xref: /openbmc/linux/drivers/gpu/drm/drm_edid.c (revision f4284724)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 
31 #include <linux/bitfield.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/slab.h>
38 #include <linux/vga_switcheroo.h>
39 
40 #include <drm/drm_displayid.h>
41 #include <drm/drm_drv.h>
42 #include <drm/drm_edid.h>
43 #include <drm/drm_encoder.h>
44 #include <drm/drm_print.h>
45 
46 #include "drm_crtc_internal.h"
47 
48 static int oui(u8 first, u8 second, u8 third)
49 {
50 	return (first << 16) | (second << 8) | third;
51 }
52 
53 #define EDID_EST_TIMINGS 16
54 #define EDID_STD_TIMINGS 8
55 #define EDID_DETAILED_TIMINGS 4
56 
57 /*
58  * EDID blocks out in the wild have a variety of bugs, try to collect
59  * them here (note that userspace may work around broken monitors first,
60  * but fixes should make their way here so that the kernel "just works"
61  * on as many displays as possible).
62  */
63 
64 /* First detailed mode wrong, use largest 60Hz mode */
65 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
66 /* Reported 135MHz pixel clock is too high, needs adjustment */
67 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
68 /* Prefer the largest mode at 75 Hz */
69 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
70 /* Detail timing is in cm not mm */
71 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
72 /* Detailed timing descriptors have bogus size values, so just take the
73  * maximum size and use that.
74  */
75 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
76 /* use +hsync +vsync for detailed mode */
77 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
78 /* Force reduced-blanking timings for detailed modes */
79 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
80 /* Force 8bpc */
81 #define EDID_QUIRK_FORCE_8BPC			(1 << 8)
82 /* Force 12bpc */
83 #define EDID_QUIRK_FORCE_12BPC			(1 << 9)
84 /* Force 6bpc */
85 #define EDID_QUIRK_FORCE_6BPC			(1 << 10)
86 /* Force 10bpc */
87 #define EDID_QUIRK_FORCE_10BPC			(1 << 11)
88 /* Non desktop display (i.e. HMD) */
89 #define EDID_QUIRK_NON_DESKTOP			(1 << 12)
90 
91 #define MICROSOFT_IEEE_OUI	0xca125c
92 
93 struct detailed_mode_closure {
94 	struct drm_connector *connector;
95 	const struct drm_edid *drm_edid;
96 	bool preferred;
97 	u32 quirks;
98 	int modes;
99 };
100 
101 #define LEVEL_DMT	0
102 #define LEVEL_GTF	1
103 #define LEVEL_GTF2	2
104 #define LEVEL_CVT	3
105 
106 #define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
107 { \
108 	.panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
109 					     product_id), \
110 	.quirks = _quirks \
111 }
112 
113 static const struct edid_quirk {
114 	u32 panel_id;
115 	u32 quirks;
116 } edid_quirk_list[] = {
117 	/* Acer AL1706 */
118 	EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
119 	/* Acer F51 */
120 	EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
121 
122 	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
123 	EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
124 
125 	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
126 	EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
127 
128 	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
129 	EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
130 
131 	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
132 	EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
133 
134 	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
135 	EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
136 
137 	/* Belinea 10 15 55 */
138 	EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
139 	EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
140 
141 	/* Envision Peripherals, Inc. EN-7100e */
142 	EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
143 	/* Envision EN2028 */
144 	EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
145 
146 	/* Funai Electronics PM36B */
147 	EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
148 				       EDID_QUIRK_DETAILED_IN_CM),
149 
150 	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
151 	EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
152 
153 	/* LG Philips LCD LP154W01-A5 */
154 	EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
155 	EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
156 
157 	/* Samsung SyncMaster 205BW.  Note: irony */
158 	EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
159 	/* Samsung SyncMaster 22[5-6]BW */
160 	EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
161 	EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
162 
163 	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
164 	EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
165 
166 	/* ViewSonic VA2026w */
167 	EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
168 
169 	/* Medion MD 30217 PG */
170 	EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
171 
172 	/* Lenovo G50 */
173 	EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
174 
175 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
176 	EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
177 
178 	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
179 	EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
180 
181 	/* Valve Index Headset */
182 	EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
183 	EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
184 	EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
185 	EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
186 	EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
187 	EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
188 	EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
189 	EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
190 	EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
191 	EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
192 	EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
193 	EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
194 	EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
195 	EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
196 	EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
197 	EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
198 	EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
199 
200 	/* HTC Vive and Vive Pro VR Headsets */
201 	EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
202 	EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
203 
204 	/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
205 	EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
206 	EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
207 	EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
208 	EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
209 
210 	/* Windows Mixed Reality Headsets */
211 	EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
212 	EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
213 	EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
214 	EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
215 	EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
216 	EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
217 
218 	/* Sony PlayStation VR Headset */
219 	EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
220 
221 	/* Sensics VR Headsets */
222 	EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
223 
224 	/* OSVR HDK and HDK2 VR Headsets */
225 	EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
226 };
227 
228 /*
229  * Autogenerated from the DMT spec.
230  * This table is copied from xfree86/modes/xf86EdidModes.c.
231  */
232 static const struct drm_display_mode drm_dmt_modes[] = {
233 	/* 0x01 - 640x350@85Hz */
234 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
235 		   736, 832, 0, 350, 382, 385, 445, 0,
236 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
237 	/* 0x02 - 640x400@85Hz */
238 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
239 		   736, 832, 0, 400, 401, 404, 445, 0,
240 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
241 	/* 0x03 - 720x400@85Hz */
242 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
243 		   828, 936, 0, 400, 401, 404, 446, 0,
244 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
245 	/* 0x04 - 640x480@60Hz */
246 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
247 		   752, 800, 0, 480, 490, 492, 525, 0,
248 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
249 	/* 0x05 - 640x480@72Hz */
250 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
251 		   704, 832, 0, 480, 489, 492, 520, 0,
252 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
253 	/* 0x06 - 640x480@75Hz */
254 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
255 		   720, 840, 0, 480, 481, 484, 500, 0,
256 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
257 	/* 0x07 - 640x480@85Hz */
258 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
259 		   752, 832, 0, 480, 481, 484, 509, 0,
260 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
261 	/* 0x08 - 800x600@56Hz */
262 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
263 		   896, 1024, 0, 600, 601, 603, 625, 0,
264 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
265 	/* 0x09 - 800x600@60Hz */
266 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
267 		   968, 1056, 0, 600, 601, 605, 628, 0,
268 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
269 	/* 0x0a - 800x600@72Hz */
270 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
271 		   976, 1040, 0, 600, 637, 643, 666, 0,
272 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
273 	/* 0x0b - 800x600@75Hz */
274 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
275 		   896, 1056, 0, 600, 601, 604, 625, 0,
276 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
277 	/* 0x0c - 800x600@85Hz */
278 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
279 		   896, 1048, 0, 600, 601, 604, 631, 0,
280 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
281 	/* 0x0d - 800x600@120Hz RB */
282 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
283 		   880, 960, 0, 600, 603, 607, 636, 0,
284 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
285 	/* 0x0e - 848x480@60Hz */
286 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
287 		   976, 1088, 0, 480, 486, 494, 517, 0,
288 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
289 	/* 0x0f - 1024x768@43Hz, interlace */
290 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
291 		   1208, 1264, 0, 768, 768, 776, 817, 0,
292 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
293 		   DRM_MODE_FLAG_INTERLACE) },
294 	/* 0x10 - 1024x768@60Hz */
295 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
296 		   1184, 1344, 0, 768, 771, 777, 806, 0,
297 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
298 	/* 0x11 - 1024x768@70Hz */
299 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
300 		   1184, 1328, 0, 768, 771, 777, 806, 0,
301 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
302 	/* 0x12 - 1024x768@75Hz */
303 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
304 		   1136, 1312, 0, 768, 769, 772, 800, 0,
305 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
306 	/* 0x13 - 1024x768@85Hz */
307 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
308 		   1168, 1376, 0, 768, 769, 772, 808, 0,
309 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
310 	/* 0x14 - 1024x768@120Hz RB */
311 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
312 		   1104, 1184, 0, 768, 771, 775, 813, 0,
313 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
314 	/* 0x15 - 1152x864@75Hz */
315 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
316 		   1344, 1600, 0, 864, 865, 868, 900, 0,
317 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
318 	/* 0x55 - 1280x720@60Hz */
319 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
320 		   1430, 1650, 0, 720, 725, 730, 750, 0,
321 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
322 	/* 0x16 - 1280x768@60Hz RB */
323 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
324 		   1360, 1440, 0, 768, 771, 778, 790, 0,
325 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
326 	/* 0x17 - 1280x768@60Hz */
327 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
328 		   1472, 1664, 0, 768, 771, 778, 798, 0,
329 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
330 	/* 0x18 - 1280x768@75Hz */
331 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
332 		   1488, 1696, 0, 768, 771, 778, 805, 0,
333 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
334 	/* 0x19 - 1280x768@85Hz */
335 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
336 		   1496, 1712, 0, 768, 771, 778, 809, 0,
337 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
338 	/* 0x1a - 1280x768@120Hz RB */
339 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
340 		   1360, 1440, 0, 768, 771, 778, 813, 0,
341 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
342 	/* 0x1b - 1280x800@60Hz RB */
343 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
344 		   1360, 1440, 0, 800, 803, 809, 823, 0,
345 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
346 	/* 0x1c - 1280x800@60Hz */
347 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
348 		   1480, 1680, 0, 800, 803, 809, 831, 0,
349 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
350 	/* 0x1d - 1280x800@75Hz */
351 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
352 		   1488, 1696, 0, 800, 803, 809, 838, 0,
353 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
354 	/* 0x1e - 1280x800@85Hz */
355 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
356 		   1496, 1712, 0, 800, 803, 809, 843, 0,
357 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
358 	/* 0x1f - 1280x800@120Hz RB */
359 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
360 		   1360, 1440, 0, 800, 803, 809, 847, 0,
361 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
362 	/* 0x20 - 1280x960@60Hz */
363 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
364 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
365 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
366 	/* 0x21 - 1280x960@85Hz */
367 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
368 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
369 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
370 	/* 0x22 - 1280x960@120Hz RB */
371 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
372 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
373 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
374 	/* 0x23 - 1280x1024@60Hz */
375 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
376 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
377 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
378 	/* 0x24 - 1280x1024@75Hz */
379 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
380 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
381 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
382 	/* 0x25 - 1280x1024@85Hz */
383 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
384 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
385 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
386 	/* 0x26 - 1280x1024@120Hz RB */
387 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
388 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
389 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
390 	/* 0x27 - 1360x768@60Hz */
391 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
392 		   1536, 1792, 0, 768, 771, 777, 795, 0,
393 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
394 	/* 0x28 - 1360x768@120Hz RB */
395 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
396 		   1440, 1520, 0, 768, 771, 776, 813, 0,
397 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
398 	/* 0x51 - 1366x768@60Hz */
399 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
400 		   1579, 1792, 0, 768, 771, 774, 798, 0,
401 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
402 	/* 0x56 - 1366x768@60Hz */
403 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
404 		   1436, 1500, 0, 768, 769, 772, 800, 0,
405 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
406 	/* 0x29 - 1400x1050@60Hz RB */
407 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
408 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
409 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
410 	/* 0x2a - 1400x1050@60Hz */
411 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
412 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
413 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
414 	/* 0x2b - 1400x1050@75Hz */
415 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
416 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
417 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
418 	/* 0x2c - 1400x1050@85Hz */
419 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
420 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
421 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
422 	/* 0x2d - 1400x1050@120Hz RB */
423 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
424 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
425 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
426 	/* 0x2e - 1440x900@60Hz RB */
427 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
428 		   1520, 1600, 0, 900, 903, 909, 926, 0,
429 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
430 	/* 0x2f - 1440x900@60Hz */
431 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
432 		   1672, 1904, 0, 900, 903, 909, 934, 0,
433 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
434 	/* 0x30 - 1440x900@75Hz */
435 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
436 		   1688, 1936, 0, 900, 903, 909, 942, 0,
437 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
438 	/* 0x31 - 1440x900@85Hz */
439 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
440 		   1696, 1952, 0, 900, 903, 909, 948, 0,
441 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
442 	/* 0x32 - 1440x900@120Hz RB */
443 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
444 		   1520, 1600, 0, 900, 903, 909, 953, 0,
445 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
446 	/* 0x53 - 1600x900@60Hz */
447 	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
448 		   1704, 1800, 0, 900, 901, 904, 1000, 0,
449 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
450 	/* 0x33 - 1600x1200@60Hz */
451 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
452 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
453 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
454 	/* 0x34 - 1600x1200@65Hz */
455 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
456 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
457 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
458 	/* 0x35 - 1600x1200@70Hz */
459 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
460 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
461 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
462 	/* 0x36 - 1600x1200@75Hz */
463 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
464 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
465 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
466 	/* 0x37 - 1600x1200@85Hz */
467 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
468 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
469 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
470 	/* 0x38 - 1600x1200@120Hz RB */
471 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
472 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
473 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
474 	/* 0x39 - 1680x1050@60Hz RB */
475 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
476 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
477 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
478 	/* 0x3a - 1680x1050@60Hz */
479 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
480 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
481 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
482 	/* 0x3b - 1680x1050@75Hz */
483 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
484 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
485 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
486 	/* 0x3c - 1680x1050@85Hz */
487 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
488 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
489 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
490 	/* 0x3d - 1680x1050@120Hz RB */
491 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
492 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
493 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
494 	/* 0x3e - 1792x1344@60Hz */
495 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
496 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
497 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
498 	/* 0x3f - 1792x1344@75Hz */
499 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
500 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
501 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
502 	/* 0x40 - 1792x1344@120Hz RB */
503 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
504 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
505 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
506 	/* 0x41 - 1856x1392@60Hz */
507 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
508 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
509 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
510 	/* 0x42 - 1856x1392@75Hz */
511 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
512 		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
513 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
514 	/* 0x43 - 1856x1392@120Hz RB */
515 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
516 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
517 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
518 	/* 0x52 - 1920x1080@60Hz */
519 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
520 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
521 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
522 	/* 0x44 - 1920x1200@60Hz RB */
523 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
524 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
525 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
526 	/* 0x45 - 1920x1200@60Hz */
527 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
528 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
529 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
530 	/* 0x46 - 1920x1200@75Hz */
531 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
532 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
533 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
534 	/* 0x47 - 1920x1200@85Hz */
535 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
536 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
537 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
538 	/* 0x48 - 1920x1200@120Hz RB */
539 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
540 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
541 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
542 	/* 0x49 - 1920x1440@60Hz */
543 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
544 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
545 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
546 	/* 0x4a - 1920x1440@75Hz */
547 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
548 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
549 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
550 	/* 0x4b - 1920x1440@120Hz RB */
551 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
552 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
553 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
554 	/* 0x54 - 2048x1152@60Hz */
555 	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
556 		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
557 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
558 	/* 0x4c - 2560x1600@60Hz RB */
559 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
560 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
561 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
562 	/* 0x4d - 2560x1600@60Hz */
563 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
564 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
565 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
566 	/* 0x4e - 2560x1600@75Hz */
567 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
568 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
569 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
570 	/* 0x4f - 2560x1600@85Hz */
571 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
572 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
573 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
574 	/* 0x50 - 2560x1600@120Hz RB */
575 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
576 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
577 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
578 	/* 0x57 - 4096x2160@60Hz RB */
579 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
580 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
581 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
582 	/* 0x58 - 4096x2160@59.94Hz RB */
583 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
584 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
585 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
586 };
587 
588 /*
589  * These more or less come from the DMT spec.  The 720x400 modes are
590  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
591  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
592  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
593  * mode.
594  *
595  * The DMT modes have been fact-checked; the rest are mild guesses.
596  */
597 static const struct drm_display_mode edid_est_modes[] = {
598 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
599 		   968, 1056, 0, 600, 601, 605, 628, 0,
600 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
601 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
602 		   896, 1024, 0, 600, 601, 603,  625, 0,
603 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
604 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
605 		   720, 840, 0, 480, 481, 484, 500, 0,
606 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
607 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
608 		   704,  832, 0, 480, 489, 492, 520, 0,
609 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
610 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
611 		   768,  864, 0, 480, 483, 486, 525, 0,
612 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
613 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
614 		   752, 800, 0, 480, 490, 492, 525, 0,
615 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
616 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
617 		   846, 900, 0, 400, 421, 423,  449, 0,
618 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
619 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
620 		   846,  900, 0, 400, 412, 414, 449, 0,
621 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
622 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
623 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
624 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
625 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
626 		   1136, 1312, 0,  768, 769, 772, 800, 0,
627 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
628 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
629 		   1184, 1328, 0,  768, 771, 777, 806, 0,
630 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
631 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
632 		   1184, 1344, 0,  768, 771, 777, 806, 0,
633 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
634 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
635 		   1208, 1264, 0, 768, 768, 776, 817, 0,
636 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
637 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
638 		   928, 1152, 0, 624, 625, 628, 667, 0,
639 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
640 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
641 		   896, 1056, 0, 600, 601, 604,  625, 0,
642 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
643 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
644 		   976, 1040, 0, 600, 637, 643, 666, 0,
645 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
646 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
647 		   1344, 1600, 0,  864, 865, 868, 900, 0,
648 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
649 };
650 
651 struct minimode {
652 	short w;
653 	short h;
654 	short r;
655 	short rb;
656 };
657 
658 static const struct minimode est3_modes[] = {
659 	/* byte 6 */
660 	{ 640, 350, 85, 0 },
661 	{ 640, 400, 85, 0 },
662 	{ 720, 400, 85, 0 },
663 	{ 640, 480, 85, 0 },
664 	{ 848, 480, 60, 0 },
665 	{ 800, 600, 85, 0 },
666 	{ 1024, 768, 85, 0 },
667 	{ 1152, 864, 75, 0 },
668 	/* byte 7 */
669 	{ 1280, 768, 60, 1 },
670 	{ 1280, 768, 60, 0 },
671 	{ 1280, 768, 75, 0 },
672 	{ 1280, 768, 85, 0 },
673 	{ 1280, 960, 60, 0 },
674 	{ 1280, 960, 85, 0 },
675 	{ 1280, 1024, 60, 0 },
676 	{ 1280, 1024, 85, 0 },
677 	/* byte 8 */
678 	{ 1360, 768, 60, 0 },
679 	{ 1440, 900, 60, 1 },
680 	{ 1440, 900, 60, 0 },
681 	{ 1440, 900, 75, 0 },
682 	{ 1440, 900, 85, 0 },
683 	{ 1400, 1050, 60, 1 },
684 	{ 1400, 1050, 60, 0 },
685 	{ 1400, 1050, 75, 0 },
686 	/* byte 9 */
687 	{ 1400, 1050, 85, 0 },
688 	{ 1680, 1050, 60, 1 },
689 	{ 1680, 1050, 60, 0 },
690 	{ 1680, 1050, 75, 0 },
691 	{ 1680, 1050, 85, 0 },
692 	{ 1600, 1200, 60, 0 },
693 	{ 1600, 1200, 65, 0 },
694 	{ 1600, 1200, 70, 0 },
695 	/* byte 10 */
696 	{ 1600, 1200, 75, 0 },
697 	{ 1600, 1200, 85, 0 },
698 	{ 1792, 1344, 60, 0 },
699 	{ 1792, 1344, 75, 0 },
700 	{ 1856, 1392, 60, 0 },
701 	{ 1856, 1392, 75, 0 },
702 	{ 1920, 1200, 60, 1 },
703 	{ 1920, 1200, 60, 0 },
704 	/* byte 11 */
705 	{ 1920, 1200, 75, 0 },
706 	{ 1920, 1200, 85, 0 },
707 	{ 1920, 1440, 60, 0 },
708 	{ 1920, 1440, 75, 0 },
709 };
710 
711 static const struct minimode extra_modes[] = {
712 	{ 1024, 576,  60, 0 },
713 	{ 1366, 768,  60, 0 },
714 	{ 1600, 900,  60, 0 },
715 	{ 1680, 945,  60, 0 },
716 	{ 1920, 1080, 60, 0 },
717 	{ 2048, 1152, 60, 0 },
718 	{ 2048, 1536, 60, 0 },
719 };
720 
721 /*
722  * From CEA/CTA-861 spec.
723  *
724  * Do not access directly, instead always use cea_mode_for_vic().
725  */
726 static const struct drm_display_mode edid_cea_modes_1[] = {
727 	/* 1 - 640x480@60Hz 4:3 */
728 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
729 		   752, 800, 0, 480, 490, 492, 525, 0,
730 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
731 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
732 	/* 2 - 720x480@60Hz 4:3 */
733 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
734 		   798, 858, 0, 480, 489, 495, 525, 0,
735 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
736 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
737 	/* 3 - 720x480@60Hz 16:9 */
738 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
739 		   798, 858, 0, 480, 489, 495, 525, 0,
740 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
741 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
742 	/* 4 - 1280x720@60Hz 16:9 */
743 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
744 		   1430, 1650, 0, 720, 725, 730, 750, 0,
745 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
746 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
747 	/* 5 - 1920x1080i@60Hz 16:9 */
748 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
749 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
750 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
751 		   DRM_MODE_FLAG_INTERLACE),
752 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
753 	/* 6 - 720(1440)x480i@60Hz 4:3 */
754 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
755 		   801, 858, 0, 480, 488, 494, 525, 0,
756 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
757 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
758 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
759 	/* 7 - 720(1440)x480i@60Hz 16:9 */
760 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
761 		   801, 858, 0, 480, 488, 494, 525, 0,
762 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
763 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
764 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
765 	/* 8 - 720(1440)x240@60Hz 4:3 */
766 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
767 		   801, 858, 0, 240, 244, 247, 262, 0,
768 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
769 		   DRM_MODE_FLAG_DBLCLK),
770 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
771 	/* 9 - 720(1440)x240@60Hz 16:9 */
772 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
773 		   801, 858, 0, 240, 244, 247, 262, 0,
774 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
775 		   DRM_MODE_FLAG_DBLCLK),
776 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
777 	/* 10 - 2880x480i@60Hz 4:3 */
778 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
779 		   3204, 3432, 0, 480, 488, 494, 525, 0,
780 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
781 		   DRM_MODE_FLAG_INTERLACE),
782 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
783 	/* 11 - 2880x480i@60Hz 16:9 */
784 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
785 		   3204, 3432, 0, 480, 488, 494, 525, 0,
786 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
787 		   DRM_MODE_FLAG_INTERLACE),
788 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
789 	/* 12 - 2880x240@60Hz 4:3 */
790 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
791 		   3204, 3432, 0, 240, 244, 247, 262, 0,
792 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
793 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
794 	/* 13 - 2880x240@60Hz 16:9 */
795 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
796 		   3204, 3432, 0, 240, 244, 247, 262, 0,
797 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
798 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
799 	/* 14 - 1440x480@60Hz 4:3 */
800 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
801 		   1596, 1716, 0, 480, 489, 495, 525, 0,
802 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
803 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
804 	/* 15 - 1440x480@60Hz 16:9 */
805 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
806 		   1596, 1716, 0, 480, 489, 495, 525, 0,
807 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
808 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
809 	/* 16 - 1920x1080@60Hz 16:9 */
810 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
811 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
812 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
813 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
814 	/* 17 - 720x576@50Hz 4:3 */
815 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
816 		   796, 864, 0, 576, 581, 586, 625, 0,
817 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
818 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
819 	/* 18 - 720x576@50Hz 16:9 */
820 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
821 		   796, 864, 0, 576, 581, 586, 625, 0,
822 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
823 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
824 	/* 19 - 1280x720@50Hz 16:9 */
825 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
826 		   1760, 1980, 0, 720, 725, 730, 750, 0,
827 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
828 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
829 	/* 20 - 1920x1080i@50Hz 16:9 */
830 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
831 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
832 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
833 		   DRM_MODE_FLAG_INTERLACE),
834 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
835 	/* 21 - 720(1440)x576i@50Hz 4:3 */
836 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
837 		   795, 864, 0, 576, 580, 586, 625, 0,
838 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
839 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
840 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
841 	/* 22 - 720(1440)x576i@50Hz 16:9 */
842 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
843 		   795, 864, 0, 576, 580, 586, 625, 0,
844 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
845 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
846 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
847 	/* 23 - 720(1440)x288@50Hz 4:3 */
848 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
849 		   795, 864, 0, 288, 290, 293, 312, 0,
850 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
851 		   DRM_MODE_FLAG_DBLCLK),
852 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
853 	/* 24 - 720(1440)x288@50Hz 16:9 */
854 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
855 		   795, 864, 0, 288, 290, 293, 312, 0,
856 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
857 		   DRM_MODE_FLAG_DBLCLK),
858 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
859 	/* 25 - 2880x576i@50Hz 4:3 */
860 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
861 		   3180, 3456, 0, 576, 580, 586, 625, 0,
862 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
863 		   DRM_MODE_FLAG_INTERLACE),
864 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
865 	/* 26 - 2880x576i@50Hz 16:9 */
866 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
867 		   3180, 3456, 0, 576, 580, 586, 625, 0,
868 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
869 		   DRM_MODE_FLAG_INTERLACE),
870 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
871 	/* 27 - 2880x288@50Hz 4:3 */
872 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
873 		   3180, 3456, 0, 288, 290, 293, 312, 0,
874 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
875 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
876 	/* 28 - 2880x288@50Hz 16:9 */
877 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
878 		   3180, 3456, 0, 288, 290, 293, 312, 0,
879 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
880 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
881 	/* 29 - 1440x576@50Hz 4:3 */
882 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
883 		   1592, 1728, 0, 576, 581, 586, 625, 0,
884 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
885 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
886 	/* 30 - 1440x576@50Hz 16:9 */
887 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
888 		   1592, 1728, 0, 576, 581, 586, 625, 0,
889 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
890 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
891 	/* 31 - 1920x1080@50Hz 16:9 */
892 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
893 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
894 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
895 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
896 	/* 32 - 1920x1080@24Hz 16:9 */
897 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
898 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
899 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
900 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
901 	/* 33 - 1920x1080@25Hz 16:9 */
902 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
903 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
904 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
905 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
906 	/* 34 - 1920x1080@30Hz 16:9 */
907 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
908 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
909 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
910 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
911 	/* 35 - 2880x480@60Hz 4:3 */
912 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
913 		   3192, 3432, 0, 480, 489, 495, 525, 0,
914 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
915 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
916 	/* 36 - 2880x480@60Hz 16:9 */
917 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
918 		   3192, 3432, 0, 480, 489, 495, 525, 0,
919 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
920 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
921 	/* 37 - 2880x576@50Hz 4:3 */
922 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
923 		   3184, 3456, 0, 576, 581, 586, 625, 0,
924 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
925 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
926 	/* 38 - 2880x576@50Hz 16:9 */
927 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
928 		   3184, 3456, 0, 576, 581, 586, 625, 0,
929 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
930 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
931 	/* 39 - 1920x1080i@50Hz 16:9 */
932 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
933 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
934 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
935 		   DRM_MODE_FLAG_INTERLACE),
936 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
937 	/* 40 - 1920x1080i@100Hz 16:9 */
938 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
939 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
940 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
941 		   DRM_MODE_FLAG_INTERLACE),
942 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
943 	/* 41 - 1280x720@100Hz 16:9 */
944 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
945 		   1760, 1980, 0, 720, 725, 730, 750, 0,
946 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
947 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
948 	/* 42 - 720x576@100Hz 4:3 */
949 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
950 		   796, 864, 0, 576, 581, 586, 625, 0,
951 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
952 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
953 	/* 43 - 720x576@100Hz 16:9 */
954 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
955 		   796, 864, 0, 576, 581, 586, 625, 0,
956 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
957 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
958 	/* 44 - 720(1440)x576i@100Hz 4:3 */
959 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
960 		   795, 864, 0, 576, 580, 586, 625, 0,
961 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
962 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
963 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
964 	/* 45 - 720(1440)x576i@100Hz 16:9 */
965 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
966 		   795, 864, 0, 576, 580, 586, 625, 0,
967 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
968 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
969 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
970 	/* 46 - 1920x1080i@120Hz 16:9 */
971 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
972 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
973 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
974 		   DRM_MODE_FLAG_INTERLACE),
975 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
976 	/* 47 - 1280x720@120Hz 16:9 */
977 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
978 		   1430, 1650, 0, 720, 725, 730, 750, 0,
979 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
980 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
981 	/* 48 - 720x480@120Hz 4:3 */
982 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
983 		   798, 858, 0, 480, 489, 495, 525, 0,
984 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
985 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
986 	/* 49 - 720x480@120Hz 16:9 */
987 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
988 		   798, 858, 0, 480, 489, 495, 525, 0,
989 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
990 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
991 	/* 50 - 720(1440)x480i@120Hz 4:3 */
992 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
993 		   801, 858, 0, 480, 488, 494, 525, 0,
994 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
995 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
996 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
997 	/* 51 - 720(1440)x480i@120Hz 16:9 */
998 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
999 		   801, 858, 0, 480, 488, 494, 525, 0,
1000 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1001 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1002 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1003 	/* 52 - 720x576@200Hz 4:3 */
1004 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1005 		   796, 864, 0, 576, 581, 586, 625, 0,
1006 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1007 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1008 	/* 53 - 720x576@200Hz 16:9 */
1009 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1010 		   796, 864, 0, 576, 581, 586, 625, 0,
1011 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1012 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1013 	/* 54 - 720(1440)x576i@200Hz 4:3 */
1014 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1015 		   795, 864, 0, 576, 580, 586, 625, 0,
1016 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1017 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1018 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1019 	/* 55 - 720(1440)x576i@200Hz 16:9 */
1020 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1021 		   795, 864, 0, 576, 580, 586, 625, 0,
1022 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1023 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1024 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1025 	/* 56 - 720x480@240Hz 4:3 */
1026 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1027 		   798, 858, 0, 480, 489, 495, 525, 0,
1028 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1029 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1030 	/* 57 - 720x480@240Hz 16:9 */
1031 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1032 		   798, 858, 0, 480, 489, 495, 525, 0,
1033 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1034 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1035 	/* 58 - 720(1440)x480i@240Hz 4:3 */
1036 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1037 		   801, 858, 0, 480, 488, 494, 525, 0,
1038 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1039 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1040 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1041 	/* 59 - 720(1440)x480i@240Hz 16:9 */
1042 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1043 		   801, 858, 0, 480, 488, 494, 525, 0,
1044 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1045 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1046 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1047 	/* 60 - 1280x720@24Hz 16:9 */
1048 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1049 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1050 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1051 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1052 	/* 61 - 1280x720@25Hz 16:9 */
1053 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1054 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1055 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1056 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1057 	/* 62 - 1280x720@30Hz 16:9 */
1058 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1059 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1060 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1061 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1062 	/* 63 - 1920x1080@120Hz 16:9 */
1063 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1064 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1065 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1066 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1067 	/* 64 - 1920x1080@100Hz 16:9 */
1068 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1069 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1070 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1071 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1072 	/* 65 - 1280x720@24Hz 64:27 */
1073 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1074 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1075 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1076 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1077 	/* 66 - 1280x720@25Hz 64:27 */
1078 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1079 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1080 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1081 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1082 	/* 67 - 1280x720@30Hz 64:27 */
1083 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1084 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1085 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1086 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1087 	/* 68 - 1280x720@50Hz 64:27 */
1088 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1089 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1090 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1091 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1092 	/* 69 - 1280x720@60Hz 64:27 */
1093 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1094 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1095 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1096 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1097 	/* 70 - 1280x720@100Hz 64:27 */
1098 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1099 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1100 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1101 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1102 	/* 71 - 1280x720@120Hz 64:27 */
1103 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1104 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1105 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1106 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1107 	/* 72 - 1920x1080@24Hz 64:27 */
1108 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1109 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1110 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1111 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1112 	/* 73 - 1920x1080@25Hz 64:27 */
1113 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1114 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1115 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1116 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1117 	/* 74 - 1920x1080@30Hz 64:27 */
1118 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1119 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1120 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1121 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1122 	/* 75 - 1920x1080@50Hz 64:27 */
1123 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1124 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1125 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1126 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1127 	/* 76 - 1920x1080@60Hz 64:27 */
1128 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1129 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1130 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1131 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1132 	/* 77 - 1920x1080@100Hz 64:27 */
1133 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1134 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1135 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1136 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1137 	/* 78 - 1920x1080@120Hz 64:27 */
1138 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1139 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1140 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1141 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1142 	/* 79 - 1680x720@24Hz 64:27 */
1143 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1144 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1145 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1146 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1147 	/* 80 - 1680x720@25Hz 64:27 */
1148 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1149 		   2948, 3168, 0, 720, 725, 730, 750, 0,
1150 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1151 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1152 	/* 81 - 1680x720@30Hz 64:27 */
1153 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1154 		   2420, 2640, 0, 720, 725, 730, 750, 0,
1155 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1156 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1157 	/* 82 - 1680x720@50Hz 64:27 */
1158 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1159 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1160 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1161 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1162 	/* 83 - 1680x720@60Hz 64:27 */
1163 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1164 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1165 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1166 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1167 	/* 84 - 1680x720@100Hz 64:27 */
1168 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1169 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1170 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1171 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1172 	/* 85 - 1680x720@120Hz 64:27 */
1173 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1174 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1175 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1176 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1177 	/* 86 - 2560x1080@24Hz 64:27 */
1178 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1179 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1180 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1181 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1182 	/* 87 - 2560x1080@25Hz 64:27 */
1183 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1184 		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1185 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1186 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1187 	/* 88 - 2560x1080@30Hz 64:27 */
1188 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1189 		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1190 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1191 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1192 	/* 89 - 2560x1080@50Hz 64:27 */
1193 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1194 		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1195 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1196 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1197 	/* 90 - 2560x1080@60Hz 64:27 */
1198 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1199 		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1200 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1201 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1202 	/* 91 - 2560x1080@100Hz 64:27 */
1203 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1204 		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1205 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1206 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1207 	/* 92 - 2560x1080@120Hz 64:27 */
1208 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1209 		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1210 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1211 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1212 	/* 93 - 3840x2160@24Hz 16:9 */
1213 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1214 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1215 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1216 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1217 	/* 94 - 3840x2160@25Hz 16:9 */
1218 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1219 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1220 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1221 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1222 	/* 95 - 3840x2160@30Hz 16:9 */
1223 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1224 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1225 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1226 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1227 	/* 96 - 3840x2160@50Hz 16:9 */
1228 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1229 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1230 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1231 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1232 	/* 97 - 3840x2160@60Hz 16:9 */
1233 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1234 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1235 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1236 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1237 	/* 98 - 4096x2160@24Hz 256:135 */
1238 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1239 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1240 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1241 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1242 	/* 99 - 4096x2160@25Hz 256:135 */
1243 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1244 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1245 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1246 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1247 	/* 100 - 4096x2160@30Hz 256:135 */
1248 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1249 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1250 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1251 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1252 	/* 101 - 4096x2160@50Hz 256:135 */
1253 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1254 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1255 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1256 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1257 	/* 102 - 4096x2160@60Hz 256:135 */
1258 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1259 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1260 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1261 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1262 	/* 103 - 3840x2160@24Hz 64:27 */
1263 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1264 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1265 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1266 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1267 	/* 104 - 3840x2160@25Hz 64:27 */
1268 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1269 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1270 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1271 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1272 	/* 105 - 3840x2160@30Hz 64:27 */
1273 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1274 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1275 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1276 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1277 	/* 106 - 3840x2160@50Hz 64:27 */
1278 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1279 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1280 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1281 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1282 	/* 107 - 3840x2160@60Hz 64:27 */
1283 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1284 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1285 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1286 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1287 	/* 108 - 1280x720@48Hz 16:9 */
1288 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1289 		   2280, 2500, 0, 720, 725, 730, 750, 0,
1290 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1291 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1292 	/* 109 - 1280x720@48Hz 64:27 */
1293 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1294 		   2280, 2500, 0, 720, 725, 730, 750, 0,
1295 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1296 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1297 	/* 110 - 1680x720@48Hz 64:27 */
1298 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1299 		   2530, 2750, 0, 720, 725, 730, 750, 0,
1300 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1301 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1302 	/* 111 - 1920x1080@48Hz 16:9 */
1303 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1304 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1305 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1306 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1307 	/* 112 - 1920x1080@48Hz 64:27 */
1308 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1309 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1310 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1311 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1312 	/* 113 - 2560x1080@48Hz 64:27 */
1313 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1314 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1315 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1316 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1317 	/* 114 - 3840x2160@48Hz 16:9 */
1318 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1319 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1320 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1321 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1322 	/* 115 - 4096x2160@48Hz 256:135 */
1323 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1324 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1325 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1326 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1327 	/* 116 - 3840x2160@48Hz 64:27 */
1328 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1329 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1330 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1331 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1332 	/* 117 - 3840x2160@100Hz 16:9 */
1333 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1334 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1335 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1336 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1337 	/* 118 - 3840x2160@120Hz 16:9 */
1338 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1339 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1340 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1341 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1342 	/* 119 - 3840x2160@100Hz 64:27 */
1343 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1344 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1345 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1346 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1347 	/* 120 - 3840x2160@120Hz 64:27 */
1348 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1349 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1350 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1351 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1352 	/* 121 - 5120x2160@24Hz 64:27 */
1353 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1354 		   7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1355 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1356 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1357 	/* 122 - 5120x2160@25Hz 64:27 */
1358 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1359 		   6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1360 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1361 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1362 	/* 123 - 5120x2160@30Hz 64:27 */
1363 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1364 		   5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1365 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1366 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1367 	/* 124 - 5120x2160@48Hz 64:27 */
1368 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1369 		   5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1370 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1371 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1372 	/* 125 - 5120x2160@50Hz 64:27 */
1373 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1374 		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1375 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1376 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1377 	/* 126 - 5120x2160@60Hz 64:27 */
1378 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1379 		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1380 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1381 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1382 	/* 127 - 5120x2160@100Hz 64:27 */
1383 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1384 		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1385 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1386 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1387 };
1388 
1389 /*
1390  * From CEA/CTA-861 spec.
1391  *
1392  * Do not access directly, instead always use cea_mode_for_vic().
1393  */
1394 static const struct drm_display_mode edid_cea_modes_193[] = {
1395 	/* 193 - 5120x2160@120Hz 64:27 */
1396 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1397 		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1398 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1399 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1400 	/* 194 - 7680x4320@24Hz 16:9 */
1401 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1402 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1403 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1404 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1405 	/* 195 - 7680x4320@25Hz 16:9 */
1406 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1407 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1408 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1409 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1410 	/* 196 - 7680x4320@30Hz 16:9 */
1411 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1412 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1413 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1414 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1415 	/* 197 - 7680x4320@48Hz 16:9 */
1416 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1417 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1418 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1419 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1420 	/* 198 - 7680x4320@50Hz 16:9 */
1421 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1422 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1423 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1424 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1425 	/* 199 - 7680x4320@60Hz 16:9 */
1426 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1427 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1428 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1429 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1430 	/* 200 - 7680x4320@100Hz 16:9 */
1431 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1432 		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1433 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1434 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1435 	/* 201 - 7680x4320@120Hz 16:9 */
1436 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1437 		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1438 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1439 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1440 	/* 202 - 7680x4320@24Hz 64:27 */
1441 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1442 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1443 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1444 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1445 	/* 203 - 7680x4320@25Hz 64:27 */
1446 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1447 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1448 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1449 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1450 	/* 204 - 7680x4320@30Hz 64:27 */
1451 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1452 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1453 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1454 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1455 	/* 205 - 7680x4320@48Hz 64:27 */
1456 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1457 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1458 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1459 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1460 	/* 206 - 7680x4320@50Hz 64:27 */
1461 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1462 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1463 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1464 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1465 	/* 207 - 7680x4320@60Hz 64:27 */
1466 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1467 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1468 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1469 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1470 	/* 208 - 7680x4320@100Hz 64:27 */
1471 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1472 		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1473 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1474 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1475 	/* 209 - 7680x4320@120Hz 64:27 */
1476 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1477 		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1478 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1479 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1480 	/* 210 - 10240x4320@24Hz 64:27 */
1481 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1482 		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1483 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1484 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1485 	/* 211 - 10240x4320@25Hz 64:27 */
1486 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1487 		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1488 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1489 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1490 	/* 212 - 10240x4320@30Hz 64:27 */
1491 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1492 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1493 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1494 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1495 	/* 213 - 10240x4320@48Hz 64:27 */
1496 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1497 		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1498 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1499 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1500 	/* 214 - 10240x4320@50Hz 64:27 */
1501 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1502 		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1503 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1504 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1505 	/* 215 - 10240x4320@60Hz 64:27 */
1506 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1507 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1508 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1509 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1510 	/* 216 - 10240x4320@100Hz 64:27 */
1511 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1512 		   12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1513 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1514 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1515 	/* 217 - 10240x4320@120Hz 64:27 */
1516 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1517 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1518 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1519 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1520 	/* 218 - 4096x2160@100Hz 256:135 */
1521 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1522 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1523 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1524 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1525 	/* 219 - 4096x2160@120Hz 256:135 */
1526 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1527 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1528 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1529 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1530 };
1531 
1532 /*
1533  * HDMI 1.4 4k modes. Index using the VIC.
1534  */
1535 static const struct drm_display_mode edid_4k_modes[] = {
1536 	/* 0 - dummy, VICs start at 1 */
1537 	{ },
1538 	/* 1 - 3840x2160@30Hz */
1539 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1540 		   3840, 4016, 4104, 4400, 0,
1541 		   2160, 2168, 2178, 2250, 0,
1542 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1543 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1544 	/* 2 - 3840x2160@25Hz */
1545 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1546 		   3840, 4896, 4984, 5280, 0,
1547 		   2160, 2168, 2178, 2250, 0,
1548 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1549 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1550 	/* 3 - 3840x2160@24Hz */
1551 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1552 		   3840, 5116, 5204, 5500, 0,
1553 		   2160, 2168, 2178, 2250, 0,
1554 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1555 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1556 	/* 4 - 4096x2160@24Hz (SMPTE) */
1557 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1558 		   4096, 5116, 5204, 5500, 0,
1559 		   2160, 2168, 2178, 2250, 0,
1560 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1561 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1562 };
1563 
1564 /*** DDC fetch and block validation ***/
1565 
1566 /*
1567  * The opaque EDID type, internal to drm_edid.c.
1568  */
1569 struct drm_edid {
1570 	/* Size allocated for edid */
1571 	size_t size;
1572 	const struct edid *edid;
1573 };
1574 
1575 static bool version_greater(const struct drm_edid *drm_edid,
1576 			    u8 version, u8 revision)
1577 {
1578 	const struct edid *edid = drm_edid->edid;
1579 
1580 	return edid->version > version ||
1581 		(edid->version == version && edid->revision > revision);
1582 }
1583 
1584 static int edid_extension_block_count(const struct edid *edid)
1585 {
1586 	return edid->extensions;
1587 }
1588 
1589 static int edid_block_count(const struct edid *edid)
1590 {
1591 	return edid_extension_block_count(edid) + 1;
1592 }
1593 
1594 static int edid_size_by_blocks(int num_blocks)
1595 {
1596 	return num_blocks * EDID_LENGTH;
1597 }
1598 
1599 static int edid_size(const struct edid *edid)
1600 {
1601 	return edid_size_by_blocks(edid_block_count(edid));
1602 }
1603 
1604 static const void *edid_block_data(const struct edid *edid, int index)
1605 {
1606 	BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1607 
1608 	return edid + index;
1609 }
1610 
1611 static const void *edid_extension_block_data(const struct edid *edid, int index)
1612 {
1613 	return edid_block_data(edid, index + 1);
1614 }
1615 
1616 static int drm_edid_block_count(const struct drm_edid *drm_edid)
1617 {
1618 	int num_blocks;
1619 
1620 	/* Starting point */
1621 	num_blocks = edid_block_count(drm_edid->edid);
1622 
1623 	/* Limit by allocated size */
1624 	num_blocks = min(num_blocks, (int)drm_edid->size / EDID_LENGTH);
1625 
1626 	return num_blocks;
1627 }
1628 
1629 static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1630 {
1631 	return drm_edid_block_count(drm_edid) - 1;
1632 }
1633 
1634 static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1635 {
1636 	return edid_block_data(drm_edid->edid, index);
1637 }
1638 
1639 static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1640 						 int index)
1641 {
1642 	return edid_extension_block_data(drm_edid->edid, index);
1643 }
1644 
1645 /*
1646  * Initializer helper for legacy interfaces, where we have no choice but to
1647  * trust edid size. Not for general purpose use.
1648  */
1649 static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1650 						   const struct edid *edid)
1651 {
1652 	if (!edid)
1653 		return NULL;
1654 
1655 	memset(drm_edid, 0, sizeof(*drm_edid));
1656 
1657 	drm_edid->edid = edid;
1658 	drm_edid->size = edid_size(edid);
1659 
1660 	return drm_edid;
1661 }
1662 
1663 /*
1664  * EDID base and extension block iterator.
1665  *
1666  * struct drm_edid_iter iter;
1667  * const u8 *block;
1668  *
1669  * drm_edid_iter_begin(drm_edid, &iter);
1670  * drm_edid_iter_for_each(block, &iter) {
1671  *         // do stuff with block
1672  * }
1673  * drm_edid_iter_end(&iter);
1674  */
1675 struct drm_edid_iter {
1676 	const struct drm_edid *drm_edid;
1677 
1678 	/* Current block index. */
1679 	int index;
1680 };
1681 
1682 static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1683 				struct drm_edid_iter *iter)
1684 {
1685 	memset(iter, 0, sizeof(*iter));
1686 
1687 	iter->drm_edid = drm_edid;
1688 }
1689 
1690 static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1691 {
1692 	const void *block = NULL;
1693 
1694 	if (!iter->drm_edid)
1695 		return NULL;
1696 
1697 	if (iter->index < drm_edid_block_count(iter->drm_edid))
1698 		block = drm_edid_block_data(iter->drm_edid, iter->index++);
1699 
1700 	return block;
1701 }
1702 
1703 #define drm_edid_iter_for_each(__block, __iter)			\
1704 	while (((__block) = __drm_edid_iter_next(__iter)))
1705 
1706 static void drm_edid_iter_end(struct drm_edid_iter *iter)
1707 {
1708 	memset(iter, 0, sizeof(*iter));
1709 }
1710 
1711 static const u8 edid_header[] = {
1712 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1713 };
1714 
1715 static void edid_header_fix(void *edid)
1716 {
1717 	memcpy(edid, edid_header, sizeof(edid_header));
1718 }
1719 
1720 /**
1721  * drm_edid_header_is_valid - sanity check the header of the base EDID block
1722  * @_edid: pointer to raw base EDID block
1723  *
1724  * Sanity check the header of the base EDID block.
1725  *
1726  * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1727  */
1728 int drm_edid_header_is_valid(const void *_edid)
1729 {
1730 	const struct edid *edid = _edid;
1731 	int i, score = 0;
1732 
1733 	for (i = 0; i < sizeof(edid_header); i++) {
1734 		if (edid->header[i] == edid_header[i])
1735 			score++;
1736 	}
1737 
1738 	return score;
1739 }
1740 EXPORT_SYMBOL(drm_edid_header_is_valid);
1741 
1742 static int edid_fixup __read_mostly = 6;
1743 module_param_named(edid_fixup, edid_fixup, int, 0400);
1744 MODULE_PARM_DESC(edid_fixup,
1745 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1746 
1747 static int edid_block_compute_checksum(const void *_block)
1748 {
1749 	const u8 *block = _block;
1750 	int i;
1751 	u8 csum = 0, crc = 0;
1752 
1753 	for (i = 0; i < EDID_LENGTH - 1; i++)
1754 		csum += block[i];
1755 
1756 	crc = 0x100 - csum;
1757 
1758 	return crc;
1759 }
1760 
1761 static int edid_block_get_checksum(const void *_block)
1762 {
1763 	const struct edid *block = _block;
1764 
1765 	return block->checksum;
1766 }
1767 
1768 static int edid_block_tag(const void *_block)
1769 {
1770 	const u8 *block = _block;
1771 
1772 	return block[0];
1773 }
1774 
1775 static bool edid_block_is_zero(const void *edid)
1776 {
1777 	return !memchr_inv(edid, 0, EDID_LENGTH);
1778 }
1779 
1780 /**
1781  * drm_edid_are_equal - compare two edid blobs.
1782  * @edid1: pointer to first blob
1783  * @edid2: pointer to second blob
1784  * This helper can be used during probing to determine if
1785  * edid had changed.
1786  */
1787 bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1788 {
1789 	int edid1_len, edid2_len;
1790 	bool edid1_present = edid1 != NULL;
1791 	bool edid2_present = edid2 != NULL;
1792 
1793 	if (edid1_present != edid2_present)
1794 		return false;
1795 
1796 	if (edid1) {
1797 		edid1_len = edid_size(edid1);
1798 		edid2_len = edid_size(edid2);
1799 
1800 		if (edid1_len != edid2_len)
1801 			return false;
1802 
1803 		if (memcmp(edid1, edid2, edid1_len))
1804 			return false;
1805 	}
1806 
1807 	return true;
1808 }
1809 EXPORT_SYMBOL(drm_edid_are_equal);
1810 
1811 enum edid_block_status {
1812 	EDID_BLOCK_OK = 0,
1813 	EDID_BLOCK_READ_FAIL,
1814 	EDID_BLOCK_NULL,
1815 	EDID_BLOCK_ZERO,
1816 	EDID_BLOCK_HEADER_CORRUPT,
1817 	EDID_BLOCK_HEADER_REPAIR,
1818 	EDID_BLOCK_HEADER_FIXED,
1819 	EDID_BLOCK_CHECKSUM,
1820 	EDID_BLOCK_VERSION,
1821 };
1822 
1823 static enum edid_block_status edid_block_check(const void *_block,
1824 					       bool is_base_block)
1825 {
1826 	const struct edid *block = _block;
1827 
1828 	if (!block)
1829 		return EDID_BLOCK_NULL;
1830 
1831 	if (is_base_block) {
1832 		int score = drm_edid_header_is_valid(block);
1833 
1834 		if (score < clamp(edid_fixup, 0, 8)) {
1835 			if (edid_block_is_zero(block))
1836 				return EDID_BLOCK_ZERO;
1837 			else
1838 				return EDID_BLOCK_HEADER_CORRUPT;
1839 		}
1840 
1841 		if (score < 8)
1842 			return EDID_BLOCK_HEADER_REPAIR;
1843 	}
1844 
1845 	if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1846 		if (edid_block_is_zero(block))
1847 			return EDID_BLOCK_ZERO;
1848 		else
1849 			return EDID_BLOCK_CHECKSUM;
1850 	}
1851 
1852 	if (is_base_block) {
1853 		if (block->version != 1)
1854 			return EDID_BLOCK_VERSION;
1855 	}
1856 
1857 	return EDID_BLOCK_OK;
1858 }
1859 
1860 static bool edid_block_status_valid(enum edid_block_status status, int tag)
1861 {
1862 	return status == EDID_BLOCK_OK ||
1863 		status == EDID_BLOCK_HEADER_FIXED ||
1864 		(status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1865 }
1866 
1867 static bool edid_block_valid(const void *block, bool base)
1868 {
1869 	return edid_block_status_valid(edid_block_check(block, base),
1870 				       edid_block_tag(block));
1871 }
1872 
1873 static void edid_block_status_print(enum edid_block_status status,
1874 				    const struct edid *block,
1875 				    int block_num)
1876 {
1877 	switch (status) {
1878 	case EDID_BLOCK_OK:
1879 		break;
1880 	case EDID_BLOCK_READ_FAIL:
1881 		pr_debug("EDID block %d read failed\n", block_num);
1882 		break;
1883 	case EDID_BLOCK_NULL:
1884 		pr_debug("EDID block %d pointer is NULL\n", block_num);
1885 		break;
1886 	case EDID_BLOCK_ZERO:
1887 		pr_notice("EDID block %d is all zeroes\n", block_num);
1888 		break;
1889 	case EDID_BLOCK_HEADER_CORRUPT:
1890 		pr_notice("EDID has corrupt header\n");
1891 		break;
1892 	case EDID_BLOCK_HEADER_REPAIR:
1893 		pr_debug("EDID corrupt header needs repair\n");
1894 		break;
1895 	case EDID_BLOCK_HEADER_FIXED:
1896 		pr_debug("EDID corrupt header fixed\n");
1897 		break;
1898 	case EDID_BLOCK_CHECKSUM:
1899 		if (edid_block_status_valid(status, edid_block_tag(block))) {
1900 			pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1901 				 block_num, edid_block_tag(block),
1902 				 edid_block_compute_checksum(block));
1903 		} else {
1904 			pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1905 				  block_num, edid_block_tag(block),
1906 				  edid_block_compute_checksum(block));
1907 		}
1908 		break;
1909 	case EDID_BLOCK_VERSION:
1910 		pr_notice("EDID has major version %d, instead of 1\n",
1911 			  block->version);
1912 		break;
1913 	default:
1914 		WARN(1, "EDID block %d unknown edid block status code %d\n",
1915 		     block_num, status);
1916 		break;
1917 	}
1918 }
1919 
1920 static void edid_block_dump(const char *level, const void *block, int block_num)
1921 {
1922 	enum edid_block_status status;
1923 	char prefix[20];
1924 
1925 	status = edid_block_check(block, block_num == 0);
1926 	if (status == EDID_BLOCK_ZERO)
1927 		sprintf(prefix, "\t[%02x] ZERO ", block_num);
1928 	else if (!edid_block_status_valid(status, edid_block_tag(block)))
1929 		sprintf(prefix, "\t[%02x] BAD  ", block_num);
1930 	else
1931 		sprintf(prefix, "\t[%02x] GOOD ", block_num);
1932 
1933 	print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1934 		       block, EDID_LENGTH, false);
1935 }
1936 
1937 /**
1938  * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1939  * @_block: pointer to raw EDID block
1940  * @block_num: type of block to validate (0 for base, extension otherwise)
1941  * @print_bad_edid: if true, dump bad EDID blocks to the console
1942  * @edid_corrupt: if true, the header or checksum is invalid
1943  *
1944  * Validate a base or extension EDID block and optionally dump bad blocks to
1945  * the console.
1946  *
1947  * Return: True if the block is valid, false otherwise.
1948  */
1949 bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1950 			  bool *edid_corrupt)
1951 {
1952 	struct edid *block = (struct edid *)_block;
1953 	enum edid_block_status status;
1954 	bool is_base_block = block_num == 0;
1955 	bool valid;
1956 
1957 	if (WARN_ON(!block))
1958 		return false;
1959 
1960 	status = edid_block_check(block, is_base_block);
1961 	if (status == EDID_BLOCK_HEADER_REPAIR) {
1962 		DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1963 		edid_header_fix(block);
1964 
1965 		/* Retry with fixed header, update status if that worked. */
1966 		status = edid_block_check(block, is_base_block);
1967 		if (status == EDID_BLOCK_OK)
1968 			status = EDID_BLOCK_HEADER_FIXED;
1969 	}
1970 
1971 	if (edid_corrupt) {
1972 		/*
1973 		 * Unknown major version isn't corrupt but we can't use it. Only
1974 		 * the base block can reset edid_corrupt to false.
1975 		 */
1976 		if (is_base_block &&
1977 		    (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
1978 			*edid_corrupt = false;
1979 		else if (status != EDID_BLOCK_OK)
1980 			*edid_corrupt = true;
1981 	}
1982 
1983 	edid_block_status_print(status, block, block_num);
1984 
1985 	/* Determine whether we can use this block with this status. */
1986 	valid = edid_block_status_valid(status, edid_block_tag(block));
1987 
1988 	if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
1989 		pr_notice("Raw EDID:\n");
1990 		edid_block_dump(KERN_NOTICE, block, block_num);
1991 	}
1992 
1993 	return valid;
1994 }
1995 EXPORT_SYMBOL(drm_edid_block_valid);
1996 
1997 /**
1998  * drm_edid_is_valid - sanity check EDID data
1999  * @edid: EDID data
2000  *
2001  * Sanity-check an entire EDID record (including extensions)
2002  *
2003  * Return: True if the EDID data is valid, false otherwise.
2004  */
2005 bool drm_edid_is_valid(struct edid *edid)
2006 {
2007 	int i;
2008 
2009 	if (!edid)
2010 		return false;
2011 
2012 	for (i = 0; i < edid_block_count(edid); i++) {
2013 		void *block = (void *)edid_block_data(edid, i);
2014 
2015 		if (!drm_edid_block_valid(block, i, true, NULL))
2016 			return false;
2017 	}
2018 
2019 	return true;
2020 }
2021 EXPORT_SYMBOL(drm_edid_is_valid);
2022 
2023 static struct edid *edid_filter_invalid_blocks(const struct edid *edid,
2024 					       int invalid_blocks,
2025 					       size_t *alloc_size)
2026 {
2027 	struct edid *new, *dest_block;
2028 	int valid_extensions = edid->extensions - invalid_blocks;
2029 	int i;
2030 
2031 	*alloc_size = edid_size_by_blocks(valid_extensions + 1);
2032 
2033 	new = kmalloc(*alloc_size, GFP_KERNEL);
2034 	if (!new)
2035 		goto out;
2036 
2037 	dest_block = new;
2038 	for (i = 0; i < edid_block_count(edid); i++) {
2039 		const void *block = edid_block_data(edid, i);
2040 
2041 		if (edid_block_valid(block, i == 0))
2042 			memcpy(dest_block++, block, EDID_LENGTH);
2043 	}
2044 
2045 	new->extensions = valid_extensions;
2046 	new->checksum = edid_block_compute_checksum(new);
2047 
2048 out:
2049 	kfree(edid);
2050 
2051 	return new;
2052 }
2053 
2054 #define DDC_SEGMENT_ADDR 0x30
2055 /**
2056  * drm_do_probe_ddc_edid() - get EDID information via I2C
2057  * @data: I2C device adapter
2058  * @buf: EDID data buffer to be filled
2059  * @block: 128 byte EDID block to start fetching from
2060  * @len: EDID data buffer length to fetch
2061  *
2062  * Try to fetch EDID information by calling I2C driver functions.
2063  *
2064  * Return: 0 on success or -1 on failure.
2065  */
2066 static int
2067 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2068 {
2069 	struct i2c_adapter *adapter = data;
2070 	unsigned char start = block * EDID_LENGTH;
2071 	unsigned char segment = block >> 1;
2072 	unsigned char xfers = segment ? 3 : 2;
2073 	int ret, retries = 5;
2074 
2075 	/*
2076 	 * The core I2C driver will automatically retry the transfer if the
2077 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
2078 	 * are susceptible to errors under a heavily loaded machine and
2079 	 * generate spurious NAKs and timeouts. Retrying the transfer
2080 	 * of the individual block a few times seems to overcome this.
2081 	 */
2082 	do {
2083 		struct i2c_msg msgs[] = {
2084 			{
2085 				.addr	= DDC_SEGMENT_ADDR,
2086 				.flags	= 0,
2087 				.len	= 1,
2088 				.buf	= &segment,
2089 			}, {
2090 				.addr	= DDC_ADDR,
2091 				.flags	= 0,
2092 				.len	= 1,
2093 				.buf	= &start,
2094 			}, {
2095 				.addr	= DDC_ADDR,
2096 				.flags	= I2C_M_RD,
2097 				.len	= len,
2098 				.buf	= buf,
2099 			}
2100 		};
2101 
2102 		/*
2103 		 * Avoid sending the segment addr to not upset non-compliant
2104 		 * DDC monitors.
2105 		 */
2106 		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2107 
2108 		if (ret == -ENXIO) {
2109 			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2110 					adapter->name);
2111 			break;
2112 		}
2113 	} while (ret != xfers && --retries);
2114 
2115 	return ret == xfers ? 0 : -1;
2116 }
2117 
2118 static void connector_bad_edid(struct drm_connector *connector,
2119 			       const struct edid *edid, int num_blocks)
2120 {
2121 	int i;
2122 	u8 last_block;
2123 
2124 	/*
2125 	 * 0x7e in the EDID is the number of extension blocks. The EDID
2126 	 * is 1 (base block) + num_ext_blocks big. That means we can think
2127 	 * of 0x7e in the EDID of the _index_ of the last block in the
2128 	 * combined chunk of memory.
2129 	 */
2130 	last_block = edid->extensions;
2131 
2132 	/* Calculate real checksum for the last edid extension block data */
2133 	if (last_block < num_blocks)
2134 		connector->real_edid_checksum =
2135 			edid_block_compute_checksum(edid + last_block);
2136 
2137 	if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2138 		return;
2139 
2140 	drm_dbg_kms(connector->dev, "%s: EDID is invalid:\n", connector->name);
2141 	for (i = 0; i < num_blocks; i++)
2142 		edid_block_dump(KERN_DEBUG, edid + i, i);
2143 }
2144 
2145 /* Get override or firmware EDID */
2146 static struct edid *drm_get_override_edid(struct drm_connector *connector,
2147 					  size_t *alloc_size)
2148 {
2149 	struct edid *override = NULL;
2150 
2151 	if (connector->override_edid)
2152 		override = drm_edid_duplicate(connector->edid_blob_ptr->data);
2153 
2154 	if (!override)
2155 		override = drm_load_edid_firmware(connector);
2156 
2157 	/* FIXME: Get alloc size from deeper down the stack */
2158 	if (!IS_ERR_OR_NULL(override) && alloc_size)
2159 		*alloc_size = edid_size(override);
2160 
2161 	return IS_ERR(override) ? NULL : override;
2162 }
2163 
2164 /**
2165  * drm_add_override_edid_modes - add modes from override/firmware EDID
2166  * @connector: connector we're probing
2167  *
2168  * Add modes from the override/firmware EDID, if available. Only to be used from
2169  * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2170  * failed during drm_get_edid() and caused the override/firmware EDID to be
2171  * skipped.
2172  *
2173  * Return: The number of modes added or 0 if we couldn't find any.
2174  */
2175 int drm_add_override_edid_modes(struct drm_connector *connector)
2176 {
2177 	struct edid *override;
2178 	int num_modes = 0;
2179 
2180 	override = drm_get_override_edid(connector, NULL);
2181 	if (override) {
2182 		drm_connector_update_edid_property(connector, override);
2183 		num_modes = drm_add_edid_modes(connector, override);
2184 		kfree(override);
2185 
2186 		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2187 			      connector->base.id, connector->name, num_modes);
2188 	}
2189 
2190 	return num_modes;
2191 }
2192 EXPORT_SYMBOL(drm_add_override_edid_modes);
2193 
2194 typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2195 
2196 static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2197 					      read_block_fn read_block,
2198 					      void *context)
2199 {
2200 	enum edid_block_status status;
2201 	bool is_base_block = block_num == 0;
2202 	int try;
2203 
2204 	for (try = 0; try < 4; try++) {
2205 		if (read_block(context, block, block_num, EDID_LENGTH))
2206 			return EDID_BLOCK_READ_FAIL;
2207 
2208 		status = edid_block_check(block, is_base_block);
2209 		if (status == EDID_BLOCK_HEADER_REPAIR) {
2210 			edid_header_fix(block);
2211 
2212 			/* Retry with fixed header, update status if that worked. */
2213 			status = edid_block_check(block, is_base_block);
2214 			if (status == EDID_BLOCK_OK)
2215 				status = EDID_BLOCK_HEADER_FIXED;
2216 		}
2217 
2218 		if (edid_block_status_valid(status, edid_block_tag(block)))
2219 			break;
2220 
2221 		/* Fail early for unrepairable base block all zeros. */
2222 		if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2223 			break;
2224 	}
2225 
2226 	return status;
2227 }
2228 
2229 static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2230 				     read_block_fn read_block, void *context,
2231 				     size_t *size)
2232 {
2233 	enum edid_block_status status;
2234 	int i, invalid_blocks = 0;
2235 	struct edid *edid, *new;
2236 	size_t alloc_size = EDID_LENGTH;
2237 
2238 	edid = drm_get_override_edid(connector, &alloc_size);
2239 	if (edid)
2240 		goto ok;
2241 
2242 	edid = kmalloc(alloc_size, GFP_KERNEL);
2243 	if (!edid)
2244 		return NULL;
2245 
2246 	status = edid_block_read(edid, 0, read_block, context);
2247 
2248 	edid_block_status_print(status, edid, 0);
2249 
2250 	if (status == EDID_BLOCK_READ_FAIL)
2251 		goto fail;
2252 
2253 	/* FIXME: Clarify what a corrupt EDID actually means. */
2254 	if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2255 		connector->edid_corrupt = false;
2256 	else
2257 		connector->edid_corrupt = true;
2258 
2259 	if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2260 		if (status == EDID_BLOCK_ZERO)
2261 			connector->null_edid_counter++;
2262 
2263 		connector_bad_edid(connector, edid, 1);
2264 		goto fail;
2265 	}
2266 
2267 	if (!edid_extension_block_count(edid))
2268 		goto ok;
2269 
2270 	alloc_size = edid_size(edid);
2271 	new = krealloc(edid, alloc_size, GFP_KERNEL);
2272 	if (!new)
2273 		goto fail;
2274 	edid = new;
2275 
2276 	for (i = 1; i < edid_block_count(edid); i++) {
2277 		void *block = (void *)edid_block_data(edid, i);
2278 
2279 		status = edid_block_read(block, i, read_block, context);
2280 
2281 		edid_block_status_print(status, block, i);
2282 
2283 		if (!edid_block_status_valid(status, edid_block_tag(block))) {
2284 			if (status == EDID_BLOCK_READ_FAIL)
2285 				goto fail;
2286 			invalid_blocks++;
2287 		}
2288 	}
2289 
2290 	if (invalid_blocks) {
2291 		connector_bad_edid(connector, edid, edid_block_count(edid));
2292 
2293 		edid = edid_filter_invalid_blocks(edid, invalid_blocks,
2294 						  &alloc_size);
2295 	}
2296 
2297 ok:
2298 	if (size)
2299 		*size = alloc_size;
2300 
2301 	return edid;
2302 
2303 fail:
2304 	kfree(edid);
2305 	return NULL;
2306 }
2307 
2308 /**
2309  * drm_do_get_edid - get EDID data using a custom EDID block read function
2310  * @connector: connector we're probing
2311  * @read_block: EDID block read function
2312  * @context: private data passed to the block read function
2313  *
2314  * When the I2C adapter connected to the DDC bus is hidden behind a device that
2315  * exposes a different interface to read EDID blocks this function can be used
2316  * to get EDID data using a custom block read function.
2317  *
2318  * As in the general case the DDC bus is accessible by the kernel at the I2C
2319  * level, drivers must make all reasonable efforts to expose it as an I2C
2320  * adapter and use drm_get_edid() instead of abusing this function.
2321  *
2322  * The EDID may be overridden using debugfs override_edid or firmware EDID
2323  * (drm_load_edid_firmware() and drm.edid_firmware parameter), in this priority
2324  * order. Having either of them bypasses actual EDID reads.
2325  *
2326  * Return: Pointer to valid EDID or NULL if we couldn't find any.
2327  */
2328 struct edid *drm_do_get_edid(struct drm_connector *connector,
2329 			     read_block_fn read_block,
2330 			     void *context)
2331 {
2332 	return _drm_do_get_edid(connector, read_block, context, NULL);
2333 }
2334 EXPORT_SYMBOL_GPL(drm_do_get_edid);
2335 
2336 /* Allocate struct drm_edid container *without* duplicating the edid data */
2337 static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2338 {
2339 	struct drm_edid *drm_edid;
2340 
2341 	if (!edid || !size || size < EDID_LENGTH)
2342 		return NULL;
2343 
2344 	drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2345 	if (drm_edid) {
2346 		drm_edid->edid = edid;
2347 		drm_edid->size = size;
2348 	}
2349 
2350 	return drm_edid;
2351 }
2352 
2353 /**
2354  * drm_edid_alloc - Allocate a new drm_edid container
2355  * @edid: Pointer to raw EDID data
2356  * @size: Size of memory allocated for EDID
2357  *
2358  * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2359  * the actual size that has been allocated for the data. There is no validation
2360  * of the raw EDID data against the size, but at least the EDID base block must
2361  * fit in the buffer.
2362  *
2363  * The returned pointer must be freed using drm_edid_free().
2364  *
2365  * Return: drm_edid container, or NULL on errors
2366  */
2367 const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2368 {
2369 	const struct drm_edid *drm_edid;
2370 
2371 	if (!edid || !size || size < EDID_LENGTH)
2372 		return NULL;
2373 
2374 	edid = kmemdup(edid, size, GFP_KERNEL);
2375 	if (!edid)
2376 		return NULL;
2377 
2378 	drm_edid = _drm_edid_alloc(edid, size);
2379 	if (!drm_edid)
2380 		kfree(edid);
2381 
2382 	return drm_edid;
2383 }
2384 EXPORT_SYMBOL(drm_edid_alloc);
2385 
2386 /**
2387  * drm_edid_dup - Duplicate a drm_edid container
2388  * @drm_edid: EDID to duplicate
2389  *
2390  * The returned pointer must be freed using drm_edid_free().
2391  *
2392  * Returns: drm_edid container copy, or NULL on errors
2393  */
2394 const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2395 {
2396 	if (!drm_edid)
2397 		return NULL;
2398 
2399 	return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2400 }
2401 EXPORT_SYMBOL(drm_edid_dup);
2402 
2403 /**
2404  * drm_edid_free - Free the drm_edid container
2405  * @drm_edid: EDID to free
2406  */
2407 void drm_edid_free(const struct drm_edid *drm_edid)
2408 {
2409 	if (!drm_edid)
2410 		return;
2411 
2412 	kfree(drm_edid->edid);
2413 	kfree(drm_edid);
2414 }
2415 EXPORT_SYMBOL(drm_edid_free);
2416 
2417 /**
2418  * drm_probe_ddc() - probe DDC presence
2419  * @adapter: I2C adapter to probe
2420  *
2421  * Return: True on success, false on failure.
2422  */
2423 bool
2424 drm_probe_ddc(struct i2c_adapter *adapter)
2425 {
2426 	unsigned char out;
2427 
2428 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2429 }
2430 EXPORT_SYMBOL(drm_probe_ddc);
2431 
2432 /**
2433  * drm_get_edid - get EDID data, if available
2434  * @connector: connector we're probing
2435  * @adapter: I2C adapter to use for DDC
2436  *
2437  * Poke the given I2C channel to grab EDID data if possible.  If found,
2438  * attach it to the connector.
2439  *
2440  * Return: Pointer to valid EDID or NULL if we couldn't find any.
2441  */
2442 struct edid *drm_get_edid(struct drm_connector *connector,
2443 			  struct i2c_adapter *adapter)
2444 {
2445 	struct edid *edid;
2446 
2447 	if (connector->force == DRM_FORCE_OFF)
2448 		return NULL;
2449 
2450 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2451 		return NULL;
2452 
2453 	edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2454 	drm_connector_update_edid_property(connector, edid);
2455 	return edid;
2456 }
2457 EXPORT_SYMBOL(drm_get_edid);
2458 
2459 /**
2460  * drm_edid_read_custom - Read EDID data using given EDID block read function
2461  * @connector: Connector to use
2462  * @read_block: EDID block read function
2463  * @context: Private data passed to the block read function
2464  *
2465  * When the I2C adapter connected to the DDC bus is hidden behind a device that
2466  * exposes a different interface to read EDID blocks this function can be used
2467  * to get EDID data using a custom block read function.
2468  *
2469  * As in the general case the DDC bus is accessible by the kernel at the I2C
2470  * level, drivers must make all reasonable efforts to expose it as an I2C
2471  * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2472  * this function.
2473  *
2474  * The EDID may be overridden using debugfs override_edid or firmware EDID
2475  * (drm_load_edid_firmware() and drm.edid_firmware parameter), in this priority
2476  * order. Having either of them bypasses actual EDID reads.
2477  *
2478  * The returned pointer must be freed using drm_edid_free().
2479  *
2480  * Return: Pointer to EDID, or NULL if probe/read failed.
2481  */
2482 const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2483 					    read_block_fn read_block,
2484 					    void *context)
2485 {
2486 	const struct drm_edid *drm_edid;
2487 	struct edid *edid;
2488 	size_t size = 0;
2489 
2490 	edid = _drm_do_get_edid(connector, read_block, context, &size);
2491 	if (!edid)
2492 		return NULL;
2493 
2494 	/* Sanity check for now */
2495 	drm_WARN_ON(connector->dev, !size);
2496 
2497 	drm_edid = _drm_edid_alloc(edid, size);
2498 	if (!drm_edid)
2499 		kfree(edid);
2500 
2501 	return drm_edid;
2502 }
2503 EXPORT_SYMBOL(drm_edid_read_custom);
2504 
2505 /**
2506  * drm_edid_read_ddc - Read EDID data using given I2C adapter
2507  * @connector: Connector to use
2508  * @adapter: I2C adapter to use for DDC
2509  *
2510  * Read EDID using the given I2C adapter.
2511  *
2512  * The EDID may be overridden using debugfs override_edid or firmware EDID
2513  * (drm_load_edid_firmware() and drm.edid_firmware parameter), in this priority
2514  * order. Having either of them bypasses actual EDID reads.
2515  *
2516  * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2517  * using drm_edid_read() instead of this function.
2518  *
2519  * The returned pointer must be freed using drm_edid_free().
2520  *
2521  * Return: Pointer to EDID, or NULL if probe/read failed.
2522  */
2523 const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2524 					 struct i2c_adapter *adapter)
2525 {
2526 	const struct drm_edid *drm_edid;
2527 
2528 	if (connector->force == DRM_FORCE_OFF)
2529 		return NULL;
2530 
2531 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2532 		return NULL;
2533 
2534 	drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2535 
2536 	/* Note: Do *not* call connector updates here. */
2537 
2538 	return drm_edid;
2539 }
2540 EXPORT_SYMBOL(drm_edid_read_ddc);
2541 
2542 /**
2543  * drm_edid_read - Read EDID data using connector's I2C adapter
2544  * @connector: Connector to use
2545  *
2546  * Read EDID using the connector's I2C adapter.
2547  *
2548  * The EDID may be overridden using debugfs override_edid or firmware EDID
2549  * (drm_load_edid_firmware() and drm.edid_firmware parameter), in this priority
2550  * order. Having either of them bypasses actual EDID reads.
2551  *
2552  * The returned pointer must be freed using drm_edid_free().
2553  *
2554  * Return: Pointer to EDID, or NULL if probe/read failed.
2555  */
2556 const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2557 {
2558 	if (drm_WARN_ON(connector->dev, !connector->ddc))
2559 		return NULL;
2560 
2561 	return drm_edid_read_ddc(connector, connector->ddc);
2562 }
2563 EXPORT_SYMBOL(drm_edid_read);
2564 
2565 static u32 edid_extract_panel_id(const struct edid *edid)
2566 {
2567 	/*
2568 	 * We represent the ID as a 32-bit number so it can easily be compared
2569 	 * with "==".
2570 	 *
2571 	 * NOTE that we deal with endianness differently for the top half
2572 	 * of this ID than for the bottom half. The bottom half (the product
2573 	 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2574 	 * that's how everyone seems to interpret it. The top half (the mfg_id)
2575 	 * gets stored as big endian because that makes
2576 	 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2577 	 * to write (it's easier to extract the ASCII). It doesn't really
2578 	 * matter, though, as long as the number here is unique.
2579 	 */
2580 	return (u32)edid->mfg_id[0] << 24   |
2581 	       (u32)edid->mfg_id[1] << 16   |
2582 	       (u32)EDID_PRODUCT_ID(edid);
2583 }
2584 
2585 /**
2586  * drm_edid_get_panel_id - Get a panel's ID through DDC
2587  * @adapter: I2C adapter to use for DDC
2588  *
2589  * This function reads the first block of the EDID of a panel and (assuming
2590  * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2591  * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2592  * supposed to be different for each different modem of panel.
2593  *
2594  * This function is intended to be used during early probing on devices where
2595  * more than one panel might be present. Because of its intended use it must
2596  * assume that the EDID of the panel is correct, at least as far as the ID
2597  * is concerned (in other words, we don't process any overrides here).
2598  *
2599  * NOTE: it's expected that this function and drm_do_get_edid() will both
2600  * be read the EDID, but there is no caching between them. Since we're only
2601  * reading the first block, hopefully this extra overhead won't be too big.
2602  *
2603  * Return: A 32-bit ID that should be different for each make/model of panel.
2604  *         See the functions drm_edid_encode_panel_id() and
2605  *         drm_edid_decode_panel_id() for some details on the structure of this
2606  *         ID.
2607  */
2608 
2609 u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2610 {
2611 	enum edid_block_status status;
2612 	void *base_block;
2613 	u32 panel_id = 0;
2614 
2615 	/*
2616 	 * There are no manufacturer IDs of 0, so if there is a problem reading
2617 	 * the EDID then we'll just return 0.
2618 	 */
2619 
2620 	base_block = kmalloc(EDID_LENGTH, GFP_KERNEL);
2621 	if (!base_block)
2622 		return 0;
2623 
2624 	status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2625 
2626 	edid_block_status_print(status, base_block, 0);
2627 
2628 	if (edid_block_status_valid(status, edid_block_tag(base_block)))
2629 		panel_id = edid_extract_panel_id(base_block);
2630 
2631 	kfree(base_block);
2632 
2633 	return panel_id;
2634 }
2635 EXPORT_SYMBOL(drm_edid_get_panel_id);
2636 
2637 /**
2638  * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2639  * @connector: connector we're probing
2640  * @adapter: I2C adapter to use for DDC
2641  *
2642  * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2643  * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2644  * switch DDC to the GPU which is retrieving EDID.
2645  *
2646  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2647  */
2648 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2649 				     struct i2c_adapter *adapter)
2650 {
2651 	struct drm_device *dev = connector->dev;
2652 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2653 	struct edid *edid;
2654 
2655 	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2656 		return NULL;
2657 
2658 	vga_switcheroo_lock_ddc(pdev);
2659 	edid = drm_get_edid(connector, adapter);
2660 	vga_switcheroo_unlock_ddc(pdev);
2661 
2662 	return edid;
2663 }
2664 EXPORT_SYMBOL(drm_get_edid_switcheroo);
2665 
2666 /**
2667  * drm_edid_duplicate - duplicate an EDID and the extensions
2668  * @edid: EDID to duplicate
2669  *
2670  * Return: Pointer to duplicated EDID or NULL on allocation failure.
2671  */
2672 struct edid *drm_edid_duplicate(const struct edid *edid)
2673 {
2674 	return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2675 }
2676 EXPORT_SYMBOL(drm_edid_duplicate);
2677 
2678 /*** EDID parsing ***/
2679 
2680 /**
2681  * edid_get_quirks - return quirk flags for a given EDID
2682  * @drm_edid: EDID to process
2683  *
2684  * This tells subsequent routines what fixes they need to apply.
2685  */
2686 static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2687 {
2688 	u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2689 	const struct edid_quirk *quirk;
2690 	int i;
2691 
2692 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2693 		quirk = &edid_quirk_list[i];
2694 		if (quirk->panel_id == panel_id)
2695 			return quirk->quirks;
2696 	}
2697 
2698 	return 0;
2699 }
2700 
2701 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2702 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2703 
2704 /*
2705  * Walk the mode list for connector, clearing the preferred status on existing
2706  * modes and setting it anew for the right mode ala quirks.
2707  */
2708 static void edid_fixup_preferred(struct drm_connector *connector,
2709 				 u32 quirks)
2710 {
2711 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
2712 	int target_refresh = 0;
2713 	int cur_vrefresh, preferred_vrefresh;
2714 
2715 	if (list_empty(&connector->probed_modes))
2716 		return;
2717 
2718 	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
2719 		target_refresh = 60;
2720 	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
2721 		target_refresh = 75;
2722 
2723 	preferred_mode = list_first_entry(&connector->probed_modes,
2724 					  struct drm_display_mode, head);
2725 
2726 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2727 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2728 
2729 		if (cur_mode == preferred_mode)
2730 			continue;
2731 
2732 		/* Largest mode is preferred */
2733 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2734 			preferred_mode = cur_mode;
2735 
2736 		cur_vrefresh = drm_mode_vrefresh(cur_mode);
2737 		preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2738 		/* At a given size, try to get closest to target refresh */
2739 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2740 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2741 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2742 			preferred_mode = cur_mode;
2743 		}
2744 	}
2745 
2746 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2747 }
2748 
2749 static bool
2750 mode_is_rb(const struct drm_display_mode *mode)
2751 {
2752 	return (mode->htotal - mode->hdisplay == 160) &&
2753 	       (mode->hsync_end - mode->hdisplay == 80) &&
2754 	       (mode->hsync_end - mode->hsync_start == 32) &&
2755 	       (mode->vsync_start - mode->vdisplay == 3);
2756 }
2757 
2758 /*
2759  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2760  * @dev: Device to duplicate against
2761  * @hsize: Mode width
2762  * @vsize: Mode height
2763  * @fresh: Mode refresh rate
2764  * @rb: Mode reduced-blanking-ness
2765  *
2766  * Walk the DMT mode list looking for a match for the given parameters.
2767  *
2768  * Return: A newly allocated copy of the mode, or NULL if not found.
2769  */
2770 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2771 					   int hsize, int vsize, int fresh,
2772 					   bool rb)
2773 {
2774 	int i;
2775 
2776 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2777 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2778 
2779 		if (hsize != ptr->hdisplay)
2780 			continue;
2781 		if (vsize != ptr->vdisplay)
2782 			continue;
2783 		if (fresh != drm_mode_vrefresh(ptr))
2784 			continue;
2785 		if (rb != mode_is_rb(ptr))
2786 			continue;
2787 
2788 		return drm_mode_duplicate(dev, ptr);
2789 	}
2790 
2791 	return NULL;
2792 }
2793 EXPORT_SYMBOL(drm_mode_find_dmt);
2794 
2795 static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
2796 {
2797 	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
2798 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
2799 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
2800 
2801 	return descriptor->pixel_clock == 0 &&
2802 		descriptor->data.other_data.pad1 == 0 &&
2803 		descriptor->data.other_data.type == type;
2804 }
2805 
2806 static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
2807 {
2808 	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
2809 
2810 	return descriptor->pixel_clock != 0;
2811 }
2812 
2813 typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
2814 
2815 static void
2816 cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
2817 {
2818 	int i, n;
2819 	u8 d = ext[0x02];
2820 	const u8 *det_base = ext + d;
2821 
2822 	if (d < 4 || d > 127)
2823 		return;
2824 
2825 	n = (127 - d) / 18;
2826 	for (i = 0; i < n; i++)
2827 		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
2828 }
2829 
2830 static void
2831 vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
2832 {
2833 	unsigned int i, n = min((int)ext[0x02], 6);
2834 	const u8 *det_base = ext + 5;
2835 
2836 	if (ext[0x01] != 1)
2837 		return; /* unknown version */
2838 
2839 	for (i = 0; i < n; i++)
2840 		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
2841 }
2842 
2843 static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
2844 					detailed_cb *cb, void *closure)
2845 {
2846 	struct drm_edid_iter edid_iter;
2847 	const u8 *ext;
2848 	int i;
2849 
2850 	if (!drm_edid)
2851 		return;
2852 
2853 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
2854 		cb(&drm_edid->edid->detailed_timings[i], closure);
2855 
2856 	drm_edid_iter_begin(drm_edid, &edid_iter);
2857 	drm_edid_iter_for_each(ext, &edid_iter) {
2858 		switch (*ext) {
2859 		case CEA_EXT:
2860 			cea_for_each_detailed_block(ext, cb, closure);
2861 			break;
2862 		case VTB_EXT:
2863 			vtb_for_each_detailed_block(ext, cb, closure);
2864 			break;
2865 		default:
2866 			break;
2867 		}
2868 	}
2869 	drm_edid_iter_end(&edid_iter);
2870 }
2871 
2872 static void
2873 is_rb(const struct detailed_timing *descriptor, void *data)
2874 {
2875 	bool *res = data;
2876 
2877 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
2878 		return;
2879 
2880 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
2881 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
2882 
2883 	if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
2884 	    descriptor->data.other_data.data.range.formula.cvt.flags & 0x10)
2885 		*res = true;
2886 }
2887 
2888 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
2889 static bool
2890 drm_monitor_supports_rb(const struct drm_edid *drm_edid)
2891 {
2892 	if (drm_edid->edid->revision >= 4) {
2893 		bool ret = false;
2894 
2895 		drm_for_each_detailed_block(drm_edid, is_rb, &ret);
2896 		return ret;
2897 	}
2898 
2899 	return ((drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
2900 }
2901 
2902 static void
2903 find_gtf2(const struct detailed_timing *descriptor, void *data)
2904 {
2905 	const struct detailed_timing **res = data;
2906 
2907 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
2908 		return;
2909 
2910 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
2911 
2912 	if (descriptor->data.other_data.data.range.flags == 0x02)
2913 		*res = descriptor;
2914 }
2915 
2916 /* Secondary GTF curve kicks in above some break frequency */
2917 static int
2918 drm_gtf2_hbreak(const struct drm_edid *drm_edid)
2919 {
2920 	const struct detailed_timing *descriptor = NULL;
2921 
2922 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
2923 
2924 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
2925 
2926 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
2927 }
2928 
2929 static int
2930 drm_gtf2_2c(const struct drm_edid *drm_edid)
2931 {
2932 	const struct detailed_timing *descriptor = NULL;
2933 
2934 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
2935 
2936 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
2937 
2938 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
2939 }
2940 
2941 static int
2942 drm_gtf2_m(const struct drm_edid *drm_edid)
2943 {
2944 	const struct detailed_timing *descriptor = NULL;
2945 
2946 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
2947 
2948 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
2949 
2950 	return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
2951 }
2952 
2953 static int
2954 drm_gtf2_k(const struct drm_edid *drm_edid)
2955 {
2956 	const struct detailed_timing *descriptor = NULL;
2957 
2958 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
2959 
2960 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
2961 
2962 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
2963 }
2964 
2965 static int
2966 drm_gtf2_2j(const struct drm_edid *drm_edid)
2967 {
2968 	const struct detailed_timing *descriptor = NULL;
2969 
2970 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
2971 
2972 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
2973 
2974 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
2975 }
2976 
2977 /* Get standard timing level (CVT/GTF/DMT). */
2978 static int standard_timing_level(const struct drm_edid *drm_edid)
2979 {
2980 	const struct edid *edid = drm_edid->edid;
2981 
2982 	if (edid->revision >= 2) {
2983 		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
2984 			return LEVEL_CVT;
2985 		if (drm_gtf2_hbreak(drm_edid))
2986 			return LEVEL_GTF2;
2987 		if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
2988 			return LEVEL_GTF;
2989 	}
2990 	return LEVEL_DMT;
2991 }
2992 
2993 /*
2994  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
2995  * monitors fill with ascii space (0x20) instead.
2996  */
2997 static int
2998 bad_std_timing(u8 a, u8 b)
2999 {
3000 	return (a == 0x00 && b == 0x00) ||
3001 	       (a == 0x01 && b == 0x01) ||
3002 	       (a == 0x20 && b == 0x20);
3003 }
3004 
3005 static int drm_mode_hsync(const struct drm_display_mode *mode)
3006 {
3007 	if (mode->htotal <= 0)
3008 		return 0;
3009 
3010 	return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3011 }
3012 
3013 /*
3014  * Take the standard timing params (in this case width, aspect, and refresh)
3015  * and convert them into a real mode using CVT/GTF/DMT.
3016  */
3017 static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3018 					     const struct drm_edid *drm_edid,
3019 					     const struct std_timing *t)
3020 {
3021 	struct drm_device *dev = connector->dev;
3022 	struct drm_display_mode *m, *mode = NULL;
3023 	int hsize, vsize;
3024 	int vrefresh_rate;
3025 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3026 		>> EDID_TIMING_ASPECT_SHIFT;
3027 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3028 		>> EDID_TIMING_VFREQ_SHIFT;
3029 	int timing_level = standard_timing_level(drm_edid);
3030 
3031 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
3032 		return NULL;
3033 
3034 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3035 	hsize = t->hsize * 8 + 248;
3036 	/* vrefresh_rate = vfreq + 60 */
3037 	vrefresh_rate = vfreq + 60;
3038 	/* the vdisplay is calculated based on the aspect ratio */
3039 	if (aspect_ratio == 0) {
3040 		if (drm_edid->edid->revision < 3)
3041 			vsize = hsize;
3042 		else
3043 			vsize = (hsize * 10) / 16;
3044 	} else if (aspect_ratio == 1)
3045 		vsize = (hsize * 3) / 4;
3046 	else if (aspect_ratio == 2)
3047 		vsize = (hsize * 4) / 5;
3048 	else
3049 		vsize = (hsize * 9) / 16;
3050 
3051 	/* HDTV hack, part 1 */
3052 	if (vrefresh_rate == 60 &&
3053 	    ((hsize == 1360 && vsize == 765) ||
3054 	     (hsize == 1368 && vsize == 769))) {
3055 		hsize = 1366;
3056 		vsize = 768;
3057 	}
3058 
3059 	/*
3060 	 * If this connector already has a mode for this size and refresh
3061 	 * rate (because it came from detailed or CVT info), use that
3062 	 * instead.  This way we don't have to guess at interlace or
3063 	 * reduced blanking.
3064 	 */
3065 	list_for_each_entry(m, &connector->probed_modes, head)
3066 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
3067 		    drm_mode_vrefresh(m) == vrefresh_rate)
3068 			return NULL;
3069 
3070 	/* HDTV hack, part 2 */
3071 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3072 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3073 				    false);
3074 		if (!mode)
3075 			return NULL;
3076 		mode->hdisplay = 1366;
3077 		mode->hsync_start = mode->hsync_start - 1;
3078 		mode->hsync_end = mode->hsync_end - 1;
3079 		return mode;
3080 	}
3081 
3082 	/* check whether it can be found in default mode table */
3083 	if (drm_monitor_supports_rb(drm_edid)) {
3084 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3085 					 true);
3086 		if (mode)
3087 			return mode;
3088 	}
3089 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3090 	if (mode)
3091 		return mode;
3092 
3093 	/* okay, generate it */
3094 	switch (timing_level) {
3095 	case LEVEL_DMT:
3096 		break;
3097 	case LEVEL_GTF:
3098 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3099 		break;
3100 	case LEVEL_GTF2:
3101 		/*
3102 		 * This is potentially wrong if there's ever a monitor with
3103 		 * more than one ranges section, each claiming a different
3104 		 * secondary GTF curve.  Please don't do that.
3105 		 */
3106 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3107 		if (!mode)
3108 			return NULL;
3109 		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3110 			drm_mode_destroy(dev, mode);
3111 			mode = drm_gtf_mode_complex(dev, hsize, vsize,
3112 						    vrefresh_rate, 0, 0,
3113 						    drm_gtf2_m(drm_edid),
3114 						    drm_gtf2_2c(drm_edid),
3115 						    drm_gtf2_k(drm_edid),
3116 						    drm_gtf2_2j(drm_edid));
3117 		}
3118 		break;
3119 	case LEVEL_CVT:
3120 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3121 				    false);
3122 		break;
3123 	}
3124 	return mode;
3125 }
3126 
3127 /*
3128  * EDID is delightfully ambiguous about how interlaced modes are to be
3129  * encoded.  Our internal representation is of frame height, but some
3130  * HDTV detailed timings are encoded as field height.
3131  *
3132  * The format list here is from CEA, in frame size.  Technically we
3133  * should be checking refresh rate too.  Whatever.
3134  */
3135 static void
3136 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3137 			    const struct detailed_pixel_timing *pt)
3138 {
3139 	int i;
3140 	static const struct {
3141 		int w, h;
3142 	} cea_interlaced[] = {
3143 		{ 1920, 1080 },
3144 		{  720,  480 },
3145 		{ 1440,  480 },
3146 		{ 2880,  480 },
3147 		{  720,  576 },
3148 		{ 1440,  576 },
3149 		{ 2880,  576 },
3150 	};
3151 
3152 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3153 		return;
3154 
3155 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3156 		if ((mode->hdisplay == cea_interlaced[i].w) &&
3157 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3158 			mode->vdisplay *= 2;
3159 			mode->vsync_start *= 2;
3160 			mode->vsync_end *= 2;
3161 			mode->vtotal *= 2;
3162 			mode->vtotal |= 1;
3163 		}
3164 	}
3165 
3166 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3167 }
3168 
3169 /*
3170  * Create a new mode from an EDID detailed timing section. An EDID detailed
3171  * timing block contains enough info for us to create and return a new struct
3172  * drm_display_mode.
3173  */
3174 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
3175 						  const struct drm_edid *drm_edid,
3176 						  const struct detailed_timing *timing,
3177 						  u32 quirks)
3178 {
3179 	struct drm_display_mode *mode;
3180 	const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3181 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3182 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3183 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3184 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3185 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3186 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3187 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3188 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3189 
3190 	/* ignore tiny modes */
3191 	if (hactive < 64 || vactive < 64)
3192 		return NULL;
3193 
3194 	if (pt->misc & DRM_EDID_PT_STEREO) {
3195 		DRM_DEBUG_KMS("stereo mode not supported\n");
3196 		return NULL;
3197 	}
3198 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3199 		DRM_DEBUG_KMS("composite sync not supported\n");
3200 	}
3201 
3202 	/* it is incorrect if hsync/vsync width is zero */
3203 	if (!hsync_pulse_width || !vsync_pulse_width) {
3204 		DRM_DEBUG_KMS("Incorrect Detailed timing. "
3205 				"Wrong Hsync/Vsync pulse width\n");
3206 		return NULL;
3207 	}
3208 
3209 	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3210 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3211 		if (!mode)
3212 			return NULL;
3213 
3214 		goto set_size;
3215 	}
3216 
3217 	mode = drm_mode_create(dev);
3218 	if (!mode)
3219 		return NULL;
3220 
3221 	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3222 		mode->clock = 1088 * 10;
3223 	else
3224 		mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3225 
3226 	mode->hdisplay = hactive;
3227 	mode->hsync_start = mode->hdisplay + hsync_offset;
3228 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3229 	mode->htotal = mode->hdisplay + hblank;
3230 
3231 	mode->vdisplay = vactive;
3232 	mode->vsync_start = mode->vdisplay + vsync_offset;
3233 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3234 	mode->vtotal = mode->vdisplay + vblank;
3235 
3236 	/* Some EDIDs have bogus h/vtotal values */
3237 	if (mode->hsync_end > mode->htotal)
3238 		mode->htotal = mode->hsync_end + 1;
3239 	if (mode->vsync_end > mode->vtotal)
3240 		mode->vtotal = mode->vsync_end + 1;
3241 
3242 	drm_mode_do_interlace_quirk(mode, pt);
3243 
3244 	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3245 		mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3246 	} else {
3247 		mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3248 			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3249 		mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3250 			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3251 	}
3252 
3253 set_size:
3254 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3255 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3256 
3257 	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
3258 		mode->width_mm *= 10;
3259 		mode->height_mm *= 10;
3260 	}
3261 
3262 	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3263 		mode->width_mm = drm_edid->edid->width_cm * 10;
3264 		mode->height_mm = drm_edid->edid->height_cm * 10;
3265 	}
3266 
3267 	mode->type = DRM_MODE_TYPE_DRIVER;
3268 	drm_mode_set_name(mode);
3269 
3270 	return mode;
3271 }
3272 
3273 static bool
3274 mode_in_hsync_range(const struct drm_display_mode *mode,
3275 		    const struct edid *edid, const u8 *t)
3276 {
3277 	int hsync, hmin, hmax;
3278 
3279 	hmin = t[7];
3280 	if (edid->revision >= 4)
3281 	    hmin += ((t[4] & 0x04) ? 255 : 0);
3282 	hmax = t[8];
3283 	if (edid->revision >= 4)
3284 	    hmax += ((t[4] & 0x08) ? 255 : 0);
3285 	hsync = drm_mode_hsync(mode);
3286 
3287 	return (hsync <= hmax && hsync >= hmin);
3288 }
3289 
3290 static bool
3291 mode_in_vsync_range(const struct drm_display_mode *mode,
3292 		    const struct edid *edid, const u8 *t)
3293 {
3294 	int vsync, vmin, vmax;
3295 
3296 	vmin = t[5];
3297 	if (edid->revision >= 4)
3298 	    vmin += ((t[4] & 0x01) ? 255 : 0);
3299 	vmax = t[6];
3300 	if (edid->revision >= 4)
3301 	    vmax += ((t[4] & 0x02) ? 255 : 0);
3302 	vsync = drm_mode_vrefresh(mode);
3303 
3304 	return (vsync <= vmax && vsync >= vmin);
3305 }
3306 
3307 static u32
3308 range_pixel_clock(const struct edid *edid, const u8 *t)
3309 {
3310 	/* unspecified */
3311 	if (t[9] == 0 || t[9] == 255)
3312 		return 0;
3313 
3314 	/* 1.4 with CVT support gives us real precision, yay */
3315 	if (edid->revision >= 4 && t[10] == 0x04)
3316 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
3317 
3318 	/* 1.3 is pathetic, so fuzz up a bit */
3319 	return t[9] * 10000 + 5001;
3320 }
3321 
3322 static bool mode_in_range(const struct drm_display_mode *mode,
3323 			  const struct drm_edid *drm_edid,
3324 			  const struct detailed_timing *timing)
3325 {
3326 	const struct edid *edid = drm_edid->edid;
3327 	u32 max_clock;
3328 	const u8 *t = (const u8 *)timing;
3329 
3330 	if (!mode_in_hsync_range(mode, edid, t))
3331 		return false;
3332 
3333 	if (!mode_in_vsync_range(mode, edid, t))
3334 		return false;
3335 
3336 	if ((max_clock = range_pixel_clock(edid, t)))
3337 		if (mode->clock > max_clock)
3338 			return false;
3339 
3340 	/* 1.4 max horizontal check */
3341 	if (edid->revision >= 4 && t[10] == 0x04)
3342 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3343 			return false;
3344 
3345 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3346 		return false;
3347 
3348 	return true;
3349 }
3350 
3351 static bool valid_inferred_mode(const struct drm_connector *connector,
3352 				const struct drm_display_mode *mode)
3353 {
3354 	const struct drm_display_mode *m;
3355 	bool ok = false;
3356 
3357 	list_for_each_entry(m, &connector->probed_modes, head) {
3358 		if (mode->hdisplay == m->hdisplay &&
3359 		    mode->vdisplay == m->vdisplay &&
3360 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3361 			return false; /* duplicated */
3362 		if (mode->hdisplay <= m->hdisplay &&
3363 		    mode->vdisplay <= m->vdisplay)
3364 			ok = true;
3365 	}
3366 	return ok;
3367 }
3368 
3369 static int drm_dmt_modes_for_range(struct drm_connector *connector,
3370 				   const struct drm_edid *drm_edid,
3371 				   const struct detailed_timing *timing)
3372 {
3373 	int i, modes = 0;
3374 	struct drm_display_mode *newmode;
3375 	struct drm_device *dev = connector->dev;
3376 
3377 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3378 		if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3379 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
3380 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3381 			if (newmode) {
3382 				drm_mode_probed_add(connector, newmode);
3383 				modes++;
3384 			}
3385 		}
3386 	}
3387 
3388 	return modes;
3389 }
3390 
3391 /* fix up 1366x768 mode from 1368x768;
3392  * GFT/CVT can't express 1366 width which isn't dividable by 8
3393  */
3394 void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3395 {
3396 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3397 		mode->hdisplay = 1366;
3398 		mode->hsync_start--;
3399 		mode->hsync_end--;
3400 		drm_mode_set_name(mode);
3401 	}
3402 }
3403 
3404 static int drm_gtf_modes_for_range(struct drm_connector *connector,
3405 				   const struct drm_edid *drm_edid,
3406 				   const struct detailed_timing *timing)
3407 {
3408 	int i, modes = 0;
3409 	struct drm_display_mode *newmode;
3410 	struct drm_device *dev = connector->dev;
3411 
3412 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3413 		const struct minimode *m = &extra_modes[i];
3414 
3415 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3416 		if (!newmode)
3417 			return modes;
3418 
3419 		drm_mode_fixup_1366x768(newmode);
3420 		if (!mode_in_range(newmode, drm_edid, timing) ||
3421 		    !valid_inferred_mode(connector, newmode)) {
3422 			drm_mode_destroy(dev, newmode);
3423 			continue;
3424 		}
3425 
3426 		drm_mode_probed_add(connector, newmode);
3427 		modes++;
3428 	}
3429 
3430 	return modes;
3431 }
3432 
3433 static int drm_cvt_modes_for_range(struct drm_connector *connector,
3434 				   const struct drm_edid *drm_edid,
3435 				   const struct detailed_timing *timing)
3436 {
3437 	int i, modes = 0;
3438 	struct drm_display_mode *newmode;
3439 	struct drm_device *dev = connector->dev;
3440 	bool rb = drm_monitor_supports_rb(drm_edid);
3441 
3442 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3443 		const struct minimode *m = &extra_modes[i];
3444 
3445 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3446 		if (!newmode)
3447 			return modes;
3448 
3449 		drm_mode_fixup_1366x768(newmode);
3450 		if (!mode_in_range(newmode, drm_edid, timing) ||
3451 		    !valid_inferred_mode(connector, newmode)) {
3452 			drm_mode_destroy(dev, newmode);
3453 			continue;
3454 		}
3455 
3456 		drm_mode_probed_add(connector, newmode);
3457 		modes++;
3458 	}
3459 
3460 	return modes;
3461 }
3462 
3463 static void
3464 do_inferred_modes(const struct detailed_timing *timing, void *c)
3465 {
3466 	struct detailed_mode_closure *closure = c;
3467 	const struct detailed_non_pixel *data = &timing->data.other_data;
3468 	const struct detailed_data_monitor_range *range = &data->data.range;
3469 
3470 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3471 		return;
3472 
3473 	closure->modes += drm_dmt_modes_for_range(closure->connector,
3474 						  closure->drm_edid,
3475 						  timing);
3476 
3477 	if (!version_greater(closure->drm_edid, 1, 1))
3478 		return; /* GTF not defined yet */
3479 
3480 	switch (range->flags) {
3481 	case 0x02: /* secondary gtf, XXX could do more */
3482 	case 0x00: /* default gtf */
3483 		closure->modes += drm_gtf_modes_for_range(closure->connector,
3484 							  closure->drm_edid,
3485 							  timing);
3486 		break;
3487 	case 0x04: /* cvt, only in 1.4+ */
3488 		if (!version_greater(closure->drm_edid, 1, 3))
3489 			break;
3490 
3491 		closure->modes += drm_cvt_modes_for_range(closure->connector,
3492 							  closure->drm_edid,
3493 							  timing);
3494 		break;
3495 	case 0x01: /* just the ranges, no formula */
3496 	default:
3497 		break;
3498 	}
3499 }
3500 
3501 static int add_inferred_modes(struct drm_connector *connector,
3502 			      const struct drm_edid *drm_edid)
3503 {
3504 	struct detailed_mode_closure closure = {
3505 		.connector = connector,
3506 		.drm_edid = drm_edid,
3507 	};
3508 
3509 	if (version_greater(drm_edid, 1, 0))
3510 		drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3511 
3512 	return closure.modes;
3513 }
3514 
3515 static int
3516 drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3517 {
3518 	int i, j, m, modes = 0;
3519 	struct drm_display_mode *mode;
3520 	const u8 *est = ((const u8 *)timing) + 6;
3521 
3522 	for (i = 0; i < 6; i++) {
3523 		for (j = 7; j >= 0; j--) {
3524 			m = (i * 8) + (7 - j);
3525 			if (m >= ARRAY_SIZE(est3_modes))
3526 				break;
3527 			if (est[i] & (1 << j)) {
3528 				mode = drm_mode_find_dmt(connector->dev,
3529 							 est3_modes[m].w,
3530 							 est3_modes[m].h,
3531 							 est3_modes[m].r,
3532 							 est3_modes[m].rb);
3533 				if (mode) {
3534 					drm_mode_probed_add(connector, mode);
3535 					modes++;
3536 				}
3537 			}
3538 		}
3539 	}
3540 
3541 	return modes;
3542 }
3543 
3544 static void
3545 do_established_modes(const struct detailed_timing *timing, void *c)
3546 {
3547 	struct detailed_mode_closure *closure = c;
3548 
3549 	if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3550 		return;
3551 
3552 	closure->modes += drm_est3_modes(closure->connector, timing);
3553 }
3554 
3555 /*
3556  * Get established modes from EDID and add them. Each EDID block contains a
3557  * bitmap of the supported "established modes" list (defined above). Tease them
3558  * out and add them to the global modes list.
3559  */
3560 static int add_established_modes(struct drm_connector *connector,
3561 				 const struct drm_edid *drm_edid)
3562 {
3563 	struct drm_device *dev = connector->dev;
3564 	const struct edid *edid = drm_edid->edid;
3565 	unsigned long est_bits = edid->established_timings.t1 |
3566 		(edid->established_timings.t2 << 8) |
3567 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
3568 	int i, modes = 0;
3569 	struct detailed_mode_closure closure = {
3570 		.connector = connector,
3571 		.drm_edid = drm_edid,
3572 	};
3573 
3574 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3575 		if (est_bits & (1<<i)) {
3576 			struct drm_display_mode *newmode;
3577 
3578 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3579 			if (newmode) {
3580 				drm_mode_probed_add(connector, newmode);
3581 				modes++;
3582 			}
3583 		}
3584 	}
3585 
3586 	if (version_greater(drm_edid, 1, 0))
3587 		drm_for_each_detailed_block(drm_edid, do_established_modes,
3588 					    &closure);
3589 
3590 	return modes + closure.modes;
3591 }
3592 
3593 static void
3594 do_standard_modes(const struct detailed_timing *timing, void *c)
3595 {
3596 	struct detailed_mode_closure *closure = c;
3597 	const struct detailed_non_pixel *data = &timing->data.other_data;
3598 	struct drm_connector *connector = closure->connector;
3599 	int i;
3600 
3601 	if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3602 		return;
3603 
3604 	for (i = 0; i < 6; i++) {
3605 		const struct std_timing *std = &data->data.timings[i];
3606 		struct drm_display_mode *newmode;
3607 
3608 		newmode = drm_mode_std(connector, closure->drm_edid, std);
3609 		if (newmode) {
3610 			drm_mode_probed_add(connector, newmode);
3611 			closure->modes++;
3612 		}
3613 	}
3614 }
3615 
3616 /*
3617  * Get standard modes from EDID and add them. Standard modes can be calculated
3618  * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3619  * add them to the list.
3620  */
3621 static int add_standard_modes(struct drm_connector *connector,
3622 			      const struct drm_edid *drm_edid)
3623 {
3624 	int i, modes = 0;
3625 	struct detailed_mode_closure closure = {
3626 		.connector = connector,
3627 		.drm_edid = drm_edid,
3628 	};
3629 
3630 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
3631 		struct drm_display_mode *newmode;
3632 
3633 		newmode = drm_mode_std(connector, drm_edid,
3634 				       &drm_edid->edid->standard_timings[i]);
3635 		if (newmode) {
3636 			drm_mode_probed_add(connector, newmode);
3637 			modes++;
3638 		}
3639 	}
3640 
3641 	if (version_greater(drm_edid, 1, 0))
3642 		drm_for_each_detailed_block(drm_edid, do_standard_modes,
3643 					    &closure);
3644 
3645 	/* XXX should also look for standard codes in VTB blocks */
3646 
3647 	return modes + closure.modes;
3648 }
3649 
3650 static int drm_cvt_modes(struct drm_connector *connector,
3651 			 const struct detailed_timing *timing)
3652 {
3653 	int i, j, modes = 0;
3654 	struct drm_display_mode *newmode;
3655 	struct drm_device *dev = connector->dev;
3656 	const struct cvt_timing *cvt;
3657 	const int rates[] = { 60, 85, 75, 60, 50 };
3658 	const u8 empty[3] = { 0, 0, 0 };
3659 
3660 	for (i = 0; i < 4; i++) {
3661 		int width, height;
3662 
3663 		cvt = &(timing->data.other_data.data.cvt[i]);
3664 
3665 		if (!memcmp(cvt->code, empty, 3))
3666 			continue;
3667 
3668 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3669 		switch (cvt->code[1] & 0x0c) {
3670 		/* default - because compiler doesn't see that we've enumerated all cases */
3671 		default:
3672 		case 0x00:
3673 			width = height * 4 / 3;
3674 			break;
3675 		case 0x04:
3676 			width = height * 16 / 9;
3677 			break;
3678 		case 0x08:
3679 			width = height * 16 / 10;
3680 			break;
3681 		case 0x0c:
3682 			width = height * 15 / 9;
3683 			break;
3684 		}
3685 
3686 		for (j = 1; j < 5; j++) {
3687 			if (cvt->code[2] & (1 << j)) {
3688 				newmode = drm_cvt_mode(dev, width, height,
3689 						       rates[j], j == 0,
3690 						       false, false);
3691 				if (newmode) {
3692 					drm_mode_probed_add(connector, newmode);
3693 					modes++;
3694 				}
3695 			}
3696 		}
3697 	}
3698 
3699 	return modes;
3700 }
3701 
3702 static void
3703 do_cvt_mode(const struct detailed_timing *timing, void *c)
3704 {
3705 	struct detailed_mode_closure *closure = c;
3706 
3707 	if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
3708 		return;
3709 
3710 	closure->modes += drm_cvt_modes(closure->connector, timing);
3711 }
3712 
3713 static int
3714 add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
3715 {
3716 	struct detailed_mode_closure closure = {
3717 		.connector = connector,
3718 		.drm_edid = drm_edid,
3719 	};
3720 
3721 	if (version_greater(drm_edid, 1, 2))
3722 		drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
3723 
3724 	/* XXX should also look for CVT codes in VTB blocks */
3725 
3726 	return closure.modes;
3727 }
3728 
3729 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode);
3730 
3731 static void
3732 do_detailed_mode(const struct detailed_timing *timing, void *c)
3733 {
3734 	struct detailed_mode_closure *closure = c;
3735 	struct drm_display_mode *newmode;
3736 
3737 	if (!is_detailed_timing_descriptor(timing))
3738 		return;
3739 
3740 	newmode = drm_mode_detailed(closure->connector->dev,
3741 				    closure->drm_edid, timing,
3742 				    closure->quirks);
3743 	if (!newmode)
3744 		return;
3745 
3746 	if (closure->preferred)
3747 		newmode->type |= DRM_MODE_TYPE_PREFERRED;
3748 
3749 	/*
3750 	 * Detailed modes are limited to 10kHz pixel clock resolution,
3751 	 * so fix up anything that looks like CEA/HDMI mode, but the clock
3752 	 * is just slightly off.
3753 	 */
3754 	fixup_detailed_cea_mode_clock(newmode);
3755 
3756 	drm_mode_probed_add(closure->connector, newmode);
3757 	closure->modes++;
3758 	closure->preferred = false;
3759 }
3760 
3761 /*
3762  * add_detailed_modes - Add modes from detailed timings
3763  * @connector: attached connector
3764  * @drm_edid: EDID block to scan
3765  * @quirks: quirks to apply
3766  */
3767 static int add_detailed_modes(struct drm_connector *connector,
3768 			      const struct drm_edid *drm_edid, u32 quirks)
3769 {
3770 	struct detailed_mode_closure closure = {
3771 		.connector = connector,
3772 		.drm_edid = drm_edid,
3773 		.preferred = true,
3774 		.quirks = quirks,
3775 	};
3776 
3777 	if (closure.preferred && !version_greater(drm_edid, 1, 3))
3778 		closure.preferred =
3779 		    (drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
3780 
3781 	drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
3782 
3783 	return closure.modes;
3784 }
3785 
3786 /* CTA-861-H Table 60 - CTA Tag Codes */
3787 #define CTA_DB_AUDIO			1
3788 #define CTA_DB_VIDEO			2
3789 #define CTA_DB_VENDOR			3
3790 #define CTA_DB_SPEAKER			4
3791 #define CTA_DB_EXTENDED_TAG		7
3792 
3793 /* CTA-861-H Table 62 - CTA Extended Tag Codes */
3794 #define CTA_EXT_DB_VIDEO_CAP		0
3795 #define CTA_EXT_DB_VENDOR		1
3796 #define CTA_EXT_DB_HDR_STATIC_METADATA	6
3797 #define CTA_EXT_DB_420_VIDEO_DATA	14
3798 #define CTA_EXT_DB_420_VIDEO_CAP_MAP	15
3799 #define CTA_EXT_DB_HF_SCDB		0x79
3800 
3801 #define EDID_BASIC_AUDIO	(1 << 6)
3802 #define EDID_CEA_YCRCB444	(1 << 5)
3803 #define EDID_CEA_YCRCB422	(1 << 4)
3804 #define EDID_CEA_VCDB_QS	(1 << 6)
3805 
3806 /*
3807  * Search EDID for CEA extension block.
3808  *
3809  * FIXME: Prefer not returning pointers to raw EDID data.
3810  */
3811 const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
3812 				  int ext_id, int *ext_index)
3813 {
3814 	const u8 *edid_ext = NULL;
3815 	int i;
3816 
3817 	/* No EDID or EDID extensions */
3818 	if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
3819 		return NULL;
3820 
3821 	/* Find CEA extension */
3822 	for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
3823 		edid_ext = drm_edid_extension_block_data(drm_edid, i);
3824 		if (edid_block_tag(edid_ext) == ext_id)
3825 			break;
3826 	}
3827 
3828 	if (i >= drm_edid_extension_block_count(drm_edid))
3829 		return NULL;
3830 
3831 	*ext_index = i + 1;
3832 
3833 	return edid_ext;
3834 }
3835 
3836 /* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
3837 static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
3838 {
3839 	const struct displayid_block *block;
3840 	struct displayid_iter iter;
3841 	int ext_index = 0;
3842 	bool found = false;
3843 
3844 	/* Look for a top level CEA extension block */
3845 	if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
3846 		return true;
3847 
3848 	/* CEA blocks can also be found embedded in a DisplayID block */
3849 	displayid_iter_edid_begin(drm_edid, &iter);
3850 	displayid_iter_for_each(block, &iter) {
3851 		if (block->tag == DATA_BLOCK_CTA) {
3852 			found = true;
3853 			break;
3854 		}
3855 	}
3856 	displayid_iter_end(&iter);
3857 
3858 	return found;
3859 }
3860 
3861 static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
3862 {
3863 	BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
3864 	BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
3865 
3866 	if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
3867 		return &edid_cea_modes_1[vic - 1];
3868 	if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
3869 		return &edid_cea_modes_193[vic - 193];
3870 	return NULL;
3871 }
3872 
3873 static u8 cea_num_vics(void)
3874 {
3875 	return 193 + ARRAY_SIZE(edid_cea_modes_193);
3876 }
3877 
3878 static u8 cea_next_vic(u8 vic)
3879 {
3880 	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
3881 		vic = 193;
3882 	return vic;
3883 }
3884 
3885 /*
3886  * Calculate the alternate clock for the CEA mode
3887  * (60Hz vs. 59.94Hz etc.)
3888  */
3889 static unsigned int
3890 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
3891 {
3892 	unsigned int clock = cea_mode->clock;
3893 
3894 	if (drm_mode_vrefresh(cea_mode) % 6 != 0)
3895 		return clock;
3896 
3897 	/*
3898 	 * edid_cea_modes contains the 59.94Hz
3899 	 * variant for 240 and 480 line modes,
3900 	 * and the 60Hz variant otherwise.
3901 	 */
3902 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
3903 		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
3904 	else
3905 		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
3906 
3907 	return clock;
3908 }
3909 
3910 static bool
3911 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
3912 {
3913 	/*
3914 	 * For certain VICs the spec allows the vertical
3915 	 * front porch to vary by one or two lines.
3916 	 *
3917 	 * cea_modes[] stores the variant with the shortest
3918 	 * vertical front porch. We can adjust the mode to
3919 	 * get the other variants by simply increasing the
3920 	 * vertical front porch length.
3921 	 */
3922 	BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
3923 		     cea_mode_for_vic(9)->vtotal != 262 ||
3924 		     cea_mode_for_vic(12)->vtotal != 262 ||
3925 		     cea_mode_for_vic(13)->vtotal != 262 ||
3926 		     cea_mode_for_vic(23)->vtotal != 312 ||
3927 		     cea_mode_for_vic(24)->vtotal != 312 ||
3928 		     cea_mode_for_vic(27)->vtotal != 312 ||
3929 		     cea_mode_for_vic(28)->vtotal != 312);
3930 
3931 	if (((vic == 8 || vic == 9 ||
3932 	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
3933 	    ((vic == 23 || vic == 24 ||
3934 	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
3935 		mode->vsync_start++;
3936 		mode->vsync_end++;
3937 		mode->vtotal++;
3938 
3939 		return true;
3940 	}
3941 
3942 	return false;
3943 }
3944 
3945 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
3946 					     unsigned int clock_tolerance)
3947 {
3948 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3949 	u8 vic;
3950 
3951 	if (!to_match->clock)
3952 		return 0;
3953 
3954 	if (to_match->picture_aspect_ratio)
3955 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
3956 
3957 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
3958 		struct drm_display_mode cea_mode;
3959 		unsigned int clock1, clock2;
3960 
3961 		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
3962 
3963 		/* Check both 60Hz and 59.94Hz */
3964 		clock1 = cea_mode.clock;
3965 		clock2 = cea_mode_alternate_clock(&cea_mode);
3966 
3967 		if (abs(to_match->clock - clock1) > clock_tolerance &&
3968 		    abs(to_match->clock - clock2) > clock_tolerance)
3969 			continue;
3970 
3971 		do {
3972 			if (drm_mode_match(to_match, &cea_mode, match_flags))
3973 				return vic;
3974 		} while (cea_mode_alternate_timings(vic, &cea_mode));
3975 	}
3976 
3977 	return 0;
3978 }
3979 
3980 /**
3981  * drm_match_cea_mode - look for a CEA mode matching given mode
3982  * @to_match: display mode
3983  *
3984  * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
3985  * mode.
3986  */
3987 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
3988 {
3989 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3990 	u8 vic;
3991 
3992 	if (!to_match->clock)
3993 		return 0;
3994 
3995 	if (to_match->picture_aspect_ratio)
3996 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
3997 
3998 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
3999 		struct drm_display_mode cea_mode;
4000 		unsigned int clock1, clock2;
4001 
4002 		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4003 
4004 		/* Check both 60Hz and 59.94Hz */
4005 		clock1 = cea_mode.clock;
4006 		clock2 = cea_mode_alternate_clock(&cea_mode);
4007 
4008 		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4009 		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4010 			continue;
4011 
4012 		do {
4013 			if (drm_mode_match(to_match, &cea_mode, match_flags))
4014 				return vic;
4015 		} while (cea_mode_alternate_timings(vic, &cea_mode));
4016 	}
4017 
4018 	return 0;
4019 }
4020 EXPORT_SYMBOL(drm_match_cea_mode);
4021 
4022 static bool drm_valid_cea_vic(u8 vic)
4023 {
4024 	return cea_mode_for_vic(vic) != NULL;
4025 }
4026 
4027 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4028 {
4029 	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4030 
4031 	if (mode)
4032 		return mode->picture_aspect_ratio;
4033 
4034 	return HDMI_PICTURE_ASPECT_NONE;
4035 }
4036 
4037 static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4038 {
4039 	return edid_4k_modes[video_code].picture_aspect_ratio;
4040 }
4041 
4042 /*
4043  * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4044  * specific block).
4045  */
4046 static unsigned int
4047 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4048 {
4049 	return cea_mode_alternate_clock(hdmi_mode);
4050 }
4051 
4052 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4053 					      unsigned int clock_tolerance)
4054 {
4055 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4056 	u8 vic;
4057 
4058 	if (!to_match->clock)
4059 		return 0;
4060 
4061 	if (to_match->picture_aspect_ratio)
4062 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4063 
4064 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4065 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4066 		unsigned int clock1, clock2;
4067 
4068 		/* Make sure to also match alternate clocks */
4069 		clock1 = hdmi_mode->clock;
4070 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4071 
4072 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4073 		    abs(to_match->clock - clock2) > clock_tolerance)
4074 			continue;
4075 
4076 		if (drm_mode_match(to_match, hdmi_mode, match_flags))
4077 			return vic;
4078 	}
4079 
4080 	return 0;
4081 }
4082 
4083 /*
4084  * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4085  * @to_match: display mode
4086  *
4087  * An HDMI mode is one defined in the HDMI vendor specific block.
4088  *
4089  * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4090  */
4091 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4092 {
4093 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4094 	u8 vic;
4095 
4096 	if (!to_match->clock)
4097 		return 0;
4098 
4099 	if (to_match->picture_aspect_ratio)
4100 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4101 
4102 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4103 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4104 		unsigned int clock1, clock2;
4105 
4106 		/* Make sure to also match alternate clocks */
4107 		clock1 = hdmi_mode->clock;
4108 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4109 
4110 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4111 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4112 		    drm_mode_match(to_match, hdmi_mode, match_flags))
4113 			return vic;
4114 	}
4115 	return 0;
4116 }
4117 
4118 static bool drm_valid_hdmi_vic(u8 vic)
4119 {
4120 	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4121 }
4122 
4123 static int add_alternate_cea_modes(struct drm_connector *connector,
4124 				   const struct drm_edid *drm_edid)
4125 {
4126 	struct drm_device *dev = connector->dev;
4127 	struct drm_display_mode *mode, *tmp;
4128 	LIST_HEAD(list);
4129 	int modes = 0;
4130 
4131 	/* Don't add CTA modes if the CTA extension block is missing */
4132 	if (!drm_edid_has_cta_extension(drm_edid))
4133 		return 0;
4134 
4135 	/*
4136 	 * Go through all probed modes and create a new mode
4137 	 * with the alternate clock for certain CEA modes.
4138 	 */
4139 	list_for_each_entry(mode, &connector->probed_modes, head) {
4140 		const struct drm_display_mode *cea_mode = NULL;
4141 		struct drm_display_mode *newmode;
4142 		u8 vic = drm_match_cea_mode(mode);
4143 		unsigned int clock1, clock2;
4144 
4145 		if (drm_valid_cea_vic(vic)) {
4146 			cea_mode = cea_mode_for_vic(vic);
4147 			clock2 = cea_mode_alternate_clock(cea_mode);
4148 		} else {
4149 			vic = drm_match_hdmi_mode(mode);
4150 			if (drm_valid_hdmi_vic(vic)) {
4151 				cea_mode = &edid_4k_modes[vic];
4152 				clock2 = hdmi_mode_alternate_clock(cea_mode);
4153 			}
4154 		}
4155 
4156 		if (!cea_mode)
4157 			continue;
4158 
4159 		clock1 = cea_mode->clock;
4160 
4161 		if (clock1 == clock2)
4162 			continue;
4163 
4164 		if (mode->clock != clock1 && mode->clock != clock2)
4165 			continue;
4166 
4167 		newmode = drm_mode_duplicate(dev, cea_mode);
4168 		if (!newmode)
4169 			continue;
4170 
4171 		/* Carry over the stereo flags */
4172 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4173 
4174 		/*
4175 		 * The current mode could be either variant. Make
4176 		 * sure to pick the "other" clock for the new mode.
4177 		 */
4178 		if (mode->clock != clock1)
4179 			newmode->clock = clock1;
4180 		else
4181 			newmode->clock = clock2;
4182 
4183 		list_add_tail(&newmode->head, &list);
4184 	}
4185 
4186 	list_for_each_entry_safe(mode, tmp, &list, head) {
4187 		list_del(&mode->head);
4188 		drm_mode_probed_add(connector, mode);
4189 		modes++;
4190 	}
4191 
4192 	return modes;
4193 }
4194 
4195 static u8 svd_to_vic(u8 svd)
4196 {
4197 	/* 0-6 bit vic, 7th bit native mode indicator */
4198 	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
4199 		return svd & 127;
4200 
4201 	return svd;
4202 }
4203 
4204 static struct drm_display_mode *
4205 drm_display_mode_from_vic_index(struct drm_connector *connector,
4206 				const u8 *video_db, u8 video_len,
4207 				u8 video_index)
4208 {
4209 	struct drm_device *dev = connector->dev;
4210 	struct drm_display_mode *newmode;
4211 	u8 vic;
4212 
4213 	if (video_db == NULL || video_index >= video_len)
4214 		return NULL;
4215 
4216 	/* CEA modes are numbered 1..127 */
4217 	vic = svd_to_vic(video_db[video_index]);
4218 	if (!drm_valid_cea_vic(vic))
4219 		return NULL;
4220 
4221 	newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4222 	if (!newmode)
4223 		return NULL;
4224 
4225 	return newmode;
4226 }
4227 
4228 /*
4229  * do_y420vdb_modes - Parse YCBCR 420 only modes
4230  * @connector: connector corresponding to the HDMI sink
4231  * @svds: start of the data block of CEA YCBCR 420 VDB
4232  * @len: length of the CEA YCBCR 420 VDB
4233  *
4234  * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4235  * which contains modes which can be supported in YCBCR 420
4236  * output format only.
4237  */
4238 static int do_y420vdb_modes(struct drm_connector *connector,
4239 			    const u8 *svds, u8 svds_len)
4240 {
4241 	int modes = 0, i;
4242 	struct drm_device *dev = connector->dev;
4243 	struct drm_display_info *info = &connector->display_info;
4244 	struct drm_hdmi_info *hdmi = &info->hdmi;
4245 
4246 	for (i = 0; i < svds_len; i++) {
4247 		u8 vic = svd_to_vic(svds[i]);
4248 		struct drm_display_mode *newmode;
4249 
4250 		if (!drm_valid_cea_vic(vic))
4251 			continue;
4252 
4253 		newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4254 		if (!newmode)
4255 			break;
4256 		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
4257 		drm_mode_probed_add(connector, newmode);
4258 		modes++;
4259 	}
4260 
4261 	if (modes > 0)
4262 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
4263 	return modes;
4264 }
4265 
4266 /*
4267  * drm_add_cmdb_modes - Add a YCBCR 420 mode into bitmap
4268  * @connector: connector corresponding to the HDMI sink
4269  * @vic: CEA vic for the video mode to be added in the map
4270  *
4271  * Makes an entry for a videomode in the YCBCR 420 bitmap
4272  */
4273 static void
4274 drm_add_cmdb_modes(struct drm_connector *connector, u8 svd)
4275 {
4276 	u8 vic = svd_to_vic(svd);
4277 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
4278 
4279 	if (!drm_valid_cea_vic(vic))
4280 		return;
4281 
4282 	bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
4283 }
4284 
4285 /**
4286  * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4287  * @dev: DRM device
4288  * @video_code: CEA VIC of the mode
4289  *
4290  * Creates a new mode matching the specified CEA VIC.
4291  *
4292  * Returns: A new drm_display_mode on success or NULL on failure
4293  */
4294 struct drm_display_mode *
4295 drm_display_mode_from_cea_vic(struct drm_device *dev,
4296 			      u8 video_code)
4297 {
4298 	const struct drm_display_mode *cea_mode;
4299 	struct drm_display_mode *newmode;
4300 
4301 	cea_mode = cea_mode_for_vic(video_code);
4302 	if (!cea_mode)
4303 		return NULL;
4304 
4305 	newmode = drm_mode_duplicate(dev, cea_mode);
4306 	if (!newmode)
4307 		return NULL;
4308 
4309 	return newmode;
4310 }
4311 EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4312 
4313 static int
4314 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
4315 {
4316 	int i, modes = 0;
4317 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
4318 
4319 	for (i = 0; i < len; i++) {
4320 		struct drm_display_mode *mode;
4321 
4322 		mode = drm_display_mode_from_vic_index(connector, db, len, i);
4323 		if (mode) {
4324 			/*
4325 			 * YCBCR420 capability block contains a bitmap which
4326 			 * gives the index of CEA modes from CEA VDB, which
4327 			 * can support YCBCR 420 sampling output also (apart
4328 			 * from RGB/YCBCR444 etc).
4329 			 * For example, if the bit 0 in bitmap is set,
4330 			 * first mode in VDB can support YCBCR420 output too.
4331 			 * Add YCBCR420 modes only if sink is HDMI 2.0 capable.
4332 			 */
4333 			if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
4334 				drm_add_cmdb_modes(connector, db[i]);
4335 
4336 			drm_mode_probed_add(connector, mode);
4337 			modes++;
4338 		}
4339 	}
4340 
4341 	return modes;
4342 }
4343 
4344 struct stereo_mandatory_mode {
4345 	int width, height, vrefresh;
4346 	unsigned int flags;
4347 };
4348 
4349 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4350 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4351 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4352 	{ 1920, 1080, 50,
4353 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4354 	{ 1920, 1080, 60,
4355 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4356 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4357 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4358 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4359 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4360 };
4361 
4362 static bool
4363 stereo_match_mandatory(const struct drm_display_mode *mode,
4364 		       const struct stereo_mandatory_mode *stereo_mode)
4365 {
4366 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4367 
4368 	return mode->hdisplay == stereo_mode->width &&
4369 	       mode->vdisplay == stereo_mode->height &&
4370 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4371 	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4372 }
4373 
4374 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4375 {
4376 	struct drm_device *dev = connector->dev;
4377 	const struct drm_display_mode *mode;
4378 	struct list_head stereo_modes;
4379 	int modes = 0, i;
4380 
4381 	INIT_LIST_HEAD(&stereo_modes);
4382 
4383 	list_for_each_entry(mode, &connector->probed_modes, head) {
4384 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4385 			const struct stereo_mandatory_mode *mandatory;
4386 			struct drm_display_mode *new_mode;
4387 
4388 			if (!stereo_match_mandatory(mode,
4389 						    &stereo_mandatory_modes[i]))
4390 				continue;
4391 
4392 			mandatory = &stereo_mandatory_modes[i];
4393 			new_mode = drm_mode_duplicate(dev, mode);
4394 			if (!new_mode)
4395 				continue;
4396 
4397 			new_mode->flags |= mandatory->flags;
4398 			list_add_tail(&new_mode->head, &stereo_modes);
4399 			modes++;
4400 		}
4401 	}
4402 
4403 	list_splice_tail(&stereo_modes, &connector->probed_modes);
4404 
4405 	return modes;
4406 }
4407 
4408 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4409 {
4410 	struct drm_device *dev = connector->dev;
4411 	struct drm_display_mode *newmode;
4412 
4413 	if (!drm_valid_hdmi_vic(vic)) {
4414 		DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
4415 		return 0;
4416 	}
4417 
4418 	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4419 	if (!newmode)
4420 		return 0;
4421 
4422 	drm_mode_probed_add(connector, newmode);
4423 
4424 	return 1;
4425 }
4426 
4427 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4428 			       const u8 *video_db, u8 video_len, u8 video_index)
4429 {
4430 	struct drm_display_mode *newmode;
4431 	int modes = 0;
4432 
4433 	if (structure & (1 << 0)) {
4434 		newmode = drm_display_mode_from_vic_index(connector, video_db,
4435 							  video_len,
4436 							  video_index);
4437 		if (newmode) {
4438 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4439 			drm_mode_probed_add(connector, newmode);
4440 			modes++;
4441 		}
4442 	}
4443 	if (structure & (1 << 6)) {
4444 		newmode = drm_display_mode_from_vic_index(connector, video_db,
4445 							  video_len,
4446 							  video_index);
4447 		if (newmode) {
4448 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4449 			drm_mode_probed_add(connector, newmode);
4450 			modes++;
4451 		}
4452 	}
4453 	if (structure & (1 << 8)) {
4454 		newmode = drm_display_mode_from_vic_index(connector, video_db,
4455 							  video_len,
4456 							  video_index);
4457 		if (newmode) {
4458 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4459 			drm_mode_probed_add(connector, newmode);
4460 			modes++;
4461 		}
4462 	}
4463 
4464 	return modes;
4465 }
4466 
4467 /*
4468  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4469  * @connector: connector corresponding to the HDMI sink
4470  * @db: start of the CEA vendor specific block
4471  * @len: length of the CEA block payload, ie. one can access up to db[len]
4472  *
4473  * Parses the HDMI VSDB looking for modes to add to @connector. This function
4474  * also adds the stereo 3d modes when applicable.
4475  */
4476 static int
4477 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
4478 		   const u8 *video_db, u8 video_len)
4479 {
4480 	struct drm_display_info *info = &connector->display_info;
4481 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4482 	u8 vic_len, hdmi_3d_len = 0;
4483 	u16 mask;
4484 	u16 structure_all;
4485 
4486 	if (len < 8)
4487 		goto out;
4488 
4489 	/* no HDMI_Video_Present */
4490 	if (!(db[8] & (1 << 5)))
4491 		goto out;
4492 
4493 	/* Latency_Fields_Present */
4494 	if (db[8] & (1 << 7))
4495 		offset += 2;
4496 
4497 	/* I_Latency_Fields_Present */
4498 	if (db[8] & (1 << 6))
4499 		offset += 2;
4500 
4501 	/* the declared length is not long enough for the 2 first bytes
4502 	 * of additional video format capabilities */
4503 	if (len < (8 + offset + 2))
4504 		goto out;
4505 
4506 	/* 3D_Present */
4507 	offset++;
4508 	if (db[8 + offset] & (1 << 7)) {
4509 		modes += add_hdmi_mandatory_stereo_modes(connector);
4510 
4511 		/* 3D_Multi_present */
4512 		multi_present = (db[8 + offset] & 0x60) >> 5;
4513 	}
4514 
4515 	offset++;
4516 	vic_len = db[8 + offset] >> 5;
4517 	hdmi_3d_len = db[8 + offset] & 0x1f;
4518 
4519 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4520 		u8 vic;
4521 
4522 		vic = db[9 + offset + i];
4523 		modes += add_hdmi_mode(connector, vic);
4524 	}
4525 	offset += 1 + vic_len;
4526 
4527 	if (multi_present == 1)
4528 		multi_len = 2;
4529 	else if (multi_present == 2)
4530 		multi_len = 4;
4531 	else
4532 		multi_len = 0;
4533 
4534 	if (len < (8 + offset + hdmi_3d_len - 1))
4535 		goto out;
4536 
4537 	if (hdmi_3d_len < multi_len)
4538 		goto out;
4539 
4540 	if (multi_present == 1 || multi_present == 2) {
4541 		/* 3D_Structure_ALL */
4542 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
4543 
4544 		/* check if 3D_MASK is present */
4545 		if (multi_present == 2)
4546 			mask = (db[10 + offset] << 8) | db[11 + offset];
4547 		else
4548 			mask = 0xffff;
4549 
4550 		for (i = 0; i < 16; i++) {
4551 			if (mask & (1 << i))
4552 				modes += add_3d_struct_modes(connector,
4553 						structure_all,
4554 						video_db,
4555 						video_len, i);
4556 		}
4557 	}
4558 
4559 	offset += multi_len;
4560 
4561 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4562 		int vic_index;
4563 		struct drm_display_mode *newmode = NULL;
4564 		unsigned int newflag = 0;
4565 		bool detail_present;
4566 
4567 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4568 
4569 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4570 			break;
4571 
4572 		/* 2D_VIC_order_X */
4573 		vic_index = db[8 + offset + i] >> 4;
4574 
4575 		/* 3D_Structure_X */
4576 		switch (db[8 + offset + i] & 0x0f) {
4577 		case 0:
4578 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4579 			break;
4580 		case 6:
4581 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4582 			break;
4583 		case 8:
4584 			/* 3D_Detail_X */
4585 			if ((db[9 + offset + i] >> 4) == 1)
4586 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4587 			break;
4588 		}
4589 
4590 		if (newflag != 0) {
4591 			newmode = drm_display_mode_from_vic_index(connector,
4592 								  video_db,
4593 								  video_len,
4594 								  vic_index);
4595 
4596 			if (newmode) {
4597 				newmode->flags |= newflag;
4598 				drm_mode_probed_add(connector, newmode);
4599 				modes++;
4600 			}
4601 		}
4602 
4603 		if (detail_present)
4604 			i++;
4605 	}
4606 
4607 out:
4608 	if (modes > 0)
4609 		info->has_hdmi_infoframe = true;
4610 	return modes;
4611 }
4612 
4613 static int
4614 cea_revision(const u8 *cea)
4615 {
4616 	/*
4617 	 * FIXME is this correct for the DispID variant?
4618 	 * The DispID spec doesn't really specify whether
4619 	 * this is the revision of the CEA extension or
4620 	 * the DispID CEA data block. And the only value
4621 	 * given as an example is 0.
4622 	 */
4623 	return cea[1];
4624 }
4625 
4626 /*
4627  * CTA Data Block iterator.
4628  *
4629  * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4630  * CTA Data Blocks.
4631  *
4632  * struct cea_db *db:
4633  * struct cea_db_iter iter;
4634  *
4635  * cea_db_iter_edid_begin(edid, &iter);
4636  * cea_db_iter_for_each(db, &iter) {
4637  *         // do stuff with db
4638  * }
4639  * cea_db_iter_end(&iter);
4640  */
4641 struct cea_db_iter {
4642 	struct drm_edid_iter edid_iter;
4643 	struct displayid_iter displayid_iter;
4644 
4645 	/* Current Data Block Collection. */
4646 	const u8 *collection;
4647 
4648 	/* Current Data Block index in current collection. */
4649 	int index;
4650 
4651 	/* End index in current collection. */
4652 	int end;
4653 };
4654 
4655 /* CTA-861-H section 7.4 CTA Data BLock Collection */
4656 struct cea_db {
4657 	u8 tag_length;
4658 	u8 data[];
4659 } __packed;
4660 
4661 static int cea_db_tag(const struct cea_db *db)
4662 {
4663 	return db->tag_length >> 5;
4664 }
4665 
4666 static int cea_db_payload_len(const void *_db)
4667 {
4668 	/* FIXME: Transition to passing struct cea_db * everywhere. */
4669 	const struct cea_db *db = _db;
4670 
4671 	return db->tag_length & 0x1f;
4672 }
4673 
4674 static const void *cea_db_data(const struct cea_db *db)
4675 {
4676 	return db->data;
4677 }
4678 
4679 static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4680 {
4681 	return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4682 		cea_db_payload_len(db) >= 1 &&
4683 		db->data[0] == tag;
4684 }
4685 
4686 static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4687 {
4688 	const u8 *data = cea_db_data(db);
4689 
4690 	return cea_db_tag(db) == CTA_DB_VENDOR &&
4691 		cea_db_payload_len(db) >= 3 &&
4692 		oui(data[2], data[1], data[0]) == vendor_oui;
4693 }
4694 
4695 static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4696 				   struct cea_db_iter *iter)
4697 {
4698 	memset(iter, 0, sizeof(*iter));
4699 
4700 	drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4701 	displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4702 }
4703 
4704 static const struct cea_db *
4705 __cea_db_iter_current_block(const struct cea_db_iter *iter)
4706 {
4707 	const struct cea_db *db;
4708 
4709 	if (!iter->collection)
4710 		return NULL;
4711 
4712 	db = (const struct cea_db *)&iter->collection[iter->index];
4713 
4714 	if (iter->index + sizeof(*db) <= iter->end &&
4715 	    iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4716 		return db;
4717 
4718 	return NULL;
4719 }
4720 
4721 /*
4722  * References:
4723  * - CTA-861-H section 7.3.3 CTA Extension Version 3
4724  */
4725 static int cea_db_collection_size(const u8 *cta)
4726 {
4727 	u8 d = cta[2];
4728 
4729 	if (d < 4 || d > 127)
4730 		return 0;
4731 
4732 	return d - 4;
4733 }
4734 
4735 /*
4736  * References:
4737  * - VESA E-EDID v1.4
4738  * - CTA-861-H section 7.3.3 CTA Extension Version 3
4739  */
4740 static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
4741 {
4742 	const u8 *ext;
4743 
4744 	drm_edid_iter_for_each(ext, &iter->edid_iter) {
4745 		int size;
4746 
4747 		/* Only support CTA Extension revision 3+ */
4748 		if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
4749 			continue;
4750 
4751 		size = cea_db_collection_size(ext);
4752 		if (!size)
4753 			continue;
4754 
4755 		iter->index = 4;
4756 		iter->end = iter->index + size;
4757 
4758 		return ext;
4759 	}
4760 
4761 	return NULL;
4762 }
4763 
4764 /*
4765  * References:
4766  * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
4767  * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
4768  *
4769  * Note that the above do not specify any connection between DisplayID Data
4770  * Block revision and CTA Extension versions.
4771  */
4772 static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
4773 {
4774 	const struct displayid_block *block;
4775 
4776 	displayid_iter_for_each(block, &iter->displayid_iter) {
4777 		if (block->tag != DATA_BLOCK_CTA)
4778 			continue;
4779 
4780 		/*
4781 		 * The displayid iterator has already verified the block bounds
4782 		 * in displayid_iter_block().
4783 		 */
4784 		iter->index = sizeof(*block);
4785 		iter->end = iter->index + block->num_bytes;
4786 
4787 		return block;
4788 	}
4789 
4790 	return NULL;
4791 }
4792 
4793 static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
4794 {
4795 	const struct cea_db *db;
4796 
4797 	if (iter->collection) {
4798 		/* Current collection should always be valid. */
4799 		db = __cea_db_iter_current_block(iter);
4800 		if (WARN_ON(!db)) {
4801 			iter->collection = NULL;
4802 			return NULL;
4803 		}
4804 
4805 		/* Next block in CTA Data Block Collection */
4806 		iter->index += sizeof(*db) + cea_db_payload_len(db);
4807 
4808 		db = __cea_db_iter_current_block(iter);
4809 		if (db)
4810 			return db;
4811 	}
4812 
4813 	for (;;) {
4814 		/*
4815 		 * Find the next CTA Data Block Collection. First iterate all
4816 		 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
4817 		 *
4818 		 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
4819 		 * Extension, it's recommended that DisplayID extensions are
4820 		 * exposed after all of the CTA Extensions.
4821 		 */
4822 		iter->collection = __cea_db_iter_edid_next(iter);
4823 		if (!iter->collection)
4824 			iter->collection = __cea_db_iter_displayid_next(iter);
4825 
4826 		if (!iter->collection)
4827 			return NULL;
4828 
4829 		db = __cea_db_iter_current_block(iter);
4830 		if (db)
4831 			return db;
4832 	}
4833 }
4834 
4835 #define cea_db_iter_for_each(__db, __iter) \
4836 	while (((__db) = __cea_db_iter_next(__iter)))
4837 
4838 static void cea_db_iter_end(struct cea_db_iter *iter)
4839 {
4840 	displayid_iter_end(&iter->displayid_iter);
4841 	drm_edid_iter_end(&iter->edid_iter);
4842 
4843 	memset(iter, 0, sizeof(*iter));
4844 }
4845 
4846 static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
4847 {
4848 	return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
4849 		cea_db_payload_len(db) >= 5;
4850 }
4851 
4852 static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
4853 {
4854 	return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
4855 		cea_db_payload_len(db) >= 7;
4856 }
4857 
4858 static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
4859 {
4860 	return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
4861 		cea_db_payload_len(db) == 21;
4862 }
4863 
4864 static bool cea_db_is_vcdb(const struct cea_db *db)
4865 {
4866 	return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
4867 		cea_db_payload_len(db) == 2;
4868 }
4869 
4870 static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
4871 {
4872 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
4873 		cea_db_payload_len(db) >= 7;
4874 }
4875 
4876 static bool cea_db_is_y420cmdb(const struct cea_db *db)
4877 {
4878 	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
4879 }
4880 
4881 static bool cea_db_is_y420vdb(const struct cea_db *db)
4882 {
4883 	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
4884 }
4885 
4886 static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
4887 {
4888 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
4889 		cea_db_payload_len(db) >= 3;
4890 }
4891 
4892 static void drm_parse_y420cmdb_bitmap(struct drm_connector *connector,
4893 				      const u8 *db)
4894 {
4895 	struct drm_display_info *info = &connector->display_info;
4896 	struct drm_hdmi_info *hdmi = &info->hdmi;
4897 	u8 map_len = cea_db_payload_len(db) - 1;
4898 	u8 count;
4899 	u64 map = 0;
4900 
4901 	if (map_len == 0) {
4902 		/* All CEA modes support ycbcr420 sampling also.*/
4903 		hdmi->y420_cmdb_map = U64_MAX;
4904 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
4905 		return;
4906 	}
4907 
4908 	/*
4909 	 * This map indicates which of the existing CEA block modes
4910 	 * from VDB can support YCBCR420 output too. So if bit=0 is
4911 	 * set, first mode from VDB can support YCBCR420 output too.
4912 	 * We will parse and keep this map, before parsing VDB itself
4913 	 * to avoid going through the same block again and again.
4914 	 *
4915 	 * Spec is not clear about max possible size of this block.
4916 	 * Clamping max bitmap block size at 8 bytes. Every byte can
4917 	 * address 8 CEA modes, in this way this map can address
4918 	 * 8*8 = first 64 SVDs.
4919 	 */
4920 	if (WARN_ON_ONCE(map_len > 8))
4921 		map_len = 8;
4922 
4923 	for (count = 0; count < map_len; count++)
4924 		map |= (u64)db[2 + count] << (8 * count);
4925 
4926 	if (map)
4927 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
4928 
4929 	hdmi->y420_cmdb_map = map;
4930 }
4931 
4932 static int add_cea_modes(struct drm_connector *connector,
4933 			 const struct drm_edid *drm_edid)
4934 {
4935 	const struct cea_db *db;
4936 	struct cea_db_iter iter;
4937 	int modes = 0;
4938 
4939 	cea_db_iter_edid_begin(drm_edid, &iter);
4940 	cea_db_iter_for_each(db, &iter) {
4941 		const u8 *hdmi = NULL, *video = NULL;
4942 		u8 hdmi_len = 0, video_len = 0;
4943 
4944 		if (cea_db_tag(db) == CTA_DB_VIDEO) {
4945 			video = cea_db_data(db);
4946 			video_len = cea_db_payload_len(db);
4947 			modes += do_cea_modes(connector, video, video_len);
4948 		} else if (cea_db_is_hdmi_vsdb(db)) {
4949 			/* FIXME: Switch to use cea_db_data() */
4950 			hdmi = (const u8 *)db;
4951 			hdmi_len = cea_db_payload_len(db);
4952 		} else if (cea_db_is_y420vdb(db)) {
4953 			const u8 *vdb420 = cea_db_data(db) + 1;
4954 
4955 			/* Add 4:2:0(only) modes present in EDID */
4956 			modes += do_y420vdb_modes(connector, vdb420,
4957 						  cea_db_payload_len(db) - 1);
4958 		}
4959 
4960 		/*
4961 		 * We parse the HDMI VSDB after having added the cea modes as we
4962 		 * will be patching their flags when the sink supports stereo
4963 		 * 3D.
4964 		 */
4965 		if (hdmi)
4966 			modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len,
4967 						    video, video_len);
4968 	}
4969 	cea_db_iter_end(&iter);
4970 
4971 	return modes;
4972 }
4973 
4974 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
4975 {
4976 	const struct drm_display_mode *cea_mode;
4977 	int clock1, clock2, clock;
4978 	u8 vic;
4979 	const char *type;
4980 
4981 	/*
4982 	 * allow 5kHz clock difference either way to account for
4983 	 * the 10kHz clock resolution limit of detailed timings.
4984 	 */
4985 	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
4986 	if (drm_valid_cea_vic(vic)) {
4987 		type = "CEA";
4988 		cea_mode = cea_mode_for_vic(vic);
4989 		clock1 = cea_mode->clock;
4990 		clock2 = cea_mode_alternate_clock(cea_mode);
4991 	} else {
4992 		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
4993 		if (drm_valid_hdmi_vic(vic)) {
4994 			type = "HDMI";
4995 			cea_mode = &edid_4k_modes[vic];
4996 			clock1 = cea_mode->clock;
4997 			clock2 = hdmi_mode_alternate_clock(cea_mode);
4998 		} else {
4999 			return;
5000 		}
5001 	}
5002 
5003 	/* pick whichever is closest */
5004 	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5005 		clock = clock1;
5006 	else
5007 		clock = clock2;
5008 
5009 	if (mode->clock == clock)
5010 		return;
5011 
5012 	DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5013 		  type, vic, mode->clock, clock);
5014 	mode->clock = clock;
5015 }
5016 
5017 static uint8_t eotf_supported(const u8 *edid_ext)
5018 {
5019 	return edid_ext[2] &
5020 		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5021 		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5022 		 BIT(HDMI_EOTF_SMPTE_ST2084) |
5023 		 BIT(HDMI_EOTF_BT_2100_HLG));
5024 }
5025 
5026 static uint8_t hdr_metadata_type(const u8 *edid_ext)
5027 {
5028 	return edid_ext[3] &
5029 		BIT(HDMI_STATIC_METADATA_TYPE1);
5030 }
5031 
5032 static void
5033 drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5034 {
5035 	u16 len;
5036 
5037 	len = cea_db_payload_len(db);
5038 
5039 	connector->hdr_sink_metadata.hdmi_type1.eotf =
5040 						eotf_supported(db);
5041 	connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5042 						hdr_metadata_type(db);
5043 
5044 	if (len >= 4)
5045 		connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5046 	if (len >= 5)
5047 		connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5048 	if (len >= 6)
5049 		connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5050 }
5051 
5052 static void
5053 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5054 {
5055 	u8 len = cea_db_payload_len(db);
5056 
5057 	if (len >= 6 && (db[6] & (1 << 7)))
5058 		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5059 	if (len >= 8) {
5060 		connector->latency_present[0] = db[8] >> 7;
5061 		connector->latency_present[1] = (db[8] >> 6) & 1;
5062 	}
5063 	if (len >= 9)
5064 		connector->video_latency[0] = db[9];
5065 	if (len >= 10)
5066 		connector->audio_latency[0] = db[10];
5067 	if (len >= 11)
5068 		connector->video_latency[1] = db[11];
5069 	if (len >= 12)
5070 		connector->audio_latency[1] = db[12];
5071 
5072 	DRM_DEBUG_KMS("HDMI: latency present %d %d, "
5073 		      "video latency %d %d, "
5074 		      "audio latency %d %d\n",
5075 		      connector->latency_present[0],
5076 		      connector->latency_present[1],
5077 		      connector->video_latency[0],
5078 		      connector->video_latency[1],
5079 		      connector->audio_latency[0],
5080 		      connector->audio_latency[1]);
5081 }
5082 
5083 static void
5084 monitor_name(const struct detailed_timing *timing, void *data)
5085 {
5086 	const char **res = data;
5087 
5088 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5089 		return;
5090 
5091 	*res = timing->data.other_data.data.str.str;
5092 }
5093 
5094 static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5095 {
5096 	const char *edid_name = NULL;
5097 	int mnl;
5098 
5099 	if (!drm_edid || !name)
5100 		return 0;
5101 
5102 	drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5103 	for (mnl = 0; edid_name && mnl < 13; mnl++) {
5104 		if (edid_name[mnl] == 0x0a)
5105 			break;
5106 
5107 		name[mnl] = edid_name[mnl];
5108 	}
5109 
5110 	return mnl;
5111 }
5112 
5113 /**
5114  * drm_edid_get_monitor_name - fetch the monitor name from the edid
5115  * @edid: monitor EDID information
5116  * @name: pointer to a character array to hold the name of the monitor
5117  * @bufsize: The size of the name buffer (should be at least 14 chars.)
5118  *
5119  */
5120 void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5121 {
5122 	int name_length = 0;
5123 
5124 	if (bufsize <= 0)
5125 		return;
5126 
5127 	if (edid) {
5128 		char buf[13];
5129 		struct drm_edid drm_edid = {
5130 			.edid = edid,
5131 			.size = edid_size(edid),
5132 		};
5133 
5134 		name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5135 		memcpy(name, buf, name_length);
5136 	}
5137 
5138 	name[name_length] = '\0';
5139 }
5140 EXPORT_SYMBOL(drm_edid_get_monitor_name);
5141 
5142 static void clear_eld(struct drm_connector *connector)
5143 {
5144 	memset(connector->eld, 0, sizeof(connector->eld));
5145 
5146 	connector->latency_present[0] = false;
5147 	connector->latency_present[1] = false;
5148 	connector->video_latency[0] = 0;
5149 	connector->audio_latency[0] = 0;
5150 	connector->video_latency[1] = 0;
5151 	connector->audio_latency[1] = 0;
5152 }
5153 
5154 /*
5155  * drm_edid_to_eld - build ELD from EDID
5156  * @connector: connector corresponding to the HDMI/DP sink
5157  * @drm_edid: EDID to parse
5158  *
5159  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5160  * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5161  */
5162 static void drm_edid_to_eld(struct drm_connector *connector,
5163 			    const struct drm_edid *drm_edid)
5164 {
5165 	const struct drm_display_info *info = &connector->display_info;
5166 	const struct cea_db *db;
5167 	struct cea_db_iter iter;
5168 	uint8_t *eld = connector->eld;
5169 	int total_sad_count = 0;
5170 	int mnl;
5171 
5172 	clear_eld(connector);
5173 
5174 	if (!drm_edid)
5175 		return;
5176 
5177 	mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5178 	DRM_DEBUG_KMS("ELD monitor %s\n", &eld[DRM_ELD_MONITOR_NAME_STRING]);
5179 
5180 	eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5181 	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5182 
5183 	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5184 
5185 	eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5186 	eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5187 	eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5188 	eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5189 
5190 	cea_db_iter_edid_begin(drm_edid, &iter);
5191 	cea_db_iter_for_each(db, &iter) {
5192 		const u8 *data = cea_db_data(db);
5193 		int len = cea_db_payload_len(db);
5194 		int sad_count;
5195 
5196 		switch (cea_db_tag(db)) {
5197 		case CTA_DB_AUDIO:
5198 			/* Audio Data Block, contains SADs */
5199 			sad_count = min(len / 3, 15 - total_sad_count);
5200 			if (sad_count >= 1)
5201 				memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5202 				       data, sad_count * 3);
5203 			total_sad_count += sad_count;
5204 			break;
5205 		case CTA_DB_SPEAKER:
5206 			/* Speaker Allocation Data Block */
5207 			if (len >= 1)
5208 				eld[DRM_ELD_SPEAKER] = data[0];
5209 			break;
5210 		case CTA_DB_VENDOR:
5211 			/* HDMI Vendor-Specific Data Block */
5212 			if (cea_db_is_hdmi_vsdb(db))
5213 				drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5214 			break;
5215 		default:
5216 			break;
5217 		}
5218 	}
5219 	cea_db_iter_end(&iter);
5220 
5221 	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5222 
5223 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5224 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5225 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5226 	else
5227 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5228 
5229 	eld[DRM_ELD_BASELINE_ELD_LEN] =
5230 		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5231 
5232 	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n",
5233 		      drm_eld_size(eld), total_sad_count);
5234 }
5235 
5236 static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5237 			    struct cea_sad **sads)
5238 {
5239 	const struct cea_db *db;
5240 	struct cea_db_iter iter;
5241 	int count = 0;
5242 
5243 	cea_db_iter_edid_begin(drm_edid, &iter);
5244 	cea_db_iter_for_each(db, &iter) {
5245 		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5246 			int j;
5247 
5248 			count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5249 			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
5250 			if (!*sads)
5251 				return -ENOMEM;
5252 			for (j = 0; j < count; j++) {
5253 				const u8 *sad = &db->data[j * 3];
5254 
5255 				(*sads)[j].format = (sad[0] & 0x78) >> 3;
5256 				(*sads)[j].channels = sad[0] & 0x7;
5257 				(*sads)[j].freq = sad[1] & 0x7F;
5258 				(*sads)[j].byte2 = sad[2];
5259 			}
5260 			break;
5261 		}
5262 	}
5263 	cea_db_iter_end(&iter);
5264 
5265 	DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5266 
5267 	return count;
5268 }
5269 
5270 /**
5271  * drm_edid_to_sad - extracts SADs from EDID
5272  * @edid: EDID to parse
5273  * @sads: pointer that will be set to the extracted SADs
5274  *
5275  * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5276  *
5277  * Note: The returned pointer needs to be freed using kfree().
5278  *
5279  * Return: The number of found SADs or negative number on error.
5280  */
5281 int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5282 {
5283 	struct drm_edid drm_edid;
5284 
5285 	return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5286 }
5287 EXPORT_SYMBOL(drm_edid_to_sad);
5288 
5289 static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5290 					   u8 **sadb)
5291 {
5292 	const struct cea_db *db;
5293 	struct cea_db_iter iter;
5294 	int count = 0;
5295 
5296 	cea_db_iter_edid_begin(drm_edid, &iter);
5297 	cea_db_iter_for_each(db, &iter) {
5298 		if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5299 		    cea_db_payload_len(db) == 3) {
5300 			*sadb = kmemdup(db->data, cea_db_payload_len(db),
5301 					GFP_KERNEL);
5302 			if (!*sadb)
5303 				return -ENOMEM;
5304 			count = cea_db_payload_len(db);
5305 			break;
5306 		}
5307 	}
5308 	cea_db_iter_end(&iter);
5309 
5310 	DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5311 
5312 	return count;
5313 }
5314 
5315 /**
5316  * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5317  * @edid: EDID to parse
5318  * @sadb: pointer to the speaker block
5319  *
5320  * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5321  *
5322  * Note: The returned pointer needs to be freed using kfree().
5323  *
5324  * Return: The number of found Speaker Allocation Blocks or negative number on
5325  * error.
5326  */
5327 int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5328 {
5329 	struct drm_edid drm_edid;
5330 
5331 	return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5332 					       sadb);
5333 }
5334 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5335 
5336 /**
5337  * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5338  * @connector: connector associated with the HDMI/DP sink
5339  * @mode: the display mode
5340  *
5341  * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5342  * the sink doesn't support audio or video.
5343  */
5344 int drm_av_sync_delay(struct drm_connector *connector,
5345 		      const struct drm_display_mode *mode)
5346 {
5347 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5348 	int a, v;
5349 
5350 	if (!connector->latency_present[0])
5351 		return 0;
5352 	if (!connector->latency_present[1])
5353 		i = 0;
5354 
5355 	a = connector->audio_latency[i];
5356 	v = connector->video_latency[i];
5357 
5358 	/*
5359 	 * HDMI/DP sink doesn't support audio or video?
5360 	 */
5361 	if (a == 255 || v == 255)
5362 		return 0;
5363 
5364 	/*
5365 	 * Convert raw EDID values to millisecond.
5366 	 * Treat unknown latency as 0ms.
5367 	 */
5368 	if (a)
5369 		a = min(2 * (a - 1), 500);
5370 	if (v)
5371 		v = min(2 * (v - 1), 500);
5372 
5373 	return max(v - a, 0);
5374 }
5375 EXPORT_SYMBOL(drm_av_sync_delay);
5376 
5377 static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5378 {
5379 	const struct cea_db *db;
5380 	struct cea_db_iter iter;
5381 	bool hdmi = false;
5382 
5383 	/*
5384 	 * Because HDMI identifier is in Vendor Specific Block,
5385 	 * search it from all data blocks of CEA extension.
5386 	 */
5387 	cea_db_iter_edid_begin(drm_edid, &iter);
5388 	cea_db_iter_for_each(db, &iter) {
5389 		if (cea_db_is_hdmi_vsdb(db)) {
5390 			hdmi = true;
5391 			break;
5392 		}
5393 	}
5394 	cea_db_iter_end(&iter);
5395 
5396 	return hdmi;
5397 }
5398 
5399 /**
5400  * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5401  * @edid: monitor EDID information
5402  *
5403  * Parse the CEA extension according to CEA-861-B.
5404  *
5405  * Drivers that have added the modes parsed from EDID to drm_display_info
5406  * should use &drm_display_info.is_hdmi instead of calling this function.
5407  *
5408  * Return: True if the monitor is HDMI, false if not or unknown.
5409  */
5410 bool drm_detect_hdmi_monitor(const struct edid *edid)
5411 {
5412 	struct drm_edid drm_edid;
5413 
5414 	return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5415 }
5416 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5417 
5418 static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5419 {
5420 	struct drm_edid_iter edid_iter;
5421 	const struct cea_db *db;
5422 	struct cea_db_iter iter;
5423 	const u8 *edid_ext;
5424 	bool has_audio = false;
5425 
5426 	drm_edid_iter_begin(drm_edid, &edid_iter);
5427 	drm_edid_iter_for_each(edid_ext, &edid_iter) {
5428 		if (edid_ext[0] == CEA_EXT) {
5429 			has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5430 			if (has_audio)
5431 				break;
5432 		}
5433 	}
5434 	drm_edid_iter_end(&edid_iter);
5435 
5436 	if (has_audio) {
5437 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
5438 		goto end;
5439 	}
5440 
5441 	cea_db_iter_edid_begin(drm_edid, &iter);
5442 	cea_db_iter_for_each(db, &iter) {
5443 		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5444 			const u8 *data = cea_db_data(db);
5445 			int i;
5446 
5447 			for (i = 0; i < cea_db_payload_len(db); i += 3)
5448 				DRM_DEBUG_KMS("CEA audio format %d\n",
5449 					      (data[i] >> 3) & 0xf);
5450 			has_audio = true;
5451 			break;
5452 		}
5453 	}
5454 	cea_db_iter_end(&iter);
5455 
5456 end:
5457 	return has_audio;
5458 }
5459 
5460 /**
5461  * drm_detect_monitor_audio - check monitor audio capability
5462  * @edid: EDID block to scan
5463  *
5464  * Monitor should have CEA extension block.
5465  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5466  * audio' only. If there is any audio extension block and supported
5467  * audio format, assume at least 'basic audio' support, even if 'basic
5468  * audio' is not defined in EDID.
5469  *
5470  * Return: True if the monitor supports audio, false otherwise.
5471  */
5472 bool drm_detect_monitor_audio(const struct edid *edid)
5473 {
5474 	struct drm_edid drm_edid;
5475 
5476 	return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5477 }
5478 EXPORT_SYMBOL(drm_detect_monitor_audio);
5479 
5480 
5481 /**
5482  * drm_default_rgb_quant_range - default RGB quantization range
5483  * @mode: display mode
5484  *
5485  * Determine the default RGB quantization range for the mode,
5486  * as specified in CEA-861.
5487  *
5488  * Return: The default RGB quantization range for the mode
5489  */
5490 enum hdmi_quantization_range
5491 drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5492 {
5493 	/* All CEA modes other than VIC 1 use limited quantization range. */
5494 	return drm_match_cea_mode(mode) > 1 ?
5495 		HDMI_QUANTIZATION_RANGE_LIMITED :
5496 		HDMI_QUANTIZATION_RANGE_FULL;
5497 }
5498 EXPORT_SYMBOL(drm_default_rgb_quant_range);
5499 
5500 static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5501 {
5502 	struct drm_display_info *info = &connector->display_info;
5503 
5504 	DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", db[2]);
5505 
5506 	if (db[2] & EDID_CEA_VCDB_QS)
5507 		info->rgb_quant_range_selectable = true;
5508 }
5509 
5510 static
5511 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5512 {
5513 	switch (max_frl_rate) {
5514 	case 1:
5515 		*max_lanes = 3;
5516 		*max_rate_per_lane = 3;
5517 		break;
5518 	case 2:
5519 		*max_lanes = 3;
5520 		*max_rate_per_lane = 6;
5521 		break;
5522 	case 3:
5523 		*max_lanes = 4;
5524 		*max_rate_per_lane = 6;
5525 		break;
5526 	case 4:
5527 		*max_lanes = 4;
5528 		*max_rate_per_lane = 8;
5529 		break;
5530 	case 5:
5531 		*max_lanes = 4;
5532 		*max_rate_per_lane = 10;
5533 		break;
5534 	case 6:
5535 		*max_lanes = 4;
5536 		*max_rate_per_lane = 12;
5537 		break;
5538 	case 0:
5539 	default:
5540 		*max_lanes = 0;
5541 		*max_rate_per_lane = 0;
5542 	}
5543 }
5544 
5545 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
5546 					       const u8 *db)
5547 {
5548 	u8 dc_mask;
5549 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
5550 
5551 	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
5552 	hdmi->y420_dc_modes = dc_mask;
5553 }
5554 
5555 /* Sink Capability Data Structure */
5556 static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
5557 				      const u8 *hf_scds)
5558 {
5559 	struct drm_display_info *display = &connector->display_info;
5560 	struct drm_hdmi_info *hdmi = &display->hdmi;
5561 
5562 	display->has_hdmi_infoframe = true;
5563 
5564 	if (hf_scds[6] & 0x80) {
5565 		hdmi->scdc.supported = true;
5566 		if (hf_scds[6] & 0x40)
5567 			hdmi->scdc.read_request = true;
5568 	}
5569 
5570 	/*
5571 	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
5572 	 * And as per the spec, three factors confirm this:
5573 	 * * Availability of a HF-VSDB block in EDID (check)
5574 	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
5575 	 * * SCDC support available (let's check)
5576 	 * Lets check it out.
5577 	 */
5578 
5579 	if (hf_scds[5]) {
5580 		/* max clock is 5000 KHz times block value */
5581 		u32 max_tmds_clock = hf_scds[5] * 5000;
5582 		struct drm_scdc *scdc = &hdmi->scdc;
5583 
5584 		if (max_tmds_clock > 340000) {
5585 			display->max_tmds_clock = max_tmds_clock;
5586 			DRM_DEBUG_KMS("HF-VSDB: max TMDS clock %d kHz\n",
5587 				display->max_tmds_clock);
5588 		}
5589 
5590 		if (scdc->supported) {
5591 			scdc->scrambling.supported = true;
5592 
5593 			/* Few sinks support scrambling for clocks < 340M */
5594 			if ((hf_scds[6] & 0x8))
5595 				scdc->scrambling.low_rates = true;
5596 		}
5597 	}
5598 
5599 	if (hf_scds[7]) {
5600 		u8 max_frl_rate;
5601 		u8 dsc_max_frl_rate;
5602 		u8 dsc_max_slices;
5603 		struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
5604 
5605 		DRM_DEBUG_KMS("hdmi_21 sink detected. parsing edid\n");
5606 		max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
5607 		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
5608 				     &hdmi->max_frl_rate_per_lane);
5609 		hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
5610 
5611 		if (hdmi_dsc->v_1p2) {
5612 			hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
5613 			hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
5614 
5615 			if (hf_scds[11] & DRM_EDID_DSC_16BPC)
5616 				hdmi_dsc->bpc_supported = 16;
5617 			else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
5618 				hdmi_dsc->bpc_supported = 12;
5619 			else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
5620 				hdmi_dsc->bpc_supported = 10;
5621 			else
5622 				hdmi_dsc->bpc_supported = 0;
5623 
5624 			dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
5625 			drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
5626 					     &hdmi_dsc->max_frl_rate_per_lane);
5627 			hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
5628 
5629 			dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
5630 			switch (dsc_max_slices) {
5631 			case 1:
5632 				hdmi_dsc->max_slices = 1;
5633 				hdmi_dsc->clk_per_slice = 340;
5634 				break;
5635 			case 2:
5636 				hdmi_dsc->max_slices = 2;
5637 				hdmi_dsc->clk_per_slice = 340;
5638 				break;
5639 			case 3:
5640 				hdmi_dsc->max_slices = 4;
5641 				hdmi_dsc->clk_per_slice = 340;
5642 				break;
5643 			case 4:
5644 				hdmi_dsc->max_slices = 8;
5645 				hdmi_dsc->clk_per_slice = 340;
5646 				break;
5647 			case 5:
5648 				hdmi_dsc->max_slices = 8;
5649 				hdmi_dsc->clk_per_slice = 400;
5650 				break;
5651 			case 6:
5652 				hdmi_dsc->max_slices = 12;
5653 				hdmi_dsc->clk_per_slice = 400;
5654 				break;
5655 			case 7:
5656 				hdmi_dsc->max_slices = 16;
5657 				hdmi_dsc->clk_per_slice = 400;
5658 				break;
5659 			case 0:
5660 			default:
5661 				hdmi_dsc->max_slices = 0;
5662 				hdmi_dsc->clk_per_slice = 0;
5663 			}
5664 		}
5665 	}
5666 
5667 	drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
5668 }
5669 
5670 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
5671 					   const u8 *hdmi)
5672 {
5673 	struct drm_display_info *info = &connector->display_info;
5674 	unsigned int dc_bpc = 0;
5675 
5676 	/* HDMI supports at least 8 bpc */
5677 	info->bpc = 8;
5678 
5679 	if (cea_db_payload_len(hdmi) < 6)
5680 		return;
5681 
5682 	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
5683 		dc_bpc = 10;
5684 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
5685 		DRM_DEBUG("%s: HDMI sink does deep color 30.\n",
5686 			  connector->name);
5687 	}
5688 
5689 	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
5690 		dc_bpc = 12;
5691 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
5692 		DRM_DEBUG("%s: HDMI sink does deep color 36.\n",
5693 			  connector->name);
5694 	}
5695 
5696 	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
5697 		dc_bpc = 16;
5698 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
5699 		DRM_DEBUG("%s: HDMI sink does deep color 48.\n",
5700 			  connector->name);
5701 	}
5702 
5703 	if (dc_bpc == 0) {
5704 		DRM_DEBUG("%s: No deep color support on this HDMI sink.\n",
5705 			  connector->name);
5706 		return;
5707 	}
5708 
5709 	DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n",
5710 		  connector->name, dc_bpc);
5711 	info->bpc = dc_bpc;
5712 
5713 	/* YCRCB444 is optional according to spec. */
5714 	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
5715 		info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
5716 		DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n",
5717 			  connector->name);
5718 	}
5719 
5720 	/*
5721 	 * Spec says that if any deep color mode is supported at all,
5722 	 * then deep color 36 bit must be supported.
5723 	 */
5724 	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
5725 		DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n",
5726 			  connector->name);
5727 	}
5728 }
5729 
5730 static void
5731 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
5732 {
5733 	struct drm_display_info *info = &connector->display_info;
5734 	u8 len = cea_db_payload_len(db);
5735 
5736 	info->is_hdmi = true;
5737 
5738 	if (len >= 6)
5739 		info->dvi_dual = db[6] & 1;
5740 	if (len >= 7)
5741 		info->max_tmds_clock = db[7] * 5000;
5742 
5743 	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
5744 		      "max TMDS clock %d kHz\n",
5745 		      info->dvi_dual,
5746 		      info->max_tmds_clock);
5747 
5748 	drm_parse_hdmi_deep_color_info(connector, db);
5749 }
5750 
5751 /*
5752  * See EDID extension for head-mounted and specialized monitors, specified at:
5753  * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
5754  */
5755 static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
5756 				     const u8 *db)
5757 {
5758 	struct drm_display_info *info = &connector->display_info;
5759 	u8 version = db[4];
5760 	bool desktop_usage = db[5] & BIT(6);
5761 
5762 	/* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
5763 	if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
5764 		info->non_desktop = true;
5765 
5766 	drm_dbg_kms(connector->dev, "HMD or specialized display VSDB version %u: 0x%02x\n",
5767 		    version, db[5]);
5768 }
5769 
5770 static void drm_parse_cea_ext(struct drm_connector *connector,
5771 			      const struct drm_edid *drm_edid)
5772 {
5773 	struct drm_display_info *info = &connector->display_info;
5774 	struct drm_edid_iter edid_iter;
5775 	const struct cea_db *db;
5776 	struct cea_db_iter iter;
5777 	const u8 *edid_ext;
5778 
5779 	drm_edid_iter_begin(drm_edid, &edid_iter);
5780 	drm_edid_iter_for_each(edid_ext, &edid_iter) {
5781 		if (edid_ext[0] != CEA_EXT)
5782 			continue;
5783 
5784 		if (!info->cea_rev)
5785 			info->cea_rev = edid_ext[1];
5786 
5787 		if (info->cea_rev != edid_ext[1])
5788 			DRM_DEBUG_KMS("CEA extension version mismatch %u != %u\n",
5789 				      info->cea_rev, edid_ext[1]);
5790 
5791 		/* The existence of a CTA extension should imply RGB support */
5792 		info->color_formats = DRM_COLOR_FORMAT_RGB444;
5793 		if (edid_ext[3] & EDID_CEA_YCRCB444)
5794 			info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
5795 		if (edid_ext[3] & EDID_CEA_YCRCB422)
5796 			info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
5797 	}
5798 	drm_edid_iter_end(&edid_iter);
5799 
5800 	cea_db_iter_edid_begin(drm_edid, &iter);
5801 	cea_db_iter_for_each(db, &iter) {
5802 		/* FIXME: convert parsers to use struct cea_db */
5803 		const u8 *data = (const u8 *)db;
5804 
5805 		if (cea_db_is_hdmi_vsdb(db))
5806 			drm_parse_hdmi_vsdb_video(connector, data);
5807 		else if (cea_db_is_hdmi_forum_vsdb(db) ||
5808 			 cea_db_is_hdmi_forum_scdb(db))
5809 			drm_parse_hdmi_forum_scds(connector, data);
5810 		else if (cea_db_is_microsoft_vsdb(db))
5811 			drm_parse_microsoft_vsdb(connector, data);
5812 		else if (cea_db_is_y420cmdb(db))
5813 			drm_parse_y420cmdb_bitmap(connector, data);
5814 		else if (cea_db_is_vcdb(db))
5815 			drm_parse_vcdb(connector, data);
5816 		else if (cea_db_is_hdmi_hdr_metadata_block(db))
5817 			drm_parse_hdr_metadata_block(connector, data);
5818 	}
5819 	cea_db_iter_end(&iter);
5820 }
5821 
5822 static
5823 void get_monitor_range(const struct detailed_timing *timing,
5824 		       void *info_monitor_range)
5825 {
5826 	struct drm_monitor_range_info *monitor_range = info_monitor_range;
5827 	const struct detailed_non_pixel *data = &timing->data.other_data;
5828 	const struct detailed_data_monitor_range *range = &data->data.range;
5829 
5830 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
5831 		return;
5832 
5833 	/*
5834 	 * Check for flag range limits only. If flag == 1 then
5835 	 * no additional timing information provided.
5836 	 * Default GTF, GTF Secondary curve and CVT are not
5837 	 * supported
5838 	 */
5839 	if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
5840 		return;
5841 
5842 	monitor_range->min_vfreq = range->min_vfreq;
5843 	monitor_range->max_vfreq = range->max_vfreq;
5844 }
5845 
5846 static void drm_get_monitor_range(struct drm_connector *connector,
5847 				  const struct drm_edid *drm_edid)
5848 {
5849 	struct drm_display_info *info = &connector->display_info;
5850 
5851 	if (!version_greater(drm_edid, 1, 1))
5852 		return;
5853 
5854 	drm_for_each_detailed_block(drm_edid, get_monitor_range,
5855 				    &info->monitor_range);
5856 
5857 	DRM_DEBUG_KMS("Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
5858 		      info->monitor_range.min_vfreq,
5859 		      info->monitor_range.max_vfreq);
5860 }
5861 
5862 static void drm_parse_vesa_mso_data(struct drm_connector *connector,
5863 				    const struct displayid_block *block)
5864 {
5865 	struct displayid_vesa_vendor_specific_block *vesa =
5866 		(struct displayid_vesa_vendor_specific_block *)block;
5867 	struct drm_display_info *info = &connector->display_info;
5868 
5869 	if (block->num_bytes < 3) {
5870 		drm_dbg_kms(connector->dev, "Unexpected vendor block size %u\n",
5871 			    block->num_bytes);
5872 		return;
5873 	}
5874 
5875 	if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
5876 		return;
5877 
5878 	if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
5879 		drm_dbg_kms(connector->dev, "Unexpected VESA vendor block size\n");
5880 		return;
5881 	}
5882 
5883 	switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
5884 	default:
5885 		drm_dbg_kms(connector->dev, "Reserved MSO mode value\n");
5886 		fallthrough;
5887 	case 0:
5888 		info->mso_stream_count = 0;
5889 		break;
5890 	case 1:
5891 		info->mso_stream_count = 2; /* 2 or 4 links */
5892 		break;
5893 	case 2:
5894 		info->mso_stream_count = 4; /* 4 links */
5895 		break;
5896 	}
5897 
5898 	if (!info->mso_stream_count) {
5899 		info->mso_pixel_overlap = 0;
5900 		return;
5901 	}
5902 
5903 	info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
5904 	if (info->mso_pixel_overlap > 8) {
5905 		drm_dbg_kms(connector->dev, "Reserved MSO pixel overlap value %u\n",
5906 			    info->mso_pixel_overlap);
5907 		info->mso_pixel_overlap = 8;
5908 	}
5909 
5910 	drm_dbg_kms(connector->dev, "MSO stream count %u, pixel overlap %u\n",
5911 		    info->mso_stream_count, info->mso_pixel_overlap);
5912 }
5913 
5914 static void drm_update_mso(struct drm_connector *connector,
5915 			   const struct drm_edid *drm_edid)
5916 {
5917 	const struct displayid_block *block;
5918 	struct displayid_iter iter;
5919 
5920 	displayid_iter_edid_begin(drm_edid, &iter);
5921 	displayid_iter_for_each(block, &iter) {
5922 		if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
5923 			drm_parse_vesa_mso_data(connector, block);
5924 	}
5925 	displayid_iter_end(&iter);
5926 }
5927 
5928 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
5929  * all of the values which would have been set from EDID
5930  */
5931 void
5932 drm_reset_display_info(struct drm_connector *connector)
5933 {
5934 	struct drm_display_info *info = &connector->display_info;
5935 
5936 	info->width_mm = 0;
5937 	info->height_mm = 0;
5938 
5939 	info->bpc = 0;
5940 	info->color_formats = 0;
5941 	info->cea_rev = 0;
5942 	info->max_tmds_clock = 0;
5943 	info->dvi_dual = false;
5944 	info->is_hdmi = false;
5945 	info->has_hdmi_infoframe = false;
5946 	info->rgb_quant_range_selectable = false;
5947 	memset(&info->hdmi, 0, sizeof(info->hdmi));
5948 
5949 	info->edid_hdmi_rgb444_dc_modes = 0;
5950 	info->edid_hdmi_ycbcr444_dc_modes = 0;
5951 
5952 	info->non_desktop = 0;
5953 	memset(&info->monitor_range, 0, sizeof(info->monitor_range));
5954 
5955 	info->mso_stream_count = 0;
5956 	info->mso_pixel_overlap = 0;
5957 }
5958 
5959 static u32 update_display_info(struct drm_connector *connector,
5960 			       const struct drm_edid *drm_edid)
5961 {
5962 	struct drm_display_info *info = &connector->display_info;
5963 	const struct edid *edid = drm_edid->edid;
5964 
5965 	u32 quirks = edid_get_quirks(drm_edid);
5966 
5967 	drm_reset_display_info(connector);
5968 
5969 	info->width_mm = edid->width_cm * 10;
5970 	info->height_mm = edid->height_cm * 10;
5971 
5972 	drm_get_monitor_range(connector, drm_edid);
5973 
5974 	if (edid->revision < 3)
5975 		goto out;
5976 
5977 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
5978 		goto out;
5979 
5980 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
5981 	drm_parse_cea_ext(connector, drm_edid);
5982 
5983 	/*
5984 	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
5985 	 *
5986 	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
5987 	 * tells us to assume 8 bpc color depth if the EDID doesn't have
5988 	 * extensions which tell otherwise.
5989 	 */
5990 	if (info->bpc == 0 && edid->revision == 3 &&
5991 	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
5992 		info->bpc = 8;
5993 		DRM_DEBUG("%s: Assigning DFP sink color depth as %d bpc.\n",
5994 			  connector->name, info->bpc);
5995 	}
5996 
5997 	/* Only defined for 1.4 with digital displays */
5998 	if (edid->revision < 4)
5999 		goto out;
6000 
6001 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6002 	case DRM_EDID_DIGITAL_DEPTH_6:
6003 		info->bpc = 6;
6004 		break;
6005 	case DRM_EDID_DIGITAL_DEPTH_8:
6006 		info->bpc = 8;
6007 		break;
6008 	case DRM_EDID_DIGITAL_DEPTH_10:
6009 		info->bpc = 10;
6010 		break;
6011 	case DRM_EDID_DIGITAL_DEPTH_12:
6012 		info->bpc = 12;
6013 		break;
6014 	case DRM_EDID_DIGITAL_DEPTH_14:
6015 		info->bpc = 14;
6016 		break;
6017 	case DRM_EDID_DIGITAL_DEPTH_16:
6018 		info->bpc = 16;
6019 		break;
6020 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6021 	default:
6022 		info->bpc = 0;
6023 		break;
6024 	}
6025 
6026 	DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6027 			  connector->name, info->bpc);
6028 
6029 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6030 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6031 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6032 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6033 
6034 	drm_update_mso(connector, drm_edid);
6035 
6036 out:
6037 	if (quirks & EDID_QUIRK_NON_DESKTOP) {
6038 		drm_dbg_kms(connector->dev, "Non-desktop display%s\n",
6039 			    info->non_desktop ? " (redundant quirk)" : "");
6040 		info->non_desktop = true;
6041 	}
6042 
6043 	return quirks;
6044 }
6045 
6046 u32 drm_add_display_info(struct drm_connector *connector, const struct edid *edid)
6047 {
6048 	struct drm_edid drm_edid;
6049 
6050 	return update_display_info(connector,
6051 				   drm_edid_legacy_init(&drm_edid, edid));
6052 }
6053 
6054 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6055 							    struct displayid_detailed_timings_1 *timings,
6056 							    bool type_7)
6057 {
6058 	struct drm_display_mode *mode;
6059 	unsigned pixel_clock = (timings->pixel_clock[0] |
6060 				(timings->pixel_clock[1] << 8) |
6061 				(timings->pixel_clock[2] << 16)) + 1;
6062 	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6063 	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6064 	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6065 	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6066 	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6067 	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6068 	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6069 	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6070 	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6071 	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6072 
6073 	mode = drm_mode_create(dev);
6074 	if (!mode)
6075 		return NULL;
6076 
6077 	/* resolution is kHz for type VII, and 10 kHz for type I */
6078 	mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6079 	mode->hdisplay = hactive;
6080 	mode->hsync_start = mode->hdisplay + hsync;
6081 	mode->hsync_end = mode->hsync_start + hsync_width;
6082 	mode->htotal = mode->hdisplay + hblank;
6083 
6084 	mode->vdisplay = vactive;
6085 	mode->vsync_start = mode->vdisplay + vsync;
6086 	mode->vsync_end = mode->vsync_start + vsync_width;
6087 	mode->vtotal = mode->vdisplay + vblank;
6088 
6089 	mode->flags = 0;
6090 	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6091 	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6092 	mode->type = DRM_MODE_TYPE_DRIVER;
6093 
6094 	if (timings->flags & 0x80)
6095 		mode->type |= DRM_MODE_TYPE_PREFERRED;
6096 	drm_mode_set_name(mode);
6097 
6098 	return mode;
6099 }
6100 
6101 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6102 					  const struct displayid_block *block)
6103 {
6104 	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6105 	int i;
6106 	int num_timings;
6107 	struct drm_display_mode *newmode;
6108 	int num_modes = 0;
6109 	bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6110 	/* blocks must be multiple of 20 bytes length */
6111 	if (block->num_bytes % 20)
6112 		return 0;
6113 
6114 	num_timings = block->num_bytes / 20;
6115 	for (i = 0; i < num_timings; i++) {
6116 		struct displayid_detailed_timings_1 *timings = &det->timings[i];
6117 
6118 		newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6119 		if (!newmode)
6120 			continue;
6121 
6122 		drm_mode_probed_add(connector, newmode);
6123 		num_modes++;
6124 	}
6125 	return num_modes;
6126 }
6127 
6128 static int add_displayid_detailed_modes(struct drm_connector *connector,
6129 					const struct drm_edid *drm_edid)
6130 {
6131 	const struct displayid_block *block;
6132 	struct displayid_iter iter;
6133 	int num_modes = 0;
6134 
6135 	displayid_iter_edid_begin(drm_edid, &iter);
6136 	displayid_iter_for_each(block, &iter) {
6137 		if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6138 		    block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6139 			num_modes += add_displayid_detailed_1_modes(connector, block);
6140 	}
6141 	displayid_iter_end(&iter);
6142 
6143 	return num_modes;
6144 }
6145 
6146 static int drm_edid_connector_update(struct drm_connector *connector,
6147 				     const struct drm_edid *drm_edid)
6148 {
6149 	int num_modes = 0;
6150 	u32 quirks;
6151 
6152 	if (!drm_edid) {
6153 		drm_reset_display_info(connector);
6154 		clear_eld(connector);
6155 		return 0;
6156 	}
6157 
6158 	/*
6159 	 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
6160 	 * To avoid multiple parsing of same block, lets parse that map
6161 	 * from sink info, before parsing CEA modes.
6162 	 */
6163 	quirks = update_display_info(connector, drm_edid);
6164 
6165 	/* Depends on info->cea_rev set by update_display_info() above */
6166 	drm_edid_to_eld(connector, drm_edid);
6167 
6168 	/*
6169 	 * EDID spec says modes should be preferred in this order:
6170 	 * - preferred detailed mode
6171 	 * - other detailed modes from base block
6172 	 * - detailed modes from extension blocks
6173 	 * - CVT 3-byte code modes
6174 	 * - standard timing codes
6175 	 * - established timing codes
6176 	 * - modes inferred from GTF or CVT range information
6177 	 *
6178 	 * We get this pretty much right.
6179 	 *
6180 	 * XXX order for additional mode types in extension blocks?
6181 	 */
6182 	num_modes += add_detailed_modes(connector, drm_edid, quirks);
6183 	num_modes += add_cvt_modes(connector, drm_edid);
6184 	num_modes += add_standard_modes(connector, drm_edid);
6185 	num_modes += add_established_modes(connector, drm_edid);
6186 	num_modes += add_cea_modes(connector, drm_edid);
6187 	num_modes += add_alternate_cea_modes(connector, drm_edid);
6188 	num_modes += add_displayid_detailed_modes(connector, drm_edid);
6189 	if (drm_edid->edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
6190 		num_modes += add_inferred_modes(connector, drm_edid);
6191 
6192 	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6193 		edid_fixup_preferred(connector, quirks);
6194 
6195 	if (quirks & EDID_QUIRK_FORCE_6BPC)
6196 		connector->display_info.bpc = 6;
6197 
6198 	if (quirks & EDID_QUIRK_FORCE_8BPC)
6199 		connector->display_info.bpc = 8;
6200 
6201 	if (quirks & EDID_QUIRK_FORCE_10BPC)
6202 		connector->display_info.bpc = 10;
6203 
6204 	if (quirks & EDID_QUIRK_FORCE_12BPC)
6205 		connector->display_info.bpc = 12;
6206 
6207 	return num_modes;
6208 }
6209 
6210 /**
6211  * drm_add_edid_modes - add modes from EDID data, if available
6212  * @connector: connector we're probing
6213  * @edid: EDID data
6214  *
6215  * Add the specified modes to the connector's mode list. Also fills out the
6216  * &drm_display_info structure and ELD in @connector with any information which
6217  * can be derived from the edid.
6218  *
6219  * Return: The number of modes added or 0 if we couldn't find any.
6220  */
6221 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6222 {
6223 	struct drm_edid drm_edid;
6224 
6225 	if (edid && !drm_edid_is_valid(edid)) {
6226 		drm_warn(connector->dev, "%s: EDID invalid.\n",
6227 			 connector->name);
6228 		edid = NULL;
6229 	}
6230 
6231 	return drm_edid_connector_update(connector,
6232 					 drm_edid_legacy_init(&drm_edid, edid));
6233 }
6234 EXPORT_SYMBOL(drm_add_edid_modes);
6235 
6236 /**
6237  * drm_add_modes_noedid - add modes for the connectors without EDID
6238  * @connector: connector we're probing
6239  * @hdisplay: the horizontal display limit
6240  * @vdisplay: the vertical display limit
6241  *
6242  * Add the specified modes to the connector's mode list. Only when the
6243  * hdisplay/vdisplay is not beyond the given limit, it will be added.
6244  *
6245  * Return: The number of modes added or 0 if we couldn't find any.
6246  */
6247 int drm_add_modes_noedid(struct drm_connector *connector,
6248 			int hdisplay, int vdisplay)
6249 {
6250 	int i, count, num_modes = 0;
6251 	struct drm_display_mode *mode;
6252 	struct drm_device *dev = connector->dev;
6253 
6254 	count = ARRAY_SIZE(drm_dmt_modes);
6255 	if (hdisplay < 0)
6256 		hdisplay = 0;
6257 	if (vdisplay < 0)
6258 		vdisplay = 0;
6259 
6260 	for (i = 0; i < count; i++) {
6261 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6262 
6263 		if (hdisplay && vdisplay) {
6264 			/*
6265 			 * Only when two are valid, they will be used to check
6266 			 * whether the mode should be added to the mode list of
6267 			 * the connector.
6268 			 */
6269 			if (ptr->hdisplay > hdisplay ||
6270 					ptr->vdisplay > vdisplay)
6271 				continue;
6272 		}
6273 		if (drm_mode_vrefresh(ptr) > 61)
6274 			continue;
6275 		mode = drm_mode_duplicate(dev, ptr);
6276 		if (mode) {
6277 			drm_mode_probed_add(connector, mode);
6278 			num_modes++;
6279 		}
6280 	}
6281 	return num_modes;
6282 }
6283 EXPORT_SYMBOL(drm_add_modes_noedid);
6284 
6285 /**
6286  * drm_set_preferred_mode - Sets the preferred mode of a connector
6287  * @connector: connector whose mode list should be processed
6288  * @hpref: horizontal resolution of preferred mode
6289  * @vpref: vertical resolution of preferred mode
6290  *
6291  * Marks a mode as preferred if it matches the resolution specified by @hpref
6292  * and @vpref.
6293  */
6294 void drm_set_preferred_mode(struct drm_connector *connector,
6295 			   int hpref, int vpref)
6296 {
6297 	struct drm_display_mode *mode;
6298 
6299 	list_for_each_entry(mode, &connector->probed_modes, head) {
6300 		if (mode->hdisplay == hpref &&
6301 		    mode->vdisplay == vpref)
6302 			mode->type |= DRM_MODE_TYPE_PREFERRED;
6303 	}
6304 }
6305 EXPORT_SYMBOL(drm_set_preferred_mode);
6306 
6307 static bool is_hdmi2_sink(const struct drm_connector *connector)
6308 {
6309 	/*
6310 	 * FIXME: sil-sii8620 doesn't have a connector around when
6311 	 * we need one, so we have to be prepared for a NULL connector.
6312 	 */
6313 	if (!connector)
6314 		return true;
6315 
6316 	return connector->display_info.hdmi.scdc.supported ||
6317 		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
6318 }
6319 
6320 static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
6321 			    const struct drm_display_mode *mode)
6322 {
6323 	bool has_hdmi_infoframe = connector ?
6324 		connector->display_info.has_hdmi_infoframe : false;
6325 
6326 	if (!has_hdmi_infoframe)
6327 		return 0;
6328 
6329 	/* No HDMI VIC when signalling 3D video format */
6330 	if (mode->flags & DRM_MODE_FLAG_3D_MASK)
6331 		return 0;
6332 
6333 	return drm_match_hdmi_mode(mode);
6334 }
6335 
6336 static u8 drm_mode_cea_vic(const struct drm_connector *connector,
6337 			   const struct drm_display_mode *mode)
6338 {
6339 	u8 vic;
6340 
6341 	/*
6342 	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
6343 	 * we should send its VIC in vendor infoframes, else send the
6344 	 * VIC in AVI infoframes. Lets check if this mode is present in
6345 	 * HDMI 1.4b 4K modes
6346 	 */
6347 	if (drm_mode_hdmi_vic(connector, mode))
6348 		return 0;
6349 
6350 	vic = drm_match_cea_mode(mode);
6351 
6352 	/*
6353 	 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
6354 	 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
6355 	 * have to make sure we dont break HDMI 1.4 sinks.
6356 	 */
6357 	if (!is_hdmi2_sink(connector) && vic > 64)
6358 		return 0;
6359 
6360 	return vic;
6361 }
6362 
6363 /**
6364  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
6365  *                                              data from a DRM display mode
6366  * @frame: HDMI AVI infoframe
6367  * @connector: the connector
6368  * @mode: DRM display mode
6369  *
6370  * Return: 0 on success or a negative error code on failure.
6371  */
6372 int
6373 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
6374 					 const struct drm_connector *connector,
6375 					 const struct drm_display_mode *mode)
6376 {
6377 	enum hdmi_picture_aspect picture_aspect;
6378 	u8 vic, hdmi_vic;
6379 
6380 	if (!frame || !mode)
6381 		return -EINVAL;
6382 
6383 	hdmi_avi_infoframe_init(frame);
6384 
6385 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
6386 		frame->pixel_repeat = 1;
6387 
6388 	vic = drm_mode_cea_vic(connector, mode);
6389 	hdmi_vic = drm_mode_hdmi_vic(connector, mode);
6390 
6391 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
6392 
6393 	/*
6394 	 * As some drivers don't support atomic, we can't use connector state.
6395 	 * So just initialize the frame with default values, just the same way
6396 	 * as it's done with other properties here.
6397 	 */
6398 	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
6399 	frame->itc = 0;
6400 
6401 	/*
6402 	 * Populate picture aspect ratio from either
6403 	 * user input (if specified) or from the CEA/HDMI mode lists.
6404 	 */
6405 	picture_aspect = mode->picture_aspect_ratio;
6406 	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
6407 		if (vic)
6408 			picture_aspect = drm_get_cea_aspect_ratio(vic);
6409 		else if (hdmi_vic)
6410 			picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
6411 	}
6412 
6413 	/*
6414 	 * The infoframe can't convey anything but none, 4:3
6415 	 * and 16:9, so if the user has asked for anything else
6416 	 * we can only satisfy it by specifying the right VIC.
6417 	 */
6418 	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
6419 		if (vic) {
6420 			if (picture_aspect != drm_get_cea_aspect_ratio(vic))
6421 				return -EINVAL;
6422 		} else if (hdmi_vic) {
6423 			if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
6424 				return -EINVAL;
6425 		} else {
6426 			return -EINVAL;
6427 		}
6428 
6429 		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
6430 	}
6431 
6432 	frame->video_code = vic;
6433 	frame->picture_aspect = picture_aspect;
6434 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
6435 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
6436 
6437 	return 0;
6438 }
6439 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
6440 
6441 /**
6442  * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
6443  *                                        quantization range information
6444  * @frame: HDMI AVI infoframe
6445  * @connector: the connector
6446  * @mode: DRM display mode
6447  * @rgb_quant_range: RGB quantization range (Q)
6448  */
6449 void
6450 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
6451 				   const struct drm_connector *connector,
6452 				   const struct drm_display_mode *mode,
6453 				   enum hdmi_quantization_range rgb_quant_range)
6454 {
6455 	const struct drm_display_info *info = &connector->display_info;
6456 
6457 	/*
6458 	 * CEA-861:
6459 	 * "A Source shall not send a non-zero Q value that does not correspond
6460 	 *  to the default RGB Quantization Range for the transmitted Picture
6461 	 *  unless the Sink indicates support for the Q bit in a Video
6462 	 *  Capabilities Data Block."
6463 	 *
6464 	 * HDMI 2.0 recommends sending non-zero Q when it does match the
6465 	 * default RGB quantization range for the mode, even when QS=0.
6466 	 */
6467 	if (info->rgb_quant_range_selectable ||
6468 	    rgb_quant_range == drm_default_rgb_quant_range(mode))
6469 		frame->quantization_range = rgb_quant_range;
6470 	else
6471 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
6472 
6473 	/*
6474 	 * CEA-861-F:
6475 	 * "When transmitting any RGB colorimetry, the Source should set the
6476 	 *  YQ-field to match the RGB Quantization Range being transmitted
6477 	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
6478 	 *  set YQ=1) and the Sink shall ignore the YQ-field."
6479 	 *
6480 	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
6481 	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
6482 	 * good way to tell which version of CEA-861 the sink supports, so
6483 	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
6484 	 * on on CEA-861-F.
6485 	 */
6486 	if (!is_hdmi2_sink(connector) ||
6487 	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
6488 		frame->ycc_quantization_range =
6489 			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
6490 	else
6491 		frame->ycc_quantization_range =
6492 			HDMI_YCC_QUANTIZATION_RANGE_FULL;
6493 }
6494 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
6495 
6496 static enum hdmi_3d_structure
6497 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
6498 {
6499 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
6500 
6501 	switch (layout) {
6502 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
6503 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
6504 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
6505 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
6506 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
6507 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
6508 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
6509 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
6510 	case DRM_MODE_FLAG_3D_L_DEPTH:
6511 		return HDMI_3D_STRUCTURE_L_DEPTH;
6512 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
6513 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
6514 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
6515 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
6516 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
6517 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
6518 	default:
6519 		return HDMI_3D_STRUCTURE_INVALID;
6520 	}
6521 }
6522 
6523 /**
6524  * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
6525  * data from a DRM display mode
6526  * @frame: HDMI vendor infoframe
6527  * @connector: the connector
6528  * @mode: DRM display mode
6529  *
6530  * Note that there's is a need to send HDMI vendor infoframes only when using a
6531  * 4k or stereoscopic 3D mode. So when giving any other mode as input this
6532  * function will return -EINVAL, error that can be safely ignored.
6533  *
6534  * Return: 0 on success or a negative error code on failure.
6535  */
6536 int
6537 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
6538 					    const struct drm_connector *connector,
6539 					    const struct drm_display_mode *mode)
6540 {
6541 	/*
6542 	 * FIXME: sil-sii8620 doesn't have a connector around when
6543 	 * we need one, so we have to be prepared for a NULL connector.
6544 	 */
6545 	bool has_hdmi_infoframe = connector ?
6546 		connector->display_info.has_hdmi_infoframe : false;
6547 	int err;
6548 
6549 	if (!frame || !mode)
6550 		return -EINVAL;
6551 
6552 	if (!has_hdmi_infoframe)
6553 		return -EINVAL;
6554 
6555 	err = hdmi_vendor_infoframe_init(frame);
6556 	if (err < 0)
6557 		return err;
6558 
6559 	/*
6560 	 * Even if it's not absolutely necessary to send the infoframe
6561 	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
6562 	 * know that the sink can handle it. This is based on a
6563 	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
6564 	 * have trouble realizing that they should switch from 3D to 2D
6565 	 * mode if the source simply stops sending the infoframe when
6566 	 * it wants to switch from 3D to 2D.
6567 	 */
6568 	frame->vic = drm_mode_hdmi_vic(connector, mode);
6569 	frame->s3d_struct = s3d_structure_from_display_mode(mode);
6570 
6571 	return 0;
6572 }
6573 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
6574 
6575 static void drm_parse_tiled_block(struct drm_connector *connector,
6576 				  const struct displayid_block *block)
6577 {
6578 	const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
6579 	u16 w, h;
6580 	u8 tile_v_loc, tile_h_loc;
6581 	u8 num_v_tile, num_h_tile;
6582 	struct drm_tile_group *tg;
6583 
6584 	w = tile->tile_size[0] | tile->tile_size[1] << 8;
6585 	h = tile->tile_size[2] | tile->tile_size[3] << 8;
6586 
6587 	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
6588 	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
6589 	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
6590 	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
6591 
6592 	connector->has_tile = true;
6593 	if (tile->tile_cap & 0x80)
6594 		connector->tile_is_single_monitor = true;
6595 
6596 	connector->num_h_tile = num_h_tile + 1;
6597 	connector->num_v_tile = num_v_tile + 1;
6598 	connector->tile_h_loc = tile_h_loc;
6599 	connector->tile_v_loc = tile_v_loc;
6600 	connector->tile_h_size = w + 1;
6601 	connector->tile_v_size = h + 1;
6602 
6603 	DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap);
6604 	DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1);
6605 	DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n",
6606 		      num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc);
6607 	DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
6608 
6609 	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
6610 	if (!tg)
6611 		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
6612 	if (!tg)
6613 		return;
6614 
6615 	if (connector->tile_group != tg) {
6616 		/* if we haven't got a pointer,
6617 		   take the reference, drop ref to old tile group */
6618 		if (connector->tile_group)
6619 			drm_mode_put_tile_group(connector->dev, connector->tile_group);
6620 		connector->tile_group = tg;
6621 	} else {
6622 		/* if same tile group, then release the ref we just took. */
6623 		drm_mode_put_tile_group(connector->dev, tg);
6624 	}
6625 }
6626 
6627 static void _drm_update_tile_info(struct drm_connector *connector,
6628 				  const struct drm_edid *drm_edid)
6629 {
6630 	const struct displayid_block *block;
6631 	struct displayid_iter iter;
6632 
6633 	connector->has_tile = false;
6634 
6635 	displayid_iter_edid_begin(drm_edid, &iter);
6636 	displayid_iter_for_each(block, &iter) {
6637 		if (block->tag == DATA_BLOCK_TILED_DISPLAY)
6638 			drm_parse_tiled_block(connector, block);
6639 	}
6640 	displayid_iter_end(&iter);
6641 
6642 	if (!connector->has_tile && connector->tile_group) {
6643 		drm_mode_put_tile_group(connector->dev, connector->tile_group);
6644 		connector->tile_group = NULL;
6645 	}
6646 }
6647 
6648 void drm_update_tile_info(struct drm_connector *connector,
6649 			  const struct edid *edid)
6650 {
6651 	struct drm_edid drm_edid;
6652 
6653 	_drm_update_tile_info(connector, drm_edid_legacy_init(&drm_edid, edid));
6654 }
6655