1 /* 2 * Copyright (c) 2006 Luc Verhaegen (quirks list) 3 * Copyright (c) 2007-2008 Intel Corporation 4 * Jesse Barnes <jesse.barnes@intel.com> 5 * Copyright 2010 Red Hat, Inc. 6 * 7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from 8 * FB layer. 9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com> 10 * 11 * Permission is hereby granted, free of charge, to any person obtaining a 12 * copy of this software and associated documentation files (the "Software"), 13 * to deal in the Software without restriction, including without limitation 14 * the rights to use, copy, modify, merge, publish, distribute, sub license, 15 * and/or sell copies of the Software, and to permit persons to whom the 16 * Software is furnished to do so, subject to the following conditions: 17 * 18 * The above copyright notice and this permission notice (including the 19 * next paragraph) shall be included in all copies or substantial portions 20 * of the Software. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 28 * DEALINGS IN THE SOFTWARE. 29 */ 30 #include <linux/kernel.h> 31 #include <linux/slab.h> 32 #include <linux/hdmi.h> 33 #include <linux/i2c.h> 34 #include <linux/module.h> 35 #include <linux/vga_switcheroo.h> 36 #include <drm/drmP.h> 37 #include <drm/drm_edid.h> 38 #include <drm/drm_encoder.h> 39 #include <drm/drm_displayid.h> 40 #include <drm/drm_scdc_helper.h> 41 42 #include "drm_crtc_internal.h" 43 44 #define version_greater(edid, maj, min) \ 45 (((edid)->version > (maj)) || \ 46 ((edid)->version == (maj) && (edid)->revision > (min))) 47 48 #define EDID_EST_TIMINGS 16 49 #define EDID_STD_TIMINGS 8 50 #define EDID_DETAILED_TIMINGS 4 51 52 /* 53 * EDID blocks out in the wild have a variety of bugs, try to collect 54 * them here (note that userspace may work around broken monitors first, 55 * but fixes should make their way here so that the kernel "just works" 56 * on as many displays as possible). 57 */ 58 59 /* First detailed mode wrong, use largest 60Hz mode */ 60 #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0) 61 /* Reported 135MHz pixel clock is too high, needs adjustment */ 62 #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1) 63 /* Prefer the largest mode at 75 Hz */ 64 #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2) 65 /* Detail timing is in cm not mm */ 66 #define EDID_QUIRK_DETAILED_IN_CM (1 << 3) 67 /* Detailed timing descriptors have bogus size values, so just take the 68 * maximum size and use that. 69 */ 70 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4) 71 /* Monitor forgot to set the first detailed is preferred bit. */ 72 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED (1 << 5) 73 /* use +hsync +vsync for detailed mode */ 74 #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6) 75 /* Force reduced-blanking timings for detailed modes */ 76 #define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7) 77 /* Force 8bpc */ 78 #define EDID_QUIRK_FORCE_8BPC (1 << 8) 79 /* Force 12bpc */ 80 #define EDID_QUIRK_FORCE_12BPC (1 << 9) 81 /* Force 6bpc */ 82 #define EDID_QUIRK_FORCE_6BPC (1 << 10) 83 84 struct detailed_mode_closure { 85 struct drm_connector *connector; 86 struct edid *edid; 87 bool preferred; 88 u32 quirks; 89 int modes; 90 }; 91 92 #define LEVEL_DMT 0 93 #define LEVEL_GTF 1 94 #define LEVEL_GTF2 2 95 #define LEVEL_CVT 3 96 97 static const struct edid_quirk { 98 char vendor[4]; 99 int product_id; 100 u32 quirks; 101 } edid_quirk_list[] = { 102 /* Acer AL1706 */ 103 { "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 }, 104 /* Acer F51 */ 105 { "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 }, 106 /* Unknown Acer */ 107 { "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED }, 108 109 /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */ 110 { "AEO", 0, EDID_QUIRK_FORCE_6BPC }, 111 112 /* Belinea 10 15 55 */ 113 { "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 }, 114 { "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 }, 115 116 /* Envision Peripherals, Inc. EN-7100e */ 117 { "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH }, 118 /* Envision EN2028 */ 119 { "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 }, 120 121 /* Funai Electronics PM36B */ 122 { "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 | 123 EDID_QUIRK_DETAILED_IN_CM }, 124 125 /* LG Philips LCD LP154W01-A5 */ 126 { "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE }, 127 { "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE }, 128 129 /* Philips 107p5 CRT */ 130 { "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED }, 131 132 /* Proview AY765C */ 133 { "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED }, 134 135 /* Samsung SyncMaster 205BW. Note: irony */ 136 { "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP }, 137 /* Samsung SyncMaster 22[5-6]BW */ 138 { "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 }, 139 { "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 }, 140 141 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */ 142 { "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC }, 143 144 /* ViewSonic VA2026w */ 145 { "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING }, 146 147 /* Medion MD 30217 PG */ 148 { "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 }, 149 150 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */ 151 { "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC }, 152 153 /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/ 154 { "ETR", 13896, EDID_QUIRK_FORCE_8BPC }, 155 }; 156 157 /* 158 * Autogenerated from the DMT spec. 159 * This table is copied from xfree86/modes/xf86EdidModes.c. 160 */ 161 static const struct drm_display_mode drm_dmt_modes[] = { 162 /* 0x01 - 640x350@85Hz */ 163 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672, 164 736, 832, 0, 350, 382, 385, 445, 0, 165 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 166 /* 0x02 - 640x400@85Hz */ 167 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672, 168 736, 832, 0, 400, 401, 404, 445, 0, 169 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 170 /* 0x03 - 720x400@85Hz */ 171 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756, 172 828, 936, 0, 400, 401, 404, 446, 0, 173 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 174 /* 0x04 - 640x480@60Hz */ 175 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 176 752, 800, 0, 480, 490, 492, 525, 0, 177 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 178 /* 0x05 - 640x480@72Hz */ 179 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664, 180 704, 832, 0, 480, 489, 492, 520, 0, 181 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 182 /* 0x06 - 640x480@75Hz */ 183 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656, 184 720, 840, 0, 480, 481, 484, 500, 0, 185 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 186 /* 0x07 - 640x480@85Hz */ 187 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696, 188 752, 832, 0, 480, 481, 484, 509, 0, 189 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 190 /* 0x08 - 800x600@56Hz */ 191 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824, 192 896, 1024, 0, 600, 601, 603, 625, 0, 193 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 194 /* 0x09 - 800x600@60Hz */ 195 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 196 968, 1056, 0, 600, 601, 605, 628, 0, 197 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 198 /* 0x0a - 800x600@72Hz */ 199 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856, 200 976, 1040, 0, 600, 637, 643, 666, 0, 201 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 202 /* 0x0b - 800x600@75Hz */ 203 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816, 204 896, 1056, 0, 600, 601, 604, 625, 0, 205 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 206 /* 0x0c - 800x600@85Hz */ 207 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832, 208 896, 1048, 0, 600, 601, 604, 631, 0, 209 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 210 /* 0x0d - 800x600@120Hz RB */ 211 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848, 212 880, 960, 0, 600, 603, 607, 636, 0, 213 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 214 /* 0x0e - 848x480@60Hz */ 215 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864, 216 976, 1088, 0, 480, 486, 494, 517, 0, 217 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 218 /* 0x0f - 1024x768@43Hz, interlace */ 219 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032, 220 1208, 1264, 0, 768, 768, 776, 817, 0, 221 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 222 DRM_MODE_FLAG_INTERLACE) }, 223 /* 0x10 - 1024x768@60Hz */ 224 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 225 1184, 1344, 0, 768, 771, 777, 806, 0, 226 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 227 /* 0x11 - 1024x768@70Hz */ 228 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048, 229 1184, 1328, 0, 768, 771, 777, 806, 0, 230 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 231 /* 0x12 - 1024x768@75Hz */ 232 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040, 233 1136, 1312, 0, 768, 769, 772, 800, 0, 234 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 235 /* 0x13 - 1024x768@85Hz */ 236 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072, 237 1168, 1376, 0, 768, 769, 772, 808, 0, 238 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 239 /* 0x14 - 1024x768@120Hz RB */ 240 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072, 241 1104, 1184, 0, 768, 771, 775, 813, 0, 242 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 243 /* 0x15 - 1152x864@75Hz */ 244 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 245 1344, 1600, 0, 864, 865, 868, 900, 0, 246 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 247 /* 0x55 - 1280x720@60Hz */ 248 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 249 1430, 1650, 0, 720, 725, 730, 750, 0, 250 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 251 /* 0x16 - 1280x768@60Hz RB */ 252 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328, 253 1360, 1440, 0, 768, 771, 778, 790, 0, 254 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 255 /* 0x17 - 1280x768@60Hz */ 256 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 257 1472, 1664, 0, 768, 771, 778, 798, 0, 258 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 259 /* 0x18 - 1280x768@75Hz */ 260 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360, 261 1488, 1696, 0, 768, 771, 778, 805, 0, 262 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 263 /* 0x19 - 1280x768@85Hz */ 264 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360, 265 1496, 1712, 0, 768, 771, 778, 809, 0, 266 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 267 /* 0x1a - 1280x768@120Hz RB */ 268 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328, 269 1360, 1440, 0, 768, 771, 778, 813, 0, 270 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 271 /* 0x1b - 1280x800@60Hz RB */ 272 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328, 273 1360, 1440, 0, 800, 803, 809, 823, 0, 274 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 275 /* 0x1c - 1280x800@60Hz */ 276 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 277 1480, 1680, 0, 800, 803, 809, 831, 0, 278 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 279 /* 0x1d - 1280x800@75Hz */ 280 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360, 281 1488, 1696, 0, 800, 803, 809, 838, 0, 282 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 283 /* 0x1e - 1280x800@85Hz */ 284 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360, 285 1496, 1712, 0, 800, 803, 809, 843, 0, 286 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 287 /* 0x1f - 1280x800@120Hz RB */ 288 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328, 289 1360, 1440, 0, 800, 803, 809, 847, 0, 290 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 291 /* 0x20 - 1280x960@60Hz */ 292 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 293 1488, 1800, 0, 960, 961, 964, 1000, 0, 294 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 295 /* 0x21 - 1280x960@85Hz */ 296 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344, 297 1504, 1728, 0, 960, 961, 964, 1011, 0, 298 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 299 /* 0x22 - 1280x960@120Hz RB */ 300 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328, 301 1360, 1440, 0, 960, 963, 967, 1017, 0, 302 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 303 /* 0x23 - 1280x1024@60Hz */ 304 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 305 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 306 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 307 /* 0x24 - 1280x1024@75Hz */ 308 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296, 309 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 310 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 311 /* 0x25 - 1280x1024@85Hz */ 312 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344, 313 1504, 1728, 0, 1024, 1025, 1028, 1072, 0, 314 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 315 /* 0x26 - 1280x1024@120Hz RB */ 316 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328, 317 1360, 1440, 0, 1024, 1027, 1034, 1084, 0, 318 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 319 /* 0x27 - 1360x768@60Hz */ 320 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 321 1536, 1792, 0, 768, 771, 777, 795, 0, 322 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 323 /* 0x28 - 1360x768@120Hz RB */ 324 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408, 325 1440, 1520, 0, 768, 771, 776, 813, 0, 326 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 327 /* 0x51 - 1366x768@60Hz */ 328 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436, 329 1579, 1792, 0, 768, 771, 774, 798, 0, 330 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 331 /* 0x56 - 1366x768@60Hz */ 332 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380, 333 1436, 1500, 0, 768, 769, 772, 800, 0, 334 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 335 /* 0x29 - 1400x1050@60Hz RB */ 336 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448, 337 1480, 1560, 0, 1050, 1053, 1057, 1080, 0, 338 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 339 /* 0x2a - 1400x1050@60Hz */ 340 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 341 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, 342 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 343 /* 0x2b - 1400x1050@75Hz */ 344 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504, 345 1648, 1896, 0, 1050, 1053, 1057, 1099, 0, 346 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 347 /* 0x2c - 1400x1050@85Hz */ 348 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504, 349 1656, 1912, 0, 1050, 1053, 1057, 1105, 0, 350 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 351 /* 0x2d - 1400x1050@120Hz RB */ 352 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448, 353 1480, 1560, 0, 1050, 1053, 1057, 1112, 0, 354 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 355 /* 0x2e - 1440x900@60Hz RB */ 356 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488, 357 1520, 1600, 0, 900, 903, 909, 926, 0, 358 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 359 /* 0x2f - 1440x900@60Hz */ 360 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 361 1672, 1904, 0, 900, 903, 909, 934, 0, 362 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 363 /* 0x30 - 1440x900@75Hz */ 364 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536, 365 1688, 1936, 0, 900, 903, 909, 942, 0, 366 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 367 /* 0x31 - 1440x900@85Hz */ 368 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544, 369 1696, 1952, 0, 900, 903, 909, 948, 0, 370 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 371 /* 0x32 - 1440x900@120Hz RB */ 372 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488, 373 1520, 1600, 0, 900, 903, 909, 953, 0, 374 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 375 /* 0x53 - 1600x900@60Hz */ 376 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624, 377 1704, 1800, 0, 900, 901, 904, 1000, 0, 378 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 379 /* 0x33 - 1600x1200@60Hz */ 380 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 381 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 382 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 383 /* 0x34 - 1600x1200@65Hz */ 384 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664, 385 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 386 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 387 /* 0x35 - 1600x1200@70Hz */ 388 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664, 389 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 390 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 391 /* 0x36 - 1600x1200@75Hz */ 392 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664, 393 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 394 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 395 /* 0x37 - 1600x1200@85Hz */ 396 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664, 397 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 398 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 399 /* 0x38 - 1600x1200@120Hz RB */ 400 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648, 401 1680, 1760, 0, 1200, 1203, 1207, 1271, 0, 402 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 403 /* 0x39 - 1680x1050@60Hz RB */ 404 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728, 405 1760, 1840, 0, 1050, 1053, 1059, 1080, 0, 406 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 407 /* 0x3a - 1680x1050@60Hz */ 408 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 409 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, 410 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 411 /* 0x3b - 1680x1050@75Hz */ 412 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800, 413 1976, 2272, 0, 1050, 1053, 1059, 1099, 0, 414 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 415 /* 0x3c - 1680x1050@85Hz */ 416 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808, 417 1984, 2288, 0, 1050, 1053, 1059, 1105, 0, 418 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 419 /* 0x3d - 1680x1050@120Hz RB */ 420 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728, 421 1760, 1840, 0, 1050, 1053, 1059, 1112, 0, 422 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 423 /* 0x3e - 1792x1344@60Hz */ 424 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 425 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, 426 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 427 /* 0x3f - 1792x1344@75Hz */ 428 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888, 429 2104, 2456, 0, 1344, 1345, 1348, 1417, 0, 430 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 431 /* 0x40 - 1792x1344@120Hz RB */ 432 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840, 433 1872, 1952, 0, 1344, 1347, 1351, 1423, 0, 434 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 435 /* 0x41 - 1856x1392@60Hz */ 436 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 437 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, 438 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 439 /* 0x42 - 1856x1392@75Hz */ 440 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984, 441 2208, 2560, 0, 1392, 1393, 1396, 1500, 0, 442 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 443 /* 0x43 - 1856x1392@120Hz RB */ 444 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904, 445 1936, 2016, 0, 1392, 1395, 1399, 1474, 0, 446 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 447 /* 0x52 - 1920x1080@60Hz */ 448 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 449 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 450 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 451 /* 0x44 - 1920x1200@60Hz RB */ 452 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968, 453 2000, 2080, 0, 1200, 1203, 1209, 1235, 0, 454 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 455 /* 0x45 - 1920x1200@60Hz */ 456 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 457 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, 458 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 459 /* 0x46 - 1920x1200@75Hz */ 460 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056, 461 2264, 2608, 0, 1200, 1203, 1209, 1255, 0, 462 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 463 /* 0x47 - 1920x1200@85Hz */ 464 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064, 465 2272, 2624, 0, 1200, 1203, 1209, 1262, 0, 466 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 467 /* 0x48 - 1920x1200@120Hz RB */ 468 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968, 469 2000, 2080, 0, 1200, 1203, 1209, 1271, 0, 470 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 471 /* 0x49 - 1920x1440@60Hz */ 472 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 473 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, 474 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 475 /* 0x4a - 1920x1440@75Hz */ 476 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064, 477 2288, 2640, 0, 1440, 1441, 1444, 1500, 0, 478 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 479 /* 0x4b - 1920x1440@120Hz RB */ 480 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968, 481 2000, 2080, 0, 1440, 1443, 1447, 1525, 0, 482 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 483 /* 0x54 - 2048x1152@60Hz */ 484 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074, 485 2154, 2250, 0, 1152, 1153, 1156, 1200, 0, 486 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 487 /* 0x4c - 2560x1600@60Hz RB */ 488 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608, 489 2640, 2720, 0, 1600, 1603, 1609, 1646, 0, 490 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 491 /* 0x4d - 2560x1600@60Hz */ 492 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 493 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, 494 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 495 /* 0x4e - 2560x1600@75Hz */ 496 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768, 497 3048, 3536, 0, 1600, 1603, 1609, 1672, 0, 498 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 499 /* 0x4f - 2560x1600@85Hz */ 500 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768, 501 3048, 3536, 0, 1600, 1603, 1609, 1682, 0, 502 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 503 /* 0x50 - 2560x1600@120Hz RB */ 504 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608, 505 2640, 2720, 0, 1600, 1603, 1609, 1694, 0, 506 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 507 /* 0x57 - 4096x2160@60Hz RB */ 508 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104, 509 4136, 4176, 0, 2160, 2208, 2216, 2222, 0, 510 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 511 /* 0x58 - 4096x2160@59.94Hz RB */ 512 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104, 513 4136, 4176, 0, 2160, 2208, 2216, 2222, 0, 514 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 515 }; 516 517 /* 518 * These more or less come from the DMT spec. The 720x400 modes are 519 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75 520 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode 521 * should be 1152x870, again for the Mac, but instead we use the x864 DMT 522 * mode. 523 * 524 * The DMT modes have been fact-checked; the rest are mild guesses. 525 */ 526 static const struct drm_display_mode edid_est_modes[] = { 527 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 528 968, 1056, 0, 600, 601, 605, 628, 0, 529 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */ 530 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824, 531 896, 1024, 0, 600, 601, 603, 625, 0, 532 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */ 533 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656, 534 720, 840, 0, 480, 481, 484, 500, 0, 535 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */ 536 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664, 537 704, 832, 0, 480, 489, 492, 520, 0, 538 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */ 539 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704, 540 768, 864, 0, 480, 483, 486, 525, 0, 541 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */ 542 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 543 752, 800, 0, 480, 490, 492, 525, 0, 544 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */ 545 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738, 546 846, 900, 0, 400, 421, 423, 449, 0, 547 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */ 548 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738, 549 846, 900, 0, 400, 412, 414, 449, 0, 550 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */ 551 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296, 552 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 553 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */ 554 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040, 555 1136, 1312, 0, 768, 769, 772, 800, 0, 556 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */ 557 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048, 558 1184, 1328, 0, 768, 771, 777, 806, 0, 559 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */ 560 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 561 1184, 1344, 0, 768, 771, 777, 806, 0, 562 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */ 563 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032, 564 1208, 1264, 0, 768, 768, 776, 817, 0, 565 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */ 566 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864, 567 928, 1152, 0, 624, 625, 628, 667, 0, 568 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */ 569 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816, 570 896, 1056, 0, 600, 601, 604, 625, 0, 571 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */ 572 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856, 573 976, 1040, 0, 600, 637, 643, 666, 0, 574 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */ 575 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 576 1344, 1600, 0, 864, 865, 868, 900, 0, 577 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */ 578 }; 579 580 struct minimode { 581 short w; 582 short h; 583 short r; 584 short rb; 585 }; 586 587 static const struct minimode est3_modes[] = { 588 /* byte 6 */ 589 { 640, 350, 85, 0 }, 590 { 640, 400, 85, 0 }, 591 { 720, 400, 85, 0 }, 592 { 640, 480, 85, 0 }, 593 { 848, 480, 60, 0 }, 594 { 800, 600, 85, 0 }, 595 { 1024, 768, 85, 0 }, 596 { 1152, 864, 75, 0 }, 597 /* byte 7 */ 598 { 1280, 768, 60, 1 }, 599 { 1280, 768, 60, 0 }, 600 { 1280, 768, 75, 0 }, 601 { 1280, 768, 85, 0 }, 602 { 1280, 960, 60, 0 }, 603 { 1280, 960, 85, 0 }, 604 { 1280, 1024, 60, 0 }, 605 { 1280, 1024, 85, 0 }, 606 /* byte 8 */ 607 { 1360, 768, 60, 0 }, 608 { 1440, 900, 60, 1 }, 609 { 1440, 900, 60, 0 }, 610 { 1440, 900, 75, 0 }, 611 { 1440, 900, 85, 0 }, 612 { 1400, 1050, 60, 1 }, 613 { 1400, 1050, 60, 0 }, 614 { 1400, 1050, 75, 0 }, 615 /* byte 9 */ 616 { 1400, 1050, 85, 0 }, 617 { 1680, 1050, 60, 1 }, 618 { 1680, 1050, 60, 0 }, 619 { 1680, 1050, 75, 0 }, 620 { 1680, 1050, 85, 0 }, 621 { 1600, 1200, 60, 0 }, 622 { 1600, 1200, 65, 0 }, 623 { 1600, 1200, 70, 0 }, 624 /* byte 10 */ 625 { 1600, 1200, 75, 0 }, 626 { 1600, 1200, 85, 0 }, 627 { 1792, 1344, 60, 0 }, 628 { 1792, 1344, 75, 0 }, 629 { 1856, 1392, 60, 0 }, 630 { 1856, 1392, 75, 0 }, 631 { 1920, 1200, 60, 1 }, 632 { 1920, 1200, 60, 0 }, 633 /* byte 11 */ 634 { 1920, 1200, 75, 0 }, 635 { 1920, 1200, 85, 0 }, 636 { 1920, 1440, 60, 0 }, 637 { 1920, 1440, 75, 0 }, 638 }; 639 640 static const struct minimode extra_modes[] = { 641 { 1024, 576, 60, 0 }, 642 { 1366, 768, 60, 0 }, 643 { 1600, 900, 60, 0 }, 644 { 1680, 945, 60, 0 }, 645 { 1920, 1080, 60, 0 }, 646 { 2048, 1152, 60, 0 }, 647 { 2048, 1536, 60, 0 }, 648 }; 649 650 /* 651 * Probably taken from CEA-861 spec. 652 * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c. 653 * 654 * Index using the VIC. 655 */ 656 static const struct drm_display_mode edid_cea_modes[] = { 657 /* 0 - dummy, VICs start at 1 */ 658 { }, 659 /* 1 - 640x480@60Hz */ 660 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 661 752, 800, 0, 480, 490, 492, 525, 0, 662 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 663 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 664 /* 2 - 720x480@60Hz */ 665 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736, 666 798, 858, 0, 480, 489, 495, 525, 0, 667 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 668 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 669 /* 3 - 720x480@60Hz */ 670 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736, 671 798, 858, 0, 480, 489, 495, 525, 0, 672 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 673 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 674 /* 4 - 1280x720@60Hz */ 675 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 676 1430, 1650, 0, 720, 725, 730, 750, 0, 677 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 678 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 679 /* 5 - 1920x1080i@60Hz */ 680 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 681 2052, 2200, 0, 1080, 1084, 1094, 1125, 0, 682 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 683 DRM_MODE_FLAG_INTERLACE), 684 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 685 /* 6 - 720(1440)x480i@60Hz */ 686 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 687 801, 858, 0, 480, 488, 494, 525, 0, 688 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 689 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 690 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 691 /* 7 - 720(1440)x480i@60Hz */ 692 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 693 801, 858, 0, 480, 488, 494, 525, 0, 694 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 695 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 696 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 697 /* 8 - 720(1440)x240@60Hz */ 698 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 699 801, 858, 0, 240, 244, 247, 262, 0, 700 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 701 DRM_MODE_FLAG_DBLCLK), 702 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 703 /* 9 - 720(1440)x240@60Hz */ 704 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 705 801, 858, 0, 240, 244, 247, 262, 0, 706 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 707 DRM_MODE_FLAG_DBLCLK), 708 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 709 /* 10 - 2880x480i@60Hz */ 710 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 711 3204, 3432, 0, 480, 488, 494, 525, 0, 712 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 713 DRM_MODE_FLAG_INTERLACE), 714 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 715 /* 11 - 2880x480i@60Hz */ 716 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 717 3204, 3432, 0, 480, 488, 494, 525, 0, 718 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 719 DRM_MODE_FLAG_INTERLACE), 720 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 721 /* 12 - 2880x240@60Hz */ 722 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 723 3204, 3432, 0, 240, 244, 247, 262, 0, 724 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 725 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 726 /* 13 - 2880x240@60Hz */ 727 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 728 3204, 3432, 0, 240, 244, 247, 262, 0, 729 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 730 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 731 /* 14 - 1440x480@60Hz */ 732 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472, 733 1596, 1716, 0, 480, 489, 495, 525, 0, 734 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 735 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 736 /* 15 - 1440x480@60Hz */ 737 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472, 738 1596, 1716, 0, 480, 489, 495, 525, 0, 739 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 740 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 741 /* 16 - 1920x1080@60Hz */ 742 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 743 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 744 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 745 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 746 /* 17 - 720x576@50Hz */ 747 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 748 796, 864, 0, 576, 581, 586, 625, 0, 749 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 750 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 751 /* 18 - 720x576@50Hz */ 752 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 753 796, 864, 0, 576, 581, 586, 625, 0, 754 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 755 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 756 /* 19 - 1280x720@50Hz */ 757 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720, 758 1760, 1980, 0, 720, 725, 730, 750, 0, 759 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 760 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 761 /* 20 - 1920x1080i@50Hz */ 762 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 763 2492, 2640, 0, 1080, 1084, 1094, 1125, 0, 764 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 765 DRM_MODE_FLAG_INTERLACE), 766 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 767 /* 21 - 720(1440)x576i@50Hz */ 768 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 769 795, 864, 0, 576, 580, 586, 625, 0, 770 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 771 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 772 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 773 /* 22 - 720(1440)x576i@50Hz */ 774 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 775 795, 864, 0, 576, 580, 586, 625, 0, 776 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 777 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 778 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 779 /* 23 - 720(1440)x288@50Hz */ 780 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 781 795, 864, 0, 288, 290, 293, 312, 0, 782 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 783 DRM_MODE_FLAG_DBLCLK), 784 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 785 /* 24 - 720(1440)x288@50Hz */ 786 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 787 795, 864, 0, 288, 290, 293, 312, 0, 788 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 789 DRM_MODE_FLAG_DBLCLK), 790 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 791 /* 25 - 2880x576i@50Hz */ 792 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 793 3180, 3456, 0, 576, 580, 586, 625, 0, 794 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 795 DRM_MODE_FLAG_INTERLACE), 796 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 797 /* 26 - 2880x576i@50Hz */ 798 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 799 3180, 3456, 0, 576, 580, 586, 625, 0, 800 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 801 DRM_MODE_FLAG_INTERLACE), 802 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 803 /* 27 - 2880x288@50Hz */ 804 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 805 3180, 3456, 0, 288, 290, 293, 312, 0, 806 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 807 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 808 /* 28 - 2880x288@50Hz */ 809 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 810 3180, 3456, 0, 288, 290, 293, 312, 0, 811 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 812 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 813 /* 29 - 1440x576@50Hz */ 814 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464, 815 1592, 1728, 0, 576, 581, 586, 625, 0, 816 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 817 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 818 /* 30 - 1440x576@50Hz */ 819 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464, 820 1592, 1728, 0, 576, 581, 586, 625, 0, 821 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 822 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 823 /* 31 - 1920x1080@50Hz */ 824 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448, 825 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 826 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 827 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 828 /* 32 - 1920x1080@24Hz */ 829 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558, 830 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, 831 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 832 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 833 /* 33 - 1920x1080@25Hz */ 834 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 835 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 836 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 837 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 838 /* 34 - 1920x1080@30Hz */ 839 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 840 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 841 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 842 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 843 /* 35 - 2880x480@60Hz */ 844 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944, 845 3192, 3432, 0, 480, 489, 495, 525, 0, 846 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 847 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 848 /* 36 - 2880x480@60Hz */ 849 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944, 850 3192, 3432, 0, 480, 489, 495, 525, 0, 851 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 852 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 853 /* 37 - 2880x576@50Hz */ 854 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928, 855 3184, 3456, 0, 576, 581, 586, 625, 0, 856 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 857 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 858 /* 38 - 2880x576@50Hz */ 859 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928, 860 3184, 3456, 0, 576, 581, 586, 625, 0, 861 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 862 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 863 /* 39 - 1920x1080i@50Hz */ 864 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952, 865 2120, 2304, 0, 1080, 1126, 1136, 1250, 0, 866 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC | 867 DRM_MODE_FLAG_INTERLACE), 868 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 869 /* 40 - 1920x1080i@100Hz */ 870 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448, 871 2492, 2640, 0, 1080, 1084, 1094, 1125, 0, 872 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 873 DRM_MODE_FLAG_INTERLACE), 874 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 875 /* 41 - 1280x720@100Hz */ 876 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720, 877 1760, 1980, 0, 720, 725, 730, 750, 0, 878 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 879 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 880 /* 42 - 720x576@100Hz */ 881 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 882 796, 864, 0, 576, 581, 586, 625, 0, 883 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 884 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 885 /* 43 - 720x576@100Hz */ 886 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 887 796, 864, 0, 576, 581, 586, 625, 0, 888 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 889 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 890 /* 44 - 720(1440)x576i@100Hz */ 891 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 892 795, 864, 0, 576, 580, 586, 625, 0, 893 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 894 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 895 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 896 /* 45 - 720(1440)x576i@100Hz */ 897 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 898 795, 864, 0, 576, 580, 586, 625, 0, 899 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 900 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 901 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 902 /* 46 - 1920x1080i@120Hz */ 903 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 904 2052, 2200, 0, 1080, 1084, 1094, 1125, 0, 905 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 906 DRM_MODE_FLAG_INTERLACE), 907 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 908 /* 47 - 1280x720@120Hz */ 909 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390, 910 1430, 1650, 0, 720, 725, 730, 750, 0, 911 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 912 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 913 /* 48 - 720x480@120Hz */ 914 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736, 915 798, 858, 0, 480, 489, 495, 525, 0, 916 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 917 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 918 /* 49 - 720x480@120Hz */ 919 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736, 920 798, 858, 0, 480, 489, 495, 525, 0, 921 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 922 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 923 /* 50 - 720(1440)x480i@120Hz */ 924 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739, 925 801, 858, 0, 480, 488, 494, 525, 0, 926 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 927 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 928 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 929 /* 51 - 720(1440)x480i@120Hz */ 930 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739, 931 801, 858, 0, 480, 488, 494, 525, 0, 932 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 933 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 934 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 935 /* 52 - 720x576@200Hz */ 936 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732, 937 796, 864, 0, 576, 581, 586, 625, 0, 938 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 939 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 940 /* 53 - 720x576@200Hz */ 941 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732, 942 796, 864, 0, 576, 581, 586, 625, 0, 943 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 944 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 945 /* 54 - 720(1440)x576i@200Hz */ 946 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 947 795, 864, 0, 576, 580, 586, 625, 0, 948 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 949 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 950 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 951 /* 55 - 720(1440)x576i@200Hz */ 952 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 953 795, 864, 0, 576, 580, 586, 625, 0, 954 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 955 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 956 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 957 /* 56 - 720x480@240Hz */ 958 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736, 959 798, 858, 0, 480, 489, 495, 525, 0, 960 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 961 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 962 /* 57 - 720x480@240Hz */ 963 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736, 964 798, 858, 0, 480, 489, 495, 525, 0, 965 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 966 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 967 /* 58 - 720(1440)x480i@240Hz */ 968 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739, 969 801, 858, 0, 480, 488, 494, 525, 0, 970 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 971 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 972 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, 973 /* 59 - 720(1440)x480i@240Hz */ 974 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739, 975 801, 858, 0, 480, 488, 494, 525, 0, 976 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 977 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 978 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 979 /* 60 - 1280x720@24Hz */ 980 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040, 981 3080, 3300, 0, 720, 725, 730, 750, 0, 982 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 983 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 984 /* 61 - 1280x720@25Hz */ 985 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700, 986 3740, 3960, 0, 720, 725, 730, 750, 0, 987 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 988 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 989 /* 62 - 1280x720@30Hz */ 990 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040, 991 3080, 3300, 0, 720, 725, 730, 750, 0, 992 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 993 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 994 /* 63 - 1920x1080@120Hz */ 995 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008, 996 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 997 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 998 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 999 /* 64 - 1920x1080@100Hz */ 1000 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448, 1001 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 1002 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1003 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, 1004 }; 1005 1006 /* 1007 * HDMI 1.4 4k modes. Index using the VIC. 1008 */ 1009 static const struct drm_display_mode edid_4k_modes[] = { 1010 /* 0 - dummy, VICs start at 1 */ 1011 { }, 1012 /* 1 - 3840x2160@30Hz */ 1013 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 1014 3840, 4016, 4104, 4400, 0, 1015 2160, 2168, 2178, 2250, 0, 1016 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1017 .vrefresh = 30, }, 1018 /* 2 - 3840x2160@25Hz */ 1019 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 1020 3840, 4896, 4984, 5280, 0, 1021 2160, 2168, 2178, 2250, 0, 1022 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1023 .vrefresh = 25, }, 1024 /* 3 - 3840x2160@24Hz */ 1025 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 1026 3840, 5116, 5204, 5500, 0, 1027 2160, 2168, 2178, 2250, 0, 1028 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1029 .vrefresh = 24, }, 1030 /* 4 - 4096x2160@24Hz (SMPTE) */ 1031 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 1032 4096, 5116, 5204, 5500, 0, 1033 2160, 2168, 2178, 2250, 0, 1034 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 1035 .vrefresh = 24, }, 1036 }; 1037 1038 /*** DDC fetch and block validation ***/ 1039 1040 static const u8 edid_header[] = { 1041 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 1042 }; 1043 1044 /** 1045 * drm_edid_header_is_valid - sanity check the header of the base EDID block 1046 * @raw_edid: pointer to raw base EDID block 1047 * 1048 * Sanity check the header of the base EDID block. 1049 * 1050 * Return: 8 if the header is perfect, down to 0 if it's totally wrong. 1051 */ 1052 int drm_edid_header_is_valid(const u8 *raw_edid) 1053 { 1054 int i, score = 0; 1055 1056 for (i = 0; i < sizeof(edid_header); i++) 1057 if (raw_edid[i] == edid_header[i]) 1058 score++; 1059 1060 return score; 1061 } 1062 EXPORT_SYMBOL(drm_edid_header_is_valid); 1063 1064 static int edid_fixup __read_mostly = 6; 1065 module_param_named(edid_fixup, edid_fixup, int, 0400); 1066 MODULE_PARM_DESC(edid_fixup, 1067 "Minimum number of valid EDID header bytes (0-8, default 6)"); 1068 1069 static void drm_get_displayid(struct drm_connector *connector, 1070 struct edid *edid); 1071 1072 static int drm_edid_block_checksum(const u8 *raw_edid) 1073 { 1074 int i; 1075 u8 csum = 0; 1076 for (i = 0; i < EDID_LENGTH; i++) 1077 csum += raw_edid[i]; 1078 1079 return csum; 1080 } 1081 1082 static bool drm_edid_is_zero(const u8 *in_edid, int length) 1083 { 1084 if (memchr_inv(in_edid, 0, length)) 1085 return false; 1086 1087 return true; 1088 } 1089 1090 /** 1091 * drm_edid_block_valid - Sanity check the EDID block (base or extension) 1092 * @raw_edid: pointer to raw EDID block 1093 * @block: type of block to validate (0 for base, extension otherwise) 1094 * @print_bad_edid: if true, dump bad EDID blocks to the console 1095 * @edid_corrupt: if true, the header or checksum is invalid 1096 * 1097 * Validate a base or extension EDID block and optionally dump bad blocks to 1098 * the console. 1099 * 1100 * Return: True if the block is valid, false otherwise. 1101 */ 1102 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid, 1103 bool *edid_corrupt) 1104 { 1105 u8 csum; 1106 struct edid *edid = (struct edid *)raw_edid; 1107 1108 if (WARN_ON(!raw_edid)) 1109 return false; 1110 1111 if (edid_fixup > 8 || edid_fixup < 0) 1112 edid_fixup = 6; 1113 1114 if (block == 0) { 1115 int score = drm_edid_header_is_valid(raw_edid); 1116 if (score == 8) { 1117 if (edid_corrupt) 1118 *edid_corrupt = false; 1119 } else if (score >= edid_fixup) { 1120 /* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6 1121 * The corrupt flag needs to be set here otherwise, the 1122 * fix-up code here will correct the problem, the 1123 * checksum is correct and the test fails 1124 */ 1125 if (edid_corrupt) 1126 *edid_corrupt = true; 1127 DRM_DEBUG("Fixing EDID header, your hardware may be failing\n"); 1128 memcpy(raw_edid, edid_header, sizeof(edid_header)); 1129 } else { 1130 if (edid_corrupt) 1131 *edid_corrupt = true; 1132 goto bad; 1133 } 1134 } 1135 1136 csum = drm_edid_block_checksum(raw_edid); 1137 if (csum) { 1138 if (edid_corrupt) 1139 *edid_corrupt = true; 1140 1141 /* allow CEA to slide through, switches mangle this */ 1142 if (raw_edid[0] == CEA_EXT) { 1143 DRM_DEBUG("EDID checksum is invalid, remainder is %d\n", csum); 1144 DRM_DEBUG("Assuming a KVM switch modified the CEA block but left the original checksum\n"); 1145 } else { 1146 if (print_bad_edid) 1147 DRM_NOTE("EDID checksum is invalid, remainder is %d\n", csum); 1148 1149 goto bad; 1150 } 1151 } 1152 1153 /* per-block-type checks */ 1154 switch (raw_edid[0]) { 1155 case 0: /* base */ 1156 if (edid->version != 1) { 1157 DRM_NOTE("EDID has major version %d, instead of 1\n", edid->version); 1158 goto bad; 1159 } 1160 1161 if (edid->revision > 4) 1162 DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n"); 1163 break; 1164 1165 default: 1166 break; 1167 } 1168 1169 return true; 1170 1171 bad: 1172 if (print_bad_edid) { 1173 if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) { 1174 pr_notice("EDID block is all zeroes\n"); 1175 } else { 1176 pr_notice("Raw EDID:\n"); 1177 print_hex_dump(KERN_NOTICE, 1178 " \t", DUMP_PREFIX_NONE, 16, 1, 1179 raw_edid, EDID_LENGTH, false); 1180 } 1181 } 1182 return false; 1183 } 1184 EXPORT_SYMBOL(drm_edid_block_valid); 1185 1186 /** 1187 * drm_edid_is_valid - sanity check EDID data 1188 * @edid: EDID data 1189 * 1190 * Sanity-check an entire EDID record (including extensions) 1191 * 1192 * Return: True if the EDID data is valid, false otherwise. 1193 */ 1194 bool drm_edid_is_valid(struct edid *edid) 1195 { 1196 int i; 1197 u8 *raw = (u8 *)edid; 1198 1199 if (!edid) 1200 return false; 1201 1202 for (i = 0; i <= edid->extensions; i++) 1203 if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL)) 1204 return false; 1205 1206 return true; 1207 } 1208 EXPORT_SYMBOL(drm_edid_is_valid); 1209 1210 #define DDC_SEGMENT_ADDR 0x30 1211 /** 1212 * drm_do_probe_ddc_edid() - get EDID information via I2C 1213 * @data: I2C device adapter 1214 * @buf: EDID data buffer to be filled 1215 * @block: 128 byte EDID block to start fetching from 1216 * @len: EDID data buffer length to fetch 1217 * 1218 * Try to fetch EDID information by calling I2C driver functions. 1219 * 1220 * Return: 0 on success or -1 on failure. 1221 */ 1222 static int 1223 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len) 1224 { 1225 struct i2c_adapter *adapter = data; 1226 unsigned char start = block * EDID_LENGTH; 1227 unsigned char segment = block >> 1; 1228 unsigned char xfers = segment ? 3 : 2; 1229 int ret, retries = 5; 1230 1231 /* 1232 * The core I2C driver will automatically retry the transfer if the 1233 * adapter reports EAGAIN. However, we find that bit-banging transfers 1234 * are susceptible to errors under a heavily loaded machine and 1235 * generate spurious NAKs and timeouts. Retrying the transfer 1236 * of the individual block a few times seems to overcome this. 1237 */ 1238 do { 1239 struct i2c_msg msgs[] = { 1240 { 1241 .addr = DDC_SEGMENT_ADDR, 1242 .flags = 0, 1243 .len = 1, 1244 .buf = &segment, 1245 }, { 1246 .addr = DDC_ADDR, 1247 .flags = 0, 1248 .len = 1, 1249 .buf = &start, 1250 }, { 1251 .addr = DDC_ADDR, 1252 .flags = I2C_M_RD, 1253 .len = len, 1254 .buf = buf, 1255 } 1256 }; 1257 1258 /* 1259 * Avoid sending the segment addr to not upset non-compliant 1260 * DDC monitors. 1261 */ 1262 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers); 1263 1264 if (ret == -ENXIO) { 1265 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n", 1266 adapter->name); 1267 break; 1268 } 1269 } while (ret != xfers && --retries); 1270 1271 return ret == xfers ? 0 : -1; 1272 } 1273 1274 static void connector_bad_edid(struct drm_connector *connector, 1275 u8 *edid, int num_blocks) 1276 { 1277 int i; 1278 1279 if (connector->bad_edid_counter++ && !(drm_debug & DRM_UT_KMS)) 1280 return; 1281 1282 dev_warn(connector->dev->dev, 1283 "%s: EDID is invalid:\n", 1284 connector->name); 1285 for (i = 0; i < num_blocks; i++) { 1286 u8 *block = edid + i * EDID_LENGTH; 1287 char prefix[20]; 1288 1289 if (drm_edid_is_zero(block, EDID_LENGTH)) 1290 sprintf(prefix, "\t[%02x] ZERO ", i); 1291 else if (!drm_edid_block_valid(block, i, false, NULL)) 1292 sprintf(prefix, "\t[%02x] BAD ", i); 1293 else 1294 sprintf(prefix, "\t[%02x] GOOD ", i); 1295 1296 print_hex_dump(KERN_WARNING, 1297 prefix, DUMP_PREFIX_NONE, 16, 1, 1298 block, EDID_LENGTH, false); 1299 } 1300 } 1301 1302 /** 1303 * drm_do_get_edid - get EDID data using a custom EDID block read function 1304 * @connector: connector we're probing 1305 * @get_edid_block: EDID block read function 1306 * @data: private data passed to the block read function 1307 * 1308 * When the I2C adapter connected to the DDC bus is hidden behind a device that 1309 * exposes a different interface to read EDID blocks this function can be used 1310 * to get EDID data using a custom block read function. 1311 * 1312 * As in the general case the DDC bus is accessible by the kernel at the I2C 1313 * level, drivers must make all reasonable efforts to expose it as an I2C 1314 * adapter and use drm_get_edid() instead of abusing this function. 1315 * 1316 * Return: Pointer to valid EDID or NULL if we couldn't find any. 1317 */ 1318 struct edid *drm_do_get_edid(struct drm_connector *connector, 1319 int (*get_edid_block)(void *data, u8 *buf, unsigned int block, 1320 size_t len), 1321 void *data) 1322 { 1323 int i, j = 0, valid_extensions = 0; 1324 u8 *edid, *new; 1325 1326 if ((edid = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL) 1327 return NULL; 1328 1329 /* base block fetch */ 1330 for (i = 0; i < 4; i++) { 1331 if (get_edid_block(data, edid, 0, EDID_LENGTH)) 1332 goto out; 1333 if (drm_edid_block_valid(edid, 0, false, 1334 &connector->edid_corrupt)) 1335 break; 1336 if (i == 0 && drm_edid_is_zero(edid, EDID_LENGTH)) { 1337 connector->null_edid_counter++; 1338 goto carp; 1339 } 1340 } 1341 if (i == 4) 1342 goto carp; 1343 1344 /* if there's no extensions, we're done */ 1345 valid_extensions = edid[0x7e]; 1346 if (valid_extensions == 0) 1347 return (struct edid *)edid; 1348 1349 new = krealloc(edid, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL); 1350 if (!new) 1351 goto out; 1352 edid = new; 1353 1354 for (j = 1; j <= edid[0x7e]; j++) { 1355 u8 *block = edid + j * EDID_LENGTH; 1356 1357 for (i = 0; i < 4; i++) { 1358 if (get_edid_block(data, block, j, EDID_LENGTH)) 1359 goto out; 1360 if (drm_edid_block_valid(block, j, false, NULL)) 1361 break; 1362 } 1363 1364 if (i == 4) 1365 valid_extensions--; 1366 } 1367 1368 if (valid_extensions != edid[0x7e]) { 1369 u8 *base; 1370 1371 connector_bad_edid(connector, edid, edid[0x7e] + 1); 1372 1373 edid[EDID_LENGTH-1] += edid[0x7e] - valid_extensions; 1374 edid[0x7e] = valid_extensions; 1375 1376 new = kmalloc((valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL); 1377 if (!new) 1378 goto out; 1379 1380 base = new; 1381 for (i = 0; i <= edid[0x7e]; i++) { 1382 u8 *block = edid + i * EDID_LENGTH; 1383 1384 if (!drm_edid_block_valid(block, i, false, NULL)) 1385 continue; 1386 1387 memcpy(base, block, EDID_LENGTH); 1388 base += EDID_LENGTH; 1389 } 1390 1391 kfree(edid); 1392 edid = new; 1393 } 1394 1395 return (struct edid *)edid; 1396 1397 carp: 1398 connector_bad_edid(connector, edid, 1); 1399 out: 1400 kfree(edid); 1401 return NULL; 1402 } 1403 EXPORT_SYMBOL_GPL(drm_do_get_edid); 1404 1405 /** 1406 * drm_probe_ddc() - probe DDC presence 1407 * @adapter: I2C adapter to probe 1408 * 1409 * Return: True on success, false on failure. 1410 */ 1411 bool 1412 drm_probe_ddc(struct i2c_adapter *adapter) 1413 { 1414 unsigned char out; 1415 1416 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0); 1417 } 1418 EXPORT_SYMBOL(drm_probe_ddc); 1419 1420 /** 1421 * drm_get_edid - get EDID data, if available 1422 * @connector: connector we're probing 1423 * @adapter: I2C adapter to use for DDC 1424 * 1425 * Poke the given I2C channel to grab EDID data if possible. If found, 1426 * attach it to the connector. 1427 * 1428 * Return: Pointer to valid EDID or NULL if we couldn't find any. 1429 */ 1430 struct edid *drm_get_edid(struct drm_connector *connector, 1431 struct i2c_adapter *adapter) 1432 { 1433 struct edid *edid; 1434 1435 if (connector->force == DRM_FORCE_OFF) 1436 return NULL; 1437 1438 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter)) 1439 return NULL; 1440 1441 edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter); 1442 if (edid) 1443 drm_get_displayid(connector, edid); 1444 return edid; 1445 } 1446 EXPORT_SYMBOL(drm_get_edid); 1447 1448 /** 1449 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output 1450 * @connector: connector we're probing 1451 * @adapter: I2C adapter to use for DDC 1452 * 1453 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of 1454 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily 1455 * switch DDC to the GPU which is retrieving EDID. 1456 * 1457 * Return: Pointer to valid EDID or %NULL if we couldn't find any. 1458 */ 1459 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector, 1460 struct i2c_adapter *adapter) 1461 { 1462 struct pci_dev *pdev = connector->dev->pdev; 1463 struct edid *edid; 1464 1465 vga_switcheroo_lock_ddc(pdev); 1466 edid = drm_get_edid(connector, adapter); 1467 vga_switcheroo_unlock_ddc(pdev); 1468 1469 return edid; 1470 } 1471 EXPORT_SYMBOL(drm_get_edid_switcheroo); 1472 1473 /** 1474 * drm_edid_duplicate - duplicate an EDID and the extensions 1475 * @edid: EDID to duplicate 1476 * 1477 * Return: Pointer to duplicated EDID or NULL on allocation failure. 1478 */ 1479 struct edid *drm_edid_duplicate(const struct edid *edid) 1480 { 1481 return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL); 1482 } 1483 EXPORT_SYMBOL(drm_edid_duplicate); 1484 1485 /*** EDID parsing ***/ 1486 1487 /** 1488 * edid_vendor - match a string against EDID's obfuscated vendor field 1489 * @edid: EDID to match 1490 * @vendor: vendor string 1491 * 1492 * Returns true if @vendor is in @edid, false otherwise 1493 */ 1494 static bool edid_vendor(struct edid *edid, const char *vendor) 1495 { 1496 char edid_vendor[3]; 1497 1498 edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@'; 1499 edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) | 1500 ((edid->mfg_id[1] & 0xe0) >> 5)) + '@'; 1501 edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@'; 1502 1503 return !strncmp(edid_vendor, vendor, 3); 1504 } 1505 1506 /** 1507 * edid_get_quirks - return quirk flags for a given EDID 1508 * @edid: EDID to process 1509 * 1510 * This tells subsequent routines what fixes they need to apply. 1511 */ 1512 static u32 edid_get_quirks(struct edid *edid) 1513 { 1514 const struct edid_quirk *quirk; 1515 int i; 1516 1517 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) { 1518 quirk = &edid_quirk_list[i]; 1519 1520 if (edid_vendor(edid, quirk->vendor) && 1521 (EDID_PRODUCT_ID(edid) == quirk->product_id)) 1522 return quirk->quirks; 1523 } 1524 1525 return 0; 1526 } 1527 1528 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay) 1529 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t))) 1530 1531 /** 1532 * edid_fixup_preferred - set preferred modes based on quirk list 1533 * @connector: has mode list to fix up 1534 * @quirks: quirks list 1535 * 1536 * Walk the mode list for @connector, clearing the preferred status 1537 * on existing modes and setting it anew for the right mode ala @quirks. 1538 */ 1539 static void edid_fixup_preferred(struct drm_connector *connector, 1540 u32 quirks) 1541 { 1542 struct drm_display_mode *t, *cur_mode, *preferred_mode; 1543 int target_refresh = 0; 1544 int cur_vrefresh, preferred_vrefresh; 1545 1546 if (list_empty(&connector->probed_modes)) 1547 return; 1548 1549 if (quirks & EDID_QUIRK_PREFER_LARGE_60) 1550 target_refresh = 60; 1551 if (quirks & EDID_QUIRK_PREFER_LARGE_75) 1552 target_refresh = 75; 1553 1554 preferred_mode = list_first_entry(&connector->probed_modes, 1555 struct drm_display_mode, head); 1556 1557 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) { 1558 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED; 1559 1560 if (cur_mode == preferred_mode) 1561 continue; 1562 1563 /* Largest mode is preferred */ 1564 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode)) 1565 preferred_mode = cur_mode; 1566 1567 cur_vrefresh = cur_mode->vrefresh ? 1568 cur_mode->vrefresh : drm_mode_vrefresh(cur_mode); 1569 preferred_vrefresh = preferred_mode->vrefresh ? 1570 preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode); 1571 /* At a given size, try to get closest to target refresh */ 1572 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) && 1573 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) < 1574 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) { 1575 preferred_mode = cur_mode; 1576 } 1577 } 1578 1579 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED; 1580 } 1581 1582 static bool 1583 mode_is_rb(const struct drm_display_mode *mode) 1584 { 1585 return (mode->htotal - mode->hdisplay == 160) && 1586 (mode->hsync_end - mode->hdisplay == 80) && 1587 (mode->hsync_end - mode->hsync_start == 32) && 1588 (mode->vsync_start - mode->vdisplay == 3); 1589 } 1590 1591 /* 1592 * drm_mode_find_dmt - Create a copy of a mode if present in DMT 1593 * @dev: Device to duplicate against 1594 * @hsize: Mode width 1595 * @vsize: Mode height 1596 * @fresh: Mode refresh rate 1597 * @rb: Mode reduced-blanking-ness 1598 * 1599 * Walk the DMT mode list looking for a match for the given parameters. 1600 * 1601 * Return: A newly allocated copy of the mode, or NULL if not found. 1602 */ 1603 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev, 1604 int hsize, int vsize, int fresh, 1605 bool rb) 1606 { 1607 int i; 1608 1609 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) { 1610 const struct drm_display_mode *ptr = &drm_dmt_modes[i]; 1611 if (hsize != ptr->hdisplay) 1612 continue; 1613 if (vsize != ptr->vdisplay) 1614 continue; 1615 if (fresh != drm_mode_vrefresh(ptr)) 1616 continue; 1617 if (rb != mode_is_rb(ptr)) 1618 continue; 1619 1620 return drm_mode_duplicate(dev, ptr); 1621 } 1622 1623 return NULL; 1624 } 1625 EXPORT_SYMBOL(drm_mode_find_dmt); 1626 1627 typedef void detailed_cb(struct detailed_timing *timing, void *closure); 1628 1629 static void 1630 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure) 1631 { 1632 int i, n = 0; 1633 u8 d = ext[0x02]; 1634 u8 *det_base = ext + d; 1635 1636 n = (127 - d) / 18; 1637 for (i = 0; i < n; i++) 1638 cb((struct detailed_timing *)(det_base + 18 * i), closure); 1639 } 1640 1641 static void 1642 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure) 1643 { 1644 unsigned int i, n = min((int)ext[0x02], 6); 1645 u8 *det_base = ext + 5; 1646 1647 if (ext[0x01] != 1) 1648 return; /* unknown version */ 1649 1650 for (i = 0; i < n; i++) 1651 cb((struct detailed_timing *)(det_base + 18 * i), closure); 1652 } 1653 1654 static void 1655 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure) 1656 { 1657 int i; 1658 struct edid *edid = (struct edid *)raw_edid; 1659 1660 if (edid == NULL) 1661 return; 1662 1663 for (i = 0; i < EDID_DETAILED_TIMINGS; i++) 1664 cb(&(edid->detailed_timings[i]), closure); 1665 1666 for (i = 1; i <= raw_edid[0x7e]; i++) { 1667 u8 *ext = raw_edid + (i * EDID_LENGTH); 1668 switch (*ext) { 1669 case CEA_EXT: 1670 cea_for_each_detailed_block(ext, cb, closure); 1671 break; 1672 case VTB_EXT: 1673 vtb_for_each_detailed_block(ext, cb, closure); 1674 break; 1675 default: 1676 break; 1677 } 1678 } 1679 } 1680 1681 static void 1682 is_rb(struct detailed_timing *t, void *data) 1683 { 1684 u8 *r = (u8 *)t; 1685 if (r[3] == EDID_DETAIL_MONITOR_RANGE) 1686 if (r[15] & 0x10) 1687 *(bool *)data = true; 1688 } 1689 1690 /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */ 1691 static bool 1692 drm_monitor_supports_rb(struct edid *edid) 1693 { 1694 if (edid->revision >= 4) { 1695 bool ret = false; 1696 drm_for_each_detailed_block((u8 *)edid, is_rb, &ret); 1697 return ret; 1698 } 1699 1700 return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0); 1701 } 1702 1703 static void 1704 find_gtf2(struct detailed_timing *t, void *data) 1705 { 1706 u8 *r = (u8 *)t; 1707 if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02) 1708 *(u8 **)data = r; 1709 } 1710 1711 /* Secondary GTF curve kicks in above some break frequency */ 1712 static int 1713 drm_gtf2_hbreak(struct edid *edid) 1714 { 1715 u8 *r = NULL; 1716 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); 1717 return r ? (r[12] * 2) : 0; 1718 } 1719 1720 static int 1721 drm_gtf2_2c(struct edid *edid) 1722 { 1723 u8 *r = NULL; 1724 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); 1725 return r ? r[13] : 0; 1726 } 1727 1728 static int 1729 drm_gtf2_m(struct edid *edid) 1730 { 1731 u8 *r = NULL; 1732 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); 1733 return r ? (r[15] << 8) + r[14] : 0; 1734 } 1735 1736 static int 1737 drm_gtf2_k(struct edid *edid) 1738 { 1739 u8 *r = NULL; 1740 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); 1741 return r ? r[16] : 0; 1742 } 1743 1744 static int 1745 drm_gtf2_2j(struct edid *edid) 1746 { 1747 u8 *r = NULL; 1748 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); 1749 return r ? r[17] : 0; 1750 } 1751 1752 /** 1753 * standard_timing_level - get std. timing level(CVT/GTF/DMT) 1754 * @edid: EDID block to scan 1755 */ 1756 static int standard_timing_level(struct edid *edid) 1757 { 1758 if (edid->revision >= 2) { 1759 if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)) 1760 return LEVEL_CVT; 1761 if (drm_gtf2_hbreak(edid)) 1762 return LEVEL_GTF2; 1763 return LEVEL_GTF; 1764 } 1765 return LEVEL_DMT; 1766 } 1767 1768 /* 1769 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old 1770 * monitors fill with ascii space (0x20) instead. 1771 */ 1772 static int 1773 bad_std_timing(u8 a, u8 b) 1774 { 1775 return (a == 0x00 && b == 0x00) || 1776 (a == 0x01 && b == 0x01) || 1777 (a == 0x20 && b == 0x20); 1778 } 1779 1780 /** 1781 * drm_mode_std - convert standard mode info (width, height, refresh) into mode 1782 * @connector: connector of for the EDID block 1783 * @edid: EDID block to scan 1784 * @t: standard timing params 1785 * 1786 * Take the standard timing params (in this case width, aspect, and refresh) 1787 * and convert them into a real mode using CVT/GTF/DMT. 1788 */ 1789 static struct drm_display_mode * 1790 drm_mode_std(struct drm_connector *connector, struct edid *edid, 1791 struct std_timing *t) 1792 { 1793 struct drm_device *dev = connector->dev; 1794 struct drm_display_mode *m, *mode = NULL; 1795 int hsize, vsize; 1796 int vrefresh_rate; 1797 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK) 1798 >> EDID_TIMING_ASPECT_SHIFT; 1799 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK) 1800 >> EDID_TIMING_VFREQ_SHIFT; 1801 int timing_level = standard_timing_level(edid); 1802 1803 if (bad_std_timing(t->hsize, t->vfreq_aspect)) 1804 return NULL; 1805 1806 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */ 1807 hsize = t->hsize * 8 + 248; 1808 /* vrefresh_rate = vfreq + 60 */ 1809 vrefresh_rate = vfreq + 60; 1810 /* the vdisplay is calculated based on the aspect ratio */ 1811 if (aspect_ratio == 0) { 1812 if (edid->revision < 3) 1813 vsize = hsize; 1814 else 1815 vsize = (hsize * 10) / 16; 1816 } else if (aspect_ratio == 1) 1817 vsize = (hsize * 3) / 4; 1818 else if (aspect_ratio == 2) 1819 vsize = (hsize * 4) / 5; 1820 else 1821 vsize = (hsize * 9) / 16; 1822 1823 /* HDTV hack, part 1 */ 1824 if (vrefresh_rate == 60 && 1825 ((hsize == 1360 && vsize == 765) || 1826 (hsize == 1368 && vsize == 769))) { 1827 hsize = 1366; 1828 vsize = 768; 1829 } 1830 1831 /* 1832 * If this connector already has a mode for this size and refresh 1833 * rate (because it came from detailed or CVT info), use that 1834 * instead. This way we don't have to guess at interlace or 1835 * reduced blanking. 1836 */ 1837 list_for_each_entry(m, &connector->probed_modes, head) 1838 if (m->hdisplay == hsize && m->vdisplay == vsize && 1839 drm_mode_vrefresh(m) == vrefresh_rate) 1840 return NULL; 1841 1842 /* HDTV hack, part 2 */ 1843 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) { 1844 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0, 1845 false); 1846 mode->hdisplay = 1366; 1847 mode->hsync_start = mode->hsync_start - 1; 1848 mode->hsync_end = mode->hsync_end - 1; 1849 return mode; 1850 } 1851 1852 /* check whether it can be found in default mode table */ 1853 if (drm_monitor_supports_rb(edid)) { 1854 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, 1855 true); 1856 if (mode) 1857 return mode; 1858 } 1859 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false); 1860 if (mode) 1861 return mode; 1862 1863 /* okay, generate it */ 1864 switch (timing_level) { 1865 case LEVEL_DMT: 1866 break; 1867 case LEVEL_GTF: 1868 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0); 1869 break; 1870 case LEVEL_GTF2: 1871 /* 1872 * This is potentially wrong if there's ever a monitor with 1873 * more than one ranges section, each claiming a different 1874 * secondary GTF curve. Please don't do that. 1875 */ 1876 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0); 1877 if (!mode) 1878 return NULL; 1879 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) { 1880 drm_mode_destroy(dev, mode); 1881 mode = drm_gtf_mode_complex(dev, hsize, vsize, 1882 vrefresh_rate, 0, 0, 1883 drm_gtf2_m(edid), 1884 drm_gtf2_2c(edid), 1885 drm_gtf2_k(edid), 1886 drm_gtf2_2j(edid)); 1887 } 1888 break; 1889 case LEVEL_CVT: 1890 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0, 1891 false); 1892 break; 1893 } 1894 return mode; 1895 } 1896 1897 /* 1898 * EDID is delightfully ambiguous about how interlaced modes are to be 1899 * encoded. Our internal representation is of frame height, but some 1900 * HDTV detailed timings are encoded as field height. 1901 * 1902 * The format list here is from CEA, in frame size. Technically we 1903 * should be checking refresh rate too. Whatever. 1904 */ 1905 static void 1906 drm_mode_do_interlace_quirk(struct drm_display_mode *mode, 1907 struct detailed_pixel_timing *pt) 1908 { 1909 int i; 1910 static const struct { 1911 int w, h; 1912 } cea_interlaced[] = { 1913 { 1920, 1080 }, 1914 { 720, 480 }, 1915 { 1440, 480 }, 1916 { 2880, 480 }, 1917 { 720, 576 }, 1918 { 1440, 576 }, 1919 { 2880, 576 }, 1920 }; 1921 1922 if (!(pt->misc & DRM_EDID_PT_INTERLACED)) 1923 return; 1924 1925 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) { 1926 if ((mode->hdisplay == cea_interlaced[i].w) && 1927 (mode->vdisplay == cea_interlaced[i].h / 2)) { 1928 mode->vdisplay *= 2; 1929 mode->vsync_start *= 2; 1930 mode->vsync_end *= 2; 1931 mode->vtotal *= 2; 1932 mode->vtotal |= 1; 1933 } 1934 } 1935 1936 mode->flags |= DRM_MODE_FLAG_INTERLACE; 1937 } 1938 1939 /** 1940 * drm_mode_detailed - create a new mode from an EDID detailed timing section 1941 * @dev: DRM device (needed to create new mode) 1942 * @edid: EDID block 1943 * @timing: EDID detailed timing info 1944 * @quirks: quirks to apply 1945 * 1946 * An EDID detailed timing block contains enough info for us to create and 1947 * return a new struct drm_display_mode. 1948 */ 1949 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev, 1950 struct edid *edid, 1951 struct detailed_timing *timing, 1952 u32 quirks) 1953 { 1954 struct drm_display_mode *mode; 1955 struct detailed_pixel_timing *pt = &timing->data.pixel_data; 1956 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo; 1957 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo; 1958 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo; 1959 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo; 1960 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo; 1961 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo; 1962 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4; 1963 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf); 1964 1965 /* ignore tiny modes */ 1966 if (hactive < 64 || vactive < 64) 1967 return NULL; 1968 1969 if (pt->misc & DRM_EDID_PT_STEREO) { 1970 DRM_DEBUG_KMS("stereo mode not supported\n"); 1971 return NULL; 1972 } 1973 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) { 1974 DRM_DEBUG_KMS("composite sync not supported\n"); 1975 } 1976 1977 /* it is incorrect if hsync/vsync width is zero */ 1978 if (!hsync_pulse_width || !vsync_pulse_width) { 1979 DRM_DEBUG_KMS("Incorrect Detailed timing. " 1980 "Wrong Hsync/Vsync pulse width\n"); 1981 return NULL; 1982 } 1983 1984 if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) { 1985 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false); 1986 if (!mode) 1987 return NULL; 1988 1989 goto set_size; 1990 } 1991 1992 mode = drm_mode_create(dev); 1993 if (!mode) 1994 return NULL; 1995 1996 if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH) 1997 timing->pixel_clock = cpu_to_le16(1088); 1998 1999 mode->clock = le16_to_cpu(timing->pixel_clock) * 10; 2000 2001 mode->hdisplay = hactive; 2002 mode->hsync_start = mode->hdisplay + hsync_offset; 2003 mode->hsync_end = mode->hsync_start + hsync_pulse_width; 2004 mode->htotal = mode->hdisplay + hblank; 2005 2006 mode->vdisplay = vactive; 2007 mode->vsync_start = mode->vdisplay + vsync_offset; 2008 mode->vsync_end = mode->vsync_start + vsync_pulse_width; 2009 mode->vtotal = mode->vdisplay + vblank; 2010 2011 /* Some EDIDs have bogus h/vtotal values */ 2012 if (mode->hsync_end > mode->htotal) 2013 mode->htotal = mode->hsync_end + 1; 2014 if (mode->vsync_end > mode->vtotal) 2015 mode->vtotal = mode->vsync_end + 1; 2016 2017 drm_mode_do_interlace_quirk(mode, pt); 2018 2019 if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) { 2020 pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE; 2021 } 2022 2023 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ? 2024 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC; 2025 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ? 2026 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC; 2027 2028 set_size: 2029 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4; 2030 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8; 2031 2032 if (quirks & EDID_QUIRK_DETAILED_IN_CM) { 2033 mode->width_mm *= 10; 2034 mode->height_mm *= 10; 2035 } 2036 2037 if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) { 2038 mode->width_mm = edid->width_cm * 10; 2039 mode->height_mm = edid->height_cm * 10; 2040 } 2041 2042 mode->type = DRM_MODE_TYPE_DRIVER; 2043 mode->vrefresh = drm_mode_vrefresh(mode); 2044 drm_mode_set_name(mode); 2045 2046 return mode; 2047 } 2048 2049 static bool 2050 mode_in_hsync_range(const struct drm_display_mode *mode, 2051 struct edid *edid, u8 *t) 2052 { 2053 int hsync, hmin, hmax; 2054 2055 hmin = t[7]; 2056 if (edid->revision >= 4) 2057 hmin += ((t[4] & 0x04) ? 255 : 0); 2058 hmax = t[8]; 2059 if (edid->revision >= 4) 2060 hmax += ((t[4] & 0x08) ? 255 : 0); 2061 hsync = drm_mode_hsync(mode); 2062 2063 return (hsync <= hmax && hsync >= hmin); 2064 } 2065 2066 static bool 2067 mode_in_vsync_range(const struct drm_display_mode *mode, 2068 struct edid *edid, u8 *t) 2069 { 2070 int vsync, vmin, vmax; 2071 2072 vmin = t[5]; 2073 if (edid->revision >= 4) 2074 vmin += ((t[4] & 0x01) ? 255 : 0); 2075 vmax = t[6]; 2076 if (edid->revision >= 4) 2077 vmax += ((t[4] & 0x02) ? 255 : 0); 2078 vsync = drm_mode_vrefresh(mode); 2079 2080 return (vsync <= vmax && vsync >= vmin); 2081 } 2082 2083 static u32 2084 range_pixel_clock(struct edid *edid, u8 *t) 2085 { 2086 /* unspecified */ 2087 if (t[9] == 0 || t[9] == 255) 2088 return 0; 2089 2090 /* 1.4 with CVT support gives us real precision, yay */ 2091 if (edid->revision >= 4 && t[10] == 0x04) 2092 return (t[9] * 10000) - ((t[12] >> 2) * 250); 2093 2094 /* 1.3 is pathetic, so fuzz up a bit */ 2095 return t[9] * 10000 + 5001; 2096 } 2097 2098 static bool 2099 mode_in_range(const struct drm_display_mode *mode, struct edid *edid, 2100 struct detailed_timing *timing) 2101 { 2102 u32 max_clock; 2103 u8 *t = (u8 *)timing; 2104 2105 if (!mode_in_hsync_range(mode, edid, t)) 2106 return false; 2107 2108 if (!mode_in_vsync_range(mode, edid, t)) 2109 return false; 2110 2111 if ((max_clock = range_pixel_clock(edid, t))) 2112 if (mode->clock > max_clock) 2113 return false; 2114 2115 /* 1.4 max horizontal check */ 2116 if (edid->revision >= 4 && t[10] == 0x04) 2117 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3)))) 2118 return false; 2119 2120 if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid)) 2121 return false; 2122 2123 return true; 2124 } 2125 2126 static bool valid_inferred_mode(const struct drm_connector *connector, 2127 const struct drm_display_mode *mode) 2128 { 2129 const struct drm_display_mode *m; 2130 bool ok = false; 2131 2132 list_for_each_entry(m, &connector->probed_modes, head) { 2133 if (mode->hdisplay == m->hdisplay && 2134 mode->vdisplay == m->vdisplay && 2135 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m)) 2136 return false; /* duplicated */ 2137 if (mode->hdisplay <= m->hdisplay && 2138 mode->vdisplay <= m->vdisplay) 2139 ok = true; 2140 } 2141 return ok; 2142 } 2143 2144 static int 2145 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid, 2146 struct detailed_timing *timing) 2147 { 2148 int i, modes = 0; 2149 struct drm_display_mode *newmode; 2150 struct drm_device *dev = connector->dev; 2151 2152 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) { 2153 if (mode_in_range(drm_dmt_modes + i, edid, timing) && 2154 valid_inferred_mode(connector, drm_dmt_modes + i)) { 2155 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]); 2156 if (newmode) { 2157 drm_mode_probed_add(connector, newmode); 2158 modes++; 2159 } 2160 } 2161 } 2162 2163 return modes; 2164 } 2165 2166 /* fix up 1366x768 mode from 1368x768; 2167 * GFT/CVT can't express 1366 width which isn't dividable by 8 2168 */ 2169 void drm_mode_fixup_1366x768(struct drm_display_mode *mode) 2170 { 2171 if (mode->hdisplay == 1368 && mode->vdisplay == 768) { 2172 mode->hdisplay = 1366; 2173 mode->hsync_start--; 2174 mode->hsync_end--; 2175 drm_mode_set_name(mode); 2176 } 2177 } 2178 2179 static int 2180 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid, 2181 struct detailed_timing *timing) 2182 { 2183 int i, modes = 0; 2184 struct drm_display_mode *newmode; 2185 struct drm_device *dev = connector->dev; 2186 2187 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) { 2188 const struct minimode *m = &extra_modes[i]; 2189 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0); 2190 if (!newmode) 2191 return modes; 2192 2193 drm_mode_fixup_1366x768(newmode); 2194 if (!mode_in_range(newmode, edid, timing) || 2195 !valid_inferred_mode(connector, newmode)) { 2196 drm_mode_destroy(dev, newmode); 2197 continue; 2198 } 2199 2200 drm_mode_probed_add(connector, newmode); 2201 modes++; 2202 } 2203 2204 return modes; 2205 } 2206 2207 static int 2208 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid, 2209 struct detailed_timing *timing) 2210 { 2211 int i, modes = 0; 2212 struct drm_display_mode *newmode; 2213 struct drm_device *dev = connector->dev; 2214 bool rb = drm_monitor_supports_rb(edid); 2215 2216 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) { 2217 const struct minimode *m = &extra_modes[i]; 2218 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0); 2219 if (!newmode) 2220 return modes; 2221 2222 drm_mode_fixup_1366x768(newmode); 2223 if (!mode_in_range(newmode, edid, timing) || 2224 !valid_inferred_mode(connector, newmode)) { 2225 drm_mode_destroy(dev, newmode); 2226 continue; 2227 } 2228 2229 drm_mode_probed_add(connector, newmode); 2230 modes++; 2231 } 2232 2233 return modes; 2234 } 2235 2236 static void 2237 do_inferred_modes(struct detailed_timing *timing, void *c) 2238 { 2239 struct detailed_mode_closure *closure = c; 2240 struct detailed_non_pixel *data = &timing->data.other_data; 2241 struct detailed_data_monitor_range *range = &data->data.range; 2242 2243 if (data->type != EDID_DETAIL_MONITOR_RANGE) 2244 return; 2245 2246 closure->modes += drm_dmt_modes_for_range(closure->connector, 2247 closure->edid, 2248 timing); 2249 2250 if (!version_greater(closure->edid, 1, 1)) 2251 return; /* GTF not defined yet */ 2252 2253 switch (range->flags) { 2254 case 0x02: /* secondary gtf, XXX could do more */ 2255 case 0x00: /* default gtf */ 2256 closure->modes += drm_gtf_modes_for_range(closure->connector, 2257 closure->edid, 2258 timing); 2259 break; 2260 case 0x04: /* cvt, only in 1.4+ */ 2261 if (!version_greater(closure->edid, 1, 3)) 2262 break; 2263 2264 closure->modes += drm_cvt_modes_for_range(closure->connector, 2265 closure->edid, 2266 timing); 2267 break; 2268 case 0x01: /* just the ranges, no formula */ 2269 default: 2270 break; 2271 } 2272 } 2273 2274 static int 2275 add_inferred_modes(struct drm_connector *connector, struct edid *edid) 2276 { 2277 struct detailed_mode_closure closure = { 2278 .connector = connector, 2279 .edid = edid, 2280 }; 2281 2282 if (version_greater(edid, 1, 0)) 2283 drm_for_each_detailed_block((u8 *)edid, do_inferred_modes, 2284 &closure); 2285 2286 return closure.modes; 2287 } 2288 2289 static int 2290 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing) 2291 { 2292 int i, j, m, modes = 0; 2293 struct drm_display_mode *mode; 2294 u8 *est = ((u8 *)timing) + 6; 2295 2296 for (i = 0; i < 6; i++) { 2297 for (j = 7; j >= 0; j--) { 2298 m = (i * 8) + (7 - j); 2299 if (m >= ARRAY_SIZE(est3_modes)) 2300 break; 2301 if (est[i] & (1 << j)) { 2302 mode = drm_mode_find_dmt(connector->dev, 2303 est3_modes[m].w, 2304 est3_modes[m].h, 2305 est3_modes[m].r, 2306 est3_modes[m].rb); 2307 if (mode) { 2308 drm_mode_probed_add(connector, mode); 2309 modes++; 2310 } 2311 } 2312 } 2313 } 2314 2315 return modes; 2316 } 2317 2318 static void 2319 do_established_modes(struct detailed_timing *timing, void *c) 2320 { 2321 struct detailed_mode_closure *closure = c; 2322 struct detailed_non_pixel *data = &timing->data.other_data; 2323 2324 if (data->type == EDID_DETAIL_EST_TIMINGS) 2325 closure->modes += drm_est3_modes(closure->connector, timing); 2326 } 2327 2328 /** 2329 * add_established_modes - get est. modes from EDID and add them 2330 * @connector: connector to add mode(s) to 2331 * @edid: EDID block to scan 2332 * 2333 * Each EDID block contains a bitmap of the supported "established modes" list 2334 * (defined above). Tease them out and add them to the global modes list. 2335 */ 2336 static int 2337 add_established_modes(struct drm_connector *connector, struct edid *edid) 2338 { 2339 struct drm_device *dev = connector->dev; 2340 unsigned long est_bits = edid->established_timings.t1 | 2341 (edid->established_timings.t2 << 8) | 2342 ((edid->established_timings.mfg_rsvd & 0x80) << 9); 2343 int i, modes = 0; 2344 struct detailed_mode_closure closure = { 2345 .connector = connector, 2346 .edid = edid, 2347 }; 2348 2349 for (i = 0; i <= EDID_EST_TIMINGS; i++) { 2350 if (est_bits & (1<<i)) { 2351 struct drm_display_mode *newmode; 2352 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]); 2353 if (newmode) { 2354 drm_mode_probed_add(connector, newmode); 2355 modes++; 2356 } 2357 } 2358 } 2359 2360 if (version_greater(edid, 1, 0)) 2361 drm_for_each_detailed_block((u8 *)edid, 2362 do_established_modes, &closure); 2363 2364 return modes + closure.modes; 2365 } 2366 2367 static void 2368 do_standard_modes(struct detailed_timing *timing, void *c) 2369 { 2370 struct detailed_mode_closure *closure = c; 2371 struct detailed_non_pixel *data = &timing->data.other_data; 2372 struct drm_connector *connector = closure->connector; 2373 struct edid *edid = closure->edid; 2374 2375 if (data->type == EDID_DETAIL_STD_MODES) { 2376 int i; 2377 for (i = 0; i < 6; i++) { 2378 struct std_timing *std; 2379 struct drm_display_mode *newmode; 2380 2381 std = &data->data.timings[i]; 2382 newmode = drm_mode_std(connector, edid, std); 2383 if (newmode) { 2384 drm_mode_probed_add(connector, newmode); 2385 closure->modes++; 2386 } 2387 } 2388 } 2389 } 2390 2391 /** 2392 * add_standard_modes - get std. modes from EDID and add them 2393 * @connector: connector to add mode(s) to 2394 * @edid: EDID block to scan 2395 * 2396 * Standard modes can be calculated using the appropriate standard (DMT, 2397 * GTF or CVT. Grab them from @edid and add them to the list. 2398 */ 2399 static int 2400 add_standard_modes(struct drm_connector *connector, struct edid *edid) 2401 { 2402 int i, modes = 0; 2403 struct detailed_mode_closure closure = { 2404 .connector = connector, 2405 .edid = edid, 2406 }; 2407 2408 for (i = 0; i < EDID_STD_TIMINGS; i++) { 2409 struct drm_display_mode *newmode; 2410 2411 newmode = drm_mode_std(connector, edid, 2412 &edid->standard_timings[i]); 2413 if (newmode) { 2414 drm_mode_probed_add(connector, newmode); 2415 modes++; 2416 } 2417 } 2418 2419 if (version_greater(edid, 1, 0)) 2420 drm_for_each_detailed_block((u8 *)edid, do_standard_modes, 2421 &closure); 2422 2423 /* XXX should also look for standard codes in VTB blocks */ 2424 2425 return modes + closure.modes; 2426 } 2427 2428 static int drm_cvt_modes(struct drm_connector *connector, 2429 struct detailed_timing *timing) 2430 { 2431 int i, j, modes = 0; 2432 struct drm_display_mode *newmode; 2433 struct drm_device *dev = connector->dev; 2434 struct cvt_timing *cvt; 2435 const int rates[] = { 60, 85, 75, 60, 50 }; 2436 const u8 empty[3] = { 0, 0, 0 }; 2437 2438 for (i = 0; i < 4; i++) { 2439 int uninitialized_var(width), height; 2440 cvt = &(timing->data.other_data.data.cvt[i]); 2441 2442 if (!memcmp(cvt->code, empty, 3)) 2443 continue; 2444 2445 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2; 2446 switch (cvt->code[1] & 0x0c) { 2447 case 0x00: 2448 width = height * 4 / 3; 2449 break; 2450 case 0x04: 2451 width = height * 16 / 9; 2452 break; 2453 case 0x08: 2454 width = height * 16 / 10; 2455 break; 2456 case 0x0c: 2457 width = height * 15 / 9; 2458 break; 2459 } 2460 2461 for (j = 1; j < 5; j++) { 2462 if (cvt->code[2] & (1 << j)) { 2463 newmode = drm_cvt_mode(dev, width, height, 2464 rates[j], j == 0, 2465 false, false); 2466 if (newmode) { 2467 drm_mode_probed_add(connector, newmode); 2468 modes++; 2469 } 2470 } 2471 } 2472 } 2473 2474 return modes; 2475 } 2476 2477 static void 2478 do_cvt_mode(struct detailed_timing *timing, void *c) 2479 { 2480 struct detailed_mode_closure *closure = c; 2481 struct detailed_non_pixel *data = &timing->data.other_data; 2482 2483 if (data->type == EDID_DETAIL_CVT_3BYTE) 2484 closure->modes += drm_cvt_modes(closure->connector, timing); 2485 } 2486 2487 static int 2488 add_cvt_modes(struct drm_connector *connector, struct edid *edid) 2489 { 2490 struct detailed_mode_closure closure = { 2491 .connector = connector, 2492 .edid = edid, 2493 }; 2494 2495 if (version_greater(edid, 1, 2)) 2496 drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure); 2497 2498 /* XXX should also look for CVT codes in VTB blocks */ 2499 2500 return closure.modes; 2501 } 2502 2503 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode); 2504 2505 static void 2506 do_detailed_mode(struct detailed_timing *timing, void *c) 2507 { 2508 struct detailed_mode_closure *closure = c; 2509 struct drm_display_mode *newmode; 2510 2511 if (timing->pixel_clock) { 2512 newmode = drm_mode_detailed(closure->connector->dev, 2513 closure->edid, timing, 2514 closure->quirks); 2515 if (!newmode) 2516 return; 2517 2518 if (closure->preferred) 2519 newmode->type |= DRM_MODE_TYPE_PREFERRED; 2520 2521 /* 2522 * Detailed modes are limited to 10kHz pixel clock resolution, 2523 * so fix up anything that looks like CEA/HDMI mode, but the clock 2524 * is just slightly off. 2525 */ 2526 fixup_detailed_cea_mode_clock(newmode); 2527 2528 drm_mode_probed_add(closure->connector, newmode); 2529 closure->modes++; 2530 closure->preferred = 0; 2531 } 2532 } 2533 2534 /* 2535 * add_detailed_modes - Add modes from detailed timings 2536 * @connector: attached connector 2537 * @edid: EDID block to scan 2538 * @quirks: quirks to apply 2539 */ 2540 static int 2541 add_detailed_modes(struct drm_connector *connector, struct edid *edid, 2542 u32 quirks) 2543 { 2544 struct detailed_mode_closure closure = { 2545 .connector = connector, 2546 .edid = edid, 2547 .preferred = 1, 2548 .quirks = quirks, 2549 }; 2550 2551 if (closure.preferred && !version_greater(edid, 1, 3)) 2552 closure.preferred = 2553 (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING); 2554 2555 drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure); 2556 2557 return closure.modes; 2558 } 2559 2560 #define AUDIO_BLOCK 0x01 2561 #define VIDEO_BLOCK 0x02 2562 #define VENDOR_BLOCK 0x03 2563 #define SPEAKER_BLOCK 0x04 2564 #define VIDEO_CAPABILITY_BLOCK 0x07 2565 #define EDID_BASIC_AUDIO (1 << 6) 2566 #define EDID_CEA_YCRCB444 (1 << 5) 2567 #define EDID_CEA_YCRCB422 (1 << 4) 2568 #define EDID_CEA_VCDB_QS (1 << 6) 2569 2570 /* 2571 * Search EDID for CEA extension block. 2572 */ 2573 static u8 *drm_find_edid_extension(struct edid *edid, int ext_id) 2574 { 2575 u8 *edid_ext = NULL; 2576 int i; 2577 2578 /* No EDID or EDID extensions */ 2579 if (edid == NULL || edid->extensions == 0) 2580 return NULL; 2581 2582 /* Find CEA extension */ 2583 for (i = 0; i < edid->extensions; i++) { 2584 edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1); 2585 if (edid_ext[0] == ext_id) 2586 break; 2587 } 2588 2589 if (i == edid->extensions) 2590 return NULL; 2591 2592 return edid_ext; 2593 } 2594 2595 static u8 *drm_find_cea_extension(struct edid *edid) 2596 { 2597 return drm_find_edid_extension(edid, CEA_EXT); 2598 } 2599 2600 static u8 *drm_find_displayid_extension(struct edid *edid) 2601 { 2602 return drm_find_edid_extension(edid, DISPLAYID_EXT); 2603 } 2604 2605 /* 2606 * Calculate the alternate clock for the CEA mode 2607 * (60Hz vs. 59.94Hz etc.) 2608 */ 2609 static unsigned int 2610 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode) 2611 { 2612 unsigned int clock = cea_mode->clock; 2613 2614 if (cea_mode->vrefresh % 6 != 0) 2615 return clock; 2616 2617 /* 2618 * edid_cea_modes contains the 59.94Hz 2619 * variant for 240 and 480 line modes, 2620 * and the 60Hz variant otherwise. 2621 */ 2622 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480) 2623 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000); 2624 else 2625 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001); 2626 2627 return clock; 2628 } 2629 2630 static bool 2631 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode) 2632 { 2633 /* 2634 * For certain VICs the spec allows the vertical 2635 * front porch to vary by one or two lines. 2636 * 2637 * cea_modes[] stores the variant with the shortest 2638 * vertical front porch. We can adjust the mode to 2639 * get the other variants by simply increasing the 2640 * vertical front porch length. 2641 */ 2642 BUILD_BUG_ON(edid_cea_modes[8].vtotal != 262 || 2643 edid_cea_modes[9].vtotal != 262 || 2644 edid_cea_modes[12].vtotal != 262 || 2645 edid_cea_modes[13].vtotal != 262 || 2646 edid_cea_modes[23].vtotal != 312 || 2647 edid_cea_modes[24].vtotal != 312 || 2648 edid_cea_modes[27].vtotal != 312 || 2649 edid_cea_modes[28].vtotal != 312); 2650 2651 if (((vic == 8 || vic == 9 || 2652 vic == 12 || vic == 13) && mode->vtotal < 263) || 2653 ((vic == 23 || vic == 24 || 2654 vic == 27 || vic == 28) && mode->vtotal < 314)) { 2655 mode->vsync_start++; 2656 mode->vsync_end++; 2657 mode->vtotal++; 2658 2659 return true; 2660 } 2661 2662 return false; 2663 } 2664 2665 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match, 2666 unsigned int clock_tolerance) 2667 { 2668 u8 vic; 2669 2670 if (!to_match->clock) 2671 return 0; 2672 2673 for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) { 2674 struct drm_display_mode cea_mode = edid_cea_modes[vic]; 2675 unsigned int clock1, clock2; 2676 2677 /* Check both 60Hz and 59.94Hz */ 2678 clock1 = cea_mode.clock; 2679 clock2 = cea_mode_alternate_clock(&cea_mode); 2680 2681 if (abs(to_match->clock - clock1) > clock_tolerance && 2682 abs(to_match->clock - clock2) > clock_tolerance) 2683 continue; 2684 2685 do { 2686 if (drm_mode_equal_no_clocks_no_stereo(to_match, &cea_mode)) 2687 return vic; 2688 } while (cea_mode_alternate_timings(vic, &cea_mode)); 2689 } 2690 2691 return 0; 2692 } 2693 2694 /** 2695 * drm_match_cea_mode - look for a CEA mode matching given mode 2696 * @to_match: display mode 2697 * 2698 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861 2699 * mode. 2700 */ 2701 u8 drm_match_cea_mode(const struct drm_display_mode *to_match) 2702 { 2703 u8 vic; 2704 2705 if (!to_match->clock) 2706 return 0; 2707 2708 for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) { 2709 struct drm_display_mode cea_mode = edid_cea_modes[vic]; 2710 unsigned int clock1, clock2; 2711 2712 /* Check both 60Hz and 59.94Hz */ 2713 clock1 = cea_mode.clock; 2714 clock2 = cea_mode_alternate_clock(&cea_mode); 2715 2716 if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) && 2717 KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2)) 2718 continue; 2719 2720 do { 2721 if (drm_mode_equal_no_clocks_no_stereo(to_match, &cea_mode)) 2722 return vic; 2723 } while (cea_mode_alternate_timings(vic, &cea_mode)); 2724 } 2725 2726 return 0; 2727 } 2728 EXPORT_SYMBOL(drm_match_cea_mode); 2729 2730 static bool drm_valid_cea_vic(u8 vic) 2731 { 2732 return vic > 0 && vic < ARRAY_SIZE(edid_cea_modes); 2733 } 2734 2735 /** 2736 * drm_get_cea_aspect_ratio - get the picture aspect ratio corresponding to 2737 * the input VIC from the CEA mode list 2738 * @video_code: ID given to each of the CEA modes 2739 * 2740 * Returns picture aspect ratio 2741 */ 2742 enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code) 2743 { 2744 return edid_cea_modes[video_code].picture_aspect_ratio; 2745 } 2746 EXPORT_SYMBOL(drm_get_cea_aspect_ratio); 2747 2748 /* 2749 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor 2750 * specific block). 2751 * 2752 * It's almost like cea_mode_alternate_clock(), we just need to add an 2753 * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this 2754 * one. 2755 */ 2756 static unsigned int 2757 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode) 2758 { 2759 if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160) 2760 return hdmi_mode->clock; 2761 2762 return cea_mode_alternate_clock(hdmi_mode); 2763 } 2764 2765 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match, 2766 unsigned int clock_tolerance) 2767 { 2768 u8 vic; 2769 2770 if (!to_match->clock) 2771 return 0; 2772 2773 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) { 2774 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic]; 2775 unsigned int clock1, clock2; 2776 2777 /* Make sure to also match alternate clocks */ 2778 clock1 = hdmi_mode->clock; 2779 clock2 = hdmi_mode_alternate_clock(hdmi_mode); 2780 2781 if (abs(to_match->clock - clock1) > clock_tolerance && 2782 abs(to_match->clock - clock2) > clock_tolerance) 2783 continue; 2784 2785 if (drm_mode_equal_no_clocks(to_match, hdmi_mode)) 2786 return vic; 2787 } 2788 2789 return 0; 2790 } 2791 2792 /* 2793 * drm_match_hdmi_mode - look for a HDMI mode matching given mode 2794 * @to_match: display mode 2795 * 2796 * An HDMI mode is one defined in the HDMI vendor specific block. 2797 * 2798 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one. 2799 */ 2800 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match) 2801 { 2802 u8 vic; 2803 2804 if (!to_match->clock) 2805 return 0; 2806 2807 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) { 2808 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic]; 2809 unsigned int clock1, clock2; 2810 2811 /* Make sure to also match alternate clocks */ 2812 clock1 = hdmi_mode->clock; 2813 clock2 = hdmi_mode_alternate_clock(hdmi_mode); 2814 2815 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) || 2816 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) && 2817 drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode)) 2818 return vic; 2819 } 2820 return 0; 2821 } 2822 2823 static bool drm_valid_hdmi_vic(u8 vic) 2824 { 2825 return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes); 2826 } 2827 2828 static int 2829 add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid) 2830 { 2831 struct drm_device *dev = connector->dev; 2832 struct drm_display_mode *mode, *tmp; 2833 LIST_HEAD(list); 2834 int modes = 0; 2835 2836 /* Don't add CEA modes if the CEA extension block is missing */ 2837 if (!drm_find_cea_extension(edid)) 2838 return 0; 2839 2840 /* 2841 * Go through all probed modes and create a new mode 2842 * with the alternate clock for certain CEA modes. 2843 */ 2844 list_for_each_entry(mode, &connector->probed_modes, head) { 2845 const struct drm_display_mode *cea_mode = NULL; 2846 struct drm_display_mode *newmode; 2847 u8 vic = drm_match_cea_mode(mode); 2848 unsigned int clock1, clock2; 2849 2850 if (drm_valid_cea_vic(vic)) { 2851 cea_mode = &edid_cea_modes[vic]; 2852 clock2 = cea_mode_alternate_clock(cea_mode); 2853 } else { 2854 vic = drm_match_hdmi_mode(mode); 2855 if (drm_valid_hdmi_vic(vic)) { 2856 cea_mode = &edid_4k_modes[vic]; 2857 clock2 = hdmi_mode_alternate_clock(cea_mode); 2858 } 2859 } 2860 2861 if (!cea_mode) 2862 continue; 2863 2864 clock1 = cea_mode->clock; 2865 2866 if (clock1 == clock2) 2867 continue; 2868 2869 if (mode->clock != clock1 && mode->clock != clock2) 2870 continue; 2871 2872 newmode = drm_mode_duplicate(dev, cea_mode); 2873 if (!newmode) 2874 continue; 2875 2876 /* Carry over the stereo flags */ 2877 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK; 2878 2879 /* 2880 * The current mode could be either variant. Make 2881 * sure to pick the "other" clock for the new mode. 2882 */ 2883 if (mode->clock != clock1) 2884 newmode->clock = clock1; 2885 else 2886 newmode->clock = clock2; 2887 2888 list_add_tail(&newmode->head, &list); 2889 } 2890 2891 list_for_each_entry_safe(mode, tmp, &list, head) { 2892 list_del(&mode->head); 2893 drm_mode_probed_add(connector, mode); 2894 modes++; 2895 } 2896 2897 return modes; 2898 } 2899 2900 static struct drm_display_mode * 2901 drm_display_mode_from_vic_index(struct drm_connector *connector, 2902 const u8 *video_db, u8 video_len, 2903 u8 video_index) 2904 { 2905 struct drm_device *dev = connector->dev; 2906 struct drm_display_mode *newmode; 2907 u8 vic; 2908 2909 if (video_db == NULL || video_index >= video_len) 2910 return NULL; 2911 2912 /* CEA modes are numbered 1..127 */ 2913 vic = (video_db[video_index] & 127); 2914 if (!drm_valid_cea_vic(vic)) 2915 return NULL; 2916 2917 newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]); 2918 if (!newmode) 2919 return NULL; 2920 2921 newmode->vrefresh = 0; 2922 2923 return newmode; 2924 } 2925 2926 static int 2927 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len) 2928 { 2929 int i, modes = 0; 2930 2931 for (i = 0; i < len; i++) { 2932 struct drm_display_mode *mode; 2933 mode = drm_display_mode_from_vic_index(connector, db, len, i); 2934 if (mode) { 2935 drm_mode_probed_add(connector, mode); 2936 modes++; 2937 } 2938 } 2939 2940 return modes; 2941 } 2942 2943 struct stereo_mandatory_mode { 2944 int width, height, vrefresh; 2945 unsigned int flags; 2946 }; 2947 2948 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = { 2949 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, 2950 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING }, 2951 { 1920, 1080, 50, 2952 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF }, 2953 { 1920, 1080, 60, 2954 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF }, 2955 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, 2956 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING }, 2957 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, 2958 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING } 2959 }; 2960 2961 static bool 2962 stereo_match_mandatory(const struct drm_display_mode *mode, 2963 const struct stereo_mandatory_mode *stereo_mode) 2964 { 2965 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE; 2966 2967 return mode->hdisplay == stereo_mode->width && 2968 mode->vdisplay == stereo_mode->height && 2969 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) && 2970 drm_mode_vrefresh(mode) == stereo_mode->vrefresh; 2971 } 2972 2973 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector) 2974 { 2975 struct drm_device *dev = connector->dev; 2976 const struct drm_display_mode *mode; 2977 struct list_head stereo_modes; 2978 int modes = 0, i; 2979 2980 INIT_LIST_HEAD(&stereo_modes); 2981 2982 list_for_each_entry(mode, &connector->probed_modes, head) { 2983 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) { 2984 const struct stereo_mandatory_mode *mandatory; 2985 struct drm_display_mode *new_mode; 2986 2987 if (!stereo_match_mandatory(mode, 2988 &stereo_mandatory_modes[i])) 2989 continue; 2990 2991 mandatory = &stereo_mandatory_modes[i]; 2992 new_mode = drm_mode_duplicate(dev, mode); 2993 if (!new_mode) 2994 continue; 2995 2996 new_mode->flags |= mandatory->flags; 2997 list_add_tail(&new_mode->head, &stereo_modes); 2998 modes++; 2999 } 3000 } 3001 3002 list_splice_tail(&stereo_modes, &connector->probed_modes); 3003 3004 return modes; 3005 } 3006 3007 static int add_hdmi_mode(struct drm_connector *connector, u8 vic) 3008 { 3009 struct drm_device *dev = connector->dev; 3010 struct drm_display_mode *newmode; 3011 3012 if (!drm_valid_hdmi_vic(vic)) { 3013 DRM_ERROR("Unknown HDMI VIC: %d\n", vic); 3014 return 0; 3015 } 3016 3017 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]); 3018 if (!newmode) 3019 return 0; 3020 3021 drm_mode_probed_add(connector, newmode); 3022 3023 return 1; 3024 } 3025 3026 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure, 3027 const u8 *video_db, u8 video_len, u8 video_index) 3028 { 3029 struct drm_display_mode *newmode; 3030 int modes = 0; 3031 3032 if (structure & (1 << 0)) { 3033 newmode = drm_display_mode_from_vic_index(connector, video_db, 3034 video_len, 3035 video_index); 3036 if (newmode) { 3037 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING; 3038 drm_mode_probed_add(connector, newmode); 3039 modes++; 3040 } 3041 } 3042 if (structure & (1 << 6)) { 3043 newmode = drm_display_mode_from_vic_index(connector, video_db, 3044 video_len, 3045 video_index); 3046 if (newmode) { 3047 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM; 3048 drm_mode_probed_add(connector, newmode); 3049 modes++; 3050 } 3051 } 3052 if (structure & (1 << 8)) { 3053 newmode = drm_display_mode_from_vic_index(connector, video_db, 3054 video_len, 3055 video_index); 3056 if (newmode) { 3057 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF; 3058 drm_mode_probed_add(connector, newmode); 3059 modes++; 3060 } 3061 } 3062 3063 return modes; 3064 } 3065 3066 /* 3067 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block 3068 * @connector: connector corresponding to the HDMI sink 3069 * @db: start of the CEA vendor specific block 3070 * @len: length of the CEA block payload, ie. one can access up to db[len] 3071 * 3072 * Parses the HDMI VSDB looking for modes to add to @connector. This function 3073 * also adds the stereo 3d modes when applicable. 3074 */ 3075 static int 3076 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len, 3077 const u8 *video_db, u8 video_len) 3078 { 3079 int modes = 0, offset = 0, i, multi_present = 0, multi_len; 3080 u8 vic_len, hdmi_3d_len = 0; 3081 u16 mask; 3082 u16 structure_all; 3083 3084 if (len < 8) 3085 goto out; 3086 3087 /* no HDMI_Video_Present */ 3088 if (!(db[8] & (1 << 5))) 3089 goto out; 3090 3091 /* Latency_Fields_Present */ 3092 if (db[8] & (1 << 7)) 3093 offset += 2; 3094 3095 /* I_Latency_Fields_Present */ 3096 if (db[8] & (1 << 6)) 3097 offset += 2; 3098 3099 /* the declared length is not long enough for the 2 first bytes 3100 * of additional video format capabilities */ 3101 if (len < (8 + offset + 2)) 3102 goto out; 3103 3104 /* 3D_Present */ 3105 offset++; 3106 if (db[8 + offset] & (1 << 7)) { 3107 modes += add_hdmi_mandatory_stereo_modes(connector); 3108 3109 /* 3D_Multi_present */ 3110 multi_present = (db[8 + offset] & 0x60) >> 5; 3111 } 3112 3113 offset++; 3114 vic_len = db[8 + offset] >> 5; 3115 hdmi_3d_len = db[8 + offset] & 0x1f; 3116 3117 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) { 3118 u8 vic; 3119 3120 vic = db[9 + offset + i]; 3121 modes += add_hdmi_mode(connector, vic); 3122 } 3123 offset += 1 + vic_len; 3124 3125 if (multi_present == 1) 3126 multi_len = 2; 3127 else if (multi_present == 2) 3128 multi_len = 4; 3129 else 3130 multi_len = 0; 3131 3132 if (len < (8 + offset + hdmi_3d_len - 1)) 3133 goto out; 3134 3135 if (hdmi_3d_len < multi_len) 3136 goto out; 3137 3138 if (multi_present == 1 || multi_present == 2) { 3139 /* 3D_Structure_ALL */ 3140 structure_all = (db[8 + offset] << 8) | db[9 + offset]; 3141 3142 /* check if 3D_MASK is present */ 3143 if (multi_present == 2) 3144 mask = (db[10 + offset] << 8) | db[11 + offset]; 3145 else 3146 mask = 0xffff; 3147 3148 for (i = 0; i < 16; i++) { 3149 if (mask & (1 << i)) 3150 modes += add_3d_struct_modes(connector, 3151 structure_all, 3152 video_db, 3153 video_len, i); 3154 } 3155 } 3156 3157 offset += multi_len; 3158 3159 for (i = 0; i < (hdmi_3d_len - multi_len); i++) { 3160 int vic_index; 3161 struct drm_display_mode *newmode = NULL; 3162 unsigned int newflag = 0; 3163 bool detail_present; 3164 3165 detail_present = ((db[8 + offset + i] & 0x0f) > 7); 3166 3167 if (detail_present && (i + 1 == hdmi_3d_len - multi_len)) 3168 break; 3169 3170 /* 2D_VIC_order_X */ 3171 vic_index = db[8 + offset + i] >> 4; 3172 3173 /* 3D_Structure_X */ 3174 switch (db[8 + offset + i] & 0x0f) { 3175 case 0: 3176 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING; 3177 break; 3178 case 6: 3179 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM; 3180 break; 3181 case 8: 3182 /* 3D_Detail_X */ 3183 if ((db[9 + offset + i] >> 4) == 1) 3184 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF; 3185 break; 3186 } 3187 3188 if (newflag != 0) { 3189 newmode = drm_display_mode_from_vic_index(connector, 3190 video_db, 3191 video_len, 3192 vic_index); 3193 3194 if (newmode) { 3195 newmode->flags |= newflag; 3196 drm_mode_probed_add(connector, newmode); 3197 modes++; 3198 } 3199 } 3200 3201 if (detail_present) 3202 i++; 3203 } 3204 3205 out: 3206 return modes; 3207 } 3208 3209 static int 3210 cea_db_payload_len(const u8 *db) 3211 { 3212 return db[0] & 0x1f; 3213 } 3214 3215 static int 3216 cea_db_tag(const u8 *db) 3217 { 3218 return db[0] >> 5; 3219 } 3220 3221 static int 3222 cea_revision(const u8 *cea) 3223 { 3224 return cea[1]; 3225 } 3226 3227 static int 3228 cea_db_offsets(const u8 *cea, int *start, int *end) 3229 { 3230 /* Data block offset in CEA extension block */ 3231 *start = 4; 3232 *end = cea[2]; 3233 if (*end == 0) 3234 *end = 127; 3235 if (*end < 4 || *end > 127) 3236 return -ERANGE; 3237 return 0; 3238 } 3239 3240 static bool cea_db_is_hdmi_vsdb(const u8 *db) 3241 { 3242 int hdmi_id; 3243 3244 if (cea_db_tag(db) != VENDOR_BLOCK) 3245 return false; 3246 3247 if (cea_db_payload_len(db) < 5) 3248 return false; 3249 3250 hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16); 3251 3252 return hdmi_id == HDMI_IEEE_OUI; 3253 } 3254 3255 static bool cea_db_is_hdmi_forum_vsdb(const u8 *db) 3256 { 3257 unsigned int oui; 3258 3259 if (cea_db_tag(db) != VENDOR_BLOCK) 3260 return false; 3261 3262 if (cea_db_payload_len(db) < 7) 3263 return false; 3264 3265 oui = db[3] << 16 | db[2] << 8 | db[1]; 3266 3267 return oui == HDMI_FORUM_IEEE_OUI; 3268 } 3269 3270 #define for_each_cea_db(cea, i, start, end) \ 3271 for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1) 3272 3273 static int 3274 add_cea_modes(struct drm_connector *connector, struct edid *edid) 3275 { 3276 const u8 *cea = drm_find_cea_extension(edid); 3277 const u8 *db, *hdmi = NULL, *video = NULL; 3278 u8 dbl, hdmi_len, video_len = 0; 3279 int modes = 0; 3280 3281 if (cea && cea_revision(cea) >= 3) { 3282 int i, start, end; 3283 3284 if (cea_db_offsets(cea, &start, &end)) 3285 return 0; 3286 3287 for_each_cea_db(cea, i, start, end) { 3288 db = &cea[i]; 3289 dbl = cea_db_payload_len(db); 3290 3291 if (cea_db_tag(db) == VIDEO_BLOCK) { 3292 video = db + 1; 3293 video_len = dbl; 3294 modes += do_cea_modes(connector, video, dbl); 3295 } 3296 else if (cea_db_is_hdmi_vsdb(db)) { 3297 hdmi = db; 3298 hdmi_len = dbl; 3299 } 3300 } 3301 } 3302 3303 /* 3304 * We parse the HDMI VSDB after having added the cea modes as we will 3305 * be patching their flags when the sink supports stereo 3D. 3306 */ 3307 if (hdmi) 3308 modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video, 3309 video_len); 3310 3311 return modes; 3312 } 3313 3314 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode) 3315 { 3316 const struct drm_display_mode *cea_mode; 3317 int clock1, clock2, clock; 3318 u8 vic; 3319 const char *type; 3320 3321 /* 3322 * allow 5kHz clock difference either way to account for 3323 * the 10kHz clock resolution limit of detailed timings. 3324 */ 3325 vic = drm_match_cea_mode_clock_tolerance(mode, 5); 3326 if (drm_valid_cea_vic(vic)) { 3327 type = "CEA"; 3328 cea_mode = &edid_cea_modes[vic]; 3329 clock1 = cea_mode->clock; 3330 clock2 = cea_mode_alternate_clock(cea_mode); 3331 } else { 3332 vic = drm_match_hdmi_mode_clock_tolerance(mode, 5); 3333 if (drm_valid_hdmi_vic(vic)) { 3334 type = "HDMI"; 3335 cea_mode = &edid_4k_modes[vic]; 3336 clock1 = cea_mode->clock; 3337 clock2 = hdmi_mode_alternate_clock(cea_mode); 3338 } else { 3339 return; 3340 } 3341 } 3342 3343 /* pick whichever is closest */ 3344 if (abs(mode->clock - clock1) < abs(mode->clock - clock2)) 3345 clock = clock1; 3346 else 3347 clock = clock2; 3348 3349 if (mode->clock == clock) 3350 return; 3351 3352 DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n", 3353 type, vic, mode->clock, clock); 3354 mode->clock = clock; 3355 } 3356 3357 static void 3358 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db) 3359 { 3360 u8 len = cea_db_payload_len(db); 3361 3362 if (len >= 6) 3363 connector->eld[5] |= (db[6] >> 7) << 1; /* Supports_AI */ 3364 if (len >= 8) { 3365 connector->latency_present[0] = db[8] >> 7; 3366 connector->latency_present[1] = (db[8] >> 6) & 1; 3367 } 3368 if (len >= 9) 3369 connector->video_latency[0] = db[9]; 3370 if (len >= 10) 3371 connector->audio_latency[0] = db[10]; 3372 if (len >= 11) 3373 connector->video_latency[1] = db[11]; 3374 if (len >= 12) 3375 connector->audio_latency[1] = db[12]; 3376 3377 DRM_DEBUG_KMS("HDMI: latency present %d %d, " 3378 "video latency %d %d, " 3379 "audio latency %d %d\n", 3380 connector->latency_present[0], 3381 connector->latency_present[1], 3382 connector->video_latency[0], 3383 connector->video_latency[1], 3384 connector->audio_latency[0], 3385 connector->audio_latency[1]); 3386 } 3387 3388 static void 3389 monitor_name(struct detailed_timing *t, void *data) 3390 { 3391 if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME) 3392 *(u8 **)data = t->data.other_data.data.str.str; 3393 } 3394 3395 static int get_monitor_name(struct edid *edid, char name[13]) 3396 { 3397 char *edid_name = NULL; 3398 int mnl; 3399 3400 if (!edid || !name) 3401 return 0; 3402 3403 drm_for_each_detailed_block((u8 *)edid, monitor_name, &edid_name); 3404 for (mnl = 0; edid_name && mnl < 13; mnl++) { 3405 if (edid_name[mnl] == 0x0a) 3406 break; 3407 3408 name[mnl] = edid_name[mnl]; 3409 } 3410 3411 return mnl; 3412 } 3413 3414 /** 3415 * drm_edid_get_monitor_name - fetch the monitor name from the edid 3416 * @edid: monitor EDID information 3417 * @name: pointer to a character array to hold the name of the monitor 3418 * @bufsize: The size of the name buffer (should be at least 14 chars.) 3419 * 3420 */ 3421 void drm_edid_get_monitor_name(struct edid *edid, char *name, int bufsize) 3422 { 3423 int name_length; 3424 char buf[13]; 3425 3426 if (bufsize <= 0) 3427 return; 3428 3429 name_length = min(get_monitor_name(edid, buf), bufsize - 1); 3430 memcpy(name, buf, name_length); 3431 name[name_length] = '\0'; 3432 } 3433 EXPORT_SYMBOL(drm_edid_get_monitor_name); 3434 3435 /** 3436 * drm_edid_to_eld - build ELD from EDID 3437 * @connector: connector corresponding to the HDMI/DP sink 3438 * @edid: EDID to parse 3439 * 3440 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The 3441 * Conn_Type, HDCP and Port_ID ELD fields are left for the graphics driver to 3442 * fill in. 3443 */ 3444 void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid) 3445 { 3446 uint8_t *eld = connector->eld; 3447 u8 *cea; 3448 u8 *db; 3449 int total_sad_count = 0; 3450 int mnl; 3451 int dbl; 3452 3453 memset(eld, 0, sizeof(connector->eld)); 3454 3455 connector->latency_present[0] = false; 3456 connector->latency_present[1] = false; 3457 connector->video_latency[0] = 0; 3458 connector->audio_latency[0] = 0; 3459 connector->video_latency[1] = 0; 3460 connector->audio_latency[1] = 0; 3461 3462 if (!edid) 3463 return; 3464 3465 cea = drm_find_cea_extension(edid); 3466 if (!cea) { 3467 DRM_DEBUG_KMS("ELD: no CEA Extension found\n"); 3468 return; 3469 } 3470 3471 mnl = get_monitor_name(edid, eld + 20); 3472 3473 eld[4] = (cea[1] << 5) | mnl; 3474 DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20); 3475 3476 eld[0] = 2 << 3; /* ELD version: 2 */ 3477 3478 eld[16] = edid->mfg_id[0]; 3479 eld[17] = edid->mfg_id[1]; 3480 eld[18] = edid->prod_code[0]; 3481 eld[19] = edid->prod_code[1]; 3482 3483 if (cea_revision(cea) >= 3) { 3484 int i, start, end; 3485 3486 if (cea_db_offsets(cea, &start, &end)) { 3487 start = 0; 3488 end = 0; 3489 } 3490 3491 for_each_cea_db(cea, i, start, end) { 3492 db = &cea[i]; 3493 dbl = cea_db_payload_len(db); 3494 3495 switch (cea_db_tag(db)) { 3496 int sad_count; 3497 3498 case AUDIO_BLOCK: 3499 /* Audio Data Block, contains SADs */ 3500 sad_count = min(dbl / 3, 15 - total_sad_count); 3501 if (sad_count >= 1) 3502 memcpy(eld + 20 + mnl + total_sad_count * 3, 3503 &db[1], sad_count * 3); 3504 total_sad_count += sad_count; 3505 break; 3506 case SPEAKER_BLOCK: 3507 /* Speaker Allocation Data Block */ 3508 if (dbl >= 1) 3509 eld[7] = db[1]; 3510 break; 3511 case VENDOR_BLOCK: 3512 /* HDMI Vendor-Specific Data Block */ 3513 if (cea_db_is_hdmi_vsdb(db)) 3514 drm_parse_hdmi_vsdb_audio(connector, db); 3515 break; 3516 default: 3517 break; 3518 } 3519 } 3520 } 3521 eld[5] |= total_sad_count << 4; 3522 3523 eld[DRM_ELD_BASELINE_ELD_LEN] = 3524 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4); 3525 3526 DRM_DEBUG_KMS("ELD size %d, SAD count %d\n", 3527 drm_eld_size(eld), total_sad_count); 3528 } 3529 EXPORT_SYMBOL(drm_edid_to_eld); 3530 3531 /** 3532 * drm_edid_to_sad - extracts SADs from EDID 3533 * @edid: EDID to parse 3534 * @sads: pointer that will be set to the extracted SADs 3535 * 3536 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it. 3537 * 3538 * Note: The returned pointer needs to be freed using kfree(). 3539 * 3540 * Return: The number of found SADs or negative number on error. 3541 */ 3542 int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads) 3543 { 3544 int count = 0; 3545 int i, start, end, dbl; 3546 u8 *cea; 3547 3548 cea = drm_find_cea_extension(edid); 3549 if (!cea) { 3550 DRM_DEBUG_KMS("SAD: no CEA Extension found\n"); 3551 return -ENOENT; 3552 } 3553 3554 if (cea_revision(cea) < 3) { 3555 DRM_DEBUG_KMS("SAD: wrong CEA revision\n"); 3556 return -ENOTSUPP; 3557 } 3558 3559 if (cea_db_offsets(cea, &start, &end)) { 3560 DRM_DEBUG_KMS("SAD: invalid data block offsets\n"); 3561 return -EPROTO; 3562 } 3563 3564 for_each_cea_db(cea, i, start, end) { 3565 u8 *db = &cea[i]; 3566 3567 if (cea_db_tag(db) == AUDIO_BLOCK) { 3568 int j; 3569 dbl = cea_db_payload_len(db); 3570 3571 count = dbl / 3; /* SAD is 3B */ 3572 *sads = kcalloc(count, sizeof(**sads), GFP_KERNEL); 3573 if (!*sads) 3574 return -ENOMEM; 3575 for (j = 0; j < count; j++) { 3576 u8 *sad = &db[1 + j * 3]; 3577 3578 (*sads)[j].format = (sad[0] & 0x78) >> 3; 3579 (*sads)[j].channels = sad[0] & 0x7; 3580 (*sads)[j].freq = sad[1] & 0x7F; 3581 (*sads)[j].byte2 = sad[2]; 3582 } 3583 break; 3584 } 3585 } 3586 3587 return count; 3588 } 3589 EXPORT_SYMBOL(drm_edid_to_sad); 3590 3591 /** 3592 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID 3593 * @edid: EDID to parse 3594 * @sadb: pointer to the speaker block 3595 * 3596 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it. 3597 * 3598 * Note: The returned pointer needs to be freed using kfree(). 3599 * 3600 * Return: The number of found Speaker Allocation Blocks or negative number on 3601 * error. 3602 */ 3603 int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb) 3604 { 3605 int count = 0; 3606 int i, start, end, dbl; 3607 const u8 *cea; 3608 3609 cea = drm_find_cea_extension(edid); 3610 if (!cea) { 3611 DRM_DEBUG_KMS("SAD: no CEA Extension found\n"); 3612 return -ENOENT; 3613 } 3614 3615 if (cea_revision(cea) < 3) { 3616 DRM_DEBUG_KMS("SAD: wrong CEA revision\n"); 3617 return -ENOTSUPP; 3618 } 3619 3620 if (cea_db_offsets(cea, &start, &end)) { 3621 DRM_DEBUG_KMS("SAD: invalid data block offsets\n"); 3622 return -EPROTO; 3623 } 3624 3625 for_each_cea_db(cea, i, start, end) { 3626 const u8 *db = &cea[i]; 3627 3628 if (cea_db_tag(db) == SPEAKER_BLOCK) { 3629 dbl = cea_db_payload_len(db); 3630 3631 /* Speaker Allocation Data Block */ 3632 if (dbl == 3) { 3633 *sadb = kmemdup(&db[1], dbl, GFP_KERNEL); 3634 if (!*sadb) 3635 return -ENOMEM; 3636 count = dbl; 3637 break; 3638 } 3639 } 3640 } 3641 3642 return count; 3643 } 3644 EXPORT_SYMBOL(drm_edid_to_speaker_allocation); 3645 3646 /** 3647 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay 3648 * @connector: connector associated with the HDMI/DP sink 3649 * @mode: the display mode 3650 * 3651 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if 3652 * the sink doesn't support audio or video. 3653 */ 3654 int drm_av_sync_delay(struct drm_connector *connector, 3655 const struct drm_display_mode *mode) 3656 { 3657 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE); 3658 int a, v; 3659 3660 if (!connector->latency_present[0]) 3661 return 0; 3662 if (!connector->latency_present[1]) 3663 i = 0; 3664 3665 a = connector->audio_latency[i]; 3666 v = connector->video_latency[i]; 3667 3668 /* 3669 * HDMI/DP sink doesn't support audio or video? 3670 */ 3671 if (a == 255 || v == 255) 3672 return 0; 3673 3674 /* 3675 * Convert raw EDID values to millisecond. 3676 * Treat unknown latency as 0ms. 3677 */ 3678 if (a) 3679 a = min(2 * (a - 1), 500); 3680 if (v) 3681 v = min(2 * (v - 1), 500); 3682 3683 return max(v - a, 0); 3684 } 3685 EXPORT_SYMBOL(drm_av_sync_delay); 3686 3687 /** 3688 * drm_detect_hdmi_monitor - detect whether monitor is HDMI 3689 * @edid: monitor EDID information 3690 * 3691 * Parse the CEA extension according to CEA-861-B. 3692 * 3693 * Return: True if the monitor is HDMI, false if not or unknown. 3694 */ 3695 bool drm_detect_hdmi_monitor(struct edid *edid) 3696 { 3697 u8 *edid_ext; 3698 int i; 3699 int start_offset, end_offset; 3700 3701 edid_ext = drm_find_cea_extension(edid); 3702 if (!edid_ext) 3703 return false; 3704 3705 if (cea_db_offsets(edid_ext, &start_offset, &end_offset)) 3706 return false; 3707 3708 /* 3709 * Because HDMI identifier is in Vendor Specific Block, 3710 * search it from all data blocks of CEA extension. 3711 */ 3712 for_each_cea_db(edid_ext, i, start_offset, end_offset) { 3713 if (cea_db_is_hdmi_vsdb(&edid_ext[i])) 3714 return true; 3715 } 3716 3717 return false; 3718 } 3719 EXPORT_SYMBOL(drm_detect_hdmi_monitor); 3720 3721 /** 3722 * drm_detect_monitor_audio - check monitor audio capability 3723 * @edid: EDID block to scan 3724 * 3725 * Monitor should have CEA extension block. 3726 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic 3727 * audio' only. If there is any audio extension block and supported 3728 * audio format, assume at least 'basic audio' support, even if 'basic 3729 * audio' is not defined in EDID. 3730 * 3731 * Return: True if the monitor supports audio, false otherwise. 3732 */ 3733 bool drm_detect_monitor_audio(struct edid *edid) 3734 { 3735 u8 *edid_ext; 3736 int i, j; 3737 bool has_audio = false; 3738 int start_offset, end_offset; 3739 3740 edid_ext = drm_find_cea_extension(edid); 3741 if (!edid_ext) 3742 goto end; 3743 3744 has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0); 3745 3746 if (has_audio) { 3747 DRM_DEBUG_KMS("Monitor has basic audio support\n"); 3748 goto end; 3749 } 3750 3751 if (cea_db_offsets(edid_ext, &start_offset, &end_offset)) 3752 goto end; 3753 3754 for_each_cea_db(edid_ext, i, start_offset, end_offset) { 3755 if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) { 3756 has_audio = true; 3757 for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3) 3758 DRM_DEBUG_KMS("CEA audio format %d\n", 3759 (edid_ext[i + j] >> 3) & 0xf); 3760 goto end; 3761 } 3762 } 3763 end: 3764 return has_audio; 3765 } 3766 EXPORT_SYMBOL(drm_detect_monitor_audio); 3767 3768 /** 3769 * drm_rgb_quant_range_selectable - is RGB quantization range selectable? 3770 * @edid: EDID block to scan 3771 * 3772 * Check whether the monitor reports the RGB quantization range selection 3773 * as supported. The AVI infoframe can then be used to inform the monitor 3774 * which quantization range (full or limited) is used. 3775 * 3776 * Return: True if the RGB quantization range is selectable, false otherwise. 3777 */ 3778 bool drm_rgb_quant_range_selectable(struct edid *edid) 3779 { 3780 u8 *edid_ext; 3781 int i, start, end; 3782 3783 edid_ext = drm_find_cea_extension(edid); 3784 if (!edid_ext) 3785 return false; 3786 3787 if (cea_db_offsets(edid_ext, &start, &end)) 3788 return false; 3789 3790 for_each_cea_db(edid_ext, i, start, end) { 3791 if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK && 3792 cea_db_payload_len(&edid_ext[i]) == 2) { 3793 DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]); 3794 return edid_ext[i + 2] & EDID_CEA_VCDB_QS; 3795 } 3796 } 3797 3798 return false; 3799 } 3800 EXPORT_SYMBOL(drm_rgb_quant_range_selectable); 3801 3802 /** 3803 * drm_default_rgb_quant_range - default RGB quantization range 3804 * @mode: display mode 3805 * 3806 * Determine the default RGB quantization range for the mode, 3807 * as specified in CEA-861. 3808 * 3809 * Return: The default RGB quantization range for the mode 3810 */ 3811 enum hdmi_quantization_range 3812 drm_default_rgb_quant_range(const struct drm_display_mode *mode) 3813 { 3814 /* All CEA modes other than VIC 1 use limited quantization range. */ 3815 return drm_match_cea_mode(mode) > 1 ? 3816 HDMI_QUANTIZATION_RANGE_LIMITED : 3817 HDMI_QUANTIZATION_RANGE_FULL; 3818 } 3819 EXPORT_SYMBOL(drm_default_rgb_quant_range); 3820 3821 static void drm_parse_hdmi_forum_vsdb(struct drm_connector *connector, 3822 const u8 *hf_vsdb) 3823 { 3824 struct drm_display_info *display = &connector->display_info; 3825 struct drm_hdmi_info *hdmi = &display->hdmi; 3826 3827 if (hf_vsdb[6] & 0x80) { 3828 hdmi->scdc.supported = true; 3829 if (hf_vsdb[6] & 0x40) 3830 hdmi->scdc.read_request = true; 3831 } 3832 3833 /* 3834 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz. 3835 * And as per the spec, three factors confirm this: 3836 * * Availability of a HF-VSDB block in EDID (check) 3837 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check) 3838 * * SCDC support available (let's check) 3839 * Lets check it out. 3840 */ 3841 3842 if (hf_vsdb[5]) { 3843 /* max clock is 5000 KHz times block value */ 3844 u32 max_tmds_clock = hf_vsdb[5] * 5000; 3845 struct drm_scdc *scdc = &hdmi->scdc; 3846 3847 if (max_tmds_clock > 340000) { 3848 display->max_tmds_clock = max_tmds_clock; 3849 DRM_DEBUG_KMS("HF-VSDB: max TMDS clock %d kHz\n", 3850 display->max_tmds_clock); 3851 } 3852 3853 if (scdc->supported) { 3854 scdc->scrambling.supported = true; 3855 3856 /* Few sinks support scrambling for cloks < 340M */ 3857 if ((hf_vsdb[6] & 0x8)) 3858 scdc->scrambling.low_rates = true; 3859 } 3860 } 3861 } 3862 3863 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector, 3864 const u8 *hdmi) 3865 { 3866 struct drm_display_info *info = &connector->display_info; 3867 unsigned int dc_bpc = 0; 3868 3869 /* HDMI supports at least 8 bpc */ 3870 info->bpc = 8; 3871 3872 if (cea_db_payload_len(hdmi) < 6) 3873 return; 3874 3875 if (hdmi[6] & DRM_EDID_HDMI_DC_30) { 3876 dc_bpc = 10; 3877 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30; 3878 DRM_DEBUG("%s: HDMI sink does deep color 30.\n", 3879 connector->name); 3880 } 3881 3882 if (hdmi[6] & DRM_EDID_HDMI_DC_36) { 3883 dc_bpc = 12; 3884 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36; 3885 DRM_DEBUG("%s: HDMI sink does deep color 36.\n", 3886 connector->name); 3887 } 3888 3889 if (hdmi[6] & DRM_EDID_HDMI_DC_48) { 3890 dc_bpc = 16; 3891 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48; 3892 DRM_DEBUG("%s: HDMI sink does deep color 48.\n", 3893 connector->name); 3894 } 3895 3896 if (dc_bpc == 0) { 3897 DRM_DEBUG("%s: No deep color support on this HDMI sink.\n", 3898 connector->name); 3899 return; 3900 } 3901 3902 DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n", 3903 connector->name, dc_bpc); 3904 info->bpc = dc_bpc; 3905 3906 /* 3907 * Deep color support mandates RGB444 support for all video 3908 * modes and forbids YCRCB422 support for all video modes per 3909 * HDMI 1.3 spec. 3910 */ 3911 info->color_formats = DRM_COLOR_FORMAT_RGB444; 3912 3913 /* YCRCB444 is optional according to spec. */ 3914 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) { 3915 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444; 3916 DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n", 3917 connector->name); 3918 } 3919 3920 /* 3921 * Spec says that if any deep color mode is supported at all, 3922 * then deep color 36 bit must be supported. 3923 */ 3924 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) { 3925 DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n", 3926 connector->name); 3927 } 3928 } 3929 3930 static void 3931 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db) 3932 { 3933 struct drm_display_info *info = &connector->display_info; 3934 u8 len = cea_db_payload_len(db); 3935 3936 if (len >= 6) 3937 info->dvi_dual = db[6] & 1; 3938 if (len >= 7) 3939 info->max_tmds_clock = db[7] * 5000; 3940 3941 DRM_DEBUG_KMS("HDMI: DVI dual %d, " 3942 "max TMDS clock %d kHz\n", 3943 info->dvi_dual, 3944 info->max_tmds_clock); 3945 3946 drm_parse_hdmi_deep_color_info(connector, db); 3947 } 3948 3949 static void drm_parse_cea_ext(struct drm_connector *connector, 3950 struct edid *edid) 3951 { 3952 struct drm_display_info *info = &connector->display_info; 3953 const u8 *edid_ext; 3954 int i, start, end; 3955 3956 edid_ext = drm_find_cea_extension(edid); 3957 if (!edid_ext) 3958 return; 3959 3960 info->cea_rev = edid_ext[1]; 3961 3962 /* The existence of a CEA block should imply RGB support */ 3963 info->color_formats = DRM_COLOR_FORMAT_RGB444; 3964 if (edid_ext[3] & EDID_CEA_YCRCB444) 3965 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444; 3966 if (edid_ext[3] & EDID_CEA_YCRCB422) 3967 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422; 3968 3969 if (cea_db_offsets(edid_ext, &start, &end)) 3970 return; 3971 3972 for_each_cea_db(edid_ext, i, start, end) { 3973 const u8 *db = &edid_ext[i]; 3974 3975 if (cea_db_is_hdmi_vsdb(db)) 3976 drm_parse_hdmi_vsdb_video(connector, db); 3977 if (cea_db_is_hdmi_forum_vsdb(db)) 3978 drm_parse_hdmi_forum_vsdb(connector, db); 3979 } 3980 } 3981 3982 static void drm_add_display_info(struct drm_connector *connector, 3983 struct edid *edid) 3984 { 3985 struct drm_display_info *info = &connector->display_info; 3986 3987 info->width_mm = edid->width_cm * 10; 3988 info->height_mm = edid->height_cm * 10; 3989 3990 /* driver figures it out in this case */ 3991 info->bpc = 0; 3992 info->color_formats = 0; 3993 info->cea_rev = 0; 3994 info->max_tmds_clock = 0; 3995 info->dvi_dual = false; 3996 3997 if (edid->revision < 3) 3998 return; 3999 4000 if (!(edid->input & DRM_EDID_INPUT_DIGITAL)) 4001 return; 4002 4003 drm_parse_cea_ext(connector, edid); 4004 4005 /* 4006 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3? 4007 * 4008 * For such displays, the DFP spec 1.0, section 3.10 "EDID support" 4009 * tells us to assume 8 bpc color depth if the EDID doesn't have 4010 * extensions which tell otherwise. 4011 */ 4012 if ((info->bpc == 0) && (edid->revision < 4) && 4013 (edid->input & DRM_EDID_DIGITAL_TYPE_DVI)) { 4014 info->bpc = 8; 4015 DRM_DEBUG("%s: Assigning DFP sink color depth as %d bpc.\n", 4016 connector->name, info->bpc); 4017 } 4018 4019 /* Only defined for 1.4 with digital displays */ 4020 if (edid->revision < 4) 4021 return; 4022 4023 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) { 4024 case DRM_EDID_DIGITAL_DEPTH_6: 4025 info->bpc = 6; 4026 break; 4027 case DRM_EDID_DIGITAL_DEPTH_8: 4028 info->bpc = 8; 4029 break; 4030 case DRM_EDID_DIGITAL_DEPTH_10: 4031 info->bpc = 10; 4032 break; 4033 case DRM_EDID_DIGITAL_DEPTH_12: 4034 info->bpc = 12; 4035 break; 4036 case DRM_EDID_DIGITAL_DEPTH_14: 4037 info->bpc = 14; 4038 break; 4039 case DRM_EDID_DIGITAL_DEPTH_16: 4040 info->bpc = 16; 4041 break; 4042 case DRM_EDID_DIGITAL_DEPTH_UNDEF: 4043 default: 4044 info->bpc = 0; 4045 break; 4046 } 4047 4048 DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n", 4049 connector->name, info->bpc); 4050 4051 info->color_formats |= DRM_COLOR_FORMAT_RGB444; 4052 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444) 4053 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444; 4054 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422) 4055 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422; 4056 } 4057 4058 static int validate_displayid(u8 *displayid, int length, int idx) 4059 { 4060 int i; 4061 u8 csum = 0; 4062 struct displayid_hdr *base; 4063 4064 base = (struct displayid_hdr *)&displayid[idx]; 4065 4066 DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n", 4067 base->rev, base->bytes, base->prod_id, base->ext_count); 4068 4069 if (base->bytes + 5 > length - idx) 4070 return -EINVAL; 4071 for (i = idx; i <= base->bytes + 5; i++) { 4072 csum += displayid[i]; 4073 } 4074 if (csum) { 4075 DRM_NOTE("DisplayID checksum invalid, remainder is %d\n", csum); 4076 return -EINVAL; 4077 } 4078 return 0; 4079 } 4080 4081 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev, 4082 struct displayid_detailed_timings_1 *timings) 4083 { 4084 struct drm_display_mode *mode; 4085 unsigned pixel_clock = (timings->pixel_clock[0] | 4086 (timings->pixel_clock[1] << 8) | 4087 (timings->pixel_clock[2] << 16)); 4088 unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1; 4089 unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1; 4090 unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1; 4091 unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1; 4092 unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1; 4093 unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1; 4094 unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1; 4095 unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1; 4096 bool hsync_positive = (timings->hsync[1] >> 7) & 0x1; 4097 bool vsync_positive = (timings->vsync[1] >> 7) & 0x1; 4098 mode = drm_mode_create(dev); 4099 if (!mode) 4100 return NULL; 4101 4102 mode->clock = pixel_clock * 10; 4103 mode->hdisplay = hactive; 4104 mode->hsync_start = mode->hdisplay + hsync; 4105 mode->hsync_end = mode->hsync_start + hsync_width; 4106 mode->htotal = mode->hdisplay + hblank; 4107 4108 mode->vdisplay = vactive; 4109 mode->vsync_start = mode->vdisplay + vsync; 4110 mode->vsync_end = mode->vsync_start + vsync_width; 4111 mode->vtotal = mode->vdisplay + vblank; 4112 4113 mode->flags = 0; 4114 mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC; 4115 mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC; 4116 mode->type = DRM_MODE_TYPE_DRIVER; 4117 4118 if (timings->flags & 0x80) 4119 mode->type |= DRM_MODE_TYPE_PREFERRED; 4120 mode->vrefresh = drm_mode_vrefresh(mode); 4121 drm_mode_set_name(mode); 4122 4123 return mode; 4124 } 4125 4126 static int add_displayid_detailed_1_modes(struct drm_connector *connector, 4127 struct displayid_block *block) 4128 { 4129 struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block; 4130 int i; 4131 int num_timings; 4132 struct drm_display_mode *newmode; 4133 int num_modes = 0; 4134 /* blocks must be multiple of 20 bytes length */ 4135 if (block->num_bytes % 20) 4136 return 0; 4137 4138 num_timings = block->num_bytes / 20; 4139 for (i = 0; i < num_timings; i++) { 4140 struct displayid_detailed_timings_1 *timings = &det->timings[i]; 4141 4142 newmode = drm_mode_displayid_detailed(connector->dev, timings); 4143 if (!newmode) 4144 continue; 4145 4146 drm_mode_probed_add(connector, newmode); 4147 num_modes++; 4148 } 4149 return num_modes; 4150 } 4151 4152 static int add_displayid_detailed_modes(struct drm_connector *connector, 4153 struct edid *edid) 4154 { 4155 u8 *displayid; 4156 int ret; 4157 int idx = 1; 4158 int length = EDID_LENGTH; 4159 struct displayid_block *block; 4160 int num_modes = 0; 4161 4162 displayid = drm_find_displayid_extension(edid); 4163 if (!displayid) 4164 return 0; 4165 4166 ret = validate_displayid(displayid, length, idx); 4167 if (ret) 4168 return 0; 4169 4170 idx += sizeof(struct displayid_hdr); 4171 while (block = (struct displayid_block *)&displayid[idx], 4172 idx + sizeof(struct displayid_block) <= length && 4173 idx + sizeof(struct displayid_block) + block->num_bytes <= length && 4174 block->num_bytes > 0) { 4175 idx += block->num_bytes + sizeof(struct displayid_block); 4176 switch (block->tag) { 4177 case DATA_BLOCK_TYPE_1_DETAILED_TIMING: 4178 num_modes += add_displayid_detailed_1_modes(connector, block); 4179 break; 4180 } 4181 } 4182 return num_modes; 4183 } 4184 4185 /** 4186 * drm_add_edid_modes - add modes from EDID data, if available 4187 * @connector: connector we're probing 4188 * @edid: EDID data 4189 * 4190 * Add the specified modes to the connector's mode list. Also fills out the 4191 * &drm_display_info structure in @connector with any information which can be 4192 * derived from the edid. 4193 * 4194 * Return: The number of modes added or 0 if we couldn't find any. 4195 */ 4196 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid) 4197 { 4198 int num_modes = 0; 4199 u32 quirks; 4200 4201 if (edid == NULL) { 4202 return 0; 4203 } 4204 if (!drm_edid_is_valid(edid)) { 4205 dev_warn(connector->dev->dev, "%s: EDID invalid.\n", 4206 connector->name); 4207 return 0; 4208 } 4209 4210 quirks = edid_get_quirks(edid); 4211 4212 /* 4213 * EDID spec says modes should be preferred in this order: 4214 * - preferred detailed mode 4215 * - other detailed modes from base block 4216 * - detailed modes from extension blocks 4217 * - CVT 3-byte code modes 4218 * - standard timing codes 4219 * - established timing codes 4220 * - modes inferred from GTF or CVT range information 4221 * 4222 * We get this pretty much right. 4223 * 4224 * XXX order for additional mode types in extension blocks? 4225 */ 4226 num_modes += add_detailed_modes(connector, edid, quirks); 4227 num_modes += add_cvt_modes(connector, edid); 4228 num_modes += add_standard_modes(connector, edid); 4229 num_modes += add_established_modes(connector, edid); 4230 num_modes += add_cea_modes(connector, edid); 4231 num_modes += add_alternate_cea_modes(connector, edid); 4232 num_modes += add_displayid_detailed_modes(connector, edid); 4233 if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF) 4234 num_modes += add_inferred_modes(connector, edid); 4235 4236 if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75)) 4237 edid_fixup_preferred(connector, quirks); 4238 4239 drm_add_display_info(connector, edid); 4240 4241 if (quirks & EDID_QUIRK_FORCE_6BPC) 4242 connector->display_info.bpc = 6; 4243 4244 if (quirks & EDID_QUIRK_FORCE_8BPC) 4245 connector->display_info.bpc = 8; 4246 4247 if (quirks & EDID_QUIRK_FORCE_12BPC) 4248 connector->display_info.bpc = 12; 4249 4250 return num_modes; 4251 } 4252 EXPORT_SYMBOL(drm_add_edid_modes); 4253 4254 /** 4255 * drm_add_modes_noedid - add modes for the connectors without EDID 4256 * @connector: connector we're probing 4257 * @hdisplay: the horizontal display limit 4258 * @vdisplay: the vertical display limit 4259 * 4260 * Add the specified modes to the connector's mode list. Only when the 4261 * hdisplay/vdisplay is not beyond the given limit, it will be added. 4262 * 4263 * Return: The number of modes added or 0 if we couldn't find any. 4264 */ 4265 int drm_add_modes_noedid(struct drm_connector *connector, 4266 int hdisplay, int vdisplay) 4267 { 4268 int i, count, num_modes = 0; 4269 struct drm_display_mode *mode; 4270 struct drm_device *dev = connector->dev; 4271 4272 count = ARRAY_SIZE(drm_dmt_modes); 4273 if (hdisplay < 0) 4274 hdisplay = 0; 4275 if (vdisplay < 0) 4276 vdisplay = 0; 4277 4278 for (i = 0; i < count; i++) { 4279 const struct drm_display_mode *ptr = &drm_dmt_modes[i]; 4280 if (hdisplay && vdisplay) { 4281 /* 4282 * Only when two are valid, they will be used to check 4283 * whether the mode should be added to the mode list of 4284 * the connector. 4285 */ 4286 if (ptr->hdisplay > hdisplay || 4287 ptr->vdisplay > vdisplay) 4288 continue; 4289 } 4290 if (drm_mode_vrefresh(ptr) > 61) 4291 continue; 4292 mode = drm_mode_duplicate(dev, ptr); 4293 if (mode) { 4294 drm_mode_probed_add(connector, mode); 4295 num_modes++; 4296 } 4297 } 4298 return num_modes; 4299 } 4300 EXPORT_SYMBOL(drm_add_modes_noedid); 4301 4302 /** 4303 * drm_set_preferred_mode - Sets the preferred mode of a connector 4304 * @connector: connector whose mode list should be processed 4305 * @hpref: horizontal resolution of preferred mode 4306 * @vpref: vertical resolution of preferred mode 4307 * 4308 * Marks a mode as preferred if it matches the resolution specified by @hpref 4309 * and @vpref. 4310 */ 4311 void drm_set_preferred_mode(struct drm_connector *connector, 4312 int hpref, int vpref) 4313 { 4314 struct drm_display_mode *mode; 4315 4316 list_for_each_entry(mode, &connector->probed_modes, head) { 4317 if (mode->hdisplay == hpref && 4318 mode->vdisplay == vpref) 4319 mode->type |= DRM_MODE_TYPE_PREFERRED; 4320 } 4321 } 4322 EXPORT_SYMBOL(drm_set_preferred_mode); 4323 4324 /** 4325 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with 4326 * data from a DRM display mode 4327 * @frame: HDMI AVI infoframe 4328 * @mode: DRM display mode 4329 * 4330 * Return: 0 on success or a negative error code on failure. 4331 */ 4332 int 4333 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame, 4334 const struct drm_display_mode *mode) 4335 { 4336 int err; 4337 4338 if (!frame || !mode) 4339 return -EINVAL; 4340 4341 err = hdmi_avi_infoframe_init(frame); 4342 if (err < 0) 4343 return err; 4344 4345 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 4346 frame->pixel_repeat = 1; 4347 4348 frame->video_code = drm_match_cea_mode(mode); 4349 4350 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE; 4351 4352 /* 4353 * Populate picture aspect ratio from either 4354 * user input (if specified) or from the CEA mode list. 4355 */ 4356 if (mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_4_3 || 4357 mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_16_9) 4358 frame->picture_aspect = mode->picture_aspect_ratio; 4359 else if (frame->video_code > 0) 4360 frame->picture_aspect = drm_get_cea_aspect_ratio( 4361 frame->video_code); 4362 4363 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE; 4364 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN; 4365 4366 return 0; 4367 } 4368 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode); 4369 4370 /** 4371 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe 4372 * quantization range information 4373 * @frame: HDMI AVI infoframe 4374 * @mode: DRM display mode 4375 * @rgb_quant_range: RGB quantization range (Q) 4376 * @rgb_quant_range_selectable: Sink support selectable RGB quantization range (QS) 4377 */ 4378 void 4379 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame, 4380 const struct drm_display_mode *mode, 4381 enum hdmi_quantization_range rgb_quant_range, 4382 bool rgb_quant_range_selectable) 4383 { 4384 /* 4385 * CEA-861: 4386 * "A Source shall not send a non-zero Q value that does not correspond 4387 * to the default RGB Quantization Range for the transmitted Picture 4388 * unless the Sink indicates support for the Q bit in a Video 4389 * Capabilities Data Block." 4390 * 4391 * HDMI 2.0 recommends sending non-zero Q when it does match the 4392 * default RGB quantization range for the mode, even when QS=0. 4393 */ 4394 if (rgb_quant_range_selectable || 4395 rgb_quant_range == drm_default_rgb_quant_range(mode)) 4396 frame->quantization_range = rgb_quant_range; 4397 else 4398 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT; 4399 4400 /* 4401 * CEA-861-F: 4402 * "When transmitting any RGB colorimetry, the Source should set the 4403 * YQ-field to match the RGB Quantization Range being transmitted 4404 * (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB, 4405 * set YQ=1) and the Sink shall ignore the YQ-field." 4406 */ 4407 if (rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) 4408 frame->ycc_quantization_range = 4409 HDMI_YCC_QUANTIZATION_RANGE_LIMITED; 4410 else 4411 frame->ycc_quantization_range = 4412 HDMI_YCC_QUANTIZATION_RANGE_FULL; 4413 } 4414 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range); 4415 4416 static enum hdmi_3d_structure 4417 s3d_structure_from_display_mode(const struct drm_display_mode *mode) 4418 { 4419 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK; 4420 4421 switch (layout) { 4422 case DRM_MODE_FLAG_3D_FRAME_PACKING: 4423 return HDMI_3D_STRUCTURE_FRAME_PACKING; 4424 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE: 4425 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE; 4426 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE: 4427 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE; 4428 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL: 4429 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL; 4430 case DRM_MODE_FLAG_3D_L_DEPTH: 4431 return HDMI_3D_STRUCTURE_L_DEPTH; 4432 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH: 4433 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH; 4434 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM: 4435 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM; 4436 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF: 4437 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF; 4438 default: 4439 return HDMI_3D_STRUCTURE_INVALID; 4440 } 4441 } 4442 4443 /** 4444 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with 4445 * data from a DRM display mode 4446 * @frame: HDMI vendor infoframe 4447 * @mode: DRM display mode 4448 * 4449 * Note that there's is a need to send HDMI vendor infoframes only when using a 4450 * 4k or stereoscopic 3D mode. So when giving any other mode as input this 4451 * function will return -EINVAL, error that can be safely ignored. 4452 * 4453 * Return: 0 on success or a negative error code on failure. 4454 */ 4455 int 4456 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame, 4457 const struct drm_display_mode *mode) 4458 { 4459 int err; 4460 u32 s3d_flags; 4461 u8 vic; 4462 4463 if (!frame || !mode) 4464 return -EINVAL; 4465 4466 vic = drm_match_hdmi_mode(mode); 4467 s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK; 4468 4469 if (!vic && !s3d_flags) 4470 return -EINVAL; 4471 4472 if (vic && s3d_flags) 4473 return -EINVAL; 4474 4475 err = hdmi_vendor_infoframe_init(frame); 4476 if (err < 0) 4477 return err; 4478 4479 if (vic) 4480 frame->vic = vic; 4481 else 4482 frame->s3d_struct = s3d_structure_from_display_mode(mode); 4483 4484 return 0; 4485 } 4486 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode); 4487 4488 static int drm_parse_tiled_block(struct drm_connector *connector, 4489 struct displayid_block *block) 4490 { 4491 struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block; 4492 u16 w, h; 4493 u8 tile_v_loc, tile_h_loc; 4494 u8 num_v_tile, num_h_tile; 4495 struct drm_tile_group *tg; 4496 4497 w = tile->tile_size[0] | tile->tile_size[1] << 8; 4498 h = tile->tile_size[2] | tile->tile_size[3] << 8; 4499 4500 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30); 4501 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30); 4502 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4); 4503 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4); 4504 4505 connector->has_tile = true; 4506 if (tile->tile_cap & 0x80) 4507 connector->tile_is_single_monitor = true; 4508 4509 connector->num_h_tile = num_h_tile + 1; 4510 connector->num_v_tile = num_v_tile + 1; 4511 connector->tile_h_loc = tile_h_loc; 4512 connector->tile_v_loc = tile_v_loc; 4513 connector->tile_h_size = w + 1; 4514 connector->tile_v_size = h + 1; 4515 4516 DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap); 4517 DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1); 4518 DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n", 4519 num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc); 4520 DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]); 4521 4522 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id); 4523 if (!tg) { 4524 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id); 4525 } 4526 if (!tg) 4527 return -ENOMEM; 4528 4529 if (connector->tile_group != tg) { 4530 /* if we haven't got a pointer, 4531 take the reference, drop ref to old tile group */ 4532 if (connector->tile_group) { 4533 drm_mode_put_tile_group(connector->dev, connector->tile_group); 4534 } 4535 connector->tile_group = tg; 4536 } else 4537 /* if same tile group, then release the ref we just took. */ 4538 drm_mode_put_tile_group(connector->dev, tg); 4539 return 0; 4540 } 4541 4542 static int drm_parse_display_id(struct drm_connector *connector, 4543 u8 *displayid, int length, 4544 bool is_edid_extension) 4545 { 4546 /* if this is an EDID extension the first byte will be 0x70 */ 4547 int idx = 0; 4548 struct displayid_block *block; 4549 int ret; 4550 4551 if (is_edid_extension) 4552 idx = 1; 4553 4554 ret = validate_displayid(displayid, length, idx); 4555 if (ret) 4556 return ret; 4557 4558 idx += sizeof(struct displayid_hdr); 4559 while (block = (struct displayid_block *)&displayid[idx], 4560 idx + sizeof(struct displayid_block) <= length && 4561 idx + sizeof(struct displayid_block) + block->num_bytes <= length && 4562 block->num_bytes > 0) { 4563 idx += block->num_bytes + sizeof(struct displayid_block); 4564 DRM_DEBUG_KMS("block id 0x%x, rev %d, len %d\n", 4565 block->tag, block->rev, block->num_bytes); 4566 4567 switch (block->tag) { 4568 case DATA_BLOCK_TILED_DISPLAY: 4569 ret = drm_parse_tiled_block(connector, block); 4570 if (ret) 4571 return ret; 4572 break; 4573 case DATA_BLOCK_TYPE_1_DETAILED_TIMING: 4574 /* handled in mode gathering code. */ 4575 break; 4576 default: 4577 DRM_DEBUG_KMS("found DisplayID tag 0x%x, unhandled\n", block->tag); 4578 break; 4579 } 4580 } 4581 return 0; 4582 } 4583 4584 static void drm_get_displayid(struct drm_connector *connector, 4585 struct edid *edid) 4586 { 4587 void *displayid = NULL; 4588 int ret; 4589 connector->has_tile = false; 4590 displayid = drm_find_displayid_extension(edid); 4591 if (!displayid) { 4592 /* drop reference to any tile group we had */ 4593 goto out_drop_ref; 4594 } 4595 4596 ret = drm_parse_display_id(connector, displayid, EDID_LENGTH, true); 4597 if (ret < 0) 4598 goto out_drop_ref; 4599 if (!connector->has_tile) 4600 goto out_drop_ref; 4601 return; 4602 out_drop_ref: 4603 if (connector->tile_group) { 4604 drm_mode_put_tile_group(connector->dev, connector->tile_group); 4605 connector->tile_group = NULL; 4606 } 4607 return; 4608 } 4609