTC_MASK)); 1202 return -EINVAL; 1203 } 1204 1205 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; 1206 high_crtc = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); 1207 if (high_crtc) 1208 crtc = high_crtc >> _DRM_VBLANK_HIGH_CRTC_SHIFT; 1209 else 1210 crtc = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; 1211 if (crtc >= dev->num_crtcs) 1212 return -EINVAL; 1213 1214 ret = drm_vblank_get(dev, crtc); 1215 if (ret) { 1216 DRM_DEBUG("failed to acquire vblank counter, %d\n", ret); 1217 return ret; 1218 } 1219 seq = drm_vblank_count(dev, crtc); 1220 1221 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { 1222 case _DRM_VBLANK_RELATIVE: 1223 vblwait->request.sequence += seq; 1224 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; 1225 case _DRM_VBLANK_ABSOLUTE: 1226 break; 1227 default: 1228 ret = -EINVAL; 1229 goto done; 1230 } 1231 1232 if (flags & _DRM_VBLANK_EVENT) { 1233 /* must hold on to the vblank ref until the event fires 1234 * drm_vblank_put will be called asynchronously 1235 */ 1236 return drm_queue_vblank_event(dev, crtc, vblwait, file_priv); 1237 } 1238 1239 if ((flags & _DRM_VBLANK_NEXTONMISS) && 1240 (seq - vblwait->request.sequence) <= (1<<23)) { 1241 vblwait->request.sequence = seq + 1; 1242 } 1243 1244 DRM_DEBUG("waiting on vblank count %d, crtc %d\n", 1245 vblwait->request.sequence, crtc); 1246 dev->vblank[crtc].last_wait = vblwait->request.sequence; 1247 DRM_WAIT_ON(ret, dev->vblank[crtc].queue, 3 * DRM_HZ, 1248 (((drm_vblank_count(dev, crtc) - 1249 vblwait->request.sequence) <= (1 << 23)) || 1250 !dev->irq_enabled)); 1251 1252 if (ret != -EINTR) { 1253 struct timeval now; 1254 1255 vblwait->reply.sequence = drm_vblank_count_and_time(dev, crtc, &now); 1256 vblwait->reply.tval_sec = now.tv_sec; 1257 vblwait->reply.tval_usec = now.tv_usec; 1258 1259 DRM_DEBUG("returning %d to client\n", 1260 vblwait->reply.sequence); 1261 } else { 1262 DRM_DEBUG("vblank wait interrupted by signal\n"); 1263 } 1264 1265 done: 1266 drm_vblank_put(dev, crtc); 1267 return ret; 1268 } 1269 1270 static void drm_handle_vblank_events(struct drm_device *dev, int crtc) 1271 { 1272 struct drm_pending_vblank_event *e, *t; 1273 struct timeval now; 1274 unsigned long flags; 1275 unsigned int seq; 1276 1277 seq = drm_vblank_count_and_time(dev, crtc, &now); 1278 1279 spin_lock_irqsave(&dev->event_lock, flags); 1280 1281 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1282 if (e->pipe != crtc) 1283 continue; 1284 if ((seq - e->event.sequence) > (1<<23)) 1285 continue; 1286 1287 DRM_DEBUG("vblank event on %d, current %d\n", 1288 e->event.sequence, seq); 1289 1290 list_del(&e->base.link); 1291 drm_vblank_put(dev, e->pipe); 1292 send_vblank_event(dev, e, seq, &now); 1293 } 1294 1295 spin_unlock_irqrestore(&dev->event_lock, flags); 1296 1297 trace_drm_vblank_event(crtc, seq); 1298 } 1299 1300 /** 1301 * drm_handle_vblank - handle a vblank event 1302 * @dev: DRM device 1303 * @crtc: where this event occurred 1304 * 1305 * Drivers should call this routine in their vblank interrupt handlers to 1306 * update the vblank counter and send any signals that may be pending. 1307 */ 1308 bool drm_handle_vblank(struct drm_device *dev, int crtc) 1309 { 1310 u32 vblcount; 1311 s64 diff_ns; 1312 struct timeval tvblank; 1313 unsigned long irqflags; 1314 1315 if (!dev->num_crtcs) 1316 return false; 1317 1318 /* Need timestamp lock to prevent concurrent execution with 1319 * vblank enable/disable, as this would cause inconsistent 1320 * or corrupted timestamps and vblank counts. 1321 */ 1322 spin_lock_irqsave(&dev->vblank_time_lock, irqflags); 1323 1324 /* Vblank irq handling disabled. Nothing to do. */ 1325 if (!dev->vblank[crtc].enabled) { 1326 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 1327 return false; 1328 } 1329 1330 /* Fetch corresponding timestamp for this vblank interval from 1331 * driver and store it in proper slot of timestamp ringbuffer. 1332 */ 1333 1334 /* Get current timestamp and count. */ 1335 vblcount = atomic_read(&dev->vblank[crtc].count); 1336 drm_get_last_vbltimestamp(dev, crtc, &tvblank, DRM_CALLED_FROM_VBLIRQ); 1337 1338 /* Compute time difference to timestamp of last vblank */ 1339 diff_ns = timeval_to_ns(&tvblank) - 1340 timeval_to_ns(&vblanktimestamp(dev, crtc, vblcount)); 1341 1342 /* Update vblank timestamp and count if at least 1343 * DRM_REDUNDANT_VBLIRQ_THRESH_NS nanoseconds 1344 * difference between last stored timestamp and current 1345 * timestamp. A smaller difference means basically 1346 * identical timestamps. Happens if this vblank has 1347 * been already processed and this is a redundant call, 1348 * e.g., due to spurious vblank interrupts. We need to 1349 * ignore those for accounting. 1350 */ 1351 if (abs64(diff_ns) > DRM_REDUNDANT_VBLIRQ_THRESH_NS) { 1352 /* Store new timestamp in ringbuffer. */ 1353 vblanktimestamp(dev, crtc, vblcount + 1) = tvblank; 1354 1355 /* Increment cooked vblank count. This also atomically commits 1356 * the timestamp computed above. 1357 */ 1358 smp_mb__before_atomic_inc(); 1359 atomic_inc(&dev->vblank[crtc].count); 1360 smp_mb__after_atomic_inc(); 1361 } else { 1362 DRM_DEBUG("crtc %d: Redundant vblirq ignored. diff_ns = %d\n", 1363 crtc, (int) diff_ns); 1364 } 1365 1366 DRM_WAKEUP(&dev->vblank[crtc].queue); 1367 drm_handle_vblank_events(dev, crtc); 1368 1369 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 1370 return true; 1371 } 1372 EXPORT_SYMBOL(drm_handle_vblank); 1373