xref: /openbmc/linux/drivers/gpu/drm/drm_edid.c (revision ba61bb17)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/module.h>
35 #include <linux/vga_switcheroo.h>
36 #include <drm/drmP.h>
37 #include <drm/drm_edid.h>
38 #include <drm/drm_encoder.h>
39 #include <drm/drm_displayid.h>
40 #include <drm/drm_scdc_helper.h>
41 
42 #include "drm_crtc_internal.h"
43 
44 #define version_greater(edid, maj, min) \
45 	(((edid)->version > (maj)) || \
46 	 ((edid)->version == (maj) && (edid)->revision > (min)))
47 
48 #define EDID_EST_TIMINGS 16
49 #define EDID_STD_TIMINGS 8
50 #define EDID_DETAILED_TIMINGS 4
51 
52 /*
53  * EDID blocks out in the wild have a variety of bugs, try to collect
54  * them here (note that userspace may work around broken monitors first,
55  * but fixes should make their way here so that the kernel "just works"
56  * on as many displays as possible).
57  */
58 
59 /* First detailed mode wrong, use largest 60Hz mode */
60 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
61 /* Reported 135MHz pixel clock is too high, needs adjustment */
62 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
63 /* Prefer the largest mode at 75 Hz */
64 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
65 /* Detail timing is in cm not mm */
66 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
67 /* Detailed timing descriptors have bogus size values, so just take the
68  * maximum size and use that.
69  */
70 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
71 /* Monitor forgot to set the first detailed is preferred bit. */
72 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED	(1 << 5)
73 /* use +hsync +vsync for detailed mode */
74 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
75 /* Force reduced-blanking timings for detailed modes */
76 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
77 /* Force 8bpc */
78 #define EDID_QUIRK_FORCE_8BPC			(1 << 8)
79 /* Force 12bpc */
80 #define EDID_QUIRK_FORCE_12BPC			(1 << 9)
81 /* Force 6bpc */
82 #define EDID_QUIRK_FORCE_6BPC			(1 << 10)
83 /* Force 10bpc */
84 #define EDID_QUIRK_FORCE_10BPC			(1 << 11)
85 /* Non desktop display (i.e. HMD) */
86 #define EDID_QUIRK_NON_DESKTOP			(1 << 12)
87 
88 struct detailed_mode_closure {
89 	struct drm_connector *connector;
90 	struct edid *edid;
91 	bool preferred;
92 	u32 quirks;
93 	int modes;
94 };
95 
96 #define LEVEL_DMT	0
97 #define LEVEL_GTF	1
98 #define LEVEL_GTF2	2
99 #define LEVEL_CVT	3
100 
101 static const struct edid_quirk {
102 	char vendor[4];
103 	int product_id;
104 	u32 quirks;
105 } edid_quirk_list[] = {
106 	/* Acer AL1706 */
107 	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
108 	/* Acer F51 */
109 	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
110 	/* Unknown Acer */
111 	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
112 
113 	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
114 	{ "AEO", 0, EDID_QUIRK_FORCE_6BPC },
115 
116 	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
117 	{ "CPT", 0x17df, EDID_QUIRK_FORCE_6BPC },
118 
119 	/* Belinea 10 15 55 */
120 	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
121 	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
122 
123 	/* Envision Peripherals, Inc. EN-7100e */
124 	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
125 	/* Envision EN2028 */
126 	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
127 
128 	/* Funai Electronics PM36B */
129 	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
130 	  EDID_QUIRK_DETAILED_IN_CM },
131 
132 	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
133 	{ "LGD", 764, EDID_QUIRK_FORCE_10BPC },
134 
135 	/* LG Philips LCD LP154W01-A5 */
136 	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
137 	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
138 
139 	/* Philips 107p5 CRT */
140 	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
141 
142 	/* Proview AY765C */
143 	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
144 
145 	/* Samsung SyncMaster 205BW.  Note: irony */
146 	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
147 	/* Samsung SyncMaster 22[5-6]BW */
148 	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
149 	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
150 
151 	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
152 	{ "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
153 
154 	/* ViewSonic VA2026w */
155 	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
156 
157 	/* Medion MD 30217 PG */
158 	{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
159 
160 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
161 	{ "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
162 
163 	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
164 	{ "ETR", 13896, EDID_QUIRK_FORCE_8BPC },
165 
166 	/* HTC Vive and Vive Pro VR Headsets */
167 	{ "HVR", 0xaa01, EDID_QUIRK_NON_DESKTOP },
168 	{ "HVR", 0xaa02, EDID_QUIRK_NON_DESKTOP },
169 
170 	/* Oculus Rift DK1, DK2, and CV1 VR Headsets */
171 	{ "OVR", 0x0001, EDID_QUIRK_NON_DESKTOP },
172 	{ "OVR", 0x0003, EDID_QUIRK_NON_DESKTOP },
173 	{ "OVR", 0x0004, EDID_QUIRK_NON_DESKTOP },
174 
175 	/* Windows Mixed Reality Headsets */
176 	{ "ACR", 0x7fce, EDID_QUIRK_NON_DESKTOP },
177 	{ "HPN", 0x3515, EDID_QUIRK_NON_DESKTOP },
178 	{ "LEN", 0x0408, EDID_QUIRK_NON_DESKTOP },
179 	{ "LEN", 0xb800, EDID_QUIRK_NON_DESKTOP },
180 	{ "FUJ", 0x1970, EDID_QUIRK_NON_DESKTOP },
181 	{ "DEL", 0x7fce, EDID_QUIRK_NON_DESKTOP },
182 	{ "SEC", 0x144a, EDID_QUIRK_NON_DESKTOP },
183 	{ "AUS", 0xc102, EDID_QUIRK_NON_DESKTOP },
184 
185 	/* Sony PlayStation VR Headset */
186 	{ "SNY", 0x0704, EDID_QUIRK_NON_DESKTOP },
187 };
188 
189 /*
190  * Autogenerated from the DMT spec.
191  * This table is copied from xfree86/modes/xf86EdidModes.c.
192  */
193 static const struct drm_display_mode drm_dmt_modes[] = {
194 	/* 0x01 - 640x350@85Hz */
195 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
196 		   736, 832, 0, 350, 382, 385, 445, 0,
197 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
198 	/* 0x02 - 640x400@85Hz */
199 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
200 		   736, 832, 0, 400, 401, 404, 445, 0,
201 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
202 	/* 0x03 - 720x400@85Hz */
203 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
204 		   828, 936, 0, 400, 401, 404, 446, 0,
205 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
206 	/* 0x04 - 640x480@60Hz */
207 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
208 		   752, 800, 0, 480, 490, 492, 525, 0,
209 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
210 	/* 0x05 - 640x480@72Hz */
211 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
212 		   704, 832, 0, 480, 489, 492, 520, 0,
213 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
214 	/* 0x06 - 640x480@75Hz */
215 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
216 		   720, 840, 0, 480, 481, 484, 500, 0,
217 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
218 	/* 0x07 - 640x480@85Hz */
219 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
220 		   752, 832, 0, 480, 481, 484, 509, 0,
221 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
222 	/* 0x08 - 800x600@56Hz */
223 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
224 		   896, 1024, 0, 600, 601, 603, 625, 0,
225 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
226 	/* 0x09 - 800x600@60Hz */
227 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
228 		   968, 1056, 0, 600, 601, 605, 628, 0,
229 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
230 	/* 0x0a - 800x600@72Hz */
231 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
232 		   976, 1040, 0, 600, 637, 643, 666, 0,
233 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
234 	/* 0x0b - 800x600@75Hz */
235 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
236 		   896, 1056, 0, 600, 601, 604, 625, 0,
237 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
238 	/* 0x0c - 800x600@85Hz */
239 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
240 		   896, 1048, 0, 600, 601, 604, 631, 0,
241 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
242 	/* 0x0d - 800x600@120Hz RB */
243 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
244 		   880, 960, 0, 600, 603, 607, 636, 0,
245 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
246 	/* 0x0e - 848x480@60Hz */
247 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
248 		   976, 1088, 0, 480, 486, 494, 517, 0,
249 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
250 	/* 0x0f - 1024x768@43Hz, interlace */
251 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
252 		   1208, 1264, 0, 768, 768, 776, 817, 0,
253 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
254 		   DRM_MODE_FLAG_INTERLACE) },
255 	/* 0x10 - 1024x768@60Hz */
256 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
257 		   1184, 1344, 0, 768, 771, 777, 806, 0,
258 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
259 	/* 0x11 - 1024x768@70Hz */
260 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
261 		   1184, 1328, 0, 768, 771, 777, 806, 0,
262 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
263 	/* 0x12 - 1024x768@75Hz */
264 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
265 		   1136, 1312, 0, 768, 769, 772, 800, 0,
266 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
267 	/* 0x13 - 1024x768@85Hz */
268 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
269 		   1168, 1376, 0, 768, 769, 772, 808, 0,
270 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
271 	/* 0x14 - 1024x768@120Hz RB */
272 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
273 		   1104, 1184, 0, 768, 771, 775, 813, 0,
274 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
275 	/* 0x15 - 1152x864@75Hz */
276 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
277 		   1344, 1600, 0, 864, 865, 868, 900, 0,
278 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
279 	/* 0x55 - 1280x720@60Hz */
280 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
281 		   1430, 1650, 0, 720, 725, 730, 750, 0,
282 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
283 	/* 0x16 - 1280x768@60Hz RB */
284 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
285 		   1360, 1440, 0, 768, 771, 778, 790, 0,
286 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
287 	/* 0x17 - 1280x768@60Hz */
288 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
289 		   1472, 1664, 0, 768, 771, 778, 798, 0,
290 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
291 	/* 0x18 - 1280x768@75Hz */
292 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
293 		   1488, 1696, 0, 768, 771, 778, 805, 0,
294 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
295 	/* 0x19 - 1280x768@85Hz */
296 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
297 		   1496, 1712, 0, 768, 771, 778, 809, 0,
298 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
299 	/* 0x1a - 1280x768@120Hz RB */
300 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
301 		   1360, 1440, 0, 768, 771, 778, 813, 0,
302 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
303 	/* 0x1b - 1280x800@60Hz RB */
304 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
305 		   1360, 1440, 0, 800, 803, 809, 823, 0,
306 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
307 	/* 0x1c - 1280x800@60Hz */
308 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
309 		   1480, 1680, 0, 800, 803, 809, 831, 0,
310 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
311 	/* 0x1d - 1280x800@75Hz */
312 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
313 		   1488, 1696, 0, 800, 803, 809, 838, 0,
314 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
315 	/* 0x1e - 1280x800@85Hz */
316 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
317 		   1496, 1712, 0, 800, 803, 809, 843, 0,
318 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
319 	/* 0x1f - 1280x800@120Hz RB */
320 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
321 		   1360, 1440, 0, 800, 803, 809, 847, 0,
322 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
323 	/* 0x20 - 1280x960@60Hz */
324 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
325 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
326 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
327 	/* 0x21 - 1280x960@85Hz */
328 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
329 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
330 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
331 	/* 0x22 - 1280x960@120Hz RB */
332 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
333 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
334 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
335 	/* 0x23 - 1280x1024@60Hz */
336 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
337 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
338 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
339 	/* 0x24 - 1280x1024@75Hz */
340 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
341 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
342 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
343 	/* 0x25 - 1280x1024@85Hz */
344 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
345 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
346 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
347 	/* 0x26 - 1280x1024@120Hz RB */
348 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
349 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
350 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
351 	/* 0x27 - 1360x768@60Hz */
352 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
353 		   1536, 1792, 0, 768, 771, 777, 795, 0,
354 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
355 	/* 0x28 - 1360x768@120Hz RB */
356 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
357 		   1440, 1520, 0, 768, 771, 776, 813, 0,
358 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
359 	/* 0x51 - 1366x768@60Hz */
360 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
361 		   1579, 1792, 0, 768, 771, 774, 798, 0,
362 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
363 	/* 0x56 - 1366x768@60Hz */
364 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
365 		   1436, 1500, 0, 768, 769, 772, 800, 0,
366 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
367 	/* 0x29 - 1400x1050@60Hz RB */
368 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
369 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
370 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
371 	/* 0x2a - 1400x1050@60Hz */
372 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
373 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
374 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
375 	/* 0x2b - 1400x1050@75Hz */
376 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
377 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
378 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
379 	/* 0x2c - 1400x1050@85Hz */
380 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
381 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
382 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
383 	/* 0x2d - 1400x1050@120Hz RB */
384 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
385 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
386 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
387 	/* 0x2e - 1440x900@60Hz RB */
388 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
389 		   1520, 1600, 0, 900, 903, 909, 926, 0,
390 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
391 	/* 0x2f - 1440x900@60Hz */
392 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
393 		   1672, 1904, 0, 900, 903, 909, 934, 0,
394 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
395 	/* 0x30 - 1440x900@75Hz */
396 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
397 		   1688, 1936, 0, 900, 903, 909, 942, 0,
398 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
399 	/* 0x31 - 1440x900@85Hz */
400 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
401 		   1696, 1952, 0, 900, 903, 909, 948, 0,
402 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
403 	/* 0x32 - 1440x900@120Hz RB */
404 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
405 		   1520, 1600, 0, 900, 903, 909, 953, 0,
406 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
407 	/* 0x53 - 1600x900@60Hz */
408 	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
409 		   1704, 1800, 0, 900, 901, 904, 1000, 0,
410 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
411 	/* 0x33 - 1600x1200@60Hz */
412 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
413 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
414 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
415 	/* 0x34 - 1600x1200@65Hz */
416 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
417 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
418 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
419 	/* 0x35 - 1600x1200@70Hz */
420 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
421 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
422 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
423 	/* 0x36 - 1600x1200@75Hz */
424 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
425 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
426 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
427 	/* 0x37 - 1600x1200@85Hz */
428 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
429 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
430 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
431 	/* 0x38 - 1600x1200@120Hz RB */
432 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
433 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
434 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
435 	/* 0x39 - 1680x1050@60Hz RB */
436 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
437 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
438 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
439 	/* 0x3a - 1680x1050@60Hz */
440 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
441 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
442 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
443 	/* 0x3b - 1680x1050@75Hz */
444 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
445 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
446 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
447 	/* 0x3c - 1680x1050@85Hz */
448 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
449 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
450 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
451 	/* 0x3d - 1680x1050@120Hz RB */
452 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
453 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
454 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
455 	/* 0x3e - 1792x1344@60Hz */
456 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
457 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
458 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
459 	/* 0x3f - 1792x1344@75Hz */
460 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
461 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
462 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
463 	/* 0x40 - 1792x1344@120Hz RB */
464 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
465 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
466 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
467 	/* 0x41 - 1856x1392@60Hz */
468 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
469 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
470 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
471 	/* 0x42 - 1856x1392@75Hz */
472 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
473 		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
474 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
475 	/* 0x43 - 1856x1392@120Hz RB */
476 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
477 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
478 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
479 	/* 0x52 - 1920x1080@60Hz */
480 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
481 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
482 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
483 	/* 0x44 - 1920x1200@60Hz RB */
484 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
485 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
486 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
487 	/* 0x45 - 1920x1200@60Hz */
488 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
489 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
490 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
491 	/* 0x46 - 1920x1200@75Hz */
492 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
493 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
494 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
495 	/* 0x47 - 1920x1200@85Hz */
496 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
497 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
498 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
499 	/* 0x48 - 1920x1200@120Hz RB */
500 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
501 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
502 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
503 	/* 0x49 - 1920x1440@60Hz */
504 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
505 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
506 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
507 	/* 0x4a - 1920x1440@75Hz */
508 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
509 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
510 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
511 	/* 0x4b - 1920x1440@120Hz RB */
512 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
513 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
514 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
515 	/* 0x54 - 2048x1152@60Hz */
516 	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
517 		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
518 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
519 	/* 0x4c - 2560x1600@60Hz RB */
520 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
521 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
522 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
523 	/* 0x4d - 2560x1600@60Hz */
524 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
525 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
526 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
527 	/* 0x4e - 2560x1600@75Hz */
528 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
529 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
530 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
531 	/* 0x4f - 2560x1600@85Hz */
532 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
533 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
534 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
535 	/* 0x50 - 2560x1600@120Hz RB */
536 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
537 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
538 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
539 	/* 0x57 - 4096x2160@60Hz RB */
540 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
541 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
542 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
543 	/* 0x58 - 4096x2160@59.94Hz RB */
544 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
545 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
546 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
547 };
548 
549 /*
550  * These more or less come from the DMT spec.  The 720x400 modes are
551  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
552  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
553  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
554  * mode.
555  *
556  * The DMT modes have been fact-checked; the rest are mild guesses.
557  */
558 static const struct drm_display_mode edid_est_modes[] = {
559 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
560 		   968, 1056, 0, 600, 601, 605, 628, 0,
561 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
562 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
563 		   896, 1024, 0, 600, 601, 603,  625, 0,
564 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
565 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
566 		   720, 840, 0, 480, 481, 484, 500, 0,
567 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
568 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
569 		   704,  832, 0, 480, 489, 492, 520, 0,
570 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
571 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
572 		   768,  864, 0, 480, 483, 486, 525, 0,
573 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
574 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
575 		   752, 800, 0, 480, 490, 492, 525, 0,
576 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
577 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
578 		   846, 900, 0, 400, 421, 423,  449, 0,
579 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
580 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
581 		   846,  900, 0, 400, 412, 414, 449, 0,
582 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
583 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
584 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
585 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
586 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
587 		   1136, 1312, 0,  768, 769, 772, 800, 0,
588 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
589 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
590 		   1184, 1328, 0,  768, 771, 777, 806, 0,
591 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
592 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
593 		   1184, 1344, 0,  768, 771, 777, 806, 0,
594 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
595 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
596 		   1208, 1264, 0, 768, 768, 776, 817, 0,
597 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
598 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
599 		   928, 1152, 0, 624, 625, 628, 667, 0,
600 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
601 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
602 		   896, 1056, 0, 600, 601, 604,  625, 0,
603 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
604 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
605 		   976, 1040, 0, 600, 637, 643, 666, 0,
606 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
607 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
608 		   1344, 1600, 0,  864, 865, 868, 900, 0,
609 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
610 };
611 
612 struct minimode {
613 	short w;
614 	short h;
615 	short r;
616 	short rb;
617 };
618 
619 static const struct minimode est3_modes[] = {
620 	/* byte 6 */
621 	{ 640, 350, 85, 0 },
622 	{ 640, 400, 85, 0 },
623 	{ 720, 400, 85, 0 },
624 	{ 640, 480, 85, 0 },
625 	{ 848, 480, 60, 0 },
626 	{ 800, 600, 85, 0 },
627 	{ 1024, 768, 85, 0 },
628 	{ 1152, 864, 75, 0 },
629 	/* byte 7 */
630 	{ 1280, 768, 60, 1 },
631 	{ 1280, 768, 60, 0 },
632 	{ 1280, 768, 75, 0 },
633 	{ 1280, 768, 85, 0 },
634 	{ 1280, 960, 60, 0 },
635 	{ 1280, 960, 85, 0 },
636 	{ 1280, 1024, 60, 0 },
637 	{ 1280, 1024, 85, 0 },
638 	/* byte 8 */
639 	{ 1360, 768, 60, 0 },
640 	{ 1440, 900, 60, 1 },
641 	{ 1440, 900, 60, 0 },
642 	{ 1440, 900, 75, 0 },
643 	{ 1440, 900, 85, 0 },
644 	{ 1400, 1050, 60, 1 },
645 	{ 1400, 1050, 60, 0 },
646 	{ 1400, 1050, 75, 0 },
647 	/* byte 9 */
648 	{ 1400, 1050, 85, 0 },
649 	{ 1680, 1050, 60, 1 },
650 	{ 1680, 1050, 60, 0 },
651 	{ 1680, 1050, 75, 0 },
652 	{ 1680, 1050, 85, 0 },
653 	{ 1600, 1200, 60, 0 },
654 	{ 1600, 1200, 65, 0 },
655 	{ 1600, 1200, 70, 0 },
656 	/* byte 10 */
657 	{ 1600, 1200, 75, 0 },
658 	{ 1600, 1200, 85, 0 },
659 	{ 1792, 1344, 60, 0 },
660 	{ 1792, 1344, 75, 0 },
661 	{ 1856, 1392, 60, 0 },
662 	{ 1856, 1392, 75, 0 },
663 	{ 1920, 1200, 60, 1 },
664 	{ 1920, 1200, 60, 0 },
665 	/* byte 11 */
666 	{ 1920, 1200, 75, 0 },
667 	{ 1920, 1200, 85, 0 },
668 	{ 1920, 1440, 60, 0 },
669 	{ 1920, 1440, 75, 0 },
670 };
671 
672 static const struct minimode extra_modes[] = {
673 	{ 1024, 576,  60, 0 },
674 	{ 1366, 768,  60, 0 },
675 	{ 1600, 900,  60, 0 },
676 	{ 1680, 945,  60, 0 },
677 	{ 1920, 1080, 60, 0 },
678 	{ 2048, 1152, 60, 0 },
679 	{ 2048, 1536, 60, 0 },
680 };
681 
682 /*
683  * Probably taken from CEA-861 spec.
684  * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
685  *
686  * Index using the VIC.
687  */
688 static const struct drm_display_mode edid_cea_modes[] = {
689 	/* 0 - dummy, VICs start at 1 */
690 	{ },
691 	/* 1 - 640x480@60Hz 4:3 */
692 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
693 		   752, 800, 0, 480, 490, 492, 525, 0,
694 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
695 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
696 	/* 2 - 720x480@60Hz 4:3 */
697 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
698 		   798, 858, 0, 480, 489, 495, 525, 0,
699 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
700 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
701 	/* 3 - 720x480@60Hz 16:9 */
702 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
703 		   798, 858, 0, 480, 489, 495, 525, 0,
704 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
705 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
706 	/* 4 - 1280x720@60Hz 16:9 */
707 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
708 		   1430, 1650, 0, 720, 725, 730, 750, 0,
709 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
710 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
711 	/* 5 - 1920x1080i@60Hz 16:9 */
712 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
713 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
714 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
715 		   DRM_MODE_FLAG_INTERLACE),
716 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
717 	/* 6 - 720(1440)x480i@60Hz 4:3 */
718 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
719 		   801, 858, 0, 480, 488, 494, 525, 0,
720 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
721 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
722 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
723 	/* 7 - 720(1440)x480i@60Hz 16:9 */
724 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
725 		   801, 858, 0, 480, 488, 494, 525, 0,
726 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
727 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
728 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
729 	/* 8 - 720(1440)x240@60Hz 4:3 */
730 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
731 		   801, 858, 0, 240, 244, 247, 262, 0,
732 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
733 		   DRM_MODE_FLAG_DBLCLK),
734 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
735 	/* 9 - 720(1440)x240@60Hz 16:9 */
736 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
737 		   801, 858, 0, 240, 244, 247, 262, 0,
738 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
739 		   DRM_MODE_FLAG_DBLCLK),
740 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
741 	/* 10 - 2880x480i@60Hz 4:3 */
742 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
743 		   3204, 3432, 0, 480, 488, 494, 525, 0,
744 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
745 		   DRM_MODE_FLAG_INTERLACE),
746 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
747 	/* 11 - 2880x480i@60Hz 16:9 */
748 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
749 		   3204, 3432, 0, 480, 488, 494, 525, 0,
750 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
751 		   DRM_MODE_FLAG_INTERLACE),
752 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
753 	/* 12 - 2880x240@60Hz 4:3 */
754 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
755 		   3204, 3432, 0, 240, 244, 247, 262, 0,
756 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
757 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
758 	/* 13 - 2880x240@60Hz 16:9 */
759 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
760 		   3204, 3432, 0, 240, 244, 247, 262, 0,
761 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
762 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
763 	/* 14 - 1440x480@60Hz 4:3 */
764 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
765 		   1596, 1716, 0, 480, 489, 495, 525, 0,
766 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
767 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
768 	/* 15 - 1440x480@60Hz 16:9 */
769 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
770 		   1596, 1716, 0, 480, 489, 495, 525, 0,
771 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
772 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
773 	/* 16 - 1920x1080@60Hz 16:9 */
774 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
775 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
776 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
777 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
778 	/* 17 - 720x576@50Hz 4:3 */
779 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
780 		   796, 864, 0, 576, 581, 586, 625, 0,
781 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
782 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
783 	/* 18 - 720x576@50Hz 16:9 */
784 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
785 		   796, 864, 0, 576, 581, 586, 625, 0,
786 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
787 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
788 	/* 19 - 1280x720@50Hz 16:9 */
789 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
790 		   1760, 1980, 0, 720, 725, 730, 750, 0,
791 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
792 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
793 	/* 20 - 1920x1080i@50Hz 16:9 */
794 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
795 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
796 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
797 		   DRM_MODE_FLAG_INTERLACE),
798 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
799 	/* 21 - 720(1440)x576i@50Hz 4:3 */
800 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
801 		   795, 864, 0, 576, 580, 586, 625, 0,
802 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
803 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
804 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
805 	/* 22 - 720(1440)x576i@50Hz 16:9 */
806 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
807 		   795, 864, 0, 576, 580, 586, 625, 0,
808 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
809 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
810 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
811 	/* 23 - 720(1440)x288@50Hz 4:3 */
812 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
813 		   795, 864, 0, 288, 290, 293, 312, 0,
814 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
815 		   DRM_MODE_FLAG_DBLCLK),
816 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
817 	/* 24 - 720(1440)x288@50Hz 16:9 */
818 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
819 		   795, 864, 0, 288, 290, 293, 312, 0,
820 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
821 		   DRM_MODE_FLAG_DBLCLK),
822 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
823 	/* 25 - 2880x576i@50Hz 4:3 */
824 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
825 		   3180, 3456, 0, 576, 580, 586, 625, 0,
826 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
827 		   DRM_MODE_FLAG_INTERLACE),
828 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
829 	/* 26 - 2880x576i@50Hz 16:9 */
830 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
831 		   3180, 3456, 0, 576, 580, 586, 625, 0,
832 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
833 		   DRM_MODE_FLAG_INTERLACE),
834 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
835 	/* 27 - 2880x288@50Hz 4:3 */
836 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
837 		   3180, 3456, 0, 288, 290, 293, 312, 0,
838 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
839 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
840 	/* 28 - 2880x288@50Hz 16:9 */
841 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
842 		   3180, 3456, 0, 288, 290, 293, 312, 0,
843 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
844 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
845 	/* 29 - 1440x576@50Hz 4:3 */
846 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
847 		   1592, 1728, 0, 576, 581, 586, 625, 0,
848 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
849 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
850 	/* 30 - 1440x576@50Hz 16:9 */
851 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
852 		   1592, 1728, 0, 576, 581, 586, 625, 0,
853 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
854 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
855 	/* 31 - 1920x1080@50Hz 16:9 */
856 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
857 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
858 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
859 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
860 	/* 32 - 1920x1080@24Hz 16:9 */
861 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
862 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
863 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
864 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
865 	/* 33 - 1920x1080@25Hz 16:9 */
866 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
867 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
868 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
869 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
870 	/* 34 - 1920x1080@30Hz 16:9 */
871 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
872 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
873 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
874 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
875 	/* 35 - 2880x480@60Hz 4:3 */
876 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
877 		   3192, 3432, 0, 480, 489, 495, 525, 0,
878 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
879 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
880 	/* 36 - 2880x480@60Hz 16:9 */
881 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
882 		   3192, 3432, 0, 480, 489, 495, 525, 0,
883 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
884 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
885 	/* 37 - 2880x576@50Hz 4:3 */
886 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
887 		   3184, 3456, 0, 576, 581, 586, 625, 0,
888 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
889 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
890 	/* 38 - 2880x576@50Hz 16:9 */
891 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
892 		   3184, 3456, 0, 576, 581, 586, 625, 0,
893 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
894 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
895 	/* 39 - 1920x1080i@50Hz 16:9 */
896 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
897 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
898 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
899 		   DRM_MODE_FLAG_INTERLACE),
900 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
901 	/* 40 - 1920x1080i@100Hz 16:9 */
902 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
903 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
904 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
905 		   DRM_MODE_FLAG_INTERLACE),
906 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
907 	/* 41 - 1280x720@100Hz 16:9 */
908 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
909 		   1760, 1980, 0, 720, 725, 730, 750, 0,
910 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
911 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
912 	/* 42 - 720x576@100Hz 4:3 */
913 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
914 		   796, 864, 0, 576, 581, 586, 625, 0,
915 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
916 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
917 	/* 43 - 720x576@100Hz 16:9 */
918 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
919 		   796, 864, 0, 576, 581, 586, 625, 0,
920 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
921 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
922 	/* 44 - 720(1440)x576i@100Hz 4:3 */
923 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
924 		   795, 864, 0, 576, 580, 586, 625, 0,
925 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
926 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
927 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
928 	/* 45 - 720(1440)x576i@100Hz 16:9 */
929 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
930 		   795, 864, 0, 576, 580, 586, 625, 0,
931 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
932 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
933 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
934 	/* 46 - 1920x1080i@120Hz 16:9 */
935 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
936 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
937 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
938 		   DRM_MODE_FLAG_INTERLACE),
939 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
940 	/* 47 - 1280x720@120Hz 16:9 */
941 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
942 		   1430, 1650, 0, 720, 725, 730, 750, 0,
943 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
944 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
945 	/* 48 - 720x480@120Hz 4:3 */
946 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
947 		   798, 858, 0, 480, 489, 495, 525, 0,
948 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
949 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
950 	/* 49 - 720x480@120Hz 16:9 */
951 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
952 		   798, 858, 0, 480, 489, 495, 525, 0,
953 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
954 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
955 	/* 50 - 720(1440)x480i@120Hz 4:3 */
956 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
957 		   801, 858, 0, 480, 488, 494, 525, 0,
958 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
959 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
960 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
961 	/* 51 - 720(1440)x480i@120Hz 16:9 */
962 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
963 		   801, 858, 0, 480, 488, 494, 525, 0,
964 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
965 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
966 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
967 	/* 52 - 720x576@200Hz 4:3 */
968 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
969 		   796, 864, 0, 576, 581, 586, 625, 0,
970 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
971 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
972 	/* 53 - 720x576@200Hz 16:9 */
973 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
974 		   796, 864, 0, 576, 581, 586, 625, 0,
975 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
976 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
977 	/* 54 - 720(1440)x576i@200Hz 4:3 */
978 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
979 		   795, 864, 0, 576, 580, 586, 625, 0,
980 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
981 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
982 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
983 	/* 55 - 720(1440)x576i@200Hz 16:9 */
984 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
985 		   795, 864, 0, 576, 580, 586, 625, 0,
986 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
987 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
988 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
989 	/* 56 - 720x480@240Hz 4:3 */
990 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
991 		   798, 858, 0, 480, 489, 495, 525, 0,
992 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
993 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
994 	/* 57 - 720x480@240Hz 16:9 */
995 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
996 		   798, 858, 0, 480, 489, 495, 525, 0,
997 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
998 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
999 	/* 58 - 720(1440)x480i@240Hz 4:3 */
1000 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1001 		   801, 858, 0, 480, 488, 494, 525, 0,
1002 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1003 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1004 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1005 	/* 59 - 720(1440)x480i@240Hz 16:9 */
1006 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1007 		   801, 858, 0, 480, 488, 494, 525, 0,
1008 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1009 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1010 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1011 	/* 60 - 1280x720@24Hz 16:9 */
1012 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1013 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1014 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1015 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1016 	/* 61 - 1280x720@25Hz 16:9 */
1017 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1018 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1019 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1020 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1021 	/* 62 - 1280x720@30Hz 16:9 */
1022 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1023 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1024 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1025 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1026 	/* 63 - 1920x1080@120Hz 16:9 */
1027 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1028 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1029 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1030 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1031 	/* 64 - 1920x1080@100Hz 16:9 */
1032 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1033 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1034 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1035 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1036 	/* 65 - 1280x720@24Hz 64:27 */
1037 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1038 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1039 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1040 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1041 	/* 66 - 1280x720@25Hz 64:27 */
1042 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1043 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1044 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1045 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1046 	/* 67 - 1280x720@30Hz 64:27 */
1047 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1048 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1049 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1050 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1051 	/* 68 - 1280x720@50Hz 64:27 */
1052 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1053 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1054 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1055 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1056 	/* 69 - 1280x720@60Hz 64:27 */
1057 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1058 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1059 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1060 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1061 	/* 70 - 1280x720@100Hz 64:27 */
1062 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1063 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1064 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1065 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1066 	/* 71 - 1280x720@120Hz 64:27 */
1067 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1068 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1069 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1070 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1071 	/* 72 - 1920x1080@24Hz 64:27 */
1072 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1073 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1074 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1075 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1076 	/* 73 - 1920x1080@25Hz 64:27 */
1077 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1078 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1079 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1080 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1081 	/* 74 - 1920x1080@30Hz 64:27 */
1082 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1083 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1084 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1085 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1086 	/* 75 - 1920x1080@50Hz 64:27 */
1087 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1088 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1089 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1090 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1091 	/* 76 - 1920x1080@60Hz 64:27 */
1092 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1093 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1094 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1095 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1096 	/* 77 - 1920x1080@100Hz 64:27 */
1097 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1098 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1099 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1100 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1101 	/* 78 - 1920x1080@120Hz 64:27 */
1102 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1103 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1104 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1105 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1106 	/* 79 - 1680x720@24Hz 64:27 */
1107 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1108 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1109 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1110 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1111 	/* 80 - 1680x720@25Hz 64:27 */
1112 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1113 		   2948, 3168, 0, 720, 725, 730, 750, 0,
1114 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1115 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1116 	/* 81 - 1680x720@30Hz 64:27 */
1117 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1118 		   2420, 2640, 0, 720, 725, 730, 750, 0,
1119 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1120 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1121 	/* 82 - 1680x720@50Hz 64:27 */
1122 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1123 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1124 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1125 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1126 	/* 83 - 1680x720@60Hz 64:27 */
1127 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1128 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1129 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1130 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1131 	/* 84 - 1680x720@100Hz 64:27 */
1132 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1133 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1134 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1135 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1136 	/* 85 - 1680x720@120Hz 64:27 */
1137 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1138 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1139 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1140 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1141 	/* 86 - 2560x1080@24Hz 64:27 */
1142 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1143 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1144 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1145 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1146 	/* 87 - 2560x1080@25Hz 64:27 */
1147 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1148 		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1149 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1150 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1151 	/* 88 - 2560x1080@30Hz 64:27 */
1152 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1153 		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1154 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1155 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1156 	/* 89 - 2560x1080@50Hz 64:27 */
1157 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1158 		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1159 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1160 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1161 	/* 90 - 2560x1080@60Hz 64:27 */
1162 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1163 		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1164 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1165 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1166 	/* 91 - 2560x1080@100Hz 64:27 */
1167 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1168 		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1169 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1170 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1171 	/* 92 - 2560x1080@120Hz 64:27 */
1172 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1173 		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1174 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1175 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1176 	/* 93 - 3840x2160@24Hz 16:9 */
1177 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1178 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1179 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1180 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1181 	/* 94 - 3840x2160@25Hz 16:9 */
1182 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1183 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1184 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1185 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1186 	/* 95 - 3840x2160@30Hz 16:9 */
1187 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1188 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1189 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1190 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1191 	/* 96 - 3840x2160@50Hz 16:9 */
1192 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1193 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1194 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1195 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1196 	/* 97 - 3840x2160@60Hz 16:9 */
1197 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1198 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1199 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1200 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1201 	/* 98 - 4096x2160@24Hz 256:135 */
1202 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1203 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1204 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1205 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1206 	/* 99 - 4096x2160@25Hz 256:135 */
1207 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1208 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1209 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1210 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1211 	/* 100 - 4096x2160@30Hz 256:135 */
1212 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1213 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1214 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1215 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1216 	/* 101 - 4096x2160@50Hz 256:135 */
1217 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1218 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1219 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1220 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1221 	/* 102 - 4096x2160@60Hz 256:135 */
1222 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1223 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1224 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1225 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1226 	/* 103 - 3840x2160@24Hz 64:27 */
1227 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1228 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1229 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1230 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1231 	/* 104 - 3840x2160@25Hz 64:27 */
1232 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1233 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1234 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1235 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1236 	/* 105 - 3840x2160@30Hz 64:27 */
1237 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1238 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1239 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1240 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1241 	/* 106 - 3840x2160@50Hz 64:27 */
1242 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1243 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1244 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1245 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1246 	/* 107 - 3840x2160@60Hz 64:27 */
1247 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1248 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1249 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1250 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1251 };
1252 
1253 /*
1254  * HDMI 1.4 4k modes. Index using the VIC.
1255  */
1256 static const struct drm_display_mode edid_4k_modes[] = {
1257 	/* 0 - dummy, VICs start at 1 */
1258 	{ },
1259 	/* 1 - 3840x2160@30Hz */
1260 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1261 		   3840, 4016, 4104, 4400, 0,
1262 		   2160, 2168, 2178, 2250, 0,
1263 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1264 	  .vrefresh = 30, },
1265 	/* 2 - 3840x2160@25Hz */
1266 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1267 		   3840, 4896, 4984, 5280, 0,
1268 		   2160, 2168, 2178, 2250, 0,
1269 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1270 	  .vrefresh = 25, },
1271 	/* 3 - 3840x2160@24Hz */
1272 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1273 		   3840, 5116, 5204, 5500, 0,
1274 		   2160, 2168, 2178, 2250, 0,
1275 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1276 	  .vrefresh = 24, },
1277 	/* 4 - 4096x2160@24Hz (SMPTE) */
1278 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1279 		   4096, 5116, 5204, 5500, 0,
1280 		   2160, 2168, 2178, 2250, 0,
1281 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1282 	  .vrefresh = 24, },
1283 };
1284 
1285 /*** DDC fetch and block validation ***/
1286 
1287 static const u8 edid_header[] = {
1288 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1289 };
1290 
1291 /**
1292  * drm_edid_header_is_valid - sanity check the header of the base EDID block
1293  * @raw_edid: pointer to raw base EDID block
1294  *
1295  * Sanity check the header of the base EDID block.
1296  *
1297  * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1298  */
1299 int drm_edid_header_is_valid(const u8 *raw_edid)
1300 {
1301 	int i, score = 0;
1302 
1303 	for (i = 0; i < sizeof(edid_header); i++)
1304 		if (raw_edid[i] == edid_header[i])
1305 			score++;
1306 
1307 	return score;
1308 }
1309 EXPORT_SYMBOL(drm_edid_header_is_valid);
1310 
1311 static int edid_fixup __read_mostly = 6;
1312 module_param_named(edid_fixup, edid_fixup, int, 0400);
1313 MODULE_PARM_DESC(edid_fixup,
1314 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1315 
1316 static void drm_get_displayid(struct drm_connector *connector,
1317 			      struct edid *edid);
1318 
1319 static int drm_edid_block_checksum(const u8 *raw_edid)
1320 {
1321 	int i;
1322 	u8 csum = 0;
1323 	for (i = 0; i < EDID_LENGTH; i++)
1324 		csum += raw_edid[i];
1325 
1326 	return csum;
1327 }
1328 
1329 static bool drm_edid_is_zero(const u8 *in_edid, int length)
1330 {
1331 	if (memchr_inv(in_edid, 0, length))
1332 		return false;
1333 
1334 	return true;
1335 }
1336 
1337 /**
1338  * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1339  * @raw_edid: pointer to raw EDID block
1340  * @block: type of block to validate (0 for base, extension otherwise)
1341  * @print_bad_edid: if true, dump bad EDID blocks to the console
1342  * @edid_corrupt: if true, the header or checksum is invalid
1343  *
1344  * Validate a base or extension EDID block and optionally dump bad blocks to
1345  * the console.
1346  *
1347  * Return: True if the block is valid, false otherwise.
1348  */
1349 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
1350 			  bool *edid_corrupt)
1351 {
1352 	u8 csum;
1353 	struct edid *edid = (struct edid *)raw_edid;
1354 
1355 	if (WARN_ON(!raw_edid))
1356 		return false;
1357 
1358 	if (edid_fixup > 8 || edid_fixup < 0)
1359 		edid_fixup = 6;
1360 
1361 	if (block == 0) {
1362 		int score = drm_edid_header_is_valid(raw_edid);
1363 		if (score == 8) {
1364 			if (edid_corrupt)
1365 				*edid_corrupt = false;
1366 		} else if (score >= edid_fixup) {
1367 			/* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
1368 			 * The corrupt flag needs to be set here otherwise, the
1369 			 * fix-up code here will correct the problem, the
1370 			 * checksum is correct and the test fails
1371 			 */
1372 			if (edid_corrupt)
1373 				*edid_corrupt = true;
1374 			DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1375 			memcpy(raw_edid, edid_header, sizeof(edid_header));
1376 		} else {
1377 			if (edid_corrupt)
1378 				*edid_corrupt = true;
1379 			goto bad;
1380 		}
1381 	}
1382 
1383 	csum = drm_edid_block_checksum(raw_edid);
1384 	if (csum) {
1385 		if (edid_corrupt)
1386 			*edid_corrupt = true;
1387 
1388 		/* allow CEA to slide through, switches mangle this */
1389 		if (raw_edid[0] == CEA_EXT) {
1390 			DRM_DEBUG("EDID checksum is invalid, remainder is %d\n", csum);
1391 			DRM_DEBUG("Assuming a KVM switch modified the CEA block but left the original checksum\n");
1392 		} else {
1393 			if (print_bad_edid)
1394 				DRM_NOTE("EDID checksum is invalid, remainder is %d\n", csum);
1395 
1396 			goto bad;
1397 		}
1398 	}
1399 
1400 	/* per-block-type checks */
1401 	switch (raw_edid[0]) {
1402 	case 0: /* base */
1403 		if (edid->version != 1) {
1404 			DRM_NOTE("EDID has major version %d, instead of 1\n", edid->version);
1405 			goto bad;
1406 		}
1407 
1408 		if (edid->revision > 4)
1409 			DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1410 		break;
1411 
1412 	default:
1413 		break;
1414 	}
1415 
1416 	return true;
1417 
1418 bad:
1419 	if (print_bad_edid) {
1420 		if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) {
1421 			pr_notice("EDID block is all zeroes\n");
1422 		} else {
1423 			pr_notice("Raw EDID:\n");
1424 			print_hex_dump(KERN_NOTICE,
1425 				       " \t", DUMP_PREFIX_NONE, 16, 1,
1426 				       raw_edid, EDID_LENGTH, false);
1427 		}
1428 	}
1429 	return false;
1430 }
1431 EXPORT_SYMBOL(drm_edid_block_valid);
1432 
1433 /**
1434  * drm_edid_is_valid - sanity check EDID data
1435  * @edid: EDID data
1436  *
1437  * Sanity-check an entire EDID record (including extensions)
1438  *
1439  * Return: True if the EDID data is valid, false otherwise.
1440  */
1441 bool drm_edid_is_valid(struct edid *edid)
1442 {
1443 	int i;
1444 	u8 *raw = (u8 *)edid;
1445 
1446 	if (!edid)
1447 		return false;
1448 
1449 	for (i = 0; i <= edid->extensions; i++)
1450 		if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL))
1451 			return false;
1452 
1453 	return true;
1454 }
1455 EXPORT_SYMBOL(drm_edid_is_valid);
1456 
1457 #define DDC_SEGMENT_ADDR 0x30
1458 /**
1459  * drm_do_probe_ddc_edid() - get EDID information via I2C
1460  * @data: I2C device adapter
1461  * @buf: EDID data buffer to be filled
1462  * @block: 128 byte EDID block to start fetching from
1463  * @len: EDID data buffer length to fetch
1464  *
1465  * Try to fetch EDID information by calling I2C driver functions.
1466  *
1467  * Return: 0 on success or -1 on failure.
1468  */
1469 static int
1470 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
1471 {
1472 	struct i2c_adapter *adapter = data;
1473 	unsigned char start = block * EDID_LENGTH;
1474 	unsigned char segment = block >> 1;
1475 	unsigned char xfers = segment ? 3 : 2;
1476 	int ret, retries = 5;
1477 
1478 	/*
1479 	 * The core I2C driver will automatically retry the transfer if the
1480 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
1481 	 * are susceptible to errors under a heavily loaded machine and
1482 	 * generate spurious NAKs and timeouts. Retrying the transfer
1483 	 * of the individual block a few times seems to overcome this.
1484 	 */
1485 	do {
1486 		struct i2c_msg msgs[] = {
1487 			{
1488 				.addr	= DDC_SEGMENT_ADDR,
1489 				.flags	= 0,
1490 				.len	= 1,
1491 				.buf	= &segment,
1492 			}, {
1493 				.addr	= DDC_ADDR,
1494 				.flags	= 0,
1495 				.len	= 1,
1496 				.buf	= &start,
1497 			}, {
1498 				.addr	= DDC_ADDR,
1499 				.flags	= I2C_M_RD,
1500 				.len	= len,
1501 				.buf	= buf,
1502 			}
1503 		};
1504 
1505 		/*
1506 		 * Avoid sending the segment addr to not upset non-compliant
1507 		 * DDC monitors.
1508 		 */
1509 		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1510 
1511 		if (ret == -ENXIO) {
1512 			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1513 					adapter->name);
1514 			break;
1515 		}
1516 	} while (ret != xfers && --retries);
1517 
1518 	return ret == xfers ? 0 : -1;
1519 }
1520 
1521 static void connector_bad_edid(struct drm_connector *connector,
1522 			       u8 *edid, int num_blocks)
1523 {
1524 	int i;
1525 
1526 	if (connector->bad_edid_counter++ && !(drm_debug & DRM_UT_KMS))
1527 		return;
1528 
1529 	dev_warn(connector->dev->dev,
1530 		 "%s: EDID is invalid:\n",
1531 		 connector->name);
1532 	for (i = 0; i < num_blocks; i++) {
1533 		u8 *block = edid + i * EDID_LENGTH;
1534 		char prefix[20];
1535 
1536 		if (drm_edid_is_zero(block, EDID_LENGTH))
1537 			sprintf(prefix, "\t[%02x] ZERO ", i);
1538 		else if (!drm_edid_block_valid(block, i, false, NULL))
1539 			sprintf(prefix, "\t[%02x] BAD  ", i);
1540 		else
1541 			sprintf(prefix, "\t[%02x] GOOD ", i);
1542 
1543 		print_hex_dump(KERN_WARNING,
1544 			       prefix, DUMP_PREFIX_NONE, 16, 1,
1545 			       block, EDID_LENGTH, false);
1546 	}
1547 }
1548 
1549 /**
1550  * drm_do_get_edid - get EDID data using a custom EDID block read function
1551  * @connector: connector we're probing
1552  * @get_edid_block: EDID block read function
1553  * @data: private data passed to the block read function
1554  *
1555  * When the I2C adapter connected to the DDC bus is hidden behind a device that
1556  * exposes a different interface to read EDID blocks this function can be used
1557  * to get EDID data using a custom block read function.
1558  *
1559  * As in the general case the DDC bus is accessible by the kernel at the I2C
1560  * level, drivers must make all reasonable efforts to expose it as an I2C
1561  * adapter and use drm_get_edid() instead of abusing this function.
1562  *
1563  * The EDID may be overridden using debugfs override_edid or firmare EDID
1564  * (drm_load_edid_firmware() and drm.edid_firmware parameter), in this priority
1565  * order. Having either of them bypasses actual EDID reads.
1566  *
1567  * Return: Pointer to valid EDID or NULL if we couldn't find any.
1568  */
1569 struct edid *drm_do_get_edid(struct drm_connector *connector,
1570 	int (*get_edid_block)(void *data, u8 *buf, unsigned int block,
1571 			      size_t len),
1572 	void *data)
1573 {
1574 	int i, j = 0, valid_extensions = 0;
1575 	u8 *edid, *new;
1576 	struct edid *override = NULL;
1577 
1578 	if (connector->override_edid)
1579 		override = drm_edid_duplicate(connector->edid_blob_ptr->data);
1580 
1581 	if (!override)
1582 		override = drm_load_edid_firmware(connector);
1583 
1584 	if (!IS_ERR_OR_NULL(override))
1585 		return override;
1586 
1587 	if ((edid = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1588 		return NULL;
1589 
1590 	/* base block fetch */
1591 	for (i = 0; i < 4; i++) {
1592 		if (get_edid_block(data, edid, 0, EDID_LENGTH))
1593 			goto out;
1594 		if (drm_edid_block_valid(edid, 0, false,
1595 					 &connector->edid_corrupt))
1596 			break;
1597 		if (i == 0 && drm_edid_is_zero(edid, EDID_LENGTH)) {
1598 			connector->null_edid_counter++;
1599 			goto carp;
1600 		}
1601 	}
1602 	if (i == 4)
1603 		goto carp;
1604 
1605 	/* if there's no extensions, we're done */
1606 	valid_extensions = edid[0x7e];
1607 	if (valid_extensions == 0)
1608 		return (struct edid *)edid;
1609 
1610 	new = krealloc(edid, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1611 	if (!new)
1612 		goto out;
1613 	edid = new;
1614 
1615 	for (j = 1; j <= edid[0x7e]; j++) {
1616 		u8 *block = edid + j * EDID_LENGTH;
1617 
1618 		for (i = 0; i < 4; i++) {
1619 			if (get_edid_block(data, block, j, EDID_LENGTH))
1620 				goto out;
1621 			if (drm_edid_block_valid(block, j, false, NULL))
1622 				break;
1623 		}
1624 
1625 		if (i == 4)
1626 			valid_extensions--;
1627 	}
1628 
1629 	if (valid_extensions != edid[0x7e]) {
1630 		u8 *base;
1631 
1632 		connector_bad_edid(connector, edid, edid[0x7e] + 1);
1633 
1634 		edid[EDID_LENGTH-1] += edid[0x7e] - valid_extensions;
1635 		edid[0x7e] = valid_extensions;
1636 
1637 		new = kmalloc_array(valid_extensions + 1, EDID_LENGTH,
1638 				    GFP_KERNEL);
1639 		if (!new)
1640 			goto out;
1641 
1642 		base = new;
1643 		for (i = 0; i <= edid[0x7e]; i++) {
1644 			u8 *block = edid + i * EDID_LENGTH;
1645 
1646 			if (!drm_edid_block_valid(block, i, false, NULL))
1647 				continue;
1648 
1649 			memcpy(base, block, EDID_LENGTH);
1650 			base += EDID_LENGTH;
1651 		}
1652 
1653 		kfree(edid);
1654 		edid = new;
1655 	}
1656 
1657 	return (struct edid *)edid;
1658 
1659 carp:
1660 	connector_bad_edid(connector, edid, 1);
1661 out:
1662 	kfree(edid);
1663 	return NULL;
1664 }
1665 EXPORT_SYMBOL_GPL(drm_do_get_edid);
1666 
1667 /**
1668  * drm_probe_ddc() - probe DDC presence
1669  * @adapter: I2C adapter to probe
1670  *
1671  * Return: True on success, false on failure.
1672  */
1673 bool
1674 drm_probe_ddc(struct i2c_adapter *adapter)
1675 {
1676 	unsigned char out;
1677 
1678 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1679 }
1680 EXPORT_SYMBOL(drm_probe_ddc);
1681 
1682 /**
1683  * drm_get_edid - get EDID data, if available
1684  * @connector: connector we're probing
1685  * @adapter: I2C adapter to use for DDC
1686  *
1687  * Poke the given I2C channel to grab EDID data if possible.  If found,
1688  * attach it to the connector.
1689  *
1690  * Return: Pointer to valid EDID or NULL if we couldn't find any.
1691  */
1692 struct edid *drm_get_edid(struct drm_connector *connector,
1693 			  struct i2c_adapter *adapter)
1694 {
1695 	struct edid *edid;
1696 
1697 	if (connector->force == DRM_FORCE_OFF)
1698 		return NULL;
1699 
1700 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
1701 		return NULL;
1702 
1703 	edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter);
1704 	if (edid)
1705 		drm_get_displayid(connector, edid);
1706 	return edid;
1707 }
1708 EXPORT_SYMBOL(drm_get_edid);
1709 
1710 /**
1711  * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
1712  * @connector: connector we're probing
1713  * @adapter: I2C adapter to use for DDC
1714  *
1715  * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
1716  * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
1717  * switch DDC to the GPU which is retrieving EDID.
1718  *
1719  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
1720  */
1721 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
1722 				     struct i2c_adapter *adapter)
1723 {
1724 	struct pci_dev *pdev = connector->dev->pdev;
1725 	struct edid *edid;
1726 
1727 	vga_switcheroo_lock_ddc(pdev);
1728 	edid = drm_get_edid(connector, adapter);
1729 	vga_switcheroo_unlock_ddc(pdev);
1730 
1731 	return edid;
1732 }
1733 EXPORT_SYMBOL(drm_get_edid_switcheroo);
1734 
1735 /**
1736  * drm_edid_duplicate - duplicate an EDID and the extensions
1737  * @edid: EDID to duplicate
1738  *
1739  * Return: Pointer to duplicated EDID or NULL on allocation failure.
1740  */
1741 struct edid *drm_edid_duplicate(const struct edid *edid)
1742 {
1743 	return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1744 }
1745 EXPORT_SYMBOL(drm_edid_duplicate);
1746 
1747 /*** EDID parsing ***/
1748 
1749 /**
1750  * edid_vendor - match a string against EDID's obfuscated vendor field
1751  * @edid: EDID to match
1752  * @vendor: vendor string
1753  *
1754  * Returns true if @vendor is in @edid, false otherwise
1755  */
1756 static bool edid_vendor(const struct edid *edid, const char *vendor)
1757 {
1758 	char edid_vendor[3];
1759 
1760 	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1761 	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1762 			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1763 	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1764 
1765 	return !strncmp(edid_vendor, vendor, 3);
1766 }
1767 
1768 /**
1769  * edid_get_quirks - return quirk flags for a given EDID
1770  * @edid: EDID to process
1771  *
1772  * This tells subsequent routines what fixes they need to apply.
1773  */
1774 static u32 edid_get_quirks(const struct edid *edid)
1775 {
1776 	const struct edid_quirk *quirk;
1777 	int i;
1778 
1779 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1780 		quirk = &edid_quirk_list[i];
1781 
1782 		if (edid_vendor(edid, quirk->vendor) &&
1783 		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
1784 			return quirk->quirks;
1785 	}
1786 
1787 	return 0;
1788 }
1789 
1790 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1791 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1792 
1793 /**
1794  * edid_fixup_preferred - set preferred modes based on quirk list
1795  * @connector: has mode list to fix up
1796  * @quirks: quirks list
1797  *
1798  * Walk the mode list for @connector, clearing the preferred status
1799  * on existing modes and setting it anew for the right mode ala @quirks.
1800  */
1801 static void edid_fixup_preferred(struct drm_connector *connector,
1802 				 u32 quirks)
1803 {
1804 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
1805 	int target_refresh = 0;
1806 	int cur_vrefresh, preferred_vrefresh;
1807 
1808 	if (list_empty(&connector->probed_modes))
1809 		return;
1810 
1811 	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1812 		target_refresh = 60;
1813 	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1814 		target_refresh = 75;
1815 
1816 	preferred_mode = list_first_entry(&connector->probed_modes,
1817 					  struct drm_display_mode, head);
1818 
1819 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1820 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1821 
1822 		if (cur_mode == preferred_mode)
1823 			continue;
1824 
1825 		/* Largest mode is preferred */
1826 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1827 			preferred_mode = cur_mode;
1828 
1829 		cur_vrefresh = cur_mode->vrefresh ?
1830 			cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1831 		preferred_vrefresh = preferred_mode->vrefresh ?
1832 			preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1833 		/* At a given size, try to get closest to target refresh */
1834 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1835 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1836 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1837 			preferred_mode = cur_mode;
1838 		}
1839 	}
1840 
1841 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1842 }
1843 
1844 static bool
1845 mode_is_rb(const struct drm_display_mode *mode)
1846 {
1847 	return (mode->htotal - mode->hdisplay == 160) &&
1848 	       (mode->hsync_end - mode->hdisplay == 80) &&
1849 	       (mode->hsync_end - mode->hsync_start == 32) &&
1850 	       (mode->vsync_start - mode->vdisplay == 3);
1851 }
1852 
1853 /*
1854  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1855  * @dev: Device to duplicate against
1856  * @hsize: Mode width
1857  * @vsize: Mode height
1858  * @fresh: Mode refresh rate
1859  * @rb: Mode reduced-blanking-ness
1860  *
1861  * Walk the DMT mode list looking for a match for the given parameters.
1862  *
1863  * Return: A newly allocated copy of the mode, or NULL if not found.
1864  */
1865 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1866 					   int hsize, int vsize, int fresh,
1867 					   bool rb)
1868 {
1869 	int i;
1870 
1871 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1872 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1873 		if (hsize != ptr->hdisplay)
1874 			continue;
1875 		if (vsize != ptr->vdisplay)
1876 			continue;
1877 		if (fresh != drm_mode_vrefresh(ptr))
1878 			continue;
1879 		if (rb != mode_is_rb(ptr))
1880 			continue;
1881 
1882 		return drm_mode_duplicate(dev, ptr);
1883 	}
1884 
1885 	return NULL;
1886 }
1887 EXPORT_SYMBOL(drm_mode_find_dmt);
1888 
1889 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1890 
1891 static void
1892 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1893 {
1894 	int i, n = 0;
1895 	u8 d = ext[0x02];
1896 	u8 *det_base = ext + d;
1897 
1898 	n = (127 - d) / 18;
1899 	for (i = 0; i < n; i++)
1900 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1901 }
1902 
1903 static void
1904 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1905 {
1906 	unsigned int i, n = min((int)ext[0x02], 6);
1907 	u8 *det_base = ext + 5;
1908 
1909 	if (ext[0x01] != 1)
1910 		return; /* unknown version */
1911 
1912 	for (i = 0; i < n; i++)
1913 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1914 }
1915 
1916 static void
1917 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1918 {
1919 	int i;
1920 	struct edid *edid = (struct edid *)raw_edid;
1921 
1922 	if (edid == NULL)
1923 		return;
1924 
1925 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1926 		cb(&(edid->detailed_timings[i]), closure);
1927 
1928 	for (i = 1; i <= raw_edid[0x7e]; i++) {
1929 		u8 *ext = raw_edid + (i * EDID_LENGTH);
1930 		switch (*ext) {
1931 		case CEA_EXT:
1932 			cea_for_each_detailed_block(ext, cb, closure);
1933 			break;
1934 		case VTB_EXT:
1935 			vtb_for_each_detailed_block(ext, cb, closure);
1936 			break;
1937 		default:
1938 			break;
1939 		}
1940 	}
1941 }
1942 
1943 static void
1944 is_rb(struct detailed_timing *t, void *data)
1945 {
1946 	u8 *r = (u8 *)t;
1947 	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1948 		if (r[15] & 0x10)
1949 			*(bool *)data = true;
1950 }
1951 
1952 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
1953 static bool
1954 drm_monitor_supports_rb(struct edid *edid)
1955 {
1956 	if (edid->revision >= 4) {
1957 		bool ret = false;
1958 		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1959 		return ret;
1960 	}
1961 
1962 	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1963 }
1964 
1965 static void
1966 find_gtf2(struct detailed_timing *t, void *data)
1967 {
1968 	u8 *r = (u8 *)t;
1969 	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1970 		*(u8 **)data = r;
1971 }
1972 
1973 /* Secondary GTF curve kicks in above some break frequency */
1974 static int
1975 drm_gtf2_hbreak(struct edid *edid)
1976 {
1977 	u8 *r = NULL;
1978 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1979 	return r ? (r[12] * 2) : 0;
1980 }
1981 
1982 static int
1983 drm_gtf2_2c(struct edid *edid)
1984 {
1985 	u8 *r = NULL;
1986 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1987 	return r ? r[13] : 0;
1988 }
1989 
1990 static int
1991 drm_gtf2_m(struct edid *edid)
1992 {
1993 	u8 *r = NULL;
1994 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1995 	return r ? (r[15] << 8) + r[14] : 0;
1996 }
1997 
1998 static int
1999 drm_gtf2_k(struct edid *edid)
2000 {
2001 	u8 *r = NULL;
2002 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2003 	return r ? r[16] : 0;
2004 }
2005 
2006 static int
2007 drm_gtf2_2j(struct edid *edid)
2008 {
2009 	u8 *r = NULL;
2010 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2011 	return r ? r[17] : 0;
2012 }
2013 
2014 /**
2015  * standard_timing_level - get std. timing level(CVT/GTF/DMT)
2016  * @edid: EDID block to scan
2017  */
2018 static int standard_timing_level(struct edid *edid)
2019 {
2020 	if (edid->revision >= 2) {
2021 		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
2022 			return LEVEL_CVT;
2023 		if (drm_gtf2_hbreak(edid))
2024 			return LEVEL_GTF2;
2025 		return LEVEL_GTF;
2026 	}
2027 	return LEVEL_DMT;
2028 }
2029 
2030 /*
2031  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
2032  * monitors fill with ascii space (0x20) instead.
2033  */
2034 static int
2035 bad_std_timing(u8 a, u8 b)
2036 {
2037 	return (a == 0x00 && b == 0x00) ||
2038 	       (a == 0x01 && b == 0x01) ||
2039 	       (a == 0x20 && b == 0x20);
2040 }
2041 
2042 /**
2043  * drm_mode_std - convert standard mode info (width, height, refresh) into mode
2044  * @connector: connector of for the EDID block
2045  * @edid: EDID block to scan
2046  * @t: standard timing params
2047  *
2048  * Take the standard timing params (in this case width, aspect, and refresh)
2049  * and convert them into a real mode using CVT/GTF/DMT.
2050  */
2051 static struct drm_display_mode *
2052 drm_mode_std(struct drm_connector *connector, struct edid *edid,
2053 	     struct std_timing *t)
2054 {
2055 	struct drm_device *dev = connector->dev;
2056 	struct drm_display_mode *m, *mode = NULL;
2057 	int hsize, vsize;
2058 	int vrefresh_rate;
2059 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
2060 		>> EDID_TIMING_ASPECT_SHIFT;
2061 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
2062 		>> EDID_TIMING_VFREQ_SHIFT;
2063 	int timing_level = standard_timing_level(edid);
2064 
2065 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
2066 		return NULL;
2067 
2068 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
2069 	hsize = t->hsize * 8 + 248;
2070 	/* vrefresh_rate = vfreq + 60 */
2071 	vrefresh_rate = vfreq + 60;
2072 	/* the vdisplay is calculated based on the aspect ratio */
2073 	if (aspect_ratio == 0) {
2074 		if (edid->revision < 3)
2075 			vsize = hsize;
2076 		else
2077 			vsize = (hsize * 10) / 16;
2078 	} else if (aspect_ratio == 1)
2079 		vsize = (hsize * 3) / 4;
2080 	else if (aspect_ratio == 2)
2081 		vsize = (hsize * 4) / 5;
2082 	else
2083 		vsize = (hsize * 9) / 16;
2084 
2085 	/* HDTV hack, part 1 */
2086 	if (vrefresh_rate == 60 &&
2087 	    ((hsize == 1360 && vsize == 765) ||
2088 	     (hsize == 1368 && vsize == 769))) {
2089 		hsize = 1366;
2090 		vsize = 768;
2091 	}
2092 
2093 	/*
2094 	 * If this connector already has a mode for this size and refresh
2095 	 * rate (because it came from detailed or CVT info), use that
2096 	 * instead.  This way we don't have to guess at interlace or
2097 	 * reduced blanking.
2098 	 */
2099 	list_for_each_entry(m, &connector->probed_modes, head)
2100 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
2101 		    drm_mode_vrefresh(m) == vrefresh_rate)
2102 			return NULL;
2103 
2104 	/* HDTV hack, part 2 */
2105 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
2106 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
2107 				    false);
2108 		if (!mode)
2109 			return NULL;
2110 		mode->hdisplay = 1366;
2111 		mode->hsync_start = mode->hsync_start - 1;
2112 		mode->hsync_end = mode->hsync_end - 1;
2113 		return mode;
2114 	}
2115 
2116 	/* check whether it can be found in default mode table */
2117 	if (drm_monitor_supports_rb(edid)) {
2118 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
2119 					 true);
2120 		if (mode)
2121 			return mode;
2122 	}
2123 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
2124 	if (mode)
2125 		return mode;
2126 
2127 	/* okay, generate it */
2128 	switch (timing_level) {
2129 	case LEVEL_DMT:
2130 		break;
2131 	case LEVEL_GTF:
2132 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
2133 		break;
2134 	case LEVEL_GTF2:
2135 		/*
2136 		 * This is potentially wrong if there's ever a monitor with
2137 		 * more than one ranges section, each claiming a different
2138 		 * secondary GTF curve.  Please don't do that.
2139 		 */
2140 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
2141 		if (!mode)
2142 			return NULL;
2143 		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
2144 			drm_mode_destroy(dev, mode);
2145 			mode = drm_gtf_mode_complex(dev, hsize, vsize,
2146 						    vrefresh_rate, 0, 0,
2147 						    drm_gtf2_m(edid),
2148 						    drm_gtf2_2c(edid),
2149 						    drm_gtf2_k(edid),
2150 						    drm_gtf2_2j(edid));
2151 		}
2152 		break;
2153 	case LEVEL_CVT:
2154 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
2155 				    false);
2156 		break;
2157 	}
2158 	return mode;
2159 }
2160 
2161 /*
2162  * EDID is delightfully ambiguous about how interlaced modes are to be
2163  * encoded.  Our internal representation is of frame height, but some
2164  * HDTV detailed timings are encoded as field height.
2165  *
2166  * The format list here is from CEA, in frame size.  Technically we
2167  * should be checking refresh rate too.  Whatever.
2168  */
2169 static void
2170 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
2171 			    struct detailed_pixel_timing *pt)
2172 {
2173 	int i;
2174 	static const struct {
2175 		int w, h;
2176 	} cea_interlaced[] = {
2177 		{ 1920, 1080 },
2178 		{  720,  480 },
2179 		{ 1440,  480 },
2180 		{ 2880,  480 },
2181 		{  720,  576 },
2182 		{ 1440,  576 },
2183 		{ 2880,  576 },
2184 	};
2185 
2186 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
2187 		return;
2188 
2189 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
2190 		if ((mode->hdisplay == cea_interlaced[i].w) &&
2191 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
2192 			mode->vdisplay *= 2;
2193 			mode->vsync_start *= 2;
2194 			mode->vsync_end *= 2;
2195 			mode->vtotal *= 2;
2196 			mode->vtotal |= 1;
2197 		}
2198 	}
2199 
2200 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
2201 }
2202 
2203 /**
2204  * drm_mode_detailed - create a new mode from an EDID detailed timing section
2205  * @dev: DRM device (needed to create new mode)
2206  * @edid: EDID block
2207  * @timing: EDID detailed timing info
2208  * @quirks: quirks to apply
2209  *
2210  * An EDID detailed timing block contains enough info for us to create and
2211  * return a new struct drm_display_mode.
2212  */
2213 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
2214 						  struct edid *edid,
2215 						  struct detailed_timing *timing,
2216 						  u32 quirks)
2217 {
2218 	struct drm_display_mode *mode;
2219 	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
2220 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
2221 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
2222 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
2223 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
2224 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
2225 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
2226 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
2227 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
2228 
2229 	/* ignore tiny modes */
2230 	if (hactive < 64 || vactive < 64)
2231 		return NULL;
2232 
2233 	if (pt->misc & DRM_EDID_PT_STEREO) {
2234 		DRM_DEBUG_KMS("stereo mode not supported\n");
2235 		return NULL;
2236 	}
2237 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
2238 		DRM_DEBUG_KMS("composite sync not supported\n");
2239 	}
2240 
2241 	/* it is incorrect if hsync/vsync width is zero */
2242 	if (!hsync_pulse_width || !vsync_pulse_width) {
2243 		DRM_DEBUG_KMS("Incorrect Detailed timing. "
2244 				"Wrong Hsync/Vsync pulse width\n");
2245 		return NULL;
2246 	}
2247 
2248 	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
2249 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
2250 		if (!mode)
2251 			return NULL;
2252 
2253 		goto set_size;
2254 	}
2255 
2256 	mode = drm_mode_create(dev);
2257 	if (!mode)
2258 		return NULL;
2259 
2260 	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
2261 		timing->pixel_clock = cpu_to_le16(1088);
2262 
2263 	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
2264 
2265 	mode->hdisplay = hactive;
2266 	mode->hsync_start = mode->hdisplay + hsync_offset;
2267 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
2268 	mode->htotal = mode->hdisplay + hblank;
2269 
2270 	mode->vdisplay = vactive;
2271 	mode->vsync_start = mode->vdisplay + vsync_offset;
2272 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
2273 	mode->vtotal = mode->vdisplay + vblank;
2274 
2275 	/* Some EDIDs have bogus h/vtotal values */
2276 	if (mode->hsync_end > mode->htotal)
2277 		mode->htotal = mode->hsync_end + 1;
2278 	if (mode->vsync_end > mode->vtotal)
2279 		mode->vtotal = mode->vsync_end + 1;
2280 
2281 	drm_mode_do_interlace_quirk(mode, pt);
2282 
2283 	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
2284 		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
2285 	}
2286 
2287 	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
2288 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
2289 	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
2290 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
2291 
2292 set_size:
2293 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
2294 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
2295 
2296 	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
2297 		mode->width_mm *= 10;
2298 		mode->height_mm *= 10;
2299 	}
2300 
2301 	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
2302 		mode->width_mm = edid->width_cm * 10;
2303 		mode->height_mm = edid->height_cm * 10;
2304 	}
2305 
2306 	mode->type = DRM_MODE_TYPE_DRIVER;
2307 	mode->vrefresh = drm_mode_vrefresh(mode);
2308 	drm_mode_set_name(mode);
2309 
2310 	return mode;
2311 }
2312 
2313 static bool
2314 mode_in_hsync_range(const struct drm_display_mode *mode,
2315 		    struct edid *edid, u8 *t)
2316 {
2317 	int hsync, hmin, hmax;
2318 
2319 	hmin = t[7];
2320 	if (edid->revision >= 4)
2321 	    hmin += ((t[4] & 0x04) ? 255 : 0);
2322 	hmax = t[8];
2323 	if (edid->revision >= 4)
2324 	    hmax += ((t[4] & 0x08) ? 255 : 0);
2325 	hsync = drm_mode_hsync(mode);
2326 
2327 	return (hsync <= hmax && hsync >= hmin);
2328 }
2329 
2330 static bool
2331 mode_in_vsync_range(const struct drm_display_mode *mode,
2332 		    struct edid *edid, u8 *t)
2333 {
2334 	int vsync, vmin, vmax;
2335 
2336 	vmin = t[5];
2337 	if (edid->revision >= 4)
2338 	    vmin += ((t[4] & 0x01) ? 255 : 0);
2339 	vmax = t[6];
2340 	if (edid->revision >= 4)
2341 	    vmax += ((t[4] & 0x02) ? 255 : 0);
2342 	vsync = drm_mode_vrefresh(mode);
2343 
2344 	return (vsync <= vmax && vsync >= vmin);
2345 }
2346 
2347 static u32
2348 range_pixel_clock(struct edid *edid, u8 *t)
2349 {
2350 	/* unspecified */
2351 	if (t[9] == 0 || t[9] == 255)
2352 		return 0;
2353 
2354 	/* 1.4 with CVT support gives us real precision, yay */
2355 	if (edid->revision >= 4 && t[10] == 0x04)
2356 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
2357 
2358 	/* 1.3 is pathetic, so fuzz up a bit */
2359 	return t[9] * 10000 + 5001;
2360 }
2361 
2362 static bool
2363 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
2364 	      struct detailed_timing *timing)
2365 {
2366 	u32 max_clock;
2367 	u8 *t = (u8 *)timing;
2368 
2369 	if (!mode_in_hsync_range(mode, edid, t))
2370 		return false;
2371 
2372 	if (!mode_in_vsync_range(mode, edid, t))
2373 		return false;
2374 
2375 	if ((max_clock = range_pixel_clock(edid, t)))
2376 		if (mode->clock > max_clock)
2377 			return false;
2378 
2379 	/* 1.4 max horizontal check */
2380 	if (edid->revision >= 4 && t[10] == 0x04)
2381 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
2382 			return false;
2383 
2384 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
2385 		return false;
2386 
2387 	return true;
2388 }
2389 
2390 static bool valid_inferred_mode(const struct drm_connector *connector,
2391 				const struct drm_display_mode *mode)
2392 {
2393 	const struct drm_display_mode *m;
2394 	bool ok = false;
2395 
2396 	list_for_each_entry(m, &connector->probed_modes, head) {
2397 		if (mode->hdisplay == m->hdisplay &&
2398 		    mode->vdisplay == m->vdisplay &&
2399 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
2400 			return false; /* duplicated */
2401 		if (mode->hdisplay <= m->hdisplay &&
2402 		    mode->vdisplay <= m->vdisplay)
2403 			ok = true;
2404 	}
2405 	return ok;
2406 }
2407 
2408 static int
2409 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2410 			struct detailed_timing *timing)
2411 {
2412 	int i, modes = 0;
2413 	struct drm_display_mode *newmode;
2414 	struct drm_device *dev = connector->dev;
2415 
2416 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2417 		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
2418 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
2419 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
2420 			if (newmode) {
2421 				drm_mode_probed_add(connector, newmode);
2422 				modes++;
2423 			}
2424 		}
2425 	}
2426 
2427 	return modes;
2428 }
2429 
2430 /* fix up 1366x768 mode from 1368x768;
2431  * GFT/CVT can't express 1366 width which isn't dividable by 8
2432  */
2433 void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
2434 {
2435 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
2436 		mode->hdisplay = 1366;
2437 		mode->hsync_start--;
2438 		mode->hsync_end--;
2439 		drm_mode_set_name(mode);
2440 	}
2441 }
2442 
2443 static int
2444 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
2445 			struct detailed_timing *timing)
2446 {
2447 	int i, modes = 0;
2448 	struct drm_display_mode *newmode;
2449 	struct drm_device *dev = connector->dev;
2450 
2451 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2452 		const struct minimode *m = &extra_modes[i];
2453 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2454 		if (!newmode)
2455 			return modes;
2456 
2457 		drm_mode_fixup_1366x768(newmode);
2458 		if (!mode_in_range(newmode, edid, timing) ||
2459 		    !valid_inferred_mode(connector, newmode)) {
2460 			drm_mode_destroy(dev, newmode);
2461 			continue;
2462 		}
2463 
2464 		drm_mode_probed_add(connector, newmode);
2465 		modes++;
2466 	}
2467 
2468 	return modes;
2469 }
2470 
2471 static int
2472 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2473 			struct detailed_timing *timing)
2474 {
2475 	int i, modes = 0;
2476 	struct drm_display_mode *newmode;
2477 	struct drm_device *dev = connector->dev;
2478 	bool rb = drm_monitor_supports_rb(edid);
2479 
2480 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2481 		const struct minimode *m = &extra_modes[i];
2482 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2483 		if (!newmode)
2484 			return modes;
2485 
2486 		drm_mode_fixup_1366x768(newmode);
2487 		if (!mode_in_range(newmode, edid, timing) ||
2488 		    !valid_inferred_mode(connector, newmode)) {
2489 			drm_mode_destroy(dev, newmode);
2490 			continue;
2491 		}
2492 
2493 		drm_mode_probed_add(connector, newmode);
2494 		modes++;
2495 	}
2496 
2497 	return modes;
2498 }
2499 
2500 static void
2501 do_inferred_modes(struct detailed_timing *timing, void *c)
2502 {
2503 	struct detailed_mode_closure *closure = c;
2504 	struct detailed_non_pixel *data = &timing->data.other_data;
2505 	struct detailed_data_monitor_range *range = &data->data.range;
2506 
2507 	if (data->type != EDID_DETAIL_MONITOR_RANGE)
2508 		return;
2509 
2510 	closure->modes += drm_dmt_modes_for_range(closure->connector,
2511 						  closure->edid,
2512 						  timing);
2513 
2514 	if (!version_greater(closure->edid, 1, 1))
2515 		return; /* GTF not defined yet */
2516 
2517 	switch (range->flags) {
2518 	case 0x02: /* secondary gtf, XXX could do more */
2519 	case 0x00: /* default gtf */
2520 		closure->modes += drm_gtf_modes_for_range(closure->connector,
2521 							  closure->edid,
2522 							  timing);
2523 		break;
2524 	case 0x04: /* cvt, only in 1.4+ */
2525 		if (!version_greater(closure->edid, 1, 3))
2526 			break;
2527 
2528 		closure->modes += drm_cvt_modes_for_range(closure->connector,
2529 							  closure->edid,
2530 							  timing);
2531 		break;
2532 	case 0x01: /* just the ranges, no formula */
2533 	default:
2534 		break;
2535 	}
2536 }
2537 
2538 static int
2539 add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2540 {
2541 	struct detailed_mode_closure closure = {
2542 		.connector = connector,
2543 		.edid = edid,
2544 	};
2545 
2546 	if (version_greater(edid, 1, 0))
2547 		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2548 					    &closure);
2549 
2550 	return closure.modes;
2551 }
2552 
2553 static int
2554 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2555 {
2556 	int i, j, m, modes = 0;
2557 	struct drm_display_mode *mode;
2558 	u8 *est = ((u8 *)timing) + 6;
2559 
2560 	for (i = 0; i < 6; i++) {
2561 		for (j = 7; j >= 0; j--) {
2562 			m = (i * 8) + (7 - j);
2563 			if (m >= ARRAY_SIZE(est3_modes))
2564 				break;
2565 			if (est[i] & (1 << j)) {
2566 				mode = drm_mode_find_dmt(connector->dev,
2567 							 est3_modes[m].w,
2568 							 est3_modes[m].h,
2569 							 est3_modes[m].r,
2570 							 est3_modes[m].rb);
2571 				if (mode) {
2572 					drm_mode_probed_add(connector, mode);
2573 					modes++;
2574 				}
2575 			}
2576 		}
2577 	}
2578 
2579 	return modes;
2580 }
2581 
2582 static void
2583 do_established_modes(struct detailed_timing *timing, void *c)
2584 {
2585 	struct detailed_mode_closure *closure = c;
2586 	struct detailed_non_pixel *data = &timing->data.other_data;
2587 
2588 	if (data->type == EDID_DETAIL_EST_TIMINGS)
2589 		closure->modes += drm_est3_modes(closure->connector, timing);
2590 }
2591 
2592 /**
2593  * add_established_modes - get est. modes from EDID and add them
2594  * @connector: connector to add mode(s) to
2595  * @edid: EDID block to scan
2596  *
2597  * Each EDID block contains a bitmap of the supported "established modes" list
2598  * (defined above).  Tease them out and add them to the global modes list.
2599  */
2600 static int
2601 add_established_modes(struct drm_connector *connector, struct edid *edid)
2602 {
2603 	struct drm_device *dev = connector->dev;
2604 	unsigned long est_bits = edid->established_timings.t1 |
2605 		(edid->established_timings.t2 << 8) |
2606 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
2607 	int i, modes = 0;
2608 	struct detailed_mode_closure closure = {
2609 		.connector = connector,
2610 		.edid = edid,
2611 	};
2612 
2613 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2614 		if (est_bits & (1<<i)) {
2615 			struct drm_display_mode *newmode;
2616 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2617 			if (newmode) {
2618 				drm_mode_probed_add(connector, newmode);
2619 				modes++;
2620 			}
2621 		}
2622 	}
2623 
2624 	if (version_greater(edid, 1, 0))
2625 		    drm_for_each_detailed_block((u8 *)edid,
2626 						do_established_modes, &closure);
2627 
2628 	return modes + closure.modes;
2629 }
2630 
2631 static void
2632 do_standard_modes(struct detailed_timing *timing, void *c)
2633 {
2634 	struct detailed_mode_closure *closure = c;
2635 	struct detailed_non_pixel *data = &timing->data.other_data;
2636 	struct drm_connector *connector = closure->connector;
2637 	struct edid *edid = closure->edid;
2638 
2639 	if (data->type == EDID_DETAIL_STD_MODES) {
2640 		int i;
2641 		for (i = 0; i < 6; i++) {
2642 			struct std_timing *std;
2643 			struct drm_display_mode *newmode;
2644 
2645 			std = &data->data.timings[i];
2646 			newmode = drm_mode_std(connector, edid, std);
2647 			if (newmode) {
2648 				drm_mode_probed_add(connector, newmode);
2649 				closure->modes++;
2650 			}
2651 		}
2652 	}
2653 }
2654 
2655 /**
2656  * add_standard_modes - get std. modes from EDID and add them
2657  * @connector: connector to add mode(s) to
2658  * @edid: EDID block to scan
2659  *
2660  * Standard modes can be calculated using the appropriate standard (DMT,
2661  * GTF or CVT. Grab them from @edid and add them to the list.
2662  */
2663 static int
2664 add_standard_modes(struct drm_connector *connector, struct edid *edid)
2665 {
2666 	int i, modes = 0;
2667 	struct detailed_mode_closure closure = {
2668 		.connector = connector,
2669 		.edid = edid,
2670 	};
2671 
2672 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
2673 		struct drm_display_mode *newmode;
2674 
2675 		newmode = drm_mode_std(connector, edid,
2676 				       &edid->standard_timings[i]);
2677 		if (newmode) {
2678 			drm_mode_probed_add(connector, newmode);
2679 			modes++;
2680 		}
2681 	}
2682 
2683 	if (version_greater(edid, 1, 0))
2684 		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2685 					    &closure);
2686 
2687 	/* XXX should also look for standard codes in VTB blocks */
2688 
2689 	return modes + closure.modes;
2690 }
2691 
2692 static int drm_cvt_modes(struct drm_connector *connector,
2693 			 struct detailed_timing *timing)
2694 {
2695 	int i, j, modes = 0;
2696 	struct drm_display_mode *newmode;
2697 	struct drm_device *dev = connector->dev;
2698 	struct cvt_timing *cvt;
2699 	const int rates[] = { 60, 85, 75, 60, 50 };
2700 	const u8 empty[3] = { 0, 0, 0 };
2701 
2702 	for (i = 0; i < 4; i++) {
2703 		int uninitialized_var(width), height;
2704 		cvt = &(timing->data.other_data.data.cvt[i]);
2705 
2706 		if (!memcmp(cvt->code, empty, 3))
2707 			continue;
2708 
2709 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2710 		switch (cvt->code[1] & 0x0c) {
2711 		case 0x00:
2712 			width = height * 4 / 3;
2713 			break;
2714 		case 0x04:
2715 			width = height * 16 / 9;
2716 			break;
2717 		case 0x08:
2718 			width = height * 16 / 10;
2719 			break;
2720 		case 0x0c:
2721 			width = height * 15 / 9;
2722 			break;
2723 		}
2724 
2725 		for (j = 1; j < 5; j++) {
2726 			if (cvt->code[2] & (1 << j)) {
2727 				newmode = drm_cvt_mode(dev, width, height,
2728 						       rates[j], j == 0,
2729 						       false, false);
2730 				if (newmode) {
2731 					drm_mode_probed_add(connector, newmode);
2732 					modes++;
2733 				}
2734 			}
2735 		}
2736 	}
2737 
2738 	return modes;
2739 }
2740 
2741 static void
2742 do_cvt_mode(struct detailed_timing *timing, void *c)
2743 {
2744 	struct detailed_mode_closure *closure = c;
2745 	struct detailed_non_pixel *data = &timing->data.other_data;
2746 
2747 	if (data->type == EDID_DETAIL_CVT_3BYTE)
2748 		closure->modes += drm_cvt_modes(closure->connector, timing);
2749 }
2750 
2751 static int
2752 add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2753 {
2754 	struct detailed_mode_closure closure = {
2755 		.connector = connector,
2756 		.edid = edid,
2757 	};
2758 
2759 	if (version_greater(edid, 1, 2))
2760 		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2761 
2762 	/* XXX should also look for CVT codes in VTB blocks */
2763 
2764 	return closure.modes;
2765 }
2766 
2767 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode);
2768 
2769 static void
2770 do_detailed_mode(struct detailed_timing *timing, void *c)
2771 {
2772 	struct detailed_mode_closure *closure = c;
2773 	struct drm_display_mode *newmode;
2774 
2775 	if (timing->pixel_clock) {
2776 		newmode = drm_mode_detailed(closure->connector->dev,
2777 					    closure->edid, timing,
2778 					    closure->quirks);
2779 		if (!newmode)
2780 			return;
2781 
2782 		if (closure->preferred)
2783 			newmode->type |= DRM_MODE_TYPE_PREFERRED;
2784 
2785 		/*
2786 		 * Detailed modes are limited to 10kHz pixel clock resolution,
2787 		 * so fix up anything that looks like CEA/HDMI mode, but the clock
2788 		 * is just slightly off.
2789 		 */
2790 		fixup_detailed_cea_mode_clock(newmode);
2791 
2792 		drm_mode_probed_add(closure->connector, newmode);
2793 		closure->modes++;
2794 		closure->preferred = false;
2795 	}
2796 }
2797 
2798 /*
2799  * add_detailed_modes - Add modes from detailed timings
2800  * @connector: attached connector
2801  * @edid: EDID block to scan
2802  * @quirks: quirks to apply
2803  */
2804 static int
2805 add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2806 		   u32 quirks)
2807 {
2808 	struct detailed_mode_closure closure = {
2809 		.connector = connector,
2810 		.edid = edid,
2811 		.preferred = true,
2812 		.quirks = quirks,
2813 	};
2814 
2815 	if (closure.preferred && !version_greater(edid, 1, 3))
2816 		closure.preferred =
2817 		    (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2818 
2819 	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2820 
2821 	return closure.modes;
2822 }
2823 
2824 #define AUDIO_BLOCK	0x01
2825 #define VIDEO_BLOCK     0x02
2826 #define VENDOR_BLOCK    0x03
2827 #define SPEAKER_BLOCK	0x04
2828 #define USE_EXTENDED_TAG 0x07
2829 #define EXT_VIDEO_CAPABILITY_BLOCK 0x00
2830 #define EXT_VIDEO_DATA_BLOCK_420	0x0E
2831 #define EXT_VIDEO_CAP_BLOCK_Y420CMDB 0x0F
2832 #define EDID_BASIC_AUDIO	(1 << 6)
2833 #define EDID_CEA_YCRCB444	(1 << 5)
2834 #define EDID_CEA_YCRCB422	(1 << 4)
2835 #define EDID_CEA_VCDB_QS	(1 << 6)
2836 
2837 /*
2838  * Search EDID for CEA extension block.
2839  */
2840 static u8 *drm_find_edid_extension(const struct edid *edid, int ext_id)
2841 {
2842 	u8 *edid_ext = NULL;
2843 	int i;
2844 
2845 	/* No EDID or EDID extensions */
2846 	if (edid == NULL || edid->extensions == 0)
2847 		return NULL;
2848 
2849 	/* Find CEA extension */
2850 	for (i = 0; i < edid->extensions; i++) {
2851 		edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2852 		if (edid_ext[0] == ext_id)
2853 			break;
2854 	}
2855 
2856 	if (i == edid->extensions)
2857 		return NULL;
2858 
2859 	return edid_ext;
2860 }
2861 
2862 static u8 *drm_find_cea_extension(const struct edid *edid)
2863 {
2864 	return drm_find_edid_extension(edid, CEA_EXT);
2865 }
2866 
2867 static u8 *drm_find_displayid_extension(const struct edid *edid)
2868 {
2869 	return drm_find_edid_extension(edid, DISPLAYID_EXT);
2870 }
2871 
2872 /*
2873  * Calculate the alternate clock for the CEA mode
2874  * (60Hz vs. 59.94Hz etc.)
2875  */
2876 static unsigned int
2877 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2878 {
2879 	unsigned int clock = cea_mode->clock;
2880 
2881 	if (cea_mode->vrefresh % 6 != 0)
2882 		return clock;
2883 
2884 	/*
2885 	 * edid_cea_modes contains the 59.94Hz
2886 	 * variant for 240 and 480 line modes,
2887 	 * and the 60Hz variant otherwise.
2888 	 */
2889 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2890 		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
2891 	else
2892 		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
2893 
2894 	return clock;
2895 }
2896 
2897 static bool
2898 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
2899 {
2900 	/*
2901 	 * For certain VICs the spec allows the vertical
2902 	 * front porch to vary by one or two lines.
2903 	 *
2904 	 * cea_modes[] stores the variant with the shortest
2905 	 * vertical front porch. We can adjust the mode to
2906 	 * get the other variants by simply increasing the
2907 	 * vertical front porch length.
2908 	 */
2909 	BUILD_BUG_ON(edid_cea_modes[8].vtotal != 262 ||
2910 		     edid_cea_modes[9].vtotal != 262 ||
2911 		     edid_cea_modes[12].vtotal != 262 ||
2912 		     edid_cea_modes[13].vtotal != 262 ||
2913 		     edid_cea_modes[23].vtotal != 312 ||
2914 		     edid_cea_modes[24].vtotal != 312 ||
2915 		     edid_cea_modes[27].vtotal != 312 ||
2916 		     edid_cea_modes[28].vtotal != 312);
2917 
2918 	if (((vic == 8 || vic == 9 ||
2919 	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
2920 	    ((vic == 23 || vic == 24 ||
2921 	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
2922 		mode->vsync_start++;
2923 		mode->vsync_end++;
2924 		mode->vtotal++;
2925 
2926 		return true;
2927 	}
2928 
2929 	return false;
2930 }
2931 
2932 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
2933 					     unsigned int clock_tolerance)
2934 {
2935 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
2936 	u8 vic;
2937 
2938 	if (!to_match->clock)
2939 		return 0;
2940 
2941 	if (to_match->picture_aspect_ratio)
2942 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
2943 
2944 	for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
2945 		struct drm_display_mode cea_mode = edid_cea_modes[vic];
2946 		unsigned int clock1, clock2;
2947 
2948 		/* Check both 60Hz and 59.94Hz */
2949 		clock1 = cea_mode.clock;
2950 		clock2 = cea_mode_alternate_clock(&cea_mode);
2951 
2952 		if (abs(to_match->clock - clock1) > clock_tolerance &&
2953 		    abs(to_match->clock - clock2) > clock_tolerance)
2954 			continue;
2955 
2956 		do {
2957 			if (drm_mode_match(to_match, &cea_mode, match_flags))
2958 				return vic;
2959 		} while (cea_mode_alternate_timings(vic, &cea_mode));
2960 	}
2961 
2962 	return 0;
2963 }
2964 
2965 /**
2966  * drm_match_cea_mode - look for a CEA mode matching given mode
2967  * @to_match: display mode
2968  *
2969  * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2970  * mode.
2971  */
2972 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2973 {
2974 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
2975 	u8 vic;
2976 
2977 	if (!to_match->clock)
2978 		return 0;
2979 
2980 	if (to_match->picture_aspect_ratio)
2981 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
2982 
2983 	for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
2984 		struct drm_display_mode cea_mode = edid_cea_modes[vic];
2985 		unsigned int clock1, clock2;
2986 
2987 		/* Check both 60Hz and 59.94Hz */
2988 		clock1 = cea_mode.clock;
2989 		clock2 = cea_mode_alternate_clock(&cea_mode);
2990 
2991 		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
2992 		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
2993 			continue;
2994 
2995 		do {
2996 			if (drm_mode_match(to_match, &cea_mode, match_flags))
2997 				return vic;
2998 		} while (cea_mode_alternate_timings(vic, &cea_mode));
2999 	}
3000 
3001 	return 0;
3002 }
3003 EXPORT_SYMBOL(drm_match_cea_mode);
3004 
3005 static bool drm_valid_cea_vic(u8 vic)
3006 {
3007 	return vic > 0 && vic < ARRAY_SIZE(edid_cea_modes);
3008 }
3009 
3010 /**
3011  * drm_get_cea_aspect_ratio - get the picture aspect ratio corresponding to
3012  * the input VIC from the CEA mode list
3013  * @video_code: ID given to each of the CEA modes
3014  *
3015  * Returns picture aspect ratio
3016  */
3017 enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
3018 {
3019 	return edid_cea_modes[video_code].picture_aspect_ratio;
3020 }
3021 EXPORT_SYMBOL(drm_get_cea_aspect_ratio);
3022 
3023 /*
3024  * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
3025  * specific block).
3026  *
3027  * It's almost like cea_mode_alternate_clock(), we just need to add an
3028  * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
3029  * one.
3030  */
3031 static unsigned int
3032 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
3033 {
3034 	if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
3035 		return hdmi_mode->clock;
3036 
3037 	return cea_mode_alternate_clock(hdmi_mode);
3038 }
3039 
3040 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
3041 					      unsigned int clock_tolerance)
3042 {
3043 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3044 	u8 vic;
3045 
3046 	if (!to_match->clock)
3047 		return 0;
3048 
3049 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3050 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3051 		unsigned int clock1, clock2;
3052 
3053 		/* Make sure to also match alternate clocks */
3054 		clock1 = hdmi_mode->clock;
3055 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3056 
3057 		if (abs(to_match->clock - clock1) > clock_tolerance &&
3058 		    abs(to_match->clock - clock2) > clock_tolerance)
3059 			continue;
3060 
3061 		if (drm_mode_match(to_match, hdmi_mode, match_flags))
3062 			return vic;
3063 	}
3064 
3065 	return 0;
3066 }
3067 
3068 /*
3069  * drm_match_hdmi_mode - look for a HDMI mode matching given mode
3070  * @to_match: display mode
3071  *
3072  * An HDMI mode is one defined in the HDMI vendor specific block.
3073  *
3074  * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
3075  */
3076 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
3077 {
3078 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3079 	u8 vic;
3080 
3081 	if (!to_match->clock)
3082 		return 0;
3083 
3084 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3085 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3086 		unsigned int clock1, clock2;
3087 
3088 		/* Make sure to also match alternate clocks */
3089 		clock1 = hdmi_mode->clock;
3090 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3091 
3092 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
3093 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
3094 		    drm_mode_match(to_match, hdmi_mode, match_flags))
3095 			return vic;
3096 	}
3097 	return 0;
3098 }
3099 
3100 static bool drm_valid_hdmi_vic(u8 vic)
3101 {
3102 	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
3103 }
3104 
3105 static int
3106 add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
3107 {
3108 	struct drm_device *dev = connector->dev;
3109 	struct drm_display_mode *mode, *tmp;
3110 	LIST_HEAD(list);
3111 	int modes = 0;
3112 
3113 	/* Don't add CEA modes if the CEA extension block is missing */
3114 	if (!drm_find_cea_extension(edid))
3115 		return 0;
3116 
3117 	/*
3118 	 * Go through all probed modes and create a new mode
3119 	 * with the alternate clock for certain CEA modes.
3120 	 */
3121 	list_for_each_entry(mode, &connector->probed_modes, head) {
3122 		const struct drm_display_mode *cea_mode = NULL;
3123 		struct drm_display_mode *newmode;
3124 		u8 vic = drm_match_cea_mode(mode);
3125 		unsigned int clock1, clock2;
3126 
3127 		if (drm_valid_cea_vic(vic)) {
3128 			cea_mode = &edid_cea_modes[vic];
3129 			clock2 = cea_mode_alternate_clock(cea_mode);
3130 		} else {
3131 			vic = drm_match_hdmi_mode(mode);
3132 			if (drm_valid_hdmi_vic(vic)) {
3133 				cea_mode = &edid_4k_modes[vic];
3134 				clock2 = hdmi_mode_alternate_clock(cea_mode);
3135 			}
3136 		}
3137 
3138 		if (!cea_mode)
3139 			continue;
3140 
3141 		clock1 = cea_mode->clock;
3142 
3143 		if (clock1 == clock2)
3144 			continue;
3145 
3146 		if (mode->clock != clock1 && mode->clock != clock2)
3147 			continue;
3148 
3149 		newmode = drm_mode_duplicate(dev, cea_mode);
3150 		if (!newmode)
3151 			continue;
3152 
3153 		/* Carry over the stereo flags */
3154 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
3155 
3156 		/*
3157 		 * The current mode could be either variant. Make
3158 		 * sure to pick the "other" clock for the new mode.
3159 		 */
3160 		if (mode->clock != clock1)
3161 			newmode->clock = clock1;
3162 		else
3163 			newmode->clock = clock2;
3164 
3165 		list_add_tail(&newmode->head, &list);
3166 	}
3167 
3168 	list_for_each_entry_safe(mode, tmp, &list, head) {
3169 		list_del(&mode->head);
3170 		drm_mode_probed_add(connector, mode);
3171 		modes++;
3172 	}
3173 
3174 	return modes;
3175 }
3176 
3177 static u8 svd_to_vic(u8 svd)
3178 {
3179 	/* 0-6 bit vic, 7th bit native mode indicator */
3180 	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
3181 		return svd & 127;
3182 
3183 	return svd;
3184 }
3185 
3186 static struct drm_display_mode *
3187 drm_display_mode_from_vic_index(struct drm_connector *connector,
3188 				const u8 *video_db, u8 video_len,
3189 				u8 video_index)
3190 {
3191 	struct drm_device *dev = connector->dev;
3192 	struct drm_display_mode *newmode;
3193 	u8 vic;
3194 
3195 	if (video_db == NULL || video_index >= video_len)
3196 		return NULL;
3197 
3198 	/* CEA modes are numbered 1..127 */
3199 	vic = svd_to_vic(video_db[video_index]);
3200 	if (!drm_valid_cea_vic(vic))
3201 		return NULL;
3202 
3203 	newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]);
3204 	if (!newmode)
3205 		return NULL;
3206 
3207 	newmode->vrefresh = 0;
3208 
3209 	return newmode;
3210 }
3211 
3212 /*
3213  * do_y420vdb_modes - Parse YCBCR 420 only modes
3214  * @connector: connector corresponding to the HDMI sink
3215  * @svds: start of the data block of CEA YCBCR 420 VDB
3216  * @len: length of the CEA YCBCR 420 VDB
3217  *
3218  * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
3219  * which contains modes which can be supported in YCBCR 420
3220  * output format only.
3221  */
3222 static int do_y420vdb_modes(struct drm_connector *connector,
3223 			    const u8 *svds, u8 svds_len)
3224 {
3225 	int modes = 0, i;
3226 	struct drm_device *dev = connector->dev;
3227 	struct drm_display_info *info = &connector->display_info;
3228 	struct drm_hdmi_info *hdmi = &info->hdmi;
3229 
3230 	for (i = 0; i < svds_len; i++) {
3231 		u8 vic = svd_to_vic(svds[i]);
3232 		struct drm_display_mode *newmode;
3233 
3234 		if (!drm_valid_cea_vic(vic))
3235 			continue;
3236 
3237 		newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]);
3238 		if (!newmode)
3239 			break;
3240 		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
3241 		drm_mode_probed_add(connector, newmode);
3242 		modes++;
3243 	}
3244 
3245 	if (modes > 0)
3246 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3247 	return modes;
3248 }
3249 
3250 /*
3251  * drm_add_cmdb_modes - Add a YCBCR 420 mode into bitmap
3252  * @connector: connector corresponding to the HDMI sink
3253  * @vic: CEA vic for the video mode to be added in the map
3254  *
3255  * Makes an entry for a videomode in the YCBCR 420 bitmap
3256  */
3257 static void
3258 drm_add_cmdb_modes(struct drm_connector *connector, u8 svd)
3259 {
3260 	u8 vic = svd_to_vic(svd);
3261 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3262 
3263 	if (!drm_valid_cea_vic(vic))
3264 		return;
3265 
3266 	bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
3267 }
3268 
3269 static int
3270 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
3271 {
3272 	int i, modes = 0;
3273 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3274 
3275 	for (i = 0; i < len; i++) {
3276 		struct drm_display_mode *mode;
3277 		mode = drm_display_mode_from_vic_index(connector, db, len, i);
3278 		if (mode) {
3279 			/*
3280 			 * YCBCR420 capability block contains a bitmap which
3281 			 * gives the index of CEA modes from CEA VDB, which
3282 			 * can support YCBCR 420 sampling output also (apart
3283 			 * from RGB/YCBCR444 etc).
3284 			 * For example, if the bit 0 in bitmap is set,
3285 			 * first mode in VDB can support YCBCR420 output too.
3286 			 * Add YCBCR420 modes only if sink is HDMI 2.0 capable.
3287 			 */
3288 			if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
3289 				drm_add_cmdb_modes(connector, db[i]);
3290 
3291 			drm_mode_probed_add(connector, mode);
3292 			modes++;
3293 		}
3294 	}
3295 
3296 	return modes;
3297 }
3298 
3299 struct stereo_mandatory_mode {
3300 	int width, height, vrefresh;
3301 	unsigned int flags;
3302 };
3303 
3304 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
3305 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3306 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
3307 	{ 1920, 1080, 50,
3308 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
3309 	{ 1920, 1080, 60,
3310 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
3311 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3312 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
3313 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3314 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
3315 };
3316 
3317 static bool
3318 stereo_match_mandatory(const struct drm_display_mode *mode,
3319 		       const struct stereo_mandatory_mode *stereo_mode)
3320 {
3321 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
3322 
3323 	return mode->hdisplay == stereo_mode->width &&
3324 	       mode->vdisplay == stereo_mode->height &&
3325 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
3326 	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
3327 }
3328 
3329 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
3330 {
3331 	struct drm_device *dev = connector->dev;
3332 	const struct drm_display_mode *mode;
3333 	struct list_head stereo_modes;
3334 	int modes = 0, i;
3335 
3336 	INIT_LIST_HEAD(&stereo_modes);
3337 
3338 	list_for_each_entry(mode, &connector->probed_modes, head) {
3339 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
3340 			const struct stereo_mandatory_mode *mandatory;
3341 			struct drm_display_mode *new_mode;
3342 
3343 			if (!stereo_match_mandatory(mode,
3344 						    &stereo_mandatory_modes[i]))
3345 				continue;
3346 
3347 			mandatory = &stereo_mandatory_modes[i];
3348 			new_mode = drm_mode_duplicate(dev, mode);
3349 			if (!new_mode)
3350 				continue;
3351 
3352 			new_mode->flags |= mandatory->flags;
3353 			list_add_tail(&new_mode->head, &stereo_modes);
3354 			modes++;
3355 		}
3356 	}
3357 
3358 	list_splice_tail(&stereo_modes, &connector->probed_modes);
3359 
3360 	return modes;
3361 }
3362 
3363 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
3364 {
3365 	struct drm_device *dev = connector->dev;
3366 	struct drm_display_mode *newmode;
3367 
3368 	if (!drm_valid_hdmi_vic(vic)) {
3369 		DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
3370 		return 0;
3371 	}
3372 
3373 	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
3374 	if (!newmode)
3375 		return 0;
3376 
3377 	drm_mode_probed_add(connector, newmode);
3378 
3379 	return 1;
3380 }
3381 
3382 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
3383 			       const u8 *video_db, u8 video_len, u8 video_index)
3384 {
3385 	struct drm_display_mode *newmode;
3386 	int modes = 0;
3387 
3388 	if (structure & (1 << 0)) {
3389 		newmode = drm_display_mode_from_vic_index(connector, video_db,
3390 							  video_len,
3391 							  video_index);
3392 		if (newmode) {
3393 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
3394 			drm_mode_probed_add(connector, newmode);
3395 			modes++;
3396 		}
3397 	}
3398 	if (structure & (1 << 6)) {
3399 		newmode = drm_display_mode_from_vic_index(connector, video_db,
3400 							  video_len,
3401 							  video_index);
3402 		if (newmode) {
3403 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3404 			drm_mode_probed_add(connector, newmode);
3405 			modes++;
3406 		}
3407 	}
3408 	if (structure & (1 << 8)) {
3409 		newmode = drm_display_mode_from_vic_index(connector, video_db,
3410 							  video_len,
3411 							  video_index);
3412 		if (newmode) {
3413 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3414 			drm_mode_probed_add(connector, newmode);
3415 			modes++;
3416 		}
3417 	}
3418 
3419 	return modes;
3420 }
3421 
3422 /*
3423  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
3424  * @connector: connector corresponding to the HDMI sink
3425  * @db: start of the CEA vendor specific block
3426  * @len: length of the CEA block payload, ie. one can access up to db[len]
3427  *
3428  * Parses the HDMI VSDB looking for modes to add to @connector. This function
3429  * also adds the stereo 3d modes when applicable.
3430  */
3431 static int
3432 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
3433 		   const u8 *video_db, u8 video_len)
3434 {
3435 	struct drm_display_info *info = &connector->display_info;
3436 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
3437 	u8 vic_len, hdmi_3d_len = 0;
3438 	u16 mask;
3439 	u16 structure_all;
3440 
3441 	if (len < 8)
3442 		goto out;
3443 
3444 	/* no HDMI_Video_Present */
3445 	if (!(db[8] & (1 << 5)))
3446 		goto out;
3447 
3448 	/* Latency_Fields_Present */
3449 	if (db[8] & (1 << 7))
3450 		offset += 2;
3451 
3452 	/* I_Latency_Fields_Present */
3453 	if (db[8] & (1 << 6))
3454 		offset += 2;
3455 
3456 	/* the declared length is not long enough for the 2 first bytes
3457 	 * of additional video format capabilities */
3458 	if (len < (8 + offset + 2))
3459 		goto out;
3460 
3461 	/* 3D_Present */
3462 	offset++;
3463 	if (db[8 + offset] & (1 << 7)) {
3464 		modes += add_hdmi_mandatory_stereo_modes(connector);
3465 
3466 		/* 3D_Multi_present */
3467 		multi_present = (db[8 + offset] & 0x60) >> 5;
3468 	}
3469 
3470 	offset++;
3471 	vic_len = db[8 + offset] >> 5;
3472 	hdmi_3d_len = db[8 + offset] & 0x1f;
3473 
3474 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
3475 		u8 vic;
3476 
3477 		vic = db[9 + offset + i];
3478 		modes += add_hdmi_mode(connector, vic);
3479 	}
3480 	offset += 1 + vic_len;
3481 
3482 	if (multi_present == 1)
3483 		multi_len = 2;
3484 	else if (multi_present == 2)
3485 		multi_len = 4;
3486 	else
3487 		multi_len = 0;
3488 
3489 	if (len < (8 + offset + hdmi_3d_len - 1))
3490 		goto out;
3491 
3492 	if (hdmi_3d_len < multi_len)
3493 		goto out;
3494 
3495 	if (multi_present == 1 || multi_present == 2) {
3496 		/* 3D_Structure_ALL */
3497 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
3498 
3499 		/* check if 3D_MASK is present */
3500 		if (multi_present == 2)
3501 			mask = (db[10 + offset] << 8) | db[11 + offset];
3502 		else
3503 			mask = 0xffff;
3504 
3505 		for (i = 0; i < 16; i++) {
3506 			if (mask & (1 << i))
3507 				modes += add_3d_struct_modes(connector,
3508 						structure_all,
3509 						video_db,
3510 						video_len, i);
3511 		}
3512 	}
3513 
3514 	offset += multi_len;
3515 
3516 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
3517 		int vic_index;
3518 		struct drm_display_mode *newmode = NULL;
3519 		unsigned int newflag = 0;
3520 		bool detail_present;
3521 
3522 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
3523 
3524 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
3525 			break;
3526 
3527 		/* 2D_VIC_order_X */
3528 		vic_index = db[8 + offset + i] >> 4;
3529 
3530 		/* 3D_Structure_X */
3531 		switch (db[8 + offset + i] & 0x0f) {
3532 		case 0:
3533 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
3534 			break;
3535 		case 6:
3536 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3537 			break;
3538 		case 8:
3539 			/* 3D_Detail_X */
3540 			if ((db[9 + offset + i] >> 4) == 1)
3541 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3542 			break;
3543 		}
3544 
3545 		if (newflag != 0) {
3546 			newmode = drm_display_mode_from_vic_index(connector,
3547 								  video_db,
3548 								  video_len,
3549 								  vic_index);
3550 
3551 			if (newmode) {
3552 				newmode->flags |= newflag;
3553 				drm_mode_probed_add(connector, newmode);
3554 				modes++;
3555 			}
3556 		}
3557 
3558 		if (detail_present)
3559 			i++;
3560 	}
3561 
3562 out:
3563 	if (modes > 0)
3564 		info->has_hdmi_infoframe = true;
3565 	return modes;
3566 }
3567 
3568 static int
3569 cea_db_payload_len(const u8 *db)
3570 {
3571 	return db[0] & 0x1f;
3572 }
3573 
3574 static int
3575 cea_db_extended_tag(const u8 *db)
3576 {
3577 	return db[1];
3578 }
3579 
3580 static int
3581 cea_db_tag(const u8 *db)
3582 {
3583 	return db[0] >> 5;
3584 }
3585 
3586 static int
3587 cea_revision(const u8 *cea)
3588 {
3589 	return cea[1];
3590 }
3591 
3592 static int
3593 cea_db_offsets(const u8 *cea, int *start, int *end)
3594 {
3595 	/* Data block offset in CEA extension block */
3596 	*start = 4;
3597 	*end = cea[2];
3598 	if (*end == 0)
3599 		*end = 127;
3600 	if (*end < 4 || *end > 127)
3601 		return -ERANGE;
3602 	return 0;
3603 }
3604 
3605 static bool cea_db_is_hdmi_vsdb(const u8 *db)
3606 {
3607 	int hdmi_id;
3608 
3609 	if (cea_db_tag(db) != VENDOR_BLOCK)
3610 		return false;
3611 
3612 	if (cea_db_payload_len(db) < 5)
3613 		return false;
3614 
3615 	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
3616 
3617 	return hdmi_id == HDMI_IEEE_OUI;
3618 }
3619 
3620 static bool cea_db_is_hdmi_forum_vsdb(const u8 *db)
3621 {
3622 	unsigned int oui;
3623 
3624 	if (cea_db_tag(db) != VENDOR_BLOCK)
3625 		return false;
3626 
3627 	if (cea_db_payload_len(db) < 7)
3628 		return false;
3629 
3630 	oui = db[3] << 16 | db[2] << 8 | db[1];
3631 
3632 	return oui == HDMI_FORUM_IEEE_OUI;
3633 }
3634 
3635 static bool cea_db_is_y420cmdb(const u8 *db)
3636 {
3637 	if (cea_db_tag(db) != USE_EXTENDED_TAG)
3638 		return false;
3639 
3640 	if (!cea_db_payload_len(db))
3641 		return false;
3642 
3643 	if (cea_db_extended_tag(db) != EXT_VIDEO_CAP_BLOCK_Y420CMDB)
3644 		return false;
3645 
3646 	return true;
3647 }
3648 
3649 static bool cea_db_is_y420vdb(const u8 *db)
3650 {
3651 	if (cea_db_tag(db) != USE_EXTENDED_TAG)
3652 		return false;
3653 
3654 	if (!cea_db_payload_len(db))
3655 		return false;
3656 
3657 	if (cea_db_extended_tag(db) != EXT_VIDEO_DATA_BLOCK_420)
3658 		return false;
3659 
3660 	return true;
3661 }
3662 
3663 #define for_each_cea_db(cea, i, start, end) \
3664 	for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
3665 
3666 static void drm_parse_y420cmdb_bitmap(struct drm_connector *connector,
3667 				      const u8 *db)
3668 {
3669 	struct drm_display_info *info = &connector->display_info;
3670 	struct drm_hdmi_info *hdmi = &info->hdmi;
3671 	u8 map_len = cea_db_payload_len(db) - 1;
3672 	u8 count;
3673 	u64 map = 0;
3674 
3675 	if (map_len == 0) {
3676 		/* All CEA modes support ycbcr420 sampling also.*/
3677 		hdmi->y420_cmdb_map = U64_MAX;
3678 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3679 		return;
3680 	}
3681 
3682 	/*
3683 	 * This map indicates which of the existing CEA block modes
3684 	 * from VDB can support YCBCR420 output too. So if bit=0 is
3685 	 * set, first mode from VDB can support YCBCR420 output too.
3686 	 * We will parse and keep this map, before parsing VDB itself
3687 	 * to avoid going through the same block again and again.
3688 	 *
3689 	 * Spec is not clear about max possible size of this block.
3690 	 * Clamping max bitmap block size at 8 bytes. Every byte can
3691 	 * address 8 CEA modes, in this way this map can address
3692 	 * 8*8 = first 64 SVDs.
3693 	 */
3694 	if (WARN_ON_ONCE(map_len > 8))
3695 		map_len = 8;
3696 
3697 	for (count = 0; count < map_len; count++)
3698 		map |= (u64)db[2 + count] << (8 * count);
3699 
3700 	if (map)
3701 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3702 
3703 	hdmi->y420_cmdb_map = map;
3704 }
3705 
3706 static int
3707 add_cea_modes(struct drm_connector *connector, struct edid *edid)
3708 {
3709 	const u8 *cea = drm_find_cea_extension(edid);
3710 	const u8 *db, *hdmi = NULL, *video = NULL;
3711 	u8 dbl, hdmi_len, video_len = 0;
3712 	int modes = 0;
3713 
3714 	if (cea && cea_revision(cea) >= 3) {
3715 		int i, start, end;
3716 
3717 		if (cea_db_offsets(cea, &start, &end))
3718 			return 0;
3719 
3720 		for_each_cea_db(cea, i, start, end) {
3721 			db = &cea[i];
3722 			dbl = cea_db_payload_len(db);
3723 
3724 			if (cea_db_tag(db) == VIDEO_BLOCK) {
3725 				video = db + 1;
3726 				video_len = dbl;
3727 				modes += do_cea_modes(connector, video, dbl);
3728 			} else if (cea_db_is_hdmi_vsdb(db)) {
3729 				hdmi = db;
3730 				hdmi_len = dbl;
3731 			} else if (cea_db_is_y420vdb(db)) {
3732 				const u8 *vdb420 = &db[2];
3733 
3734 				/* Add 4:2:0(only) modes present in EDID */
3735 				modes += do_y420vdb_modes(connector,
3736 							  vdb420,
3737 							  dbl - 1);
3738 			}
3739 		}
3740 	}
3741 
3742 	/*
3743 	 * We parse the HDMI VSDB after having added the cea modes as we will
3744 	 * be patching their flags when the sink supports stereo 3D.
3745 	 */
3746 	if (hdmi)
3747 		modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
3748 					    video_len);
3749 
3750 	return modes;
3751 }
3752 
3753 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
3754 {
3755 	const struct drm_display_mode *cea_mode;
3756 	int clock1, clock2, clock;
3757 	u8 vic;
3758 	const char *type;
3759 
3760 	/*
3761 	 * allow 5kHz clock difference either way to account for
3762 	 * the 10kHz clock resolution limit of detailed timings.
3763 	 */
3764 	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
3765 	if (drm_valid_cea_vic(vic)) {
3766 		type = "CEA";
3767 		cea_mode = &edid_cea_modes[vic];
3768 		clock1 = cea_mode->clock;
3769 		clock2 = cea_mode_alternate_clock(cea_mode);
3770 	} else {
3771 		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
3772 		if (drm_valid_hdmi_vic(vic)) {
3773 			type = "HDMI";
3774 			cea_mode = &edid_4k_modes[vic];
3775 			clock1 = cea_mode->clock;
3776 			clock2 = hdmi_mode_alternate_clock(cea_mode);
3777 		} else {
3778 			return;
3779 		}
3780 	}
3781 
3782 	/* pick whichever is closest */
3783 	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
3784 		clock = clock1;
3785 	else
3786 		clock = clock2;
3787 
3788 	if (mode->clock == clock)
3789 		return;
3790 
3791 	DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
3792 		  type, vic, mode->clock, clock);
3793 	mode->clock = clock;
3794 }
3795 
3796 static void
3797 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
3798 {
3799 	u8 len = cea_db_payload_len(db);
3800 
3801 	if (len >= 6 && (db[6] & (1 << 7)))
3802 		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
3803 	if (len >= 8) {
3804 		connector->latency_present[0] = db[8] >> 7;
3805 		connector->latency_present[1] = (db[8] >> 6) & 1;
3806 	}
3807 	if (len >= 9)
3808 		connector->video_latency[0] = db[9];
3809 	if (len >= 10)
3810 		connector->audio_latency[0] = db[10];
3811 	if (len >= 11)
3812 		connector->video_latency[1] = db[11];
3813 	if (len >= 12)
3814 		connector->audio_latency[1] = db[12];
3815 
3816 	DRM_DEBUG_KMS("HDMI: latency present %d %d, "
3817 		      "video latency %d %d, "
3818 		      "audio latency %d %d\n",
3819 		      connector->latency_present[0],
3820 		      connector->latency_present[1],
3821 		      connector->video_latency[0],
3822 		      connector->video_latency[1],
3823 		      connector->audio_latency[0],
3824 		      connector->audio_latency[1]);
3825 }
3826 
3827 static void
3828 monitor_name(struct detailed_timing *t, void *data)
3829 {
3830 	if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
3831 		*(u8 **)data = t->data.other_data.data.str.str;
3832 }
3833 
3834 static int get_monitor_name(struct edid *edid, char name[13])
3835 {
3836 	char *edid_name = NULL;
3837 	int mnl;
3838 
3839 	if (!edid || !name)
3840 		return 0;
3841 
3842 	drm_for_each_detailed_block((u8 *)edid, monitor_name, &edid_name);
3843 	for (mnl = 0; edid_name && mnl < 13; mnl++) {
3844 		if (edid_name[mnl] == 0x0a)
3845 			break;
3846 
3847 		name[mnl] = edid_name[mnl];
3848 	}
3849 
3850 	return mnl;
3851 }
3852 
3853 /**
3854  * drm_edid_get_monitor_name - fetch the monitor name from the edid
3855  * @edid: monitor EDID information
3856  * @name: pointer to a character array to hold the name of the monitor
3857  * @bufsize: The size of the name buffer (should be at least 14 chars.)
3858  *
3859  */
3860 void drm_edid_get_monitor_name(struct edid *edid, char *name, int bufsize)
3861 {
3862 	int name_length;
3863 	char buf[13];
3864 
3865 	if (bufsize <= 0)
3866 		return;
3867 
3868 	name_length = min(get_monitor_name(edid, buf), bufsize - 1);
3869 	memcpy(name, buf, name_length);
3870 	name[name_length] = '\0';
3871 }
3872 EXPORT_SYMBOL(drm_edid_get_monitor_name);
3873 
3874 static void clear_eld(struct drm_connector *connector)
3875 {
3876 	memset(connector->eld, 0, sizeof(connector->eld));
3877 
3878 	connector->latency_present[0] = false;
3879 	connector->latency_present[1] = false;
3880 	connector->video_latency[0] = 0;
3881 	connector->audio_latency[0] = 0;
3882 	connector->video_latency[1] = 0;
3883 	connector->audio_latency[1] = 0;
3884 }
3885 
3886 /*
3887  * drm_edid_to_eld - build ELD from EDID
3888  * @connector: connector corresponding to the HDMI/DP sink
3889  * @edid: EDID to parse
3890  *
3891  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
3892  * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
3893  */
3894 static void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
3895 {
3896 	uint8_t *eld = connector->eld;
3897 	u8 *cea;
3898 	u8 *db;
3899 	int total_sad_count = 0;
3900 	int mnl;
3901 	int dbl;
3902 
3903 	clear_eld(connector);
3904 
3905 	if (!edid)
3906 		return;
3907 
3908 	cea = drm_find_cea_extension(edid);
3909 	if (!cea) {
3910 		DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
3911 		return;
3912 	}
3913 
3914 	mnl = get_monitor_name(edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
3915 	DRM_DEBUG_KMS("ELD monitor %s\n", &eld[DRM_ELD_MONITOR_NAME_STRING]);
3916 
3917 	eld[DRM_ELD_CEA_EDID_VER_MNL] = cea[1] << DRM_ELD_CEA_EDID_VER_SHIFT;
3918 	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
3919 
3920 	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
3921 
3922 	eld[DRM_ELD_MANUFACTURER_NAME0] = edid->mfg_id[0];
3923 	eld[DRM_ELD_MANUFACTURER_NAME1] = edid->mfg_id[1];
3924 	eld[DRM_ELD_PRODUCT_CODE0] = edid->prod_code[0];
3925 	eld[DRM_ELD_PRODUCT_CODE1] = edid->prod_code[1];
3926 
3927 	if (cea_revision(cea) >= 3) {
3928 		int i, start, end;
3929 
3930 		if (cea_db_offsets(cea, &start, &end)) {
3931 			start = 0;
3932 			end = 0;
3933 		}
3934 
3935 		for_each_cea_db(cea, i, start, end) {
3936 			db = &cea[i];
3937 			dbl = cea_db_payload_len(db);
3938 
3939 			switch (cea_db_tag(db)) {
3940 				int sad_count;
3941 
3942 			case AUDIO_BLOCK:
3943 				/* Audio Data Block, contains SADs */
3944 				sad_count = min(dbl / 3, 15 - total_sad_count);
3945 				if (sad_count >= 1)
3946 					memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
3947 					       &db[1], sad_count * 3);
3948 				total_sad_count += sad_count;
3949 				break;
3950 			case SPEAKER_BLOCK:
3951 				/* Speaker Allocation Data Block */
3952 				if (dbl >= 1)
3953 					eld[DRM_ELD_SPEAKER] = db[1];
3954 				break;
3955 			case VENDOR_BLOCK:
3956 				/* HDMI Vendor-Specific Data Block */
3957 				if (cea_db_is_hdmi_vsdb(db))
3958 					drm_parse_hdmi_vsdb_audio(connector, db);
3959 				break;
3960 			default:
3961 				break;
3962 			}
3963 		}
3964 	}
3965 	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
3966 
3967 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
3968 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3969 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
3970 	else
3971 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
3972 
3973 	eld[DRM_ELD_BASELINE_ELD_LEN] =
3974 		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
3975 
3976 	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n",
3977 		      drm_eld_size(eld), total_sad_count);
3978 }
3979 
3980 /**
3981  * drm_edid_to_sad - extracts SADs from EDID
3982  * @edid: EDID to parse
3983  * @sads: pointer that will be set to the extracted SADs
3984  *
3985  * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
3986  *
3987  * Note: The returned pointer needs to be freed using kfree().
3988  *
3989  * Return: The number of found SADs or negative number on error.
3990  */
3991 int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
3992 {
3993 	int count = 0;
3994 	int i, start, end, dbl;
3995 	u8 *cea;
3996 
3997 	cea = drm_find_cea_extension(edid);
3998 	if (!cea) {
3999 		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
4000 		return -ENOENT;
4001 	}
4002 
4003 	if (cea_revision(cea) < 3) {
4004 		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
4005 		return -ENOTSUPP;
4006 	}
4007 
4008 	if (cea_db_offsets(cea, &start, &end)) {
4009 		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
4010 		return -EPROTO;
4011 	}
4012 
4013 	for_each_cea_db(cea, i, start, end) {
4014 		u8 *db = &cea[i];
4015 
4016 		if (cea_db_tag(db) == AUDIO_BLOCK) {
4017 			int j;
4018 			dbl = cea_db_payload_len(db);
4019 
4020 			count = dbl / 3; /* SAD is 3B */
4021 			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
4022 			if (!*sads)
4023 				return -ENOMEM;
4024 			for (j = 0; j < count; j++) {
4025 				u8 *sad = &db[1 + j * 3];
4026 
4027 				(*sads)[j].format = (sad[0] & 0x78) >> 3;
4028 				(*sads)[j].channels = sad[0] & 0x7;
4029 				(*sads)[j].freq = sad[1] & 0x7F;
4030 				(*sads)[j].byte2 = sad[2];
4031 			}
4032 			break;
4033 		}
4034 	}
4035 
4036 	return count;
4037 }
4038 EXPORT_SYMBOL(drm_edid_to_sad);
4039 
4040 /**
4041  * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
4042  * @edid: EDID to parse
4043  * @sadb: pointer to the speaker block
4044  *
4045  * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
4046  *
4047  * Note: The returned pointer needs to be freed using kfree().
4048  *
4049  * Return: The number of found Speaker Allocation Blocks or negative number on
4050  * error.
4051  */
4052 int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
4053 {
4054 	int count = 0;
4055 	int i, start, end, dbl;
4056 	const u8 *cea;
4057 
4058 	cea = drm_find_cea_extension(edid);
4059 	if (!cea) {
4060 		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
4061 		return -ENOENT;
4062 	}
4063 
4064 	if (cea_revision(cea) < 3) {
4065 		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
4066 		return -ENOTSUPP;
4067 	}
4068 
4069 	if (cea_db_offsets(cea, &start, &end)) {
4070 		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
4071 		return -EPROTO;
4072 	}
4073 
4074 	for_each_cea_db(cea, i, start, end) {
4075 		const u8 *db = &cea[i];
4076 
4077 		if (cea_db_tag(db) == SPEAKER_BLOCK) {
4078 			dbl = cea_db_payload_len(db);
4079 
4080 			/* Speaker Allocation Data Block */
4081 			if (dbl == 3) {
4082 				*sadb = kmemdup(&db[1], dbl, GFP_KERNEL);
4083 				if (!*sadb)
4084 					return -ENOMEM;
4085 				count = dbl;
4086 				break;
4087 			}
4088 		}
4089 	}
4090 
4091 	return count;
4092 }
4093 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
4094 
4095 /**
4096  * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
4097  * @connector: connector associated with the HDMI/DP sink
4098  * @mode: the display mode
4099  *
4100  * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
4101  * the sink doesn't support audio or video.
4102  */
4103 int drm_av_sync_delay(struct drm_connector *connector,
4104 		      const struct drm_display_mode *mode)
4105 {
4106 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
4107 	int a, v;
4108 
4109 	if (!connector->latency_present[0])
4110 		return 0;
4111 	if (!connector->latency_present[1])
4112 		i = 0;
4113 
4114 	a = connector->audio_latency[i];
4115 	v = connector->video_latency[i];
4116 
4117 	/*
4118 	 * HDMI/DP sink doesn't support audio or video?
4119 	 */
4120 	if (a == 255 || v == 255)
4121 		return 0;
4122 
4123 	/*
4124 	 * Convert raw EDID values to millisecond.
4125 	 * Treat unknown latency as 0ms.
4126 	 */
4127 	if (a)
4128 		a = min(2 * (a - 1), 500);
4129 	if (v)
4130 		v = min(2 * (v - 1), 500);
4131 
4132 	return max(v - a, 0);
4133 }
4134 EXPORT_SYMBOL(drm_av_sync_delay);
4135 
4136 /**
4137  * drm_detect_hdmi_monitor - detect whether monitor is HDMI
4138  * @edid: monitor EDID information
4139  *
4140  * Parse the CEA extension according to CEA-861-B.
4141  *
4142  * Return: True if the monitor is HDMI, false if not or unknown.
4143  */
4144 bool drm_detect_hdmi_monitor(struct edid *edid)
4145 {
4146 	u8 *edid_ext;
4147 	int i;
4148 	int start_offset, end_offset;
4149 
4150 	edid_ext = drm_find_cea_extension(edid);
4151 	if (!edid_ext)
4152 		return false;
4153 
4154 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
4155 		return false;
4156 
4157 	/*
4158 	 * Because HDMI identifier is in Vendor Specific Block,
4159 	 * search it from all data blocks of CEA extension.
4160 	 */
4161 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
4162 		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
4163 			return true;
4164 	}
4165 
4166 	return false;
4167 }
4168 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
4169 
4170 /**
4171  * drm_detect_monitor_audio - check monitor audio capability
4172  * @edid: EDID block to scan
4173  *
4174  * Monitor should have CEA extension block.
4175  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
4176  * audio' only. If there is any audio extension block and supported
4177  * audio format, assume at least 'basic audio' support, even if 'basic
4178  * audio' is not defined in EDID.
4179  *
4180  * Return: True if the monitor supports audio, false otherwise.
4181  */
4182 bool drm_detect_monitor_audio(struct edid *edid)
4183 {
4184 	u8 *edid_ext;
4185 	int i, j;
4186 	bool has_audio = false;
4187 	int start_offset, end_offset;
4188 
4189 	edid_ext = drm_find_cea_extension(edid);
4190 	if (!edid_ext)
4191 		goto end;
4192 
4193 	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
4194 
4195 	if (has_audio) {
4196 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
4197 		goto end;
4198 	}
4199 
4200 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
4201 		goto end;
4202 
4203 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
4204 		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
4205 			has_audio = true;
4206 			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
4207 				DRM_DEBUG_KMS("CEA audio format %d\n",
4208 					      (edid_ext[i + j] >> 3) & 0xf);
4209 			goto end;
4210 		}
4211 	}
4212 end:
4213 	return has_audio;
4214 }
4215 EXPORT_SYMBOL(drm_detect_monitor_audio);
4216 
4217 /**
4218  * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
4219  * @edid: EDID block to scan
4220  *
4221  * Check whether the monitor reports the RGB quantization range selection
4222  * as supported. The AVI infoframe can then be used to inform the monitor
4223  * which quantization range (full or limited) is used.
4224  *
4225  * Return: True if the RGB quantization range is selectable, false otherwise.
4226  */
4227 bool drm_rgb_quant_range_selectable(struct edid *edid)
4228 {
4229 	u8 *edid_ext;
4230 	int i, start, end;
4231 
4232 	edid_ext = drm_find_cea_extension(edid);
4233 	if (!edid_ext)
4234 		return false;
4235 
4236 	if (cea_db_offsets(edid_ext, &start, &end))
4237 		return false;
4238 
4239 	for_each_cea_db(edid_ext, i, start, end) {
4240 		if (cea_db_tag(&edid_ext[i]) == USE_EXTENDED_TAG &&
4241 		    cea_db_payload_len(&edid_ext[i]) == 2 &&
4242 		    cea_db_extended_tag(&edid_ext[i]) ==
4243 			EXT_VIDEO_CAPABILITY_BLOCK) {
4244 			DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
4245 			return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
4246 		}
4247 	}
4248 
4249 	return false;
4250 }
4251 EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
4252 
4253 /**
4254  * drm_default_rgb_quant_range - default RGB quantization range
4255  * @mode: display mode
4256  *
4257  * Determine the default RGB quantization range for the mode,
4258  * as specified in CEA-861.
4259  *
4260  * Return: The default RGB quantization range for the mode
4261  */
4262 enum hdmi_quantization_range
4263 drm_default_rgb_quant_range(const struct drm_display_mode *mode)
4264 {
4265 	/* All CEA modes other than VIC 1 use limited quantization range. */
4266 	return drm_match_cea_mode(mode) > 1 ?
4267 		HDMI_QUANTIZATION_RANGE_LIMITED :
4268 		HDMI_QUANTIZATION_RANGE_FULL;
4269 }
4270 EXPORT_SYMBOL(drm_default_rgb_quant_range);
4271 
4272 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
4273 					       const u8 *db)
4274 {
4275 	u8 dc_mask;
4276 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
4277 
4278 	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
4279 	hdmi->y420_dc_modes |= dc_mask;
4280 }
4281 
4282 static void drm_parse_hdmi_forum_vsdb(struct drm_connector *connector,
4283 				 const u8 *hf_vsdb)
4284 {
4285 	struct drm_display_info *display = &connector->display_info;
4286 	struct drm_hdmi_info *hdmi = &display->hdmi;
4287 
4288 	display->has_hdmi_infoframe = true;
4289 
4290 	if (hf_vsdb[6] & 0x80) {
4291 		hdmi->scdc.supported = true;
4292 		if (hf_vsdb[6] & 0x40)
4293 			hdmi->scdc.read_request = true;
4294 	}
4295 
4296 	/*
4297 	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
4298 	 * And as per the spec, three factors confirm this:
4299 	 * * Availability of a HF-VSDB block in EDID (check)
4300 	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
4301 	 * * SCDC support available (let's check)
4302 	 * Lets check it out.
4303 	 */
4304 
4305 	if (hf_vsdb[5]) {
4306 		/* max clock is 5000 KHz times block value */
4307 		u32 max_tmds_clock = hf_vsdb[5] * 5000;
4308 		struct drm_scdc *scdc = &hdmi->scdc;
4309 
4310 		if (max_tmds_clock > 340000) {
4311 			display->max_tmds_clock = max_tmds_clock;
4312 			DRM_DEBUG_KMS("HF-VSDB: max TMDS clock %d kHz\n",
4313 				display->max_tmds_clock);
4314 		}
4315 
4316 		if (scdc->supported) {
4317 			scdc->scrambling.supported = true;
4318 
4319 			/* Few sinks support scrambling for cloks < 340M */
4320 			if ((hf_vsdb[6] & 0x8))
4321 				scdc->scrambling.low_rates = true;
4322 		}
4323 	}
4324 
4325 	drm_parse_ycbcr420_deep_color_info(connector, hf_vsdb);
4326 }
4327 
4328 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
4329 					   const u8 *hdmi)
4330 {
4331 	struct drm_display_info *info = &connector->display_info;
4332 	unsigned int dc_bpc = 0;
4333 
4334 	/* HDMI supports at least 8 bpc */
4335 	info->bpc = 8;
4336 
4337 	if (cea_db_payload_len(hdmi) < 6)
4338 		return;
4339 
4340 	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
4341 		dc_bpc = 10;
4342 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
4343 		DRM_DEBUG("%s: HDMI sink does deep color 30.\n",
4344 			  connector->name);
4345 	}
4346 
4347 	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
4348 		dc_bpc = 12;
4349 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
4350 		DRM_DEBUG("%s: HDMI sink does deep color 36.\n",
4351 			  connector->name);
4352 	}
4353 
4354 	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
4355 		dc_bpc = 16;
4356 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
4357 		DRM_DEBUG("%s: HDMI sink does deep color 48.\n",
4358 			  connector->name);
4359 	}
4360 
4361 	if (dc_bpc == 0) {
4362 		DRM_DEBUG("%s: No deep color support on this HDMI sink.\n",
4363 			  connector->name);
4364 		return;
4365 	}
4366 
4367 	DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n",
4368 		  connector->name, dc_bpc);
4369 	info->bpc = dc_bpc;
4370 
4371 	/*
4372 	 * Deep color support mandates RGB444 support for all video
4373 	 * modes and forbids YCRCB422 support for all video modes per
4374 	 * HDMI 1.3 spec.
4375 	 */
4376 	info->color_formats = DRM_COLOR_FORMAT_RGB444;
4377 
4378 	/* YCRCB444 is optional according to spec. */
4379 	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
4380 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4381 		DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n",
4382 			  connector->name);
4383 	}
4384 
4385 	/*
4386 	 * Spec says that if any deep color mode is supported at all,
4387 	 * then deep color 36 bit must be supported.
4388 	 */
4389 	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
4390 		DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n",
4391 			  connector->name);
4392 	}
4393 }
4394 
4395 static void
4396 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
4397 {
4398 	struct drm_display_info *info = &connector->display_info;
4399 	u8 len = cea_db_payload_len(db);
4400 
4401 	if (len >= 6)
4402 		info->dvi_dual = db[6] & 1;
4403 	if (len >= 7)
4404 		info->max_tmds_clock = db[7] * 5000;
4405 
4406 	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
4407 		      "max TMDS clock %d kHz\n",
4408 		      info->dvi_dual,
4409 		      info->max_tmds_clock);
4410 
4411 	drm_parse_hdmi_deep_color_info(connector, db);
4412 }
4413 
4414 static void drm_parse_cea_ext(struct drm_connector *connector,
4415 			      const struct edid *edid)
4416 {
4417 	struct drm_display_info *info = &connector->display_info;
4418 	const u8 *edid_ext;
4419 	int i, start, end;
4420 
4421 	edid_ext = drm_find_cea_extension(edid);
4422 	if (!edid_ext)
4423 		return;
4424 
4425 	info->cea_rev = edid_ext[1];
4426 
4427 	/* The existence of a CEA block should imply RGB support */
4428 	info->color_formats = DRM_COLOR_FORMAT_RGB444;
4429 	if (edid_ext[3] & EDID_CEA_YCRCB444)
4430 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4431 	if (edid_ext[3] & EDID_CEA_YCRCB422)
4432 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
4433 
4434 	if (cea_db_offsets(edid_ext, &start, &end))
4435 		return;
4436 
4437 	for_each_cea_db(edid_ext, i, start, end) {
4438 		const u8 *db = &edid_ext[i];
4439 
4440 		if (cea_db_is_hdmi_vsdb(db))
4441 			drm_parse_hdmi_vsdb_video(connector, db);
4442 		if (cea_db_is_hdmi_forum_vsdb(db))
4443 			drm_parse_hdmi_forum_vsdb(connector, db);
4444 		if (cea_db_is_y420cmdb(db))
4445 			drm_parse_y420cmdb_bitmap(connector, db);
4446 	}
4447 }
4448 
4449 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
4450  * all of the values which would have been set from EDID
4451  */
4452 void
4453 drm_reset_display_info(struct drm_connector *connector)
4454 {
4455 	struct drm_display_info *info = &connector->display_info;
4456 
4457 	info->width_mm = 0;
4458 	info->height_mm = 0;
4459 
4460 	info->bpc = 0;
4461 	info->color_formats = 0;
4462 	info->cea_rev = 0;
4463 	info->max_tmds_clock = 0;
4464 	info->dvi_dual = false;
4465 	info->has_hdmi_infoframe = false;
4466 	memset(&info->hdmi, 0, sizeof(info->hdmi));
4467 
4468 	info->non_desktop = 0;
4469 }
4470 
4471 u32 drm_add_display_info(struct drm_connector *connector, const struct edid *edid)
4472 {
4473 	struct drm_display_info *info = &connector->display_info;
4474 
4475 	u32 quirks = edid_get_quirks(edid);
4476 
4477 	drm_reset_display_info(connector);
4478 
4479 	info->width_mm = edid->width_cm * 10;
4480 	info->height_mm = edid->height_cm * 10;
4481 
4482 	info->non_desktop = !!(quirks & EDID_QUIRK_NON_DESKTOP);
4483 
4484 	DRM_DEBUG_KMS("non_desktop set to %d\n", info->non_desktop);
4485 
4486 	if (edid->revision < 3)
4487 		return quirks;
4488 
4489 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
4490 		return quirks;
4491 
4492 	drm_parse_cea_ext(connector, edid);
4493 
4494 	/*
4495 	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
4496 	 *
4497 	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
4498 	 * tells us to assume 8 bpc color depth if the EDID doesn't have
4499 	 * extensions which tell otherwise.
4500 	 */
4501 	if ((info->bpc == 0) && (edid->revision < 4) &&
4502 	    (edid->input & DRM_EDID_DIGITAL_TYPE_DVI)) {
4503 		info->bpc = 8;
4504 		DRM_DEBUG("%s: Assigning DFP sink color depth as %d bpc.\n",
4505 			  connector->name, info->bpc);
4506 	}
4507 
4508 	/* Only defined for 1.4 with digital displays */
4509 	if (edid->revision < 4)
4510 		return quirks;
4511 
4512 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
4513 	case DRM_EDID_DIGITAL_DEPTH_6:
4514 		info->bpc = 6;
4515 		break;
4516 	case DRM_EDID_DIGITAL_DEPTH_8:
4517 		info->bpc = 8;
4518 		break;
4519 	case DRM_EDID_DIGITAL_DEPTH_10:
4520 		info->bpc = 10;
4521 		break;
4522 	case DRM_EDID_DIGITAL_DEPTH_12:
4523 		info->bpc = 12;
4524 		break;
4525 	case DRM_EDID_DIGITAL_DEPTH_14:
4526 		info->bpc = 14;
4527 		break;
4528 	case DRM_EDID_DIGITAL_DEPTH_16:
4529 		info->bpc = 16;
4530 		break;
4531 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
4532 	default:
4533 		info->bpc = 0;
4534 		break;
4535 	}
4536 
4537 	DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
4538 			  connector->name, info->bpc);
4539 
4540 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
4541 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
4542 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4543 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
4544 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
4545 	return quirks;
4546 }
4547 
4548 static int validate_displayid(u8 *displayid, int length, int idx)
4549 {
4550 	int i;
4551 	u8 csum = 0;
4552 	struct displayid_hdr *base;
4553 
4554 	base = (struct displayid_hdr *)&displayid[idx];
4555 
4556 	DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n",
4557 		      base->rev, base->bytes, base->prod_id, base->ext_count);
4558 
4559 	if (base->bytes + 5 > length - idx)
4560 		return -EINVAL;
4561 	for (i = idx; i <= base->bytes + 5; i++) {
4562 		csum += displayid[i];
4563 	}
4564 	if (csum) {
4565 		DRM_NOTE("DisplayID checksum invalid, remainder is %d\n", csum);
4566 		return -EINVAL;
4567 	}
4568 	return 0;
4569 }
4570 
4571 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
4572 							    struct displayid_detailed_timings_1 *timings)
4573 {
4574 	struct drm_display_mode *mode;
4575 	unsigned pixel_clock = (timings->pixel_clock[0] |
4576 				(timings->pixel_clock[1] << 8) |
4577 				(timings->pixel_clock[2] << 16));
4578 	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
4579 	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
4580 	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
4581 	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
4582 	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
4583 	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
4584 	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
4585 	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
4586 	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
4587 	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
4588 	mode = drm_mode_create(dev);
4589 	if (!mode)
4590 		return NULL;
4591 
4592 	mode->clock = pixel_clock * 10;
4593 	mode->hdisplay = hactive;
4594 	mode->hsync_start = mode->hdisplay + hsync;
4595 	mode->hsync_end = mode->hsync_start + hsync_width;
4596 	mode->htotal = mode->hdisplay + hblank;
4597 
4598 	mode->vdisplay = vactive;
4599 	mode->vsync_start = mode->vdisplay + vsync;
4600 	mode->vsync_end = mode->vsync_start + vsync_width;
4601 	mode->vtotal = mode->vdisplay + vblank;
4602 
4603 	mode->flags = 0;
4604 	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
4605 	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
4606 	mode->type = DRM_MODE_TYPE_DRIVER;
4607 
4608 	if (timings->flags & 0x80)
4609 		mode->type |= DRM_MODE_TYPE_PREFERRED;
4610 	mode->vrefresh = drm_mode_vrefresh(mode);
4611 	drm_mode_set_name(mode);
4612 
4613 	return mode;
4614 }
4615 
4616 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
4617 					  struct displayid_block *block)
4618 {
4619 	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
4620 	int i;
4621 	int num_timings;
4622 	struct drm_display_mode *newmode;
4623 	int num_modes = 0;
4624 	/* blocks must be multiple of 20 bytes length */
4625 	if (block->num_bytes % 20)
4626 		return 0;
4627 
4628 	num_timings = block->num_bytes / 20;
4629 	for (i = 0; i < num_timings; i++) {
4630 		struct displayid_detailed_timings_1 *timings = &det->timings[i];
4631 
4632 		newmode = drm_mode_displayid_detailed(connector->dev, timings);
4633 		if (!newmode)
4634 			continue;
4635 
4636 		drm_mode_probed_add(connector, newmode);
4637 		num_modes++;
4638 	}
4639 	return num_modes;
4640 }
4641 
4642 static int add_displayid_detailed_modes(struct drm_connector *connector,
4643 					struct edid *edid)
4644 {
4645 	u8 *displayid;
4646 	int ret;
4647 	int idx = 1;
4648 	int length = EDID_LENGTH;
4649 	struct displayid_block *block;
4650 	int num_modes = 0;
4651 
4652 	displayid = drm_find_displayid_extension(edid);
4653 	if (!displayid)
4654 		return 0;
4655 
4656 	ret = validate_displayid(displayid, length, idx);
4657 	if (ret)
4658 		return 0;
4659 
4660 	idx += sizeof(struct displayid_hdr);
4661 	while (block = (struct displayid_block *)&displayid[idx],
4662 	       idx + sizeof(struct displayid_block) <= length &&
4663 	       idx + sizeof(struct displayid_block) + block->num_bytes <= length &&
4664 	       block->num_bytes > 0) {
4665 		idx += block->num_bytes + sizeof(struct displayid_block);
4666 		switch (block->tag) {
4667 		case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
4668 			num_modes += add_displayid_detailed_1_modes(connector, block);
4669 			break;
4670 		}
4671 	}
4672 	return num_modes;
4673 }
4674 
4675 /**
4676  * drm_add_edid_modes - add modes from EDID data, if available
4677  * @connector: connector we're probing
4678  * @edid: EDID data
4679  *
4680  * Add the specified modes to the connector's mode list. Also fills out the
4681  * &drm_display_info structure and ELD in @connector with any information which
4682  * can be derived from the edid.
4683  *
4684  * Return: The number of modes added or 0 if we couldn't find any.
4685  */
4686 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
4687 {
4688 	int num_modes = 0;
4689 	u32 quirks;
4690 
4691 	if (edid == NULL) {
4692 		clear_eld(connector);
4693 		return 0;
4694 	}
4695 	if (!drm_edid_is_valid(edid)) {
4696 		clear_eld(connector);
4697 		dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
4698 			 connector->name);
4699 		return 0;
4700 	}
4701 
4702 	drm_edid_to_eld(connector, edid);
4703 
4704 	/*
4705 	 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
4706 	 * To avoid multiple parsing of same block, lets parse that map
4707 	 * from sink info, before parsing CEA modes.
4708 	 */
4709 	quirks = drm_add_display_info(connector, edid);
4710 
4711 	/*
4712 	 * EDID spec says modes should be preferred in this order:
4713 	 * - preferred detailed mode
4714 	 * - other detailed modes from base block
4715 	 * - detailed modes from extension blocks
4716 	 * - CVT 3-byte code modes
4717 	 * - standard timing codes
4718 	 * - established timing codes
4719 	 * - modes inferred from GTF or CVT range information
4720 	 *
4721 	 * We get this pretty much right.
4722 	 *
4723 	 * XXX order for additional mode types in extension blocks?
4724 	 */
4725 	num_modes += add_detailed_modes(connector, edid, quirks);
4726 	num_modes += add_cvt_modes(connector, edid);
4727 	num_modes += add_standard_modes(connector, edid);
4728 	num_modes += add_established_modes(connector, edid);
4729 	num_modes += add_cea_modes(connector, edid);
4730 	num_modes += add_alternate_cea_modes(connector, edid);
4731 	num_modes += add_displayid_detailed_modes(connector, edid);
4732 	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
4733 		num_modes += add_inferred_modes(connector, edid);
4734 
4735 	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
4736 		edid_fixup_preferred(connector, quirks);
4737 
4738 	if (quirks & EDID_QUIRK_FORCE_6BPC)
4739 		connector->display_info.bpc = 6;
4740 
4741 	if (quirks & EDID_QUIRK_FORCE_8BPC)
4742 		connector->display_info.bpc = 8;
4743 
4744 	if (quirks & EDID_QUIRK_FORCE_10BPC)
4745 		connector->display_info.bpc = 10;
4746 
4747 	if (quirks & EDID_QUIRK_FORCE_12BPC)
4748 		connector->display_info.bpc = 12;
4749 
4750 	return num_modes;
4751 }
4752 EXPORT_SYMBOL(drm_add_edid_modes);
4753 
4754 /**
4755  * drm_add_modes_noedid - add modes for the connectors without EDID
4756  * @connector: connector we're probing
4757  * @hdisplay: the horizontal display limit
4758  * @vdisplay: the vertical display limit
4759  *
4760  * Add the specified modes to the connector's mode list. Only when the
4761  * hdisplay/vdisplay is not beyond the given limit, it will be added.
4762  *
4763  * Return: The number of modes added or 0 if we couldn't find any.
4764  */
4765 int drm_add_modes_noedid(struct drm_connector *connector,
4766 			int hdisplay, int vdisplay)
4767 {
4768 	int i, count, num_modes = 0;
4769 	struct drm_display_mode *mode;
4770 	struct drm_device *dev = connector->dev;
4771 
4772 	count = ARRAY_SIZE(drm_dmt_modes);
4773 	if (hdisplay < 0)
4774 		hdisplay = 0;
4775 	if (vdisplay < 0)
4776 		vdisplay = 0;
4777 
4778 	for (i = 0; i < count; i++) {
4779 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
4780 		if (hdisplay && vdisplay) {
4781 			/*
4782 			 * Only when two are valid, they will be used to check
4783 			 * whether the mode should be added to the mode list of
4784 			 * the connector.
4785 			 */
4786 			if (ptr->hdisplay > hdisplay ||
4787 					ptr->vdisplay > vdisplay)
4788 				continue;
4789 		}
4790 		if (drm_mode_vrefresh(ptr) > 61)
4791 			continue;
4792 		mode = drm_mode_duplicate(dev, ptr);
4793 		if (mode) {
4794 			drm_mode_probed_add(connector, mode);
4795 			num_modes++;
4796 		}
4797 	}
4798 	return num_modes;
4799 }
4800 EXPORT_SYMBOL(drm_add_modes_noedid);
4801 
4802 /**
4803  * drm_set_preferred_mode - Sets the preferred mode of a connector
4804  * @connector: connector whose mode list should be processed
4805  * @hpref: horizontal resolution of preferred mode
4806  * @vpref: vertical resolution of preferred mode
4807  *
4808  * Marks a mode as preferred if it matches the resolution specified by @hpref
4809  * and @vpref.
4810  */
4811 void drm_set_preferred_mode(struct drm_connector *connector,
4812 			   int hpref, int vpref)
4813 {
4814 	struct drm_display_mode *mode;
4815 
4816 	list_for_each_entry(mode, &connector->probed_modes, head) {
4817 		if (mode->hdisplay == hpref &&
4818 		    mode->vdisplay == vpref)
4819 			mode->type |= DRM_MODE_TYPE_PREFERRED;
4820 	}
4821 }
4822 EXPORT_SYMBOL(drm_set_preferred_mode);
4823 
4824 /**
4825  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
4826  *                                              data from a DRM display mode
4827  * @frame: HDMI AVI infoframe
4828  * @mode: DRM display mode
4829  * @is_hdmi2_sink: Sink is HDMI 2.0 compliant
4830  *
4831  * Return: 0 on success or a negative error code on failure.
4832  */
4833 int
4834 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
4835 					 const struct drm_display_mode *mode,
4836 					 bool is_hdmi2_sink)
4837 {
4838 	enum hdmi_picture_aspect picture_aspect;
4839 	int err;
4840 
4841 	if (!frame || !mode)
4842 		return -EINVAL;
4843 
4844 	err = hdmi_avi_infoframe_init(frame);
4845 	if (err < 0)
4846 		return err;
4847 
4848 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
4849 		frame->pixel_repeat = 1;
4850 
4851 	frame->video_code = drm_match_cea_mode(mode);
4852 
4853 	/*
4854 	 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
4855 	 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
4856 	 * have to make sure we dont break HDMI 1.4 sinks.
4857 	 */
4858 	if (!is_hdmi2_sink && frame->video_code > 64)
4859 		frame->video_code = 0;
4860 
4861 	/*
4862 	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
4863 	 * we should send its VIC in vendor infoframes, else send the
4864 	 * VIC in AVI infoframes. Lets check if this mode is present in
4865 	 * HDMI 1.4b 4K modes
4866 	 */
4867 	if (frame->video_code) {
4868 		u8 vendor_if_vic = drm_match_hdmi_mode(mode);
4869 		bool is_s3d = mode->flags & DRM_MODE_FLAG_3D_MASK;
4870 
4871 		if (drm_valid_hdmi_vic(vendor_if_vic) && !is_s3d)
4872 			frame->video_code = 0;
4873 	}
4874 
4875 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
4876 
4877 	/*
4878 	 * As some drivers don't support atomic, we can't use connector state.
4879 	 * So just initialize the frame with default values, just the same way
4880 	 * as it's done with other properties here.
4881 	 */
4882 	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
4883 	frame->itc = 0;
4884 
4885 	/*
4886 	 * Populate picture aspect ratio from either
4887 	 * user input (if specified) or from the CEA mode list.
4888 	 */
4889 	picture_aspect = mode->picture_aspect_ratio;
4890 	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE)
4891 		picture_aspect = drm_get_cea_aspect_ratio(frame->video_code);
4892 
4893 	/*
4894 	 * The infoframe can't convey anything but none, 4:3
4895 	 * and 16:9, so if the user has asked for anything else
4896 	 * we can only satisfy it by specifying the right VIC.
4897 	 */
4898 	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
4899 		if (picture_aspect !=
4900 		    drm_get_cea_aspect_ratio(frame->video_code))
4901 			return -EINVAL;
4902 		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
4903 	}
4904 
4905 	frame->picture_aspect = picture_aspect;
4906 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
4907 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
4908 
4909 	return 0;
4910 }
4911 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
4912 
4913 /**
4914  * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
4915  *                                        quantization range information
4916  * @frame: HDMI AVI infoframe
4917  * @mode: DRM display mode
4918  * @rgb_quant_range: RGB quantization range (Q)
4919  * @rgb_quant_range_selectable: Sink support selectable RGB quantization range (QS)
4920  * @is_hdmi2_sink: HDMI 2.0 sink, which has different default recommendations
4921  *
4922  * Note that @is_hdmi2_sink can be derived by looking at the
4923  * &drm_scdc.supported flag stored in &drm_hdmi_info.scdc,
4924  * &drm_display_info.hdmi, which can be found in &drm_connector.display_info.
4925  */
4926 void
4927 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
4928 				   const struct drm_display_mode *mode,
4929 				   enum hdmi_quantization_range rgb_quant_range,
4930 				   bool rgb_quant_range_selectable,
4931 				   bool is_hdmi2_sink)
4932 {
4933 	/*
4934 	 * CEA-861:
4935 	 * "A Source shall not send a non-zero Q value that does not correspond
4936 	 *  to the default RGB Quantization Range for the transmitted Picture
4937 	 *  unless the Sink indicates support for the Q bit in a Video
4938 	 *  Capabilities Data Block."
4939 	 *
4940 	 * HDMI 2.0 recommends sending non-zero Q when it does match the
4941 	 * default RGB quantization range for the mode, even when QS=0.
4942 	 */
4943 	if (rgb_quant_range_selectable ||
4944 	    rgb_quant_range == drm_default_rgb_quant_range(mode))
4945 		frame->quantization_range = rgb_quant_range;
4946 	else
4947 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
4948 
4949 	/*
4950 	 * CEA-861-F:
4951 	 * "When transmitting any RGB colorimetry, the Source should set the
4952 	 *  YQ-field to match the RGB Quantization Range being transmitted
4953 	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
4954 	 *  set YQ=1) and the Sink shall ignore the YQ-field."
4955 	 *
4956 	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
4957 	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
4958 	 * good way to tell which version of CEA-861 the sink supports, so
4959 	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
4960 	 * on on CEA-861-F.
4961 	 */
4962 	if (!is_hdmi2_sink ||
4963 	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
4964 		frame->ycc_quantization_range =
4965 			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
4966 	else
4967 		frame->ycc_quantization_range =
4968 			HDMI_YCC_QUANTIZATION_RANGE_FULL;
4969 }
4970 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
4971 
4972 static enum hdmi_3d_structure
4973 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
4974 {
4975 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
4976 
4977 	switch (layout) {
4978 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
4979 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
4980 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
4981 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
4982 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
4983 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
4984 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
4985 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
4986 	case DRM_MODE_FLAG_3D_L_DEPTH:
4987 		return HDMI_3D_STRUCTURE_L_DEPTH;
4988 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
4989 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
4990 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
4991 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
4992 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
4993 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
4994 	default:
4995 		return HDMI_3D_STRUCTURE_INVALID;
4996 	}
4997 }
4998 
4999 /**
5000  * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
5001  * data from a DRM display mode
5002  * @frame: HDMI vendor infoframe
5003  * @connector: the connector
5004  * @mode: DRM display mode
5005  *
5006  * Note that there's is a need to send HDMI vendor infoframes only when using a
5007  * 4k or stereoscopic 3D mode. So when giving any other mode as input this
5008  * function will return -EINVAL, error that can be safely ignored.
5009  *
5010  * Return: 0 on success or a negative error code on failure.
5011  */
5012 int
5013 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
5014 					    struct drm_connector *connector,
5015 					    const struct drm_display_mode *mode)
5016 {
5017 	/*
5018 	 * FIXME: sil-sii8620 doesn't have a connector around when
5019 	 * we need one, so we have to be prepared for a NULL connector.
5020 	 */
5021 	bool has_hdmi_infoframe = connector ?
5022 		connector->display_info.has_hdmi_infoframe : false;
5023 	int err;
5024 	u32 s3d_flags;
5025 	u8 vic;
5026 
5027 	if (!frame || !mode)
5028 		return -EINVAL;
5029 
5030 	if (!has_hdmi_infoframe)
5031 		return -EINVAL;
5032 
5033 	vic = drm_match_hdmi_mode(mode);
5034 	s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
5035 
5036 	/*
5037 	 * Even if it's not absolutely necessary to send the infoframe
5038 	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
5039 	 * know that the sink can handle it. This is based on a
5040 	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
5041 	 * have trouble realizing that they shuld switch from 3D to 2D
5042 	 * mode if the source simply stops sending the infoframe when
5043 	 * it wants to switch from 3D to 2D.
5044 	 */
5045 
5046 	if (vic && s3d_flags)
5047 		return -EINVAL;
5048 
5049 	err = hdmi_vendor_infoframe_init(frame);
5050 	if (err < 0)
5051 		return err;
5052 
5053 	frame->vic = vic;
5054 	frame->s3d_struct = s3d_structure_from_display_mode(mode);
5055 
5056 	return 0;
5057 }
5058 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
5059 
5060 static int drm_parse_tiled_block(struct drm_connector *connector,
5061 				 struct displayid_block *block)
5062 {
5063 	struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
5064 	u16 w, h;
5065 	u8 tile_v_loc, tile_h_loc;
5066 	u8 num_v_tile, num_h_tile;
5067 	struct drm_tile_group *tg;
5068 
5069 	w = tile->tile_size[0] | tile->tile_size[1] << 8;
5070 	h = tile->tile_size[2] | tile->tile_size[3] << 8;
5071 
5072 	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
5073 	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
5074 	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
5075 	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
5076 
5077 	connector->has_tile = true;
5078 	if (tile->tile_cap & 0x80)
5079 		connector->tile_is_single_monitor = true;
5080 
5081 	connector->num_h_tile = num_h_tile + 1;
5082 	connector->num_v_tile = num_v_tile + 1;
5083 	connector->tile_h_loc = tile_h_loc;
5084 	connector->tile_v_loc = tile_v_loc;
5085 	connector->tile_h_size = w + 1;
5086 	connector->tile_v_size = h + 1;
5087 
5088 	DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap);
5089 	DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1);
5090 	DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n",
5091 		      num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc);
5092 	DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
5093 
5094 	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
5095 	if (!tg) {
5096 		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
5097 	}
5098 	if (!tg)
5099 		return -ENOMEM;
5100 
5101 	if (connector->tile_group != tg) {
5102 		/* if we haven't got a pointer,
5103 		   take the reference, drop ref to old tile group */
5104 		if (connector->tile_group) {
5105 			drm_mode_put_tile_group(connector->dev, connector->tile_group);
5106 		}
5107 		connector->tile_group = tg;
5108 	} else
5109 		/* if same tile group, then release the ref we just took. */
5110 		drm_mode_put_tile_group(connector->dev, tg);
5111 	return 0;
5112 }
5113 
5114 static int drm_parse_display_id(struct drm_connector *connector,
5115 				u8 *displayid, int length,
5116 				bool is_edid_extension)
5117 {
5118 	/* if this is an EDID extension the first byte will be 0x70 */
5119 	int idx = 0;
5120 	struct displayid_block *block;
5121 	int ret;
5122 
5123 	if (is_edid_extension)
5124 		idx = 1;
5125 
5126 	ret = validate_displayid(displayid, length, idx);
5127 	if (ret)
5128 		return ret;
5129 
5130 	idx += sizeof(struct displayid_hdr);
5131 	while (block = (struct displayid_block *)&displayid[idx],
5132 	       idx + sizeof(struct displayid_block) <= length &&
5133 	       idx + sizeof(struct displayid_block) + block->num_bytes <= length &&
5134 	       block->num_bytes > 0) {
5135 		idx += block->num_bytes + sizeof(struct displayid_block);
5136 		DRM_DEBUG_KMS("block id 0x%x, rev %d, len %d\n",
5137 			      block->tag, block->rev, block->num_bytes);
5138 
5139 		switch (block->tag) {
5140 		case DATA_BLOCK_TILED_DISPLAY:
5141 			ret = drm_parse_tiled_block(connector, block);
5142 			if (ret)
5143 				return ret;
5144 			break;
5145 		case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
5146 			/* handled in mode gathering code. */
5147 			break;
5148 		default:
5149 			DRM_DEBUG_KMS("found DisplayID tag 0x%x, unhandled\n", block->tag);
5150 			break;
5151 		}
5152 	}
5153 	return 0;
5154 }
5155 
5156 static void drm_get_displayid(struct drm_connector *connector,
5157 			      struct edid *edid)
5158 {
5159 	void *displayid = NULL;
5160 	int ret;
5161 	connector->has_tile = false;
5162 	displayid = drm_find_displayid_extension(edid);
5163 	if (!displayid) {
5164 		/* drop reference to any tile group we had */
5165 		goto out_drop_ref;
5166 	}
5167 
5168 	ret = drm_parse_display_id(connector, displayid, EDID_LENGTH, true);
5169 	if (ret < 0)
5170 		goto out_drop_ref;
5171 	if (!connector->has_tile)
5172 		goto out_drop_ref;
5173 	return;
5174 out_drop_ref:
5175 	if (connector->tile_group) {
5176 		drm_mode_put_tile_group(connector->dev, connector->tile_group);
5177 		connector->tile_group = NULL;
5178 	}
5179 	return;
5180 }
5181