xref: /openbmc/linux/drivers/gpu/drm/drm_edid.c (revision ee8a99bd)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/module.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_edid.h>
37 
38 #define version_greater(edid, maj, min) \
39 	(((edid)->version > (maj)) || \
40 	 ((edid)->version == (maj) && (edid)->revision > (min)))
41 
42 #define EDID_EST_TIMINGS 16
43 #define EDID_STD_TIMINGS 8
44 #define EDID_DETAILED_TIMINGS 4
45 
46 /*
47  * EDID blocks out in the wild have a variety of bugs, try to collect
48  * them here (note that userspace may work around broken monitors first,
49  * but fixes should make their way here so that the kernel "just works"
50  * on as many displays as possible).
51  */
52 
53 /* First detailed mode wrong, use largest 60Hz mode */
54 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
55 /* Reported 135MHz pixel clock is too high, needs adjustment */
56 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
57 /* Prefer the largest mode at 75 Hz */
58 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
59 /* Detail timing is in cm not mm */
60 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
61 /* Detailed timing descriptors have bogus size values, so just take the
62  * maximum size and use that.
63  */
64 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
65 /* Monitor forgot to set the first detailed is preferred bit. */
66 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED	(1 << 5)
67 /* use +hsync +vsync for detailed mode */
68 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
69 /* Force reduced-blanking timings for detailed modes */
70 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
71 
72 struct detailed_mode_closure {
73 	struct drm_connector *connector;
74 	struct edid *edid;
75 	bool preferred;
76 	u32 quirks;
77 	int modes;
78 };
79 
80 #define LEVEL_DMT	0
81 #define LEVEL_GTF	1
82 #define LEVEL_GTF2	2
83 #define LEVEL_CVT	3
84 
85 static struct edid_quirk {
86 	char vendor[4];
87 	int product_id;
88 	u32 quirks;
89 } edid_quirk_list[] = {
90 	/* Acer AL1706 */
91 	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
92 	/* Acer F51 */
93 	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
94 	/* Unknown Acer */
95 	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
96 
97 	/* Belinea 10 15 55 */
98 	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
99 	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
100 
101 	/* Envision Peripherals, Inc. EN-7100e */
102 	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
103 	/* Envision EN2028 */
104 	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
105 
106 	/* Funai Electronics PM36B */
107 	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
108 	  EDID_QUIRK_DETAILED_IN_CM },
109 
110 	/* LG Philips LCD LP154W01-A5 */
111 	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
112 	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
113 
114 	/* Philips 107p5 CRT */
115 	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
116 
117 	/* Proview AY765C */
118 	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
119 
120 	/* Samsung SyncMaster 205BW.  Note: irony */
121 	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
122 	/* Samsung SyncMaster 22[5-6]BW */
123 	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
124 	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
125 
126 	/* ViewSonic VA2026w */
127 	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
128 };
129 
130 /*
131  * Autogenerated from the DMT spec.
132  * This table is copied from xfree86/modes/xf86EdidModes.c.
133  */
134 static const struct drm_display_mode drm_dmt_modes[] = {
135 	/* 640x350@85Hz */
136 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
137 		   736, 832, 0, 350, 382, 385, 445, 0,
138 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
139 	/* 640x400@85Hz */
140 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
141 		   736, 832, 0, 400, 401, 404, 445, 0,
142 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
143 	/* 720x400@85Hz */
144 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
145 		   828, 936, 0, 400, 401, 404, 446, 0,
146 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
147 	/* 640x480@60Hz */
148 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
149 		   752, 800, 0, 480, 489, 492, 525, 0,
150 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
151 	/* 640x480@72Hz */
152 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
153 		   704, 832, 0, 480, 489, 492, 520, 0,
154 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
155 	/* 640x480@75Hz */
156 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
157 		   720, 840, 0, 480, 481, 484, 500, 0,
158 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
159 	/* 640x480@85Hz */
160 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
161 		   752, 832, 0, 480, 481, 484, 509, 0,
162 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
163 	/* 800x600@56Hz */
164 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
165 		   896, 1024, 0, 600, 601, 603, 625, 0,
166 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
167 	/* 800x600@60Hz */
168 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
169 		   968, 1056, 0, 600, 601, 605, 628, 0,
170 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
171 	/* 800x600@72Hz */
172 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
173 		   976, 1040, 0, 600, 637, 643, 666, 0,
174 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
175 	/* 800x600@75Hz */
176 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
177 		   896, 1056, 0, 600, 601, 604, 625, 0,
178 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
179 	/* 800x600@85Hz */
180 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
181 		   896, 1048, 0, 600, 601, 604, 631, 0,
182 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
183 	/* 800x600@120Hz RB */
184 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
185 		   880, 960, 0, 600, 603, 607, 636, 0,
186 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
187 	/* 848x480@60Hz */
188 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
189 		   976, 1088, 0, 480, 486, 494, 517, 0,
190 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
191 	/* 1024x768@43Hz, interlace */
192 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
193 		   1208, 1264, 0, 768, 768, 772, 817, 0,
194 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
195 			DRM_MODE_FLAG_INTERLACE) },
196 	/* 1024x768@60Hz */
197 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
198 		   1184, 1344, 0, 768, 771, 777, 806, 0,
199 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
200 	/* 1024x768@70Hz */
201 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
202 		   1184, 1328, 0, 768, 771, 777, 806, 0,
203 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
204 	/* 1024x768@75Hz */
205 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
206 		   1136, 1312, 0, 768, 769, 772, 800, 0,
207 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
208 	/* 1024x768@85Hz */
209 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
210 		   1168, 1376, 0, 768, 769, 772, 808, 0,
211 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
212 	/* 1024x768@120Hz RB */
213 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
214 		   1104, 1184, 0, 768, 771, 775, 813, 0,
215 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
216 	/* 1152x864@75Hz */
217 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
218 		   1344, 1600, 0, 864, 865, 868, 900, 0,
219 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
220 	/* 1280x768@60Hz RB */
221 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
222 		   1360, 1440, 0, 768, 771, 778, 790, 0,
223 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
224 	/* 1280x768@60Hz */
225 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
226 		   1472, 1664, 0, 768, 771, 778, 798, 0,
227 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
228 	/* 1280x768@75Hz */
229 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
230 		   1488, 1696, 0, 768, 771, 778, 805, 0,
231 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
232 	/* 1280x768@85Hz */
233 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
234 		   1496, 1712, 0, 768, 771, 778, 809, 0,
235 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
236 	/* 1280x768@120Hz RB */
237 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
238 		   1360, 1440, 0, 768, 771, 778, 813, 0,
239 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
240 	/* 1280x800@60Hz RB */
241 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
242 		   1360, 1440, 0, 800, 803, 809, 823, 0,
243 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
244 	/* 1280x800@60Hz */
245 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
246 		   1480, 1680, 0, 800, 803, 809, 831, 0,
247 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
248 	/* 1280x800@75Hz */
249 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
250 		   1488, 1696, 0, 800, 803, 809, 838, 0,
251 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
252 	/* 1280x800@85Hz */
253 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
254 		   1496, 1712, 0, 800, 803, 809, 843, 0,
255 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
256 	/* 1280x800@120Hz RB */
257 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
258 		   1360, 1440, 0, 800, 803, 809, 847, 0,
259 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
260 	/* 1280x960@60Hz */
261 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
262 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
263 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
264 	/* 1280x960@85Hz */
265 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
266 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
267 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
268 	/* 1280x960@120Hz RB */
269 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
270 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
271 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
272 	/* 1280x1024@60Hz */
273 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
274 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
275 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
276 	/* 1280x1024@75Hz */
277 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
278 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
279 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
280 	/* 1280x1024@85Hz */
281 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
282 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
283 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
284 	/* 1280x1024@120Hz RB */
285 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
286 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
287 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
288 	/* 1360x768@60Hz */
289 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
290 		   1536, 1792, 0, 768, 771, 777, 795, 0,
291 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
292 	/* 1360x768@120Hz RB */
293 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
294 		   1440, 1520, 0, 768, 771, 776, 813, 0,
295 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
296 	/* 1400x1050@60Hz RB */
297 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
298 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
299 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
300 	/* 1400x1050@60Hz */
301 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
302 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
303 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
304 	/* 1400x1050@75Hz */
305 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
306 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
307 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
308 	/* 1400x1050@85Hz */
309 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
310 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
311 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
312 	/* 1400x1050@120Hz RB */
313 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
314 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
315 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
316 	/* 1440x900@60Hz RB */
317 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
318 		   1520, 1600, 0, 900, 903, 909, 926, 0,
319 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
320 	/* 1440x900@60Hz */
321 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
322 		   1672, 1904, 0, 900, 903, 909, 934, 0,
323 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
324 	/* 1440x900@75Hz */
325 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
326 		   1688, 1936, 0, 900, 903, 909, 942, 0,
327 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
328 	/* 1440x900@85Hz */
329 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
330 		   1696, 1952, 0, 900, 903, 909, 948, 0,
331 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
332 	/* 1440x900@120Hz RB */
333 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
334 		   1520, 1600, 0, 900, 903, 909, 953, 0,
335 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
336 	/* 1600x1200@60Hz */
337 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
338 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
339 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
340 	/* 1600x1200@65Hz */
341 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
342 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
343 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
344 	/* 1600x1200@70Hz */
345 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
346 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
347 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
348 	/* 1600x1200@75Hz */
349 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
350 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
351 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
352 	/* 1600x1200@85Hz */
353 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
354 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
355 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
356 	/* 1600x1200@120Hz RB */
357 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
358 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
359 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
360 	/* 1680x1050@60Hz RB */
361 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
362 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
363 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
364 	/* 1680x1050@60Hz */
365 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
366 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
367 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
368 	/* 1680x1050@75Hz */
369 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
370 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
371 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
372 	/* 1680x1050@85Hz */
373 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
374 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
375 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
376 	/* 1680x1050@120Hz RB */
377 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
378 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
379 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
380 	/* 1792x1344@60Hz */
381 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
382 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
383 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
384 	/* 1792x1344@75Hz */
385 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
386 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
387 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
388 	/* 1792x1344@120Hz RB */
389 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
390 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
391 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
392 	/* 1856x1392@60Hz */
393 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
394 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
395 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
396 	/* 1856x1392@75Hz */
397 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
398 		   2208, 2560, 0, 1392, 1395, 1399, 1500, 0,
399 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
400 	/* 1856x1392@120Hz RB */
401 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
402 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
403 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
404 	/* 1920x1200@60Hz RB */
405 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
406 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
407 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
408 	/* 1920x1200@60Hz */
409 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
410 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
411 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
412 	/* 1920x1200@75Hz */
413 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
414 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
415 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
416 	/* 1920x1200@85Hz */
417 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
418 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
419 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
420 	/* 1920x1200@120Hz RB */
421 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
422 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
423 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
424 	/* 1920x1440@60Hz */
425 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
426 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
427 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
428 	/* 1920x1440@75Hz */
429 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
430 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
431 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
432 	/* 1920x1440@120Hz RB */
433 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
434 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
435 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
436 	/* 2560x1600@60Hz RB */
437 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
438 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
439 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
440 	/* 2560x1600@60Hz */
441 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
442 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
443 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
444 	/* 2560x1600@75HZ */
445 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
446 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
447 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
448 	/* 2560x1600@85HZ */
449 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
450 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
451 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
452 	/* 2560x1600@120Hz RB */
453 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
454 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
455 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
456 };
457 
458 static const struct drm_display_mode edid_est_modes[] = {
459 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
460 		   968, 1056, 0, 600, 601, 605, 628, 0,
461 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
462 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
463 		   896, 1024, 0, 600, 601, 603,  625, 0,
464 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
465 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
466 		   720, 840, 0, 480, 481, 484, 500, 0,
467 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
468 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
469 		   704,  832, 0, 480, 489, 491, 520, 0,
470 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
471 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
472 		   768,  864, 0, 480, 483, 486, 525, 0,
473 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
474 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25200, 640, 656,
475 		   752, 800, 0, 480, 490, 492, 525, 0,
476 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
477 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
478 		   846, 900, 0, 400, 421, 423,  449, 0,
479 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
480 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
481 		   846,  900, 0, 400, 412, 414, 449, 0,
482 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
483 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
484 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
485 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
486 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78800, 1024, 1040,
487 		   1136, 1312, 0,  768, 769, 772, 800, 0,
488 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
489 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
490 		   1184, 1328, 0,  768, 771, 777, 806, 0,
491 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
492 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
493 		   1184, 1344, 0,  768, 771, 777, 806, 0,
494 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
495 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
496 		   1208, 1264, 0, 768, 768, 776, 817, 0,
497 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
498 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
499 		   928, 1152, 0, 624, 625, 628, 667, 0,
500 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
501 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
502 		   896, 1056, 0, 600, 601, 604,  625, 0,
503 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
504 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
505 		   976, 1040, 0, 600, 637, 643, 666, 0,
506 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
507 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
508 		   1344, 1600, 0,  864, 865, 868, 900, 0,
509 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
510 };
511 
512 struct minimode {
513 	short w;
514 	short h;
515 	short r;
516 	short rb;
517 };
518 
519 static const struct minimode est3_modes[] = {
520 	/* byte 6 */
521 	{ 640, 350, 85, 0 },
522 	{ 640, 400, 85, 0 },
523 	{ 720, 400, 85, 0 },
524 	{ 640, 480, 85, 0 },
525 	{ 848, 480, 60, 0 },
526 	{ 800, 600, 85, 0 },
527 	{ 1024, 768, 85, 0 },
528 	{ 1152, 864, 75, 0 },
529 	/* byte 7 */
530 	{ 1280, 768, 60, 1 },
531 	{ 1280, 768, 60, 0 },
532 	{ 1280, 768, 75, 0 },
533 	{ 1280, 768, 85, 0 },
534 	{ 1280, 960, 60, 0 },
535 	{ 1280, 960, 85, 0 },
536 	{ 1280, 1024, 60, 0 },
537 	{ 1280, 1024, 85, 0 },
538 	/* byte 8 */
539 	{ 1360, 768, 60, 0 },
540 	{ 1440, 900, 60, 1 },
541 	{ 1440, 900, 60, 0 },
542 	{ 1440, 900, 75, 0 },
543 	{ 1440, 900, 85, 0 },
544 	{ 1400, 1050, 60, 1 },
545 	{ 1400, 1050, 60, 0 },
546 	{ 1400, 1050, 75, 0 },
547 	/* byte 9 */
548 	{ 1400, 1050, 85, 0 },
549 	{ 1680, 1050, 60, 1 },
550 	{ 1680, 1050, 60, 0 },
551 	{ 1680, 1050, 75, 0 },
552 	{ 1680, 1050, 85, 0 },
553 	{ 1600, 1200, 60, 0 },
554 	{ 1600, 1200, 65, 0 },
555 	{ 1600, 1200, 70, 0 },
556 	/* byte 10 */
557 	{ 1600, 1200, 75, 0 },
558 	{ 1600, 1200, 85, 0 },
559 	{ 1792, 1344, 60, 0 },
560 	{ 1792, 1344, 85, 0 },
561 	{ 1856, 1392, 60, 0 },
562 	{ 1856, 1392, 75, 0 },
563 	{ 1920, 1200, 60, 1 },
564 	{ 1920, 1200, 60, 0 },
565 	/* byte 11 */
566 	{ 1920, 1200, 75, 0 },
567 	{ 1920, 1200, 85, 0 },
568 	{ 1920, 1440, 60, 0 },
569 	{ 1920, 1440, 75, 0 },
570 };
571 
572 static const struct minimode extra_modes[] = {
573 	{ 1024, 576,  60, 0 },
574 	{ 1366, 768,  60, 0 },
575 	{ 1600, 900,  60, 0 },
576 	{ 1680, 945,  60, 0 },
577 	{ 1920, 1080, 60, 0 },
578 	{ 2048, 1152, 60, 0 },
579 	{ 2048, 1536, 60, 0 },
580 };
581 
582 /*
583  * Probably taken from CEA-861 spec.
584  * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
585  */
586 static const struct drm_display_mode edid_cea_modes[] = {
587 	/* 1 - 640x480@60Hz */
588 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
589 		   752, 800, 0, 480, 490, 492, 525, 0,
590 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
591 	  .vrefresh = 60, },
592 	/* 2 - 720x480@60Hz */
593 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
594 		   798, 858, 0, 480, 489, 495, 525, 0,
595 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
596 	  .vrefresh = 60, },
597 	/* 3 - 720x480@60Hz */
598 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
599 		   798, 858, 0, 480, 489, 495, 525, 0,
600 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
601 	  .vrefresh = 60, },
602 	/* 4 - 1280x720@60Hz */
603 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
604 		   1430, 1650, 0, 720, 725, 730, 750, 0,
605 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
606 	  .vrefresh = 60, },
607 	/* 5 - 1920x1080i@60Hz */
608 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
609 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
610 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
611 			DRM_MODE_FLAG_INTERLACE),
612 	  .vrefresh = 60, },
613 	/* 6 - 1440x480i@60Hz */
614 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
615 		   1602, 1716, 0, 480, 488, 494, 525, 0,
616 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
617 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
618 	  .vrefresh = 60, },
619 	/* 7 - 1440x480i@60Hz */
620 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
621 		   1602, 1716, 0, 480, 488, 494, 525, 0,
622 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
623 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
624 	  .vrefresh = 60, },
625 	/* 8 - 1440x240@60Hz */
626 	{ DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
627 		   1602, 1716, 0, 240, 244, 247, 262, 0,
628 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
629 			DRM_MODE_FLAG_DBLCLK),
630 	  .vrefresh = 60, },
631 	/* 9 - 1440x240@60Hz */
632 	{ DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
633 		   1602, 1716, 0, 240, 244, 247, 262, 0,
634 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
635 			DRM_MODE_FLAG_DBLCLK),
636 	  .vrefresh = 60, },
637 	/* 10 - 2880x480i@60Hz */
638 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
639 		   3204, 3432, 0, 480, 488, 494, 525, 0,
640 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
641 			DRM_MODE_FLAG_INTERLACE),
642 	  .vrefresh = 60, },
643 	/* 11 - 2880x480i@60Hz */
644 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
645 		   3204, 3432, 0, 480, 488, 494, 525, 0,
646 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
647 			DRM_MODE_FLAG_INTERLACE),
648 	  .vrefresh = 60, },
649 	/* 12 - 2880x240@60Hz */
650 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
651 		   3204, 3432, 0, 240, 244, 247, 262, 0,
652 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
653 	  .vrefresh = 60, },
654 	/* 13 - 2880x240@60Hz */
655 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
656 		   3204, 3432, 0, 240, 244, 247, 262, 0,
657 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
658 	  .vrefresh = 60, },
659 	/* 14 - 1440x480@60Hz */
660 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
661 		   1596, 1716, 0, 480, 489, 495, 525, 0,
662 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
663 	  .vrefresh = 60, },
664 	/* 15 - 1440x480@60Hz */
665 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
666 		   1596, 1716, 0, 480, 489, 495, 525, 0,
667 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
668 	  .vrefresh = 60, },
669 	/* 16 - 1920x1080@60Hz */
670 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
671 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
672 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
673 	  .vrefresh = 60, },
674 	/* 17 - 720x576@50Hz */
675 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
676 		   796, 864, 0, 576, 581, 586, 625, 0,
677 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
678 	  .vrefresh = 50, },
679 	/* 18 - 720x576@50Hz */
680 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
681 		   796, 864, 0, 576, 581, 586, 625, 0,
682 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
683 	  .vrefresh = 50, },
684 	/* 19 - 1280x720@50Hz */
685 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
686 		   1760, 1980, 0, 720, 725, 730, 750, 0,
687 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
688 	  .vrefresh = 50, },
689 	/* 20 - 1920x1080i@50Hz */
690 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
691 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
692 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
693 			DRM_MODE_FLAG_INTERLACE),
694 	  .vrefresh = 50, },
695 	/* 21 - 1440x576i@50Hz */
696 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
697 		   1590, 1728, 0, 576, 580, 586, 625, 0,
698 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
699 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
700 	  .vrefresh = 50, },
701 	/* 22 - 1440x576i@50Hz */
702 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
703 		   1590, 1728, 0, 576, 580, 586, 625, 0,
704 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
705 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
706 	  .vrefresh = 50, },
707 	/* 23 - 1440x288@50Hz */
708 	{ DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
709 		   1590, 1728, 0, 288, 290, 293, 312, 0,
710 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
711 			DRM_MODE_FLAG_DBLCLK),
712 	  .vrefresh = 50, },
713 	/* 24 - 1440x288@50Hz */
714 	{ DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
715 		   1590, 1728, 0, 288, 290, 293, 312, 0,
716 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
717 			DRM_MODE_FLAG_DBLCLK),
718 	  .vrefresh = 50, },
719 	/* 25 - 2880x576i@50Hz */
720 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
721 		   3180, 3456, 0, 576, 580, 586, 625, 0,
722 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
723 			DRM_MODE_FLAG_INTERLACE),
724 	  .vrefresh = 50, },
725 	/* 26 - 2880x576i@50Hz */
726 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
727 		   3180, 3456, 0, 576, 580, 586, 625, 0,
728 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
729 			DRM_MODE_FLAG_INTERLACE),
730 	  .vrefresh = 50, },
731 	/* 27 - 2880x288@50Hz */
732 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
733 		   3180, 3456, 0, 288, 290, 293, 312, 0,
734 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
735 	  .vrefresh = 50, },
736 	/* 28 - 2880x288@50Hz */
737 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
738 		   3180, 3456, 0, 288, 290, 293, 312, 0,
739 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
740 	  .vrefresh = 50, },
741 	/* 29 - 1440x576@50Hz */
742 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
743 		   1592, 1728, 0, 576, 581, 586, 625, 0,
744 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
745 	  .vrefresh = 50, },
746 	/* 30 - 1440x576@50Hz */
747 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
748 		   1592, 1728, 0, 576, 581, 586, 625, 0,
749 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
750 	  .vrefresh = 50, },
751 	/* 31 - 1920x1080@50Hz */
752 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
753 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
754 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
755 	  .vrefresh = 50, },
756 	/* 32 - 1920x1080@24Hz */
757 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
758 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
759 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
760 	  .vrefresh = 24, },
761 	/* 33 - 1920x1080@25Hz */
762 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
763 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
764 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
765 	  .vrefresh = 25, },
766 	/* 34 - 1920x1080@30Hz */
767 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
768 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
769 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
770 	  .vrefresh = 30, },
771 	/* 35 - 2880x480@60Hz */
772 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
773 		   3192, 3432, 0, 480, 489, 495, 525, 0,
774 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
775 	  .vrefresh = 60, },
776 	/* 36 - 2880x480@60Hz */
777 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
778 		   3192, 3432, 0, 480, 489, 495, 525, 0,
779 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
780 	  .vrefresh = 60, },
781 	/* 37 - 2880x576@50Hz */
782 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
783 		   3184, 3456, 0, 576, 581, 586, 625, 0,
784 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
785 	  .vrefresh = 50, },
786 	/* 38 - 2880x576@50Hz */
787 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
788 		   3184, 3456, 0, 576, 581, 586, 625, 0,
789 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
790 	  .vrefresh = 50, },
791 	/* 39 - 1920x1080i@50Hz */
792 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
793 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
794 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
795 			DRM_MODE_FLAG_INTERLACE),
796 	  .vrefresh = 50, },
797 	/* 40 - 1920x1080i@100Hz */
798 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
799 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
800 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
801 			DRM_MODE_FLAG_INTERLACE),
802 	  .vrefresh = 100, },
803 	/* 41 - 1280x720@100Hz */
804 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
805 		   1760, 1980, 0, 720, 725, 730, 750, 0,
806 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
807 	  .vrefresh = 100, },
808 	/* 42 - 720x576@100Hz */
809 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
810 		   796, 864, 0, 576, 581, 586, 625, 0,
811 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
812 	  .vrefresh = 100, },
813 	/* 43 - 720x576@100Hz */
814 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
815 		   796, 864, 0, 576, 581, 586, 625, 0,
816 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
817 	  .vrefresh = 100, },
818 	/* 44 - 1440x576i@100Hz */
819 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
820 		   1590, 1728, 0, 576, 580, 586, 625, 0,
821 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
822 			DRM_MODE_FLAG_DBLCLK),
823 	  .vrefresh = 100, },
824 	/* 45 - 1440x576i@100Hz */
825 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
826 		   1590, 1728, 0, 576, 580, 586, 625, 0,
827 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
828 			DRM_MODE_FLAG_DBLCLK),
829 	  .vrefresh = 100, },
830 	/* 46 - 1920x1080i@120Hz */
831 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
832 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
833 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
834 			DRM_MODE_FLAG_INTERLACE),
835 	  .vrefresh = 120, },
836 	/* 47 - 1280x720@120Hz */
837 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
838 		   1430, 1650, 0, 720, 725, 730, 750, 0,
839 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
840 	  .vrefresh = 120, },
841 	/* 48 - 720x480@120Hz */
842 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
843 		   798, 858, 0, 480, 489, 495, 525, 0,
844 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
845 	  .vrefresh = 120, },
846 	/* 49 - 720x480@120Hz */
847 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
848 		   798, 858, 0, 480, 489, 495, 525, 0,
849 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
850 	  .vrefresh = 120, },
851 	/* 50 - 1440x480i@120Hz */
852 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
853 		   1602, 1716, 0, 480, 488, 494, 525, 0,
854 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
855 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
856 	  .vrefresh = 120, },
857 	/* 51 - 1440x480i@120Hz */
858 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
859 		   1602, 1716, 0, 480, 488, 494, 525, 0,
860 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
861 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
862 	  .vrefresh = 120, },
863 	/* 52 - 720x576@200Hz */
864 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
865 		   796, 864, 0, 576, 581, 586, 625, 0,
866 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
867 	  .vrefresh = 200, },
868 	/* 53 - 720x576@200Hz */
869 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
870 		   796, 864, 0, 576, 581, 586, 625, 0,
871 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
872 	  .vrefresh = 200, },
873 	/* 54 - 1440x576i@200Hz */
874 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
875 		   1590, 1728, 0, 576, 580, 586, 625, 0,
876 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
877 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
878 	  .vrefresh = 200, },
879 	/* 55 - 1440x576i@200Hz */
880 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
881 		   1590, 1728, 0, 576, 580, 586, 625, 0,
882 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
883 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
884 	  .vrefresh = 200, },
885 	/* 56 - 720x480@240Hz */
886 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
887 		   798, 858, 0, 480, 489, 495, 525, 0,
888 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
889 	  .vrefresh = 240, },
890 	/* 57 - 720x480@240Hz */
891 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
892 		   798, 858, 0, 480, 489, 495, 525, 0,
893 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
894 	  .vrefresh = 240, },
895 	/* 58 - 1440x480i@240 */
896 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
897 		   1602, 1716, 0, 480, 488, 494, 525, 0,
898 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
899 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
900 	  .vrefresh = 240, },
901 	/* 59 - 1440x480i@240 */
902 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
903 		   1602, 1716, 0, 480, 488, 494, 525, 0,
904 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
905 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
906 	  .vrefresh = 240, },
907 	/* 60 - 1280x720@24Hz */
908 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
909 		   3080, 3300, 0, 720, 725, 730, 750, 0,
910 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
911 	  .vrefresh = 24, },
912 	/* 61 - 1280x720@25Hz */
913 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
914 		   3740, 3960, 0, 720, 725, 730, 750, 0,
915 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
916 	  .vrefresh = 25, },
917 	/* 62 - 1280x720@30Hz */
918 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
919 		   3080, 3300, 0, 720, 725, 730, 750, 0,
920 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
921 	  .vrefresh = 30, },
922 	/* 63 - 1920x1080@120Hz */
923 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
924 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
925 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
926 	 .vrefresh = 120, },
927 	/* 64 - 1920x1080@100Hz */
928 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
929 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
930 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
931 	 .vrefresh = 100, },
932 };
933 
934 /*** DDC fetch and block validation ***/
935 
936 static const u8 edid_header[] = {
937 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
938 };
939 
940  /*
941  * Sanity check the header of the base EDID block.  Return 8 if the header
942  * is perfect, down to 0 if it's totally wrong.
943  */
944 int drm_edid_header_is_valid(const u8 *raw_edid)
945 {
946 	int i, score = 0;
947 
948 	for (i = 0; i < sizeof(edid_header); i++)
949 		if (raw_edid[i] == edid_header[i])
950 			score++;
951 
952 	return score;
953 }
954 EXPORT_SYMBOL(drm_edid_header_is_valid);
955 
956 static int edid_fixup __read_mostly = 6;
957 module_param_named(edid_fixup, edid_fixup, int, 0400);
958 MODULE_PARM_DESC(edid_fixup,
959 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
960 
961 /*
962  * Sanity check the EDID block (base or extension).  Return 0 if the block
963  * doesn't check out, or 1 if it's valid.
964  */
965 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid)
966 {
967 	int i;
968 	u8 csum = 0;
969 	struct edid *edid = (struct edid *)raw_edid;
970 
971 	if (WARN_ON(!raw_edid))
972 		return false;
973 
974 	if (edid_fixup > 8 || edid_fixup < 0)
975 		edid_fixup = 6;
976 
977 	if (block == 0) {
978 		int score = drm_edid_header_is_valid(raw_edid);
979 		if (score == 8) ;
980 		else if (score >= edid_fixup) {
981 			DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
982 			memcpy(raw_edid, edid_header, sizeof(edid_header));
983 		} else {
984 			goto bad;
985 		}
986 	}
987 
988 	for (i = 0; i < EDID_LENGTH; i++)
989 		csum += raw_edid[i];
990 	if (csum) {
991 		if (print_bad_edid) {
992 			DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
993 		}
994 
995 		/* allow CEA to slide through, switches mangle this */
996 		if (raw_edid[0] != 0x02)
997 			goto bad;
998 	}
999 
1000 	/* per-block-type checks */
1001 	switch (raw_edid[0]) {
1002 	case 0: /* base */
1003 		if (edid->version != 1) {
1004 			DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
1005 			goto bad;
1006 		}
1007 
1008 		if (edid->revision > 4)
1009 			DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1010 		break;
1011 
1012 	default:
1013 		break;
1014 	}
1015 
1016 	return true;
1017 
1018 bad:
1019 	if (print_bad_edid) {
1020 		printk(KERN_ERR "Raw EDID:\n");
1021 		print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
1022 			       raw_edid, EDID_LENGTH, false);
1023 	}
1024 	return false;
1025 }
1026 EXPORT_SYMBOL(drm_edid_block_valid);
1027 
1028 /**
1029  * drm_edid_is_valid - sanity check EDID data
1030  * @edid: EDID data
1031  *
1032  * Sanity-check an entire EDID record (including extensions)
1033  */
1034 bool drm_edid_is_valid(struct edid *edid)
1035 {
1036 	int i;
1037 	u8 *raw = (u8 *)edid;
1038 
1039 	if (!edid)
1040 		return false;
1041 
1042 	for (i = 0; i <= edid->extensions; i++)
1043 		if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true))
1044 			return false;
1045 
1046 	return true;
1047 }
1048 EXPORT_SYMBOL(drm_edid_is_valid);
1049 
1050 #define DDC_SEGMENT_ADDR 0x30
1051 /**
1052  * Get EDID information via I2C.
1053  *
1054  * \param adapter : i2c device adaptor
1055  * \param buf     : EDID data buffer to be filled
1056  * \param len     : EDID data buffer length
1057  * \return 0 on success or -1 on failure.
1058  *
1059  * Try to fetch EDID information by calling i2c driver function.
1060  */
1061 static int
1062 drm_do_probe_ddc_edid(struct i2c_adapter *adapter, unsigned char *buf,
1063 		      int block, int len)
1064 {
1065 	unsigned char start = block * EDID_LENGTH;
1066 	unsigned char segment = block >> 1;
1067 	unsigned char xfers = segment ? 3 : 2;
1068 	int ret, retries = 5;
1069 
1070 	/* The core i2c driver will automatically retry the transfer if the
1071 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
1072 	 * are susceptible to errors under a heavily loaded machine and
1073 	 * generate spurious NAKs and timeouts. Retrying the transfer
1074 	 * of the individual block a few times seems to overcome this.
1075 	 */
1076 	do {
1077 		struct i2c_msg msgs[] = {
1078 			{
1079 				.addr	= DDC_SEGMENT_ADDR,
1080 				.flags	= 0,
1081 				.len	= 1,
1082 				.buf	= &segment,
1083 			}, {
1084 				.addr	= DDC_ADDR,
1085 				.flags	= 0,
1086 				.len	= 1,
1087 				.buf	= &start,
1088 			}, {
1089 				.addr	= DDC_ADDR,
1090 				.flags	= I2C_M_RD,
1091 				.len	= len,
1092 				.buf	= buf,
1093 			}
1094 		};
1095 
1096 	/*
1097 	 * Avoid sending the segment addr to not upset non-compliant ddc
1098 	 * monitors.
1099 	 */
1100 		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1101 
1102 		if (ret == -ENXIO) {
1103 			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1104 					adapter->name);
1105 			break;
1106 		}
1107 	} while (ret != xfers && --retries);
1108 
1109 	return ret == xfers ? 0 : -1;
1110 }
1111 
1112 static bool drm_edid_is_zero(u8 *in_edid, int length)
1113 {
1114 	if (memchr_inv(in_edid, 0, length))
1115 		return false;
1116 
1117 	return true;
1118 }
1119 
1120 static u8 *
1121 drm_do_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
1122 {
1123 	int i, j = 0, valid_extensions = 0;
1124 	u8 *block, *new;
1125 	bool print_bad_edid = !connector->bad_edid_counter || (drm_debug & DRM_UT_KMS);
1126 
1127 	if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1128 		return NULL;
1129 
1130 	/* base block fetch */
1131 	for (i = 0; i < 4; i++) {
1132 		if (drm_do_probe_ddc_edid(adapter, block, 0, EDID_LENGTH))
1133 			goto out;
1134 		if (drm_edid_block_valid(block, 0, print_bad_edid))
1135 			break;
1136 		if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
1137 			connector->null_edid_counter++;
1138 			goto carp;
1139 		}
1140 	}
1141 	if (i == 4)
1142 		goto carp;
1143 
1144 	/* if there's no extensions, we're done */
1145 	if (block[0x7e] == 0)
1146 		return block;
1147 
1148 	new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
1149 	if (!new)
1150 		goto out;
1151 	block = new;
1152 
1153 	for (j = 1; j <= block[0x7e]; j++) {
1154 		for (i = 0; i < 4; i++) {
1155 			if (drm_do_probe_ddc_edid(adapter,
1156 				  block + (valid_extensions + 1) * EDID_LENGTH,
1157 				  j, EDID_LENGTH))
1158 				goto out;
1159 			if (drm_edid_block_valid(block + (valid_extensions + 1) * EDID_LENGTH, j, print_bad_edid)) {
1160 				valid_extensions++;
1161 				break;
1162 			}
1163 		}
1164 
1165 		if (i == 4 && print_bad_edid) {
1166 			dev_warn(connector->dev->dev,
1167 			 "%s: Ignoring invalid EDID block %d.\n",
1168 			 drm_get_connector_name(connector), j);
1169 
1170 			connector->bad_edid_counter++;
1171 		}
1172 	}
1173 
1174 	if (valid_extensions != block[0x7e]) {
1175 		block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1176 		block[0x7e] = valid_extensions;
1177 		new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1178 		if (!new)
1179 			goto out;
1180 		block = new;
1181 	}
1182 
1183 	return block;
1184 
1185 carp:
1186 	if (print_bad_edid) {
1187 		dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
1188 			 drm_get_connector_name(connector), j);
1189 	}
1190 	connector->bad_edid_counter++;
1191 
1192 out:
1193 	kfree(block);
1194 	return NULL;
1195 }
1196 
1197 /**
1198  * Probe DDC presence.
1199  *
1200  * \param adapter : i2c device adaptor
1201  * \return 1 on success
1202  */
1203 bool
1204 drm_probe_ddc(struct i2c_adapter *adapter)
1205 {
1206 	unsigned char out;
1207 
1208 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1209 }
1210 EXPORT_SYMBOL(drm_probe_ddc);
1211 
1212 /**
1213  * drm_get_edid - get EDID data, if available
1214  * @connector: connector we're probing
1215  * @adapter: i2c adapter to use for DDC
1216  *
1217  * Poke the given i2c channel to grab EDID data if possible.  If found,
1218  * attach it to the connector.
1219  *
1220  * Return edid data or NULL if we couldn't find any.
1221  */
1222 struct edid *drm_get_edid(struct drm_connector *connector,
1223 			  struct i2c_adapter *adapter)
1224 {
1225 	struct edid *edid = NULL;
1226 
1227 	if (drm_probe_ddc(adapter))
1228 		edid = (struct edid *)drm_do_get_edid(connector, adapter);
1229 
1230 	return edid;
1231 }
1232 EXPORT_SYMBOL(drm_get_edid);
1233 
1234 /*** EDID parsing ***/
1235 
1236 /**
1237  * edid_vendor - match a string against EDID's obfuscated vendor field
1238  * @edid: EDID to match
1239  * @vendor: vendor string
1240  *
1241  * Returns true if @vendor is in @edid, false otherwise
1242  */
1243 static bool edid_vendor(struct edid *edid, char *vendor)
1244 {
1245 	char edid_vendor[3];
1246 
1247 	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1248 	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1249 			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1250 	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1251 
1252 	return !strncmp(edid_vendor, vendor, 3);
1253 }
1254 
1255 /**
1256  * edid_get_quirks - return quirk flags for a given EDID
1257  * @edid: EDID to process
1258  *
1259  * This tells subsequent routines what fixes they need to apply.
1260  */
1261 static u32 edid_get_quirks(struct edid *edid)
1262 {
1263 	struct edid_quirk *quirk;
1264 	int i;
1265 
1266 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1267 		quirk = &edid_quirk_list[i];
1268 
1269 		if (edid_vendor(edid, quirk->vendor) &&
1270 		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
1271 			return quirk->quirks;
1272 	}
1273 
1274 	return 0;
1275 }
1276 
1277 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1278 #define MODE_REFRESH_DIFF(m,r) (abs((m)->vrefresh - target_refresh))
1279 
1280 /**
1281  * edid_fixup_preferred - set preferred modes based on quirk list
1282  * @connector: has mode list to fix up
1283  * @quirks: quirks list
1284  *
1285  * Walk the mode list for @connector, clearing the preferred status
1286  * on existing modes and setting it anew for the right mode ala @quirks.
1287  */
1288 static void edid_fixup_preferred(struct drm_connector *connector,
1289 				 u32 quirks)
1290 {
1291 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
1292 	int target_refresh = 0;
1293 
1294 	if (list_empty(&connector->probed_modes))
1295 		return;
1296 
1297 	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1298 		target_refresh = 60;
1299 	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1300 		target_refresh = 75;
1301 
1302 	preferred_mode = list_first_entry(&connector->probed_modes,
1303 					  struct drm_display_mode, head);
1304 
1305 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1306 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1307 
1308 		if (cur_mode == preferred_mode)
1309 			continue;
1310 
1311 		/* Largest mode is preferred */
1312 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1313 			preferred_mode = cur_mode;
1314 
1315 		/* At a given size, try to get closest to target refresh */
1316 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1317 		    MODE_REFRESH_DIFF(cur_mode, target_refresh) <
1318 		    MODE_REFRESH_DIFF(preferred_mode, target_refresh)) {
1319 			preferred_mode = cur_mode;
1320 		}
1321 	}
1322 
1323 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1324 }
1325 
1326 static bool
1327 mode_is_rb(const struct drm_display_mode *mode)
1328 {
1329 	return (mode->htotal - mode->hdisplay == 160) &&
1330 	       (mode->hsync_end - mode->hdisplay == 80) &&
1331 	       (mode->hsync_end - mode->hsync_start == 32) &&
1332 	       (mode->vsync_start - mode->vdisplay == 3);
1333 }
1334 
1335 /*
1336  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1337  * @dev: Device to duplicate against
1338  * @hsize: Mode width
1339  * @vsize: Mode height
1340  * @fresh: Mode refresh rate
1341  * @rb: Mode reduced-blanking-ness
1342  *
1343  * Walk the DMT mode list looking for a match for the given parameters.
1344  * Return a newly allocated copy of the mode, or NULL if not found.
1345  */
1346 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1347 					   int hsize, int vsize, int fresh,
1348 					   bool rb)
1349 {
1350 	int i;
1351 
1352 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1353 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1354 		if (hsize != ptr->hdisplay)
1355 			continue;
1356 		if (vsize != ptr->vdisplay)
1357 			continue;
1358 		if (fresh != drm_mode_vrefresh(ptr))
1359 			continue;
1360 		if (rb != mode_is_rb(ptr))
1361 			continue;
1362 
1363 		return drm_mode_duplicate(dev, ptr);
1364 	}
1365 
1366 	return NULL;
1367 }
1368 EXPORT_SYMBOL(drm_mode_find_dmt);
1369 
1370 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1371 
1372 static void
1373 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1374 {
1375 	int i, n = 0;
1376 	u8 d = ext[0x02];
1377 	u8 *det_base = ext + d;
1378 
1379 	n = (127 - d) / 18;
1380 	for (i = 0; i < n; i++)
1381 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1382 }
1383 
1384 static void
1385 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1386 {
1387 	unsigned int i, n = min((int)ext[0x02], 6);
1388 	u8 *det_base = ext + 5;
1389 
1390 	if (ext[0x01] != 1)
1391 		return; /* unknown version */
1392 
1393 	for (i = 0; i < n; i++)
1394 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1395 }
1396 
1397 static void
1398 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1399 {
1400 	int i;
1401 	struct edid *edid = (struct edid *)raw_edid;
1402 
1403 	if (edid == NULL)
1404 		return;
1405 
1406 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1407 		cb(&(edid->detailed_timings[i]), closure);
1408 
1409 	for (i = 1; i <= raw_edid[0x7e]; i++) {
1410 		u8 *ext = raw_edid + (i * EDID_LENGTH);
1411 		switch (*ext) {
1412 		case CEA_EXT:
1413 			cea_for_each_detailed_block(ext, cb, closure);
1414 			break;
1415 		case VTB_EXT:
1416 			vtb_for_each_detailed_block(ext, cb, closure);
1417 			break;
1418 		default:
1419 			break;
1420 		}
1421 	}
1422 }
1423 
1424 static void
1425 is_rb(struct detailed_timing *t, void *data)
1426 {
1427 	u8 *r = (u8 *)t;
1428 	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1429 		if (r[15] & 0x10)
1430 			*(bool *)data = true;
1431 }
1432 
1433 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
1434 static bool
1435 drm_monitor_supports_rb(struct edid *edid)
1436 {
1437 	if (edid->revision >= 4) {
1438 		bool ret = false;
1439 		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1440 		return ret;
1441 	}
1442 
1443 	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1444 }
1445 
1446 static void
1447 find_gtf2(struct detailed_timing *t, void *data)
1448 {
1449 	u8 *r = (u8 *)t;
1450 	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1451 		*(u8 **)data = r;
1452 }
1453 
1454 /* Secondary GTF curve kicks in above some break frequency */
1455 static int
1456 drm_gtf2_hbreak(struct edid *edid)
1457 {
1458 	u8 *r = NULL;
1459 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1460 	return r ? (r[12] * 2) : 0;
1461 }
1462 
1463 static int
1464 drm_gtf2_2c(struct edid *edid)
1465 {
1466 	u8 *r = NULL;
1467 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1468 	return r ? r[13] : 0;
1469 }
1470 
1471 static int
1472 drm_gtf2_m(struct edid *edid)
1473 {
1474 	u8 *r = NULL;
1475 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1476 	return r ? (r[15] << 8) + r[14] : 0;
1477 }
1478 
1479 static int
1480 drm_gtf2_k(struct edid *edid)
1481 {
1482 	u8 *r = NULL;
1483 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1484 	return r ? r[16] : 0;
1485 }
1486 
1487 static int
1488 drm_gtf2_2j(struct edid *edid)
1489 {
1490 	u8 *r = NULL;
1491 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1492 	return r ? r[17] : 0;
1493 }
1494 
1495 /**
1496  * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1497  * @edid: EDID block to scan
1498  */
1499 static int standard_timing_level(struct edid *edid)
1500 {
1501 	if (edid->revision >= 2) {
1502 		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1503 			return LEVEL_CVT;
1504 		if (drm_gtf2_hbreak(edid))
1505 			return LEVEL_GTF2;
1506 		return LEVEL_GTF;
1507 	}
1508 	return LEVEL_DMT;
1509 }
1510 
1511 /*
1512  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
1513  * monitors fill with ascii space (0x20) instead.
1514  */
1515 static int
1516 bad_std_timing(u8 a, u8 b)
1517 {
1518 	return (a == 0x00 && b == 0x00) ||
1519 	       (a == 0x01 && b == 0x01) ||
1520 	       (a == 0x20 && b == 0x20);
1521 }
1522 
1523 /**
1524  * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1525  * @t: standard timing params
1526  * @timing_level: standard timing level
1527  *
1528  * Take the standard timing params (in this case width, aspect, and refresh)
1529  * and convert them into a real mode using CVT/GTF/DMT.
1530  */
1531 static struct drm_display_mode *
1532 drm_mode_std(struct drm_connector *connector, struct edid *edid,
1533 	     struct std_timing *t, int revision)
1534 {
1535 	struct drm_device *dev = connector->dev;
1536 	struct drm_display_mode *m, *mode = NULL;
1537 	int hsize, vsize;
1538 	int vrefresh_rate;
1539 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1540 		>> EDID_TIMING_ASPECT_SHIFT;
1541 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1542 		>> EDID_TIMING_VFREQ_SHIFT;
1543 	int timing_level = standard_timing_level(edid);
1544 
1545 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
1546 		return NULL;
1547 
1548 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1549 	hsize = t->hsize * 8 + 248;
1550 	/* vrefresh_rate = vfreq + 60 */
1551 	vrefresh_rate = vfreq + 60;
1552 	/* the vdisplay is calculated based on the aspect ratio */
1553 	if (aspect_ratio == 0) {
1554 		if (revision < 3)
1555 			vsize = hsize;
1556 		else
1557 			vsize = (hsize * 10) / 16;
1558 	} else if (aspect_ratio == 1)
1559 		vsize = (hsize * 3) / 4;
1560 	else if (aspect_ratio == 2)
1561 		vsize = (hsize * 4) / 5;
1562 	else
1563 		vsize = (hsize * 9) / 16;
1564 
1565 	/* HDTV hack, part 1 */
1566 	if (vrefresh_rate == 60 &&
1567 	    ((hsize == 1360 && vsize == 765) ||
1568 	     (hsize == 1368 && vsize == 769))) {
1569 		hsize = 1366;
1570 		vsize = 768;
1571 	}
1572 
1573 	/*
1574 	 * If this connector already has a mode for this size and refresh
1575 	 * rate (because it came from detailed or CVT info), use that
1576 	 * instead.  This way we don't have to guess at interlace or
1577 	 * reduced blanking.
1578 	 */
1579 	list_for_each_entry(m, &connector->probed_modes, head)
1580 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
1581 		    drm_mode_vrefresh(m) == vrefresh_rate)
1582 			return NULL;
1583 
1584 	/* HDTV hack, part 2 */
1585 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1586 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1587 				    false);
1588 		mode->hdisplay = 1366;
1589 		mode->hsync_start = mode->hsync_start - 1;
1590 		mode->hsync_end = mode->hsync_end - 1;
1591 		return mode;
1592 	}
1593 
1594 	/* check whether it can be found in default mode table */
1595 	if (drm_monitor_supports_rb(edid)) {
1596 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1597 					 true);
1598 		if (mode)
1599 			return mode;
1600 	}
1601 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1602 	if (mode)
1603 		return mode;
1604 
1605 	/* okay, generate it */
1606 	switch (timing_level) {
1607 	case LEVEL_DMT:
1608 		break;
1609 	case LEVEL_GTF:
1610 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1611 		break;
1612 	case LEVEL_GTF2:
1613 		/*
1614 		 * This is potentially wrong if there's ever a monitor with
1615 		 * more than one ranges section, each claiming a different
1616 		 * secondary GTF curve.  Please don't do that.
1617 		 */
1618 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1619 		if (!mode)
1620 			return NULL;
1621 		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1622 			drm_mode_destroy(dev, mode);
1623 			mode = drm_gtf_mode_complex(dev, hsize, vsize,
1624 						    vrefresh_rate, 0, 0,
1625 						    drm_gtf2_m(edid),
1626 						    drm_gtf2_2c(edid),
1627 						    drm_gtf2_k(edid),
1628 						    drm_gtf2_2j(edid));
1629 		}
1630 		break;
1631 	case LEVEL_CVT:
1632 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1633 				    false);
1634 		break;
1635 	}
1636 	return mode;
1637 }
1638 
1639 /*
1640  * EDID is delightfully ambiguous about how interlaced modes are to be
1641  * encoded.  Our internal representation is of frame height, but some
1642  * HDTV detailed timings are encoded as field height.
1643  *
1644  * The format list here is from CEA, in frame size.  Technically we
1645  * should be checking refresh rate too.  Whatever.
1646  */
1647 static void
1648 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1649 			    struct detailed_pixel_timing *pt)
1650 {
1651 	int i;
1652 	static const struct {
1653 		int w, h;
1654 	} cea_interlaced[] = {
1655 		{ 1920, 1080 },
1656 		{  720,  480 },
1657 		{ 1440,  480 },
1658 		{ 2880,  480 },
1659 		{  720,  576 },
1660 		{ 1440,  576 },
1661 		{ 2880,  576 },
1662 	};
1663 
1664 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1665 		return;
1666 
1667 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1668 		if ((mode->hdisplay == cea_interlaced[i].w) &&
1669 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
1670 			mode->vdisplay *= 2;
1671 			mode->vsync_start *= 2;
1672 			mode->vsync_end *= 2;
1673 			mode->vtotal *= 2;
1674 			mode->vtotal |= 1;
1675 		}
1676 	}
1677 
1678 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
1679 }
1680 
1681 /**
1682  * drm_mode_detailed - create a new mode from an EDID detailed timing section
1683  * @dev: DRM device (needed to create new mode)
1684  * @edid: EDID block
1685  * @timing: EDID detailed timing info
1686  * @quirks: quirks to apply
1687  *
1688  * An EDID detailed timing block contains enough info for us to create and
1689  * return a new struct drm_display_mode.
1690  */
1691 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1692 						  struct edid *edid,
1693 						  struct detailed_timing *timing,
1694 						  u32 quirks)
1695 {
1696 	struct drm_display_mode *mode;
1697 	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1698 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1699 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1700 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1701 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1702 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1703 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1704 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1705 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1706 
1707 	/* ignore tiny modes */
1708 	if (hactive < 64 || vactive < 64)
1709 		return NULL;
1710 
1711 	if (pt->misc & DRM_EDID_PT_STEREO) {
1712 		DRM_DEBUG_KMS("stereo mode not supported\n");
1713 		return NULL;
1714 	}
1715 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1716 		DRM_DEBUG_KMS("composite sync not supported\n");
1717 	}
1718 
1719 	/* it is incorrect if hsync/vsync width is zero */
1720 	if (!hsync_pulse_width || !vsync_pulse_width) {
1721 		DRM_DEBUG_KMS("Incorrect Detailed timing. "
1722 				"Wrong Hsync/Vsync pulse width\n");
1723 		return NULL;
1724 	}
1725 
1726 	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1727 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1728 		if (!mode)
1729 			return NULL;
1730 
1731 		goto set_size;
1732 	}
1733 
1734 	mode = drm_mode_create(dev);
1735 	if (!mode)
1736 		return NULL;
1737 
1738 	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1739 		timing->pixel_clock = cpu_to_le16(1088);
1740 
1741 	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1742 
1743 	mode->hdisplay = hactive;
1744 	mode->hsync_start = mode->hdisplay + hsync_offset;
1745 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1746 	mode->htotal = mode->hdisplay + hblank;
1747 
1748 	mode->vdisplay = vactive;
1749 	mode->vsync_start = mode->vdisplay + vsync_offset;
1750 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1751 	mode->vtotal = mode->vdisplay + vblank;
1752 
1753 	/* Some EDIDs have bogus h/vtotal values */
1754 	if (mode->hsync_end > mode->htotal)
1755 		mode->htotal = mode->hsync_end + 1;
1756 	if (mode->vsync_end > mode->vtotal)
1757 		mode->vtotal = mode->vsync_end + 1;
1758 
1759 	drm_mode_do_interlace_quirk(mode, pt);
1760 
1761 	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
1762 		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
1763 	}
1764 
1765 	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
1766 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1767 	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
1768 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1769 
1770 set_size:
1771 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
1772 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
1773 
1774 	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
1775 		mode->width_mm *= 10;
1776 		mode->height_mm *= 10;
1777 	}
1778 
1779 	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
1780 		mode->width_mm = edid->width_cm * 10;
1781 		mode->height_mm = edid->height_cm * 10;
1782 	}
1783 
1784 	mode->type = DRM_MODE_TYPE_DRIVER;
1785 	mode->vrefresh = drm_mode_vrefresh(mode);
1786 	drm_mode_set_name(mode);
1787 
1788 	return mode;
1789 }
1790 
1791 static bool
1792 mode_in_hsync_range(const struct drm_display_mode *mode,
1793 		    struct edid *edid, u8 *t)
1794 {
1795 	int hsync, hmin, hmax;
1796 
1797 	hmin = t[7];
1798 	if (edid->revision >= 4)
1799 	    hmin += ((t[4] & 0x04) ? 255 : 0);
1800 	hmax = t[8];
1801 	if (edid->revision >= 4)
1802 	    hmax += ((t[4] & 0x08) ? 255 : 0);
1803 	hsync = drm_mode_hsync(mode);
1804 
1805 	return (hsync <= hmax && hsync >= hmin);
1806 }
1807 
1808 static bool
1809 mode_in_vsync_range(const struct drm_display_mode *mode,
1810 		    struct edid *edid, u8 *t)
1811 {
1812 	int vsync, vmin, vmax;
1813 
1814 	vmin = t[5];
1815 	if (edid->revision >= 4)
1816 	    vmin += ((t[4] & 0x01) ? 255 : 0);
1817 	vmax = t[6];
1818 	if (edid->revision >= 4)
1819 	    vmax += ((t[4] & 0x02) ? 255 : 0);
1820 	vsync = drm_mode_vrefresh(mode);
1821 
1822 	return (vsync <= vmax && vsync >= vmin);
1823 }
1824 
1825 static u32
1826 range_pixel_clock(struct edid *edid, u8 *t)
1827 {
1828 	/* unspecified */
1829 	if (t[9] == 0 || t[9] == 255)
1830 		return 0;
1831 
1832 	/* 1.4 with CVT support gives us real precision, yay */
1833 	if (edid->revision >= 4 && t[10] == 0x04)
1834 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
1835 
1836 	/* 1.3 is pathetic, so fuzz up a bit */
1837 	return t[9] * 10000 + 5001;
1838 }
1839 
1840 static bool
1841 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
1842 	      struct detailed_timing *timing)
1843 {
1844 	u32 max_clock;
1845 	u8 *t = (u8 *)timing;
1846 
1847 	if (!mode_in_hsync_range(mode, edid, t))
1848 		return false;
1849 
1850 	if (!mode_in_vsync_range(mode, edid, t))
1851 		return false;
1852 
1853 	if ((max_clock = range_pixel_clock(edid, t)))
1854 		if (mode->clock > max_clock)
1855 			return false;
1856 
1857 	/* 1.4 max horizontal check */
1858 	if (edid->revision >= 4 && t[10] == 0x04)
1859 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
1860 			return false;
1861 
1862 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
1863 		return false;
1864 
1865 	return true;
1866 }
1867 
1868 static bool valid_inferred_mode(const struct drm_connector *connector,
1869 				const struct drm_display_mode *mode)
1870 {
1871 	struct drm_display_mode *m;
1872 	bool ok = false;
1873 
1874 	list_for_each_entry(m, &connector->probed_modes, head) {
1875 		if (mode->hdisplay == m->hdisplay &&
1876 		    mode->vdisplay == m->vdisplay &&
1877 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
1878 			return false; /* duplicated */
1879 		if (mode->hdisplay <= m->hdisplay &&
1880 		    mode->vdisplay <= m->vdisplay)
1881 			ok = true;
1882 	}
1883 	return ok;
1884 }
1885 
1886 static int
1887 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
1888 			struct detailed_timing *timing)
1889 {
1890 	int i, modes = 0;
1891 	struct drm_display_mode *newmode;
1892 	struct drm_device *dev = connector->dev;
1893 
1894 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1895 		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
1896 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
1897 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
1898 			if (newmode) {
1899 				drm_mode_probed_add(connector, newmode);
1900 				modes++;
1901 			}
1902 		}
1903 	}
1904 
1905 	return modes;
1906 }
1907 
1908 /* fix up 1366x768 mode from 1368x768;
1909  * GFT/CVT can't express 1366 width which isn't dividable by 8
1910  */
1911 static void fixup_mode_1366x768(struct drm_display_mode *mode)
1912 {
1913 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
1914 		mode->hdisplay = 1366;
1915 		mode->hsync_start--;
1916 		mode->hsync_end--;
1917 		drm_mode_set_name(mode);
1918 	}
1919 }
1920 
1921 static int
1922 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
1923 			struct detailed_timing *timing)
1924 {
1925 	int i, modes = 0;
1926 	struct drm_display_mode *newmode;
1927 	struct drm_device *dev = connector->dev;
1928 
1929 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
1930 		const struct minimode *m = &extra_modes[i];
1931 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
1932 		if (!newmode)
1933 			return modes;
1934 
1935 		fixup_mode_1366x768(newmode);
1936 		if (!mode_in_range(newmode, edid, timing) ||
1937 		    !valid_inferred_mode(connector, newmode)) {
1938 			drm_mode_destroy(dev, newmode);
1939 			continue;
1940 		}
1941 
1942 		drm_mode_probed_add(connector, newmode);
1943 		modes++;
1944 	}
1945 
1946 	return modes;
1947 }
1948 
1949 static int
1950 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
1951 			struct detailed_timing *timing)
1952 {
1953 	int i, modes = 0;
1954 	struct drm_display_mode *newmode;
1955 	struct drm_device *dev = connector->dev;
1956 	bool rb = drm_monitor_supports_rb(edid);
1957 
1958 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
1959 		const struct minimode *m = &extra_modes[i];
1960 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
1961 		if (!newmode)
1962 			return modes;
1963 
1964 		fixup_mode_1366x768(newmode);
1965 		if (!mode_in_range(newmode, edid, timing) ||
1966 		    !valid_inferred_mode(connector, newmode)) {
1967 			drm_mode_destroy(dev, newmode);
1968 			continue;
1969 		}
1970 
1971 		drm_mode_probed_add(connector, newmode);
1972 		modes++;
1973 	}
1974 
1975 	return modes;
1976 }
1977 
1978 static void
1979 do_inferred_modes(struct detailed_timing *timing, void *c)
1980 {
1981 	struct detailed_mode_closure *closure = c;
1982 	struct detailed_non_pixel *data = &timing->data.other_data;
1983 	struct detailed_data_monitor_range *range = &data->data.range;
1984 
1985 	if (data->type != EDID_DETAIL_MONITOR_RANGE)
1986 		return;
1987 
1988 	closure->modes += drm_dmt_modes_for_range(closure->connector,
1989 						  closure->edid,
1990 						  timing);
1991 
1992 	if (!version_greater(closure->edid, 1, 1))
1993 		return; /* GTF not defined yet */
1994 
1995 	switch (range->flags) {
1996 	case 0x02: /* secondary gtf, XXX could do more */
1997 	case 0x00: /* default gtf */
1998 		closure->modes += drm_gtf_modes_for_range(closure->connector,
1999 							  closure->edid,
2000 							  timing);
2001 		break;
2002 	case 0x04: /* cvt, only in 1.4+ */
2003 		if (!version_greater(closure->edid, 1, 3))
2004 			break;
2005 
2006 		closure->modes += drm_cvt_modes_for_range(closure->connector,
2007 							  closure->edid,
2008 							  timing);
2009 		break;
2010 	case 0x01: /* just the ranges, no formula */
2011 	default:
2012 		break;
2013 	}
2014 }
2015 
2016 static int
2017 add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2018 {
2019 	struct detailed_mode_closure closure = {
2020 		connector, edid, 0, 0, 0
2021 	};
2022 
2023 	if (version_greater(edid, 1, 0))
2024 		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2025 					    &closure);
2026 
2027 	return closure.modes;
2028 }
2029 
2030 static int
2031 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2032 {
2033 	int i, j, m, modes = 0;
2034 	struct drm_display_mode *mode;
2035 	u8 *est = ((u8 *)timing) + 5;
2036 
2037 	for (i = 0; i < 6; i++) {
2038 		for (j = 7; j > 0; j--) {
2039 			m = (i * 8) + (7 - j);
2040 			if (m >= ARRAY_SIZE(est3_modes))
2041 				break;
2042 			if (est[i] & (1 << j)) {
2043 				mode = drm_mode_find_dmt(connector->dev,
2044 							 est3_modes[m].w,
2045 							 est3_modes[m].h,
2046 							 est3_modes[m].r,
2047 							 est3_modes[m].rb);
2048 				if (mode) {
2049 					drm_mode_probed_add(connector, mode);
2050 					modes++;
2051 				}
2052 			}
2053 		}
2054 	}
2055 
2056 	return modes;
2057 }
2058 
2059 static void
2060 do_established_modes(struct detailed_timing *timing, void *c)
2061 {
2062 	struct detailed_mode_closure *closure = c;
2063 	struct detailed_non_pixel *data = &timing->data.other_data;
2064 
2065 	if (data->type == EDID_DETAIL_EST_TIMINGS)
2066 		closure->modes += drm_est3_modes(closure->connector, timing);
2067 }
2068 
2069 /**
2070  * add_established_modes - get est. modes from EDID and add them
2071  * @edid: EDID block to scan
2072  *
2073  * Each EDID block contains a bitmap of the supported "established modes" list
2074  * (defined above).  Tease them out and add them to the global modes list.
2075  */
2076 static int
2077 add_established_modes(struct drm_connector *connector, struct edid *edid)
2078 {
2079 	struct drm_device *dev = connector->dev;
2080 	unsigned long est_bits = edid->established_timings.t1 |
2081 		(edid->established_timings.t2 << 8) |
2082 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
2083 	int i, modes = 0;
2084 	struct detailed_mode_closure closure = {
2085 		connector, edid, 0, 0, 0
2086 	};
2087 
2088 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2089 		if (est_bits & (1<<i)) {
2090 			struct drm_display_mode *newmode;
2091 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2092 			if (newmode) {
2093 				drm_mode_probed_add(connector, newmode);
2094 				modes++;
2095 			}
2096 		}
2097 	}
2098 
2099 	if (version_greater(edid, 1, 0))
2100 		    drm_for_each_detailed_block((u8 *)edid,
2101 						do_established_modes, &closure);
2102 
2103 	return modes + closure.modes;
2104 }
2105 
2106 static void
2107 do_standard_modes(struct detailed_timing *timing, void *c)
2108 {
2109 	struct detailed_mode_closure *closure = c;
2110 	struct detailed_non_pixel *data = &timing->data.other_data;
2111 	struct drm_connector *connector = closure->connector;
2112 	struct edid *edid = closure->edid;
2113 
2114 	if (data->type == EDID_DETAIL_STD_MODES) {
2115 		int i;
2116 		for (i = 0; i < 6; i++) {
2117 			struct std_timing *std;
2118 			struct drm_display_mode *newmode;
2119 
2120 			std = &data->data.timings[i];
2121 			newmode = drm_mode_std(connector, edid, std,
2122 					       edid->revision);
2123 			if (newmode) {
2124 				drm_mode_probed_add(connector, newmode);
2125 				closure->modes++;
2126 			}
2127 		}
2128 	}
2129 }
2130 
2131 /**
2132  * add_standard_modes - get std. modes from EDID and add them
2133  * @edid: EDID block to scan
2134  *
2135  * Standard modes can be calculated using the appropriate standard (DMT,
2136  * GTF or CVT. Grab them from @edid and add them to the list.
2137  */
2138 static int
2139 add_standard_modes(struct drm_connector *connector, struct edid *edid)
2140 {
2141 	int i, modes = 0;
2142 	struct detailed_mode_closure closure = {
2143 		connector, edid, 0, 0, 0
2144 	};
2145 
2146 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
2147 		struct drm_display_mode *newmode;
2148 
2149 		newmode = drm_mode_std(connector, edid,
2150 				       &edid->standard_timings[i],
2151 				       edid->revision);
2152 		if (newmode) {
2153 			drm_mode_probed_add(connector, newmode);
2154 			modes++;
2155 		}
2156 	}
2157 
2158 	if (version_greater(edid, 1, 0))
2159 		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2160 					    &closure);
2161 
2162 	/* XXX should also look for standard codes in VTB blocks */
2163 
2164 	return modes + closure.modes;
2165 }
2166 
2167 static int drm_cvt_modes(struct drm_connector *connector,
2168 			 struct detailed_timing *timing)
2169 {
2170 	int i, j, modes = 0;
2171 	struct drm_display_mode *newmode;
2172 	struct drm_device *dev = connector->dev;
2173 	struct cvt_timing *cvt;
2174 	const int rates[] = { 60, 85, 75, 60, 50 };
2175 	const u8 empty[3] = { 0, 0, 0 };
2176 
2177 	for (i = 0; i < 4; i++) {
2178 		int uninitialized_var(width), height;
2179 		cvt = &(timing->data.other_data.data.cvt[i]);
2180 
2181 		if (!memcmp(cvt->code, empty, 3))
2182 			continue;
2183 
2184 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2185 		switch (cvt->code[1] & 0x0c) {
2186 		case 0x00:
2187 			width = height * 4 / 3;
2188 			break;
2189 		case 0x04:
2190 			width = height * 16 / 9;
2191 			break;
2192 		case 0x08:
2193 			width = height * 16 / 10;
2194 			break;
2195 		case 0x0c:
2196 			width = height * 15 / 9;
2197 			break;
2198 		}
2199 
2200 		for (j = 1; j < 5; j++) {
2201 			if (cvt->code[2] & (1 << j)) {
2202 				newmode = drm_cvt_mode(dev, width, height,
2203 						       rates[j], j == 0,
2204 						       false, false);
2205 				if (newmode) {
2206 					drm_mode_probed_add(connector, newmode);
2207 					modes++;
2208 				}
2209 			}
2210 		}
2211 	}
2212 
2213 	return modes;
2214 }
2215 
2216 static void
2217 do_cvt_mode(struct detailed_timing *timing, void *c)
2218 {
2219 	struct detailed_mode_closure *closure = c;
2220 	struct detailed_non_pixel *data = &timing->data.other_data;
2221 
2222 	if (data->type == EDID_DETAIL_CVT_3BYTE)
2223 		closure->modes += drm_cvt_modes(closure->connector, timing);
2224 }
2225 
2226 static int
2227 add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2228 {
2229 	struct detailed_mode_closure closure = {
2230 		connector, edid, 0, 0, 0
2231 	};
2232 
2233 	if (version_greater(edid, 1, 2))
2234 		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2235 
2236 	/* XXX should also look for CVT codes in VTB blocks */
2237 
2238 	return closure.modes;
2239 }
2240 
2241 static void
2242 do_detailed_mode(struct detailed_timing *timing, void *c)
2243 {
2244 	struct detailed_mode_closure *closure = c;
2245 	struct drm_display_mode *newmode;
2246 
2247 	if (timing->pixel_clock) {
2248 		newmode = drm_mode_detailed(closure->connector->dev,
2249 					    closure->edid, timing,
2250 					    closure->quirks);
2251 		if (!newmode)
2252 			return;
2253 
2254 		if (closure->preferred)
2255 			newmode->type |= DRM_MODE_TYPE_PREFERRED;
2256 
2257 		drm_mode_probed_add(closure->connector, newmode);
2258 		closure->modes++;
2259 		closure->preferred = 0;
2260 	}
2261 }
2262 
2263 /*
2264  * add_detailed_modes - Add modes from detailed timings
2265  * @connector: attached connector
2266  * @edid: EDID block to scan
2267  * @quirks: quirks to apply
2268  */
2269 static int
2270 add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2271 		   u32 quirks)
2272 {
2273 	struct detailed_mode_closure closure = {
2274 		connector,
2275 		edid,
2276 		1,
2277 		quirks,
2278 		0
2279 	};
2280 
2281 	if (closure.preferred && !version_greater(edid, 1, 3))
2282 		closure.preferred =
2283 		    (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2284 
2285 	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2286 
2287 	return closure.modes;
2288 }
2289 
2290 #define HDMI_IDENTIFIER 0x000C03
2291 #define AUDIO_BLOCK	0x01
2292 #define VIDEO_BLOCK     0x02
2293 #define VENDOR_BLOCK    0x03
2294 #define SPEAKER_BLOCK	0x04
2295 #define VIDEO_CAPABILITY_BLOCK	0x07
2296 #define EDID_BASIC_AUDIO	(1 << 6)
2297 #define EDID_CEA_YCRCB444	(1 << 5)
2298 #define EDID_CEA_YCRCB422	(1 << 4)
2299 #define EDID_CEA_VCDB_QS	(1 << 6)
2300 
2301 /**
2302  * Search EDID for CEA extension block.
2303  */
2304 u8 *drm_find_cea_extension(struct edid *edid)
2305 {
2306 	u8 *edid_ext = NULL;
2307 	int i;
2308 
2309 	/* No EDID or EDID extensions */
2310 	if (edid == NULL || edid->extensions == 0)
2311 		return NULL;
2312 
2313 	/* Find CEA extension */
2314 	for (i = 0; i < edid->extensions; i++) {
2315 		edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2316 		if (edid_ext[0] == CEA_EXT)
2317 			break;
2318 	}
2319 
2320 	if (i == edid->extensions)
2321 		return NULL;
2322 
2323 	return edid_ext;
2324 }
2325 EXPORT_SYMBOL(drm_find_cea_extension);
2326 
2327 /*
2328  * Calculate the alternate clock for the CEA mode
2329  * (60Hz vs. 59.94Hz etc.)
2330  */
2331 static unsigned int
2332 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2333 {
2334 	unsigned int clock = cea_mode->clock;
2335 
2336 	if (cea_mode->vrefresh % 6 != 0)
2337 		return clock;
2338 
2339 	/*
2340 	 * edid_cea_modes contains the 59.94Hz
2341 	 * variant for 240 and 480 line modes,
2342 	 * and the 60Hz variant otherwise.
2343 	 */
2344 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2345 		clock = clock * 1001 / 1000;
2346 	else
2347 		clock = DIV_ROUND_UP(clock * 1000, 1001);
2348 
2349 	return clock;
2350 }
2351 
2352 /**
2353  * drm_match_cea_mode - look for a CEA mode matching given mode
2354  * @to_match: display mode
2355  *
2356  * Returns the CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2357  * mode.
2358  */
2359 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2360 {
2361 	u8 mode;
2362 
2363 	if (!to_match->clock)
2364 		return 0;
2365 
2366 	for (mode = 0; mode < ARRAY_SIZE(edid_cea_modes); mode++) {
2367 		const struct drm_display_mode *cea_mode = &edid_cea_modes[mode];
2368 		unsigned int clock1, clock2;
2369 
2370 		/* Check both 60Hz and 59.94Hz */
2371 		clock1 = cea_mode->clock;
2372 		clock2 = cea_mode_alternate_clock(cea_mode);
2373 
2374 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2375 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2376 		    drm_mode_equal_no_clocks(to_match, cea_mode))
2377 			return mode + 1;
2378 	}
2379 	return 0;
2380 }
2381 EXPORT_SYMBOL(drm_match_cea_mode);
2382 
2383 static int
2384 add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
2385 {
2386 	struct drm_device *dev = connector->dev;
2387 	struct drm_display_mode *mode, *tmp;
2388 	LIST_HEAD(list);
2389 	int modes = 0;
2390 
2391 	/* Don't add CEA modes if the CEA extension block is missing */
2392 	if (!drm_find_cea_extension(edid))
2393 		return 0;
2394 
2395 	/*
2396 	 * Go through all probed modes and create a new mode
2397 	 * with the alternate clock for certain CEA modes.
2398 	 */
2399 	list_for_each_entry(mode, &connector->probed_modes, head) {
2400 		const struct drm_display_mode *cea_mode;
2401 		struct drm_display_mode *newmode;
2402 		u8 cea_mode_idx = drm_match_cea_mode(mode) - 1;
2403 		unsigned int clock1, clock2;
2404 
2405 		if (cea_mode_idx >= ARRAY_SIZE(edid_cea_modes))
2406 			continue;
2407 
2408 		cea_mode = &edid_cea_modes[cea_mode_idx];
2409 
2410 		clock1 = cea_mode->clock;
2411 		clock2 = cea_mode_alternate_clock(cea_mode);
2412 
2413 		if (clock1 == clock2)
2414 			continue;
2415 
2416 		if (mode->clock != clock1 && mode->clock != clock2)
2417 			continue;
2418 
2419 		newmode = drm_mode_duplicate(dev, cea_mode);
2420 		if (!newmode)
2421 			continue;
2422 
2423 		/*
2424 		 * The current mode could be either variant. Make
2425 		 * sure to pick the "other" clock for the new mode.
2426 		 */
2427 		if (mode->clock != clock1)
2428 			newmode->clock = clock1;
2429 		else
2430 			newmode->clock = clock2;
2431 
2432 		list_add_tail(&newmode->head, &list);
2433 	}
2434 
2435 	list_for_each_entry_safe(mode, tmp, &list, head) {
2436 		list_del(&mode->head);
2437 		drm_mode_probed_add(connector, mode);
2438 		modes++;
2439 	}
2440 
2441 	return modes;
2442 }
2443 
2444 static int
2445 do_cea_modes (struct drm_connector *connector, u8 *db, u8 len)
2446 {
2447 	struct drm_device *dev = connector->dev;
2448 	u8 * mode, cea_mode;
2449 	int modes = 0;
2450 
2451 	for (mode = db; mode < db + len; mode++) {
2452 		cea_mode = (*mode & 127) - 1; /* CEA modes are numbered 1..127 */
2453 		if (cea_mode < ARRAY_SIZE(edid_cea_modes)) {
2454 			struct drm_display_mode *newmode;
2455 			newmode = drm_mode_duplicate(dev,
2456 						     &edid_cea_modes[cea_mode]);
2457 			if (newmode) {
2458 				newmode->vrefresh = 0;
2459 				drm_mode_probed_add(connector, newmode);
2460 				modes++;
2461 			}
2462 		}
2463 	}
2464 
2465 	return modes;
2466 }
2467 
2468 static int
2469 cea_db_payload_len(const u8 *db)
2470 {
2471 	return db[0] & 0x1f;
2472 }
2473 
2474 static int
2475 cea_db_tag(const u8 *db)
2476 {
2477 	return db[0] >> 5;
2478 }
2479 
2480 static int
2481 cea_revision(const u8 *cea)
2482 {
2483 	return cea[1];
2484 }
2485 
2486 static int
2487 cea_db_offsets(const u8 *cea, int *start, int *end)
2488 {
2489 	/* Data block offset in CEA extension block */
2490 	*start = 4;
2491 	*end = cea[2];
2492 	if (*end == 0)
2493 		*end = 127;
2494 	if (*end < 4 || *end > 127)
2495 		return -ERANGE;
2496 	return 0;
2497 }
2498 
2499 #define for_each_cea_db(cea, i, start, end) \
2500 	for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
2501 
2502 static int
2503 add_cea_modes(struct drm_connector *connector, struct edid *edid)
2504 {
2505 	u8 * cea = drm_find_cea_extension(edid);
2506 	u8 * db, dbl;
2507 	int modes = 0;
2508 
2509 	if (cea && cea_revision(cea) >= 3) {
2510 		int i, start, end;
2511 
2512 		if (cea_db_offsets(cea, &start, &end))
2513 			return 0;
2514 
2515 		for_each_cea_db(cea, i, start, end) {
2516 			db = &cea[i];
2517 			dbl = cea_db_payload_len(db);
2518 
2519 			if (cea_db_tag(db) == VIDEO_BLOCK)
2520 				modes += do_cea_modes (connector, db+1, dbl);
2521 		}
2522 	}
2523 
2524 	return modes;
2525 }
2526 
2527 static void
2528 parse_hdmi_vsdb(struct drm_connector *connector, const u8 *db)
2529 {
2530 	u8 len = cea_db_payload_len(db);
2531 
2532 	if (len >= 6) {
2533 		connector->eld[5] |= (db[6] >> 7) << 1;  /* Supports_AI */
2534 		connector->dvi_dual = db[6] & 1;
2535 	}
2536 	if (len >= 7)
2537 		connector->max_tmds_clock = db[7] * 5;
2538 	if (len >= 8) {
2539 		connector->latency_present[0] = db[8] >> 7;
2540 		connector->latency_present[1] = (db[8] >> 6) & 1;
2541 	}
2542 	if (len >= 9)
2543 		connector->video_latency[0] = db[9];
2544 	if (len >= 10)
2545 		connector->audio_latency[0] = db[10];
2546 	if (len >= 11)
2547 		connector->video_latency[1] = db[11];
2548 	if (len >= 12)
2549 		connector->audio_latency[1] = db[12];
2550 
2551 	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
2552 		    "max TMDS clock %d, "
2553 		    "latency present %d %d, "
2554 		    "video latency %d %d, "
2555 		    "audio latency %d %d\n",
2556 		    connector->dvi_dual,
2557 		    connector->max_tmds_clock,
2558 	      (int) connector->latency_present[0],
2559 	      (int) connector->latency_present[1],
2560 		    connector->video_latency[0],
2561 		    connector->video_latency[1],
2562 		    connector->audio_latency[0],
2563 		    connector->audio_latency[1]);
2564 }
2565 
2566 static void
2567 monitor_name(struct detailed_timing *t, void *data)
2568 {
2569 	if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
2570 		*(u8 **)data = t->data.other_data.data.str.str;
2571 }
2572 
2573 static bool cea_db_is_hdmi_vsdb(const u8 *db)
2574 {
2575 	int hdmi_id;
2576 
2577 	if (cea_db_tag(db) != VENDOR_BLOCK)
2578 		return false;
2579 
2580 	if (cea_db_payload_len(db) < 5)
2581 		return false;
2582 
2583 	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
2584 
2585 	return hdmi_id == HDMI_IDENTIFIER;
2586 }
2587 
2588 /**
2589  * drm_edid_to_eld - build ELD from EDID
2590  * @connector: connector corresponding to the HDMI/DP sink
2591  * @edid: EDID to parse
2592  *
2593  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver.
2594  * Some ELD fields are left to the graphics driver caller:
2595  * - Conn_Type
2596  * - HDCP
2597  * - Port_ID
2598  */
2599 void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
2600 {
2601 	uint8_t *eld = connector->eld;
2602 	u8 *cea;
2603 	u8 *name;
2604 	u8 *db;
2605 	int sad_count = 0;
2606 	int mnl;
2607 	int dbl;
2608 
2609 	memset(eld, 0, sizeof(connector->eld));
2610 
2611 	cea = drm_find_cea_extension(edid);
2612 	if (!cea) {
2613 		DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
2614 		return;
2615 	}
2616 
2617 	name = NULL;
2618 	drm_for_each_detailed_block((u8 *)edid, monitor_name, &name);
2619 	for (mnl = 0; name && mnl < 13; mnl++) {
2620 		if (name[mnl] == 0x0a)
2621 			break;
2622 		eld[20 + mnl] = name[mnl];
2623 	}
2624 	eld[4] = (cea[1] << 5) | mnl;
2625 	DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
2626 
2627 	eld[0] = 2 << 3;		/* ELD version: 2 */
2628 
2629 	eld[16] = edid->mfg_id[0];
2630 	eld[17] = edid->mfg_id[1];
2631 	eld[18] = edid->prod_code[0];
2632 	eld[19] = edid->prod_code[1];
2633 
2634 	if (cea_revision(cea) >= 3) {
2635 		int i, start, end;
2636 
2637 		if (cea_db_offsets(cea, &start, &end)) {
2638 			start = 0;
2639 			end = 0;
2640 		}
2641 
2642 		for_each_cea_db(cea, i, start, end) {
2643 			db = &cea[i];
2644 			dbl = cea_db_payload_len(db);
2645 
2646 			switch (cea_db_tag(db)) {
2647 			case AUDIO_BLOCK:
2648 				/* Audio Data Block, contains SADs */
2649 				sad_count = dbl / 3;
2650 				if (dbl >= 1)
2651 					memcpy(eld + 20 + mnl, &db[1], dbl);
2652 				break;
2653 			case SPEAKER_BLOCK:
2654 				/* Speaker Allocation Data Block */
2655 				if (dbl >= 1)
2656 					eld[7] = db[1];
2657 				break;
2658 			case VENDOR_BLOCK:
2659 				/* HDMI Vendor-Specific Data Block */
2660 				if (cea_db_is_hdmi_vsdb(db))
2661 					parse_hdmi_vsdb(connector, db);
2662 				break;
2663 			default:
2664 				break;
2665 			}
2666 		}
2667 	}
2668 	eld[5] |= sad_count << 4;
2669 	eld[2] = (20 + mnl + sad_count * 3 + 3) / 4;
2670 
2671 	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n", (int)eld[2], sad_count);
2672 }
2673 EXPORT_SYMBOL(drm_edid_to_eld);
2674 
2675 /**
2676  * drm_edid_to_sad - extracts SADs from EDID
2677  * @edid: EDID to parse
2678  * @sads: pointer that will be set to the extracted SADs
2679  *
2680  * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
2681  * Note: returned pointer needs to be kfreed
2682  *
2683  * Return number of found SADs or negative number on error.
2684  */
2685 int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
2686 {
2687 	int count = 0;
2688 	int i, start, end, dbl;
2689 	u8 *cea;
2690 
2691 	cea = drm_find_cea_extension(edid);
2692 	if (!cea) {
2693 		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
2694 		return -ENOENT;
2695 	}
2696 
2697 	if (cea_revision(cea) < 3) {
2698 		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
2699 		return -ENOTSUPP;
2700 	}
2701 
2702 	if (cea_db_offsets(cea, &start, &end)) {
2703 		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
2704 		return -EPROTO;
2705 	}
2706 
2707 	for_each_cea_db(cea, i, start, end) {
2708 		u8 *db = &cea[i];
2709 
2710 		if (cea_db_tag(db) == AUDIO_BLOCK) {
2711 			int j;
2712 			dbl = cea_db_payload_len(db);
2713 
2714 			count = dbl / 3; /* SAD is 3B */
2715 			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
2716 			if (!*sads)
2717 				return -ENOMEM;
2718 			for (j = 0; j < count; j++) {
2719 				u8 *sad = &db[1 + j * 3];
2720 
2721 				(*sads)[j].format = (sad[0] & 0x78) >> 3;
2722 				(*sads)[j].channels = sad[0] & 0x7;
2723 				(*sads)[j].freq = sad[1] & 0x7F;
2724 				(*sads)[j].byte2 = sad[2];
2725 			}
2726 			break;
2727 		}
2728 	}
2729 
2730 	return count;
2731 }
2732 EXPORT_SYMBOL(drm_edid_to_sad);
2733 
2734 /**
2735  * drm_av_sync_delay - HDMI/DP sink audio-video sync delay in millisecond
2736  * @connector: connector associated with the HDMI/DP sink
2737  * @mode: the display mode
2738  */
2739 int drm_av_sync_delay(struct drm_connector *connector,
2740 		      struct drm_display_mode *mode)
2741 {
2742 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
2743 	int a, v;
2744 
2745 	if (!connector->latency_present[0])
2746 		return 0;
2747 	if (!connector->latency_present[1])
2748 		i = 0;
2749 
2750 	a = connector->audio_latency[i];
2751 	v = connector->video_latency[i];
2752 
2753 	/*
2754 	 * HDMI/DP sink doesn't support audio or video?
2755 	 */
2756 	if (a == 255 || v == 255)
2757 		return 0;
2758 
2759 	/*
2760 	 * Convert raw EDID values to millisecond.
2761 	 * Treat unknown latency as 0ms.
2762 	 */
2763 	if (a)
2764 		a = min(2 * (a - 1), 500);
2765 	if (v)
2766 		v = min(2 * (v - 1), 500);
2767 
2768 	return max(v - a, 0);
2769 }
2770 EXPORT_SYMBOL(drm_av_sync_delay);
2771 
2772 /**
2773  * drm_select_eld - select one ELD from multiple HDMI/DP sinks
2774  * @encoder: the encoder just changed display mode
2775  * @mode: the adjusted display mode
2776  *
2777  * It's possible for one encoder to be associated with multiple HDMI/DP sinks.
2778  * The policy is now hard coded to simply use the first HDMI/DP sink's ELD.
2779  */
2780 struct drm_connector *drm_select_eld(struct drm_encoder *encoder,
2781 				     struct drm_display_mode *mode)
2782 {
2783 	struct drm_connector *connector;
2784 	struct drm_device *dev = encoder->dev;
2785 
2786 	list_for_each_entry(connector, &dev->mode_config.connector_list, head)
2787 		if (connector->encoder == encoder && connector->eld[0])
2788 			return connector;
2789 
2790 	return NULL;
2791 }
2792 EXPORT_SYMBOL(drm_select_eld);
2793 
2794 /**
2795  * drm_detect_hdmi_monitor - detect whether monitor is hdmi.
2796  * @edid: monitor EDID information
2797  *
2798  * Parse the CEA extension according to CEA-861-B.
2799  * Return true if HDMI, false if not or unknown.
2800  */
2801 bool drm_detect_hdmi_monitor(struct edid *edid)
2802 {
2803 	u8 *edid_ext;
2804 	int i;
2805 	int start_offset, end_offset;
2806 
2807 	edid_ext = drm_find_cea_extension(edid);
2808 	if (!edid_ext)
2809 		return false;
2810 
2811 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
2812 		return false;
2813 
2814 	/*
2815 	 * Because HDMI identifier is in Vendor Specific Block,
2816 	 * search it from all data blocks of CEA extension.
2817 	 */
2818 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
2819 		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
2820 			return true;
2821 	}
2822 
2823 	return false;
2824 }
2825 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
2826 
2827 /**
2828  * drm_detect_monitor_audio - check monitor audio capability
2829  *
2830  * Monitor should have CEA extension block.
2831  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
2832  * audio' only. If there is any audio extension block and supported
2833  * audio format, assume at least 'basic audio' support, even if 'basic
2834  * audio' is not defined in EDID.
2835  *
2836  */
2837 bool drm_detect_monitor_audio(struct edid *edid)
2838 {
2839 	u8 *edid_ext;
2840 	int i, j;
2841 	bool has_audio = false;
2842 	int start_offset, end_offset;
2843 
2844 	edid_ext = drm_find_cea_extension(edid);
2845 	if (!edid_ext)
2846 		goto end;
2847 
2848 	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
2849 
2850 	if (has_audio) {
2851 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
2852 		goto end;
2853 	}
2854 
2855 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
2856 		goto end;
2857 
2858 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
2859 		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
2860 			has_audio = true;
2861 			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
2862 				DRM_DEBUG_KMS("CEA audio format %d\n",
2863 					      (edid_ext[i + j] >> 3) & 0xf);
2864 			goto end;
2865 		}
2866 	}
2867 end:
2868 	return has_audio;
2869 }
2870 EXPORT_SYMBOL(drm_detect_monitor_audio);
2871 
2872 /**
2873  * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
2874  *
2875  * Check whether the monitor reports the RGB quantization range selection
2876  * as supported. The AVI infoframe can then be used to inform the monitor
2877  * which quantization range (full or limited) is used.
2878  */
2879 bool drm_rgb_quant_range_selectable(struct edid *edid)
2880 {
2881 	u8 *edid_ext;
2882 	int i, start, end;
2883 
2884 	edid_ext = drm_find_cea_extension(edid);
2885 	if (!edid_ext)
2886 		return false;
2887 
2888 	if (cea_db_offsets(edid_ext, &start, &end))
2889 		return false;
2890 
2891 	for_each_cea_db(edid_ext, i, start, end) {
2892 		if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
2893 		    cea_db_payload_len(&edid_ext[i]) == 2) {
2894 			DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
2895 			return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
2896 		}
2897 	}
2898 
2899 	return false;
2900 }
2901 EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
2902 
2903 /**
2904  * drm_add_display_info - pull display info out if present
2905  * @edid: EDID data
2906  * @info: display info (attached to connector)
2907  *
2908  * Grab any available display info and stuff it into the drm_display_info
2909  * structure that's part of the connector.  Useful for tracking bpp and
2910  * color spaces.
2911  */
2912 static void drm_add_display_info(struct edid *edid,
2913 				 struct drm_display_info *info)
2914 {
2915 	u8 *edid_ext;
2916 
2917 	info->width_mm = edid->width_cm * 10;
2918 	info->height_mm = edid->height_cm * 10;
2919 
2920 	/* driver figures it out in this case */
2921 	info->bpc = 0;
2922 	info->color_formats = 0;
2923 
2924 	if (edid->revision < 3)
2925 		return;
2926 
2927 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
2928 		return;
2929 
2930 	/* Get data from CEA blocks if present */
2931 	edid_ext = drm_find_cea_extension(edid);
2932 	if (edid_ext) {
2933 		info->cea_rev = edid_ext[1];
2934 
2935 		/* The existence of a CEA block should imply RGB support */
2936 		info->color_formats = DRM_COLOR_FORMAT_RGB444;
2937 		if (edid_ext[3] & EDID_CEA_YCRCB444)
2938 			info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
2939 		if (edid_ext[3] & EDID_CEA_YCRCB422)
2940 			info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
2941 	}
2942 
2943 	/* Only defined for 1.4 with digital displays */
2944 	if (edid->revision < 4)
2945 		return;
2946 
2947 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
2948 	case DRM_EDID_DIGITAL_DEPTH_6:
2949 		info->bpc = 6;
2950 		break;
2951 	case DRM_EDID_DIGITAL_DEPTH_8:
2952 		info->bpc = 8;
2953 		break;
2954 	case DRM_EDID_DIGITAL_DEPTH_10:
2955 		info->bpc = 10;
2956 		break;
2957 	case DRM_EDID_DIGITAL_DEPTH_12:
2958 		info->bpc = 12;
2959 		break;
2960 	case DRM_EDID_DIGITAL_DEPTH_14:
2961 		info->bpc = 14;
2962 		break;
2963 	case DRM_EDID_DIGITAL_DEPTH_16:
2964 		info->bpc = 16;
2965 		break;
2966 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
2967 	default:
2968 		info->bpc = 0;
2969 		break;
2970 	}
2971 
2972 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
2973 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
2974 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
2975 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
2976 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
2977 }
2978 
2979 /**
2980  * drm_add_edid_modes - add modes from EDID data, if available
2981  * @connector: connector we're probing
2982  * @edid: edid data
2983  *
2984  * Add the specified modes to the connector's mode list.
2985  *
2986  * Return number of modes added or 0 if we couldn't find any.
2987  */
2988 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
2989 {
2990 	int num_modes = 0;
2991 	u32 quirks;
2992 
2993 	if (edid == NULL) {
2994 		return 0;
2995 	}
2996 	if (!drm_edid_is_valid(edid)) {
2997 		dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
2998 			 drm_get_connector_name(connector));
2999 		return 0;
3000 	}
3001 
3002 	quirks = edid_get_quirks(edid);
3003 
3004 	/*
3005 	 * EDID spec says modes should be preferred in this order:
3006 	 * - preferred detailed mode
3007 	 * - other detailed modes from base block
3008 	 * - detailed modes from extension blocks
3009 	 * - CVT 3-byte code modes
3010 	 * - standard timing codes
3011 	 * - established timing codes
3012 	 * - modes inferred from GTF or CVT range information
3013 	 *
3014 	 * We get this pretty much right.
3015 	 *
3016 	 * XXX order for additional mode types in extension blocks?
3017 	 */
3018 	num_modes += add_detailed_modes(connector, edid, quirks);
3019 	num_modes += add_cvt_modes(connector, edid);
3020 	num_modes += add_standard_modes(connector, edid);
3021 	num_modes += add_established_modes(connector, edid);
3022 	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
3023 		num_modes += add_inferred_modes(connector, edid);
3024 	num_modes += add_cea_modes(connector, edid);
3025 	num_modes += add_alternate_cea_modes(connector, edid);
3026 
3027 	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
3028 		edid_fixup_preferred(connector, quirks);
3029 
3030 	drm_add_display_info(edid, &connector->display_info);
3031 
3032 	return num_modes;
3033 }
3034 EXPORT_SYMBOL(drm_add_edid_modes);
3035 
3036 /**
3037  * drm_add_modes_noedid - add modes for the connectors without EDID
3038  * @connector: connector we're probing
3039  * @hdisplay: the horizontal display limit
3040  * @vdisplay: the vertical display limit
3041  *
3042  * Add the specified modes to the connector's mode list. Only when the
3043  * hdisplay/vdisplay is not beyond the given limit, it will be added.
3044  *
3045  * Return number of modes added or 0 if we couldn't find any.
3046  */
3047 int drm_add_modes_noedid(struct drm_connector *connector,
3048 			int hdisplay, int vdisplay)
3049 {
3050 	int i, count, num_modes = 0;
3051 	struct drm_display_mode *mode;
3052 	struct drm_device *dev = connector->dev;
3053 
3054 	count = sizeof(drm_dmt_modes) / sizeof(struct drm_display_mode);
3055 	if (hdisplay < 0)
3056 		hdisplay = 0;
3057 	if (vdisplay < 0)
3058 		vdisplay = 0;
3059 
3060 	for (i = 0; i < count; i++) {
3061 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
3062 		if (hdisplay && vdisplay) {
3063 			/*
3064 			 * Only when two are valid, they will be used to check
3065 			 * whether the mode should be added to the mode list of
3066 			 * the connector.
3067 			 */
3068 			if (ptr->hdisplay > hdisplay ||
3069 					ptr->vdisplay > vdisplay)
3070 				continue;
3071 		}
3072 		if (drm_mode_vrefresh(ptr) > 61)
3073 			continue;
3074 		mode = drm_mode_duplicate(dev, ptr);
3075 		if (mode) {
3076 			drm_mode_probed_add(connector, mode);
3077 			num_modes++;
3078 		}
3079 	}
3080 	return num_modes;
3081 }
3082 EXPORT_SYMBOL(drm_add_modes_noedid);
3083 
3084 /**
3085  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
3086  *                                              data from a DRM display mode
3087  * @frame: HDMI AVI infoframe
3088  * @mode: DRM display mode
3089  *
3090  * Returns 0 on success or a negative error code on failure.
3091  */
3092 int
3093 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
3094 					 const struct drm_display_mode *mode)
3095 {
3096 	int err;
3097 
3098 	if (!frame || !mode)
3099 		return -EINVAL;
3100 
3101 	err = hdmi_avi_infoframe_init(frame);
3102 	if (err < 0)
3103 		return err;
3104 
3105 	frame->video_code = drm_match_cea_mode(mode);
3106 	if (!frame->video_code)
3107 		return 0;
3108 
3109 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
3110 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
3111 
3112 	return 0;
3113 }
3114 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
3115