xref: /openbmc/linux/drivers/gpu/drm/drm_edid.c (revision b34e08d5)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/module.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_edid.h>
37 
38 #define version_greater(edid, maj, min) \
39 	(((edid)->version > (maj)) || \
40 	 ((edid)->version == (maj) && (edid)->revision > (min)))
41 
42 #define EDID_EST_TIMINGS 16
43 #define EDID_STD_TIMINGS 8
44 #define EDID_DETAILED_TIMINGS 4
45 
46 /*
47  * EDID blocks out in the wild have a variety of bugs, try to collect
48  * them here (note that userspace may work around broken monitors first,
49  * but fixes should make their way here so that the kernel "just works"
50  * on as many displays as possible).
51  */
52 
53 /* First detailed mode wrong, use largest 60Hz mode */
54 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
55 /* Reported 135MHz pixel clock is too high, needs adjustment */
56 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
57 /* Prefer the largest mode at 75 Hz */
58 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
59 /* Detail timing is in cm not mm */
60 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
61 /* Detailed timing descriptors have bogus size values, so just take the
62  * maximum size and use that.
63  */
64 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
65 /* Monitor forgot to set the first detailed is preferred bit. */
66 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED	(1 << 5)
67 /* use +hsync +vsync for detailed mode */
68 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
69 /* Force reduced-blanking timings for detailed modes */
70 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
71 /* Force 8bpc */
72 #define EDID_QUIRK_FORCE_8BPC			(1 << 8)
73 
74 struct detailed_mode_closure {
75 	struct drm_connector *connector;
76 	struct edid *edid;
77 	bool preferred;
78 	u32 quirks;
79 	int modes;
80 };
81 
82 #define LEVEL_DMT	0
83 #define LEVEL_GTF	1
84 #define LEVEL_GTF2	2
85 #define LEVEL_CVT	3
86 
87 static struct edid_quirk {
88 	char vendor[4];
89 	int product_id;
90 	u32 quirks;
91 } edid_quirk_list[] = {
92 	/* Acer AL1706 */
93 	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
94 	/* Acer F51 */
95 	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
96 	/* Unknown Acer */
97 	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
98 
99 	/* Belinea 10 15 55 */
100 	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
101 	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
102 
103 	/* Envision Peripherals, Inc. EN-7100e */
104 	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
105 	/* Envision EN2028 */
106 	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
107 
108 	/* Funai Electronics PM36B */
109 	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
110 	  EDID_QUIRK_DETAILED_IN_CM },
111 
112 	/* LG Philips LCD LP154W01-A5 */
113 	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
114 	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
115 
116 	/* Philips 107p5 CRT */
117 	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
118 
119 	/* Proview AY765C */
120 	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
121 
122 	/* Samsung SyncMaster 205BW.  Note: irony */
123 	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
124 	/* Samsung SyncMaster 22[5-6]BW */
125 	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
126 	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
127 
128 	/* ViewSonic VA2026w */
129 	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
130 
131 	/* Medion MD 30217 PG */
132 	{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
133 
134 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
135 	{ "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
136 };
137 
138 /*
139  * Autogenerated from the DMT spec.
140  * This table is copied from xfree86/modes/xf86EdidModes.c.
141  */
142 static const struct drm_display_mode drm_dmt_modes[] = {
143 	/* 640x350@85Hz */
144 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
145 		   736, 832, 0, 350, 382, 385, 445, 0,
146 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
147 	/* 640x400@85Hz */
148 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
149 		   736, 832, 0, 400, 401, 404, 445, 0,
150 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
151 	/* 720x400@85Hz */
152 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
153 		   828, 936, 0, 400, 401, 404, 446, 0,
154 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
155 	/* 640x480@60Hz */
156 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
157 		   752, 800, 0, 480, 489, 492, 525, 0,
158 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
159 	/* 640x480@72Hz */
160 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
161 		   704, 832, 0, 480, 489, 492, 520, 0,
162 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
163 	/* 640x480@75Hz */
164 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
165 		   720, 840, 0, 480, 481, 484, 500, 0,
166 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
167 	/* 640x480@85Hz */
168 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
169 		   752, 832, 0, 480, 481, 484, 509, 0,
170 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
171 	/* 800x600@56Hz */
172 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
173 		   896, 1024, 0, 600, 601, 603, 625, 0,
174 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
175 	/* 800x600@60Hz */
176 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
177 		   968, 1056, 0, 600, 601, 605, 628, 0,
178 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
179 	/* 800x600@72Hz */
180 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
181 		   976, 1040, 0, 600, 637, 643, 666, 0,
182 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
183 	/* 800x600@75Hz */
184 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
185 		   896, 1056, 0, 600, 601, 604, 625, 0,
186 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
187 	/* 800x600@85Hz */
188 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
189 		   896, 1048, 0, 600, 601, 604, 631, 0,
190 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
191 	/* 800x600@120Hz RB */
192 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
193 		   880, 960, 0, 600, 603, 607, 636, 0,
194 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
195 	/* 848x480@60Hz */
196 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
197 		   976, 1088, 0, 480, 486, 494, 517, 0,
198 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
199 	/* 1024x768@43Hz, interlace */
200 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
201 		   1208, 1264, 0, 768, 768, 772, 817, 0,
202 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
203 			DRM_MODE_FLAG_INTERLACE) },
204 	/* 1024x768@60Hz */
205 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
206 		   1184, 1344, 0, 768, 771, 777, 806, 0,
207 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
208 	/* 1024x768@70Hz */
209 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
210 		   1184, 1328, 0, 768, 771, 777, 806, 0,
211 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
212 	/* 1024x768@75Hz */
213 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
214 		   1136, 1312, 0, 768, 769, 772, 800, 0,
215 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
216 	/* 1024x768@85Hz */
217 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
218 		   1168, 1376, 0, 768, 769, 772, 808, 0,
219 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
220 	/* 1024x768@120Hz RB */
221 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
222 		   1104, 1184, 0, 768, 771, 775, 813, 0,
223 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
224 	/* 1152x864@75Hz */
225 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
226 		   1344, 1600, 0, 864, 865, 868, 900, 0,
227 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
228 	/* 1280x768@60Hz RB */
229 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
230 		   1360, 1440, 0, 768, 771, 778, 790, 0,
231 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
232 	/* 1280x768@60Hz */
233 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
234 		   1472, 1664, 0, 768, 771, 778, 798, 0,
235 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
236 	/* 1280x768@75Hz */
237 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
238 		   1488, 1696, 0, 768, 771, 778, 805, 0,
239 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
240 	/* 1280x768@85Hz */
241 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
242 		   1496, 1712, 0, 768, 771, 778, 809, 0,
243 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
244 	/* 1280x768@120Hz RB */
245 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
246 		   1360, 1440, 0, 768, 771, 778, 813, 0,
247 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
248 	/* 1280x800@60Hz RB */
249 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
250 		   1360, 1440, 0, 800, 803, 809, 823, 0,
251 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
252 	/* 1280x800@60Hz */
253 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
254 		   1480, 1680, 0, 800, 803, 809, 831, 0,
255 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
256 	/* 1280x800@75Hz */
257 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
258 		   1488, 1696, 0, 800, 803, 809, 838, 0,
259 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
260 	/* 1280x800@85Hz */
261 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
262 		   1496, 1712, 0, 800, 803, 809, 843, 0,
263 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
264 	/* 1280x800@120Hz RB */
265 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
266 		   1360, 1440, 0, 800, 803, 809, 847, 0,
267 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
268 	/* 1280x960@60Hz */
269 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
270 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
271 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
272 	/* 1280x960@85Hz */
273 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
274 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
275 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
276 	/* 1280x960@120Hz RB */
277 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
278 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
279 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
280 	/* 1280x1024@60Hz */
281 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
282 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
283 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
284 	/* 1280x1024@75Hz */
285 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
286 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
287 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
288 	/* 1280x1024@85Hz */
289 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
290 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
291 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
292 	/* 1280x1024@120Hz RB */
293 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
294 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
295 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
296 	/* 1360x768@60Hz */
297 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
298 		   1536, 1792, 0, 768, 771, 777, 795, 0,
299 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
300 	/* 1360x768@120Hz RB */
301 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
302 		   1440, 1520, 0, 768, 771, 776, 813, 0,
303 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
304 	/* 1400x1050@60Hz RB */
305 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
306 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
307 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
308 	/* 1400x1050@60Hz */
309 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
310 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
311 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
312 	/* 1400x1050@75Hz */
313 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
314 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
315 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
316 	/* 1400x1050@85Hz */
317 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
318 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
319 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
320 	/* 1400x1050@120Hz RB */
321 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
322 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
323 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
324 	/* 1440x900@60Hz RB */
325 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
326 		   1520, 1600, 0, 900, 903, 909, 926, 0,
327 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
328 	/* 1440x900@60Hz */
329 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
330 		   1672, 1904, 0, 900, 903, 909, 934, 0,
331 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
332 	/* 1440x900@75Hz */
333 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
334 		   1688, 1936, 0, 900, 903, 909, 942, 0,
335 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
336 	/* 1440x900@85Hz */
337 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
338 		   1696, 1952, 0, 900, 903, 909, 948, 0,
339 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
340 	/* 1440x900@120Hz RB */
341 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
342 		   1520, 1600, 0, 900, 903, 909, 953, 0,
343 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
344 	/* 1600x1200@60Hz */
345 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
346 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
347 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
348 	/* 1600x1200@65Hz */
349 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
350 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
351 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
352 	/* 1600x1200@70Hz */
353 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
354 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
355 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
356 	/* 1600x1200@75Hz */
357 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
358 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
359 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
360 	/* 1600x1200@85Hz */
361 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
362 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
363 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
364 	/* 1600x1200@120Hz RB */
365 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
366 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
367 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
368 	/* 1680x1050@60Hz RB */
369 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
370 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
371 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
372 	/* 1680x1050@60Hz */
373 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
374 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
375 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
376 	/* 1680x1050@75Hz */
377 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
378 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
379 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
380 	/* 1680x1050@85Hz */
381 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
382 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
383 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
384 	/* 1680x1050@120Hz RB */
385 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
386 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
387 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
388 	/* 1792x1344@60Hz */
389 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
390 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
391 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
392 	/* 1792x1344@75Hz */
393 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
394 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
395 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
396 	/* 1792x1344@120Hz RB */
397 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
398 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
399 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
400 	/* 1856x1392@60Hz */
401 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
402 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
403 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
404 	/* 1856x1392@75Hz */
405 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
406 		   2208, 2560, 0, 1392, 1395, 1399, 1500, 0,
407 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
408 	/* 1856x1392@120Hz RB */
409 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
410 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
411 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
412 	/* 1920x1200@60Hz RB */
413 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
414 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
415 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
416 	/* 1920x1200@60Hz */
417 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
418 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
419 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
420 	/* 1920x1200@75Hz */
421 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
422 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
423 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
424 	/* 1920x1200@85Hz */
425 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
426 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
427 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
428 	/* 1920x1200@120Hz RB */
429 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
430 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
431 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
432 	/* 1920x1440@60Hz */
433 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
434 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
435 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
436 	/* 1920x1440@75Hz */
437 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
438 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
439 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
440 	/* 1920x1440@120Hz RB */
441 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
442 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
443 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
444 	/* 2560x1600@60Hz RB */
445 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
446 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
447 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
448 	/* 2560x1600@60Hz */
449 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
450 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
451 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
452 	/* 2560x1600@75HZ */
453 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
454 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
455 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
456 	/* 2560x1600@85HZ */
457 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
458 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
459 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
460 	/* 2560x1600@120Hz RB */
461 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
462 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
463 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
464 };
465 
466 /*
467  * These more or less come from the DMT spec.  The 720x400 modes are
468  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
469  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
470  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
471  * mode.
472  *
473  * The DMT modes have been fact-checked; the rest are mild guesses.
474  */
475 static const struct drm_display_mode edid_est_modes[] = {
476 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
477 		   968, 1056, 0, 600, 601, 605, 628, 0,
478 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
479 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
480 		   896, 1024, 0, 600, 601, 603,  625, 0,
481 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
482 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
483 		   720, 840, 0, 480, 481, 484, 500, 0,
484 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
485 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
486 		   704,  832, 0, 480, 489, 491, 520, 0,
487 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
488 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
489 		   768,  864, 0, 480, 483, 486, 525, 0,
490 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
491 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25200, 640, 656,
492 		   752, 800, 0, 480, 490, 492, 525, 0,
493 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
494 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
495 		   846, 900, 0, 400, 421, 423,  449, 0,
496 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
497 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
498 		   846,  900, 0, 400, 412, 414, 449, 0,
499 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
500 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
501 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
502 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
503 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78800, 1024, 1040,
504 		   1136, 1312, 0,  768, 769, 772, 800, 0,
505 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
506 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
507 		   1184, 1328, 0,  768, 771, 777, 806, 0,
508 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
509 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
510 		   1184, 1344, 0,  768, 771, 777, 806, 0,
511 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
512 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
513 		   1208, 1264, 0, 768, 768, 776, 817, 0,
514 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
515 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
516 		   928, 1152, 0, 624, 625, 628, 667, 0,
517 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
518 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
519 		   896, 1056, 0, 600, 601, 604,  625, 0,
520 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
521 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
522 		   976, 1040, 0, 600, 637, 643, 666, 0,
523 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
524 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
525 		   1344, 1600, 0,  864, 865, 868, 900, 0,
526 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
527 };
528 
529 struct minimode {
530 	short w;
531 	short h;
532 	short r;
533 	short rb;
534 };
535 
536 static const struct minimode est3_modes[] = {
537 	/* byte 6 */
538 	{ 640, 350, 85, 0 },
539 	{ 640, 400, 85, 0 },
540 	{ 720, 400, 85, 0 },
541 	{ 640, 480, 85, 0 },
542 	{ 848, 480, 60, 0 },
543 	{ 800, 600, 85, 0 },
544 	{ 1024, 768, 85, 0 },
545 	{ 1152, 864, 75, 0 },
546 	/* byte 7 */
547 	{ 1280, 768, 60, 1 },
548 	{ 1280, 768, 60, 0 },
549 	{ 1280, 768, 75, 0 },
550 	{ 1280, 768, 85, 0 },
551 	{ 1280, 960, 60, 0 },
552 	{ 1280, 960, 85, 0 },
553 	{ 1280, 1024, 60, 0 },
554 	{ 1280, 1024, 85, 0 },
555 	/* byte 8 */
556 	{ 1360, 768, 60, 0 },
557 	{ 1440, 900, 60, 1 },
558 	{ 1440, 900, 60, 0 },
559 	{ 1440, 900, 75, 0 },
560 	{ 1440, 900, 85, 0 },
561 	{ 1400, 1050, 60, 1 },
562 	{ 1400, 1050, 60, 0 },
563 	{ 1400, 1050, 75, 0 },
564 	/* byte 9 */
565 	{ 1400, 1050, 85, 0 },
566 	{ 1680, 1050, 60, 1 },
567 	{ 1680, 1050, 60, 0 },
568 	{ 1680, 1050, 75, 0 },
569 	{ 1680, 1050, 85, 0 },
570 	{ 1600, 1200, 60, 0 },
571 	{ 1600, 1200, 65, 0 },
572 	{ 1600, 1200, 70, 0 },
573 	/* byte 10 */
574 	{ 1600, 1200, 75, 0 },
575 	{ 1600, 1200, 85, 0 },
576 	{ 1792, 1344, 60, 0 },
577 	{ 1792, 1344, 75, 0 },
578 	{ 1856, 1392, 60, 0 },
579 	{ 1856, 1392, 75, 0 },
580 	{ 1920, 1200, 60, 1 },
581 	{ 1920, 1200, 60, 0 },
582 	/* byte 11 */
583 	{ 1920, 1200, 75, 0 },
584 	{ 1920, 1200, 85, 0 },
585 	{ 1920, 1440, 60, 0 },
586 	{ 1920, 1440, 75, 0 },
587 };
588 
589 static const struct minimode extra_modes[] = {
590 	{ 1024, 576,  60, 0 },
591 	{ 1366, 768,  60, 0 },
592 	{ 1600, 900,  60, 0 },
593 	{ 1680, 945,  60, 0 },
594 	{ 1920, 1080, 60, 0 },
595 	{ 2048, 1152, 60, 0 },
596 	{ 2048, 1536, 60, 0 },
597 };
598 
599 /*
600  * Probably taken from CEA-861 spec.
601  * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
602  */
603 static const struct drm_display_mode edid_cea_modes[] = {
604 	/* 1 - 640x480@60Hz */
605 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
606 		   752, 800, 0, 480, 490, 492, 525, 0,
607 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
608 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
609 	/* 2 - 720x480@60Hz */
610 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
611 		   798, 858, 0, 480, 489, 495, 525, 0,
612 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
613 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
614 	/* 3 - 720x480@60Hz */
615 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
616 		   798, 858, 0, 480, 489, 495, 525, 0,
617 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
618 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
619 	/* 4 - 1280x720@60Hz */
620 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
621 		   1430, 1650, 0, 720, 725, 730, 750, 0,
622 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
623 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
624 	/* 5 - 1920x1080i@60Hz */
625 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
626 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
627 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
628 			DRM_MODE_FLAG_INTERLACE),
629 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
630 	/* 6 - 1440x480i@60Hz */
631 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
632 		   1602, 1716, 0, 480, 488, 494, 525, 0,
633 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
634 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
635 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
636 	/* 7 - 1440x480i@60Hz */
637 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
638 		   1602, 1716, 0, 480, 488, 494, 525, 0,
639 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
640 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
641 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
642 	/* 8 - 1440x240@60Hz */
643 	{ DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
644 		   1602, 1716, 0, 240, 244, 247, 262, 0,
645 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
646 			DRM_MODE_FLAG_DBLCLK),
647 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
648 	/* 9 - 1440x240@60Hz */
649 	{ DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
650 		   1602, 1716, 0, 240, 244, 247, 262, 0,
651 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
652 			DRM_MODE_FLAG_DBLCLK),
653 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
654 	/* 10 - 2880x480i@60Hz */
655 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
656 		   3204, 3432, 0, 480, 488, 494, 525, 0,
657 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
658 			DRM_MODE_FLAG_INTERLACE),
659 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
660 	/* 11 - 2880x480i@60Hz */
661 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
662 		   3204, 3432, 0, 480, 488, 494, 525, 0,
663 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
664 			DRM_MODE_FLAG_INTERLACE),
665 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
666 	/* 12 - 2880x240@60Hz */
667 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
668 		   3204, 3432, 0, 240, 244, 247, 262, 0,
669 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
670 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
671 	/* 13 - 2880x240@60Hz */
672 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
673 		   3204, 3432, 0, 240, 244, 247, 262, 0,
674 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
675 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
676 	/* 14 - 1440x480@60Hz */
677 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
678 		   1596, 1716, 0, 480, 489, 495, 525, 0,
679 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
680 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
681 	/* 15 - 1440x480@60Hz */
682 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
683 		   1596, 1716, 0, 480, 489, 495, 525, 0,
684 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
685 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
686 	/* 16 - 1920x1080@60Hz */
687 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
688 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
689 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
690 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
691 	/* 17 - 720x576@50Hz */
692 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
693 		   796, 864, 0, 576, 581, 586, 625, 0,
694 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
695 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
696 	/* 18 - 720x576@50Hz */
697 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
698 		   796, 864, 0, 576, 581, 586, 625, 0,
699 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
700 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
701 	/* 19 - 1280x720@50Hz */
702 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
703 		   1760, 1980, 0, 720, 725, 730, 750, 0,
704 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
705 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
706 	/* 20 - 1920x1080i@50Hz */
707 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
708 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
709 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
710 			DRM_MODE_FLAG_INTERLACE),
711 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
712 	/* 21 - 1440x576i@50Hz */
713 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
714 		   1590, 1728, 0, 576, 580, 586, 625, 0,
715 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
716 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
717 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
718 	/* 22 - 1440x576i@50Hz */
719 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
720 		   1590, 1728, 0, 576, 580, 586, 625, 0,
721 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
722 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
723 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
724 	/* 23 - 1440x288@50Hz */
725 	{ DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
726 		   1590, 1728, 0, 288, 290, 293, 312, 0,
727 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
728 			DRM_MODE_FLAG_DBLCLK),
729 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
730 	/* 24 - 1440x288@50Hz */
731 	{ DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
732 		   1590, 1728, 0, 288, 290, 293, 312, 0,
733 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
734 			DRM_MODE_FLAG_DBLCLK),
735 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
736 	/* 25 - 2880x576i@50Hz */
737 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
738 		   3180, 3456, 0, 576, 580, 586, 625, 0,
739 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
740 			DRM_MODE_FLAG_INTERLACE),
741 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
742 	/* 26 - 2880x576i@50Hz */
743 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
744 		   3180, 3456, 0, 576, 580, 586, 625, 0,
745 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
746 			DRM_MODE_FLAG_INTERLACE),
747 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
748 	/* 27 - 2880x288@50Hz */
749 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
750 		   3180, 3456, 0, 288, 290, 293, 312, 0,
751 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
752 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
753 	/* 28 - 2880x288@50Hz */
754 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
755 		   3180, 3456, 0, 288, 290, 293, 312, 0,
756 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
757 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
758 	/* 29 - 1440x576@50Hz */
759 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
760 		   1592, 1728, 0, 576, 581, 586, 625, 0,
761 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
762 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
763 	/* 30 - 1440x576@50Hz */
764 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
765 		   1592, 1728, 0, 576, 581, 586, 625, 0,
766 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
767 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
768 	/* 31 - 1920x1080@50Hz */
769 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
770 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
771 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
772 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
773 	/* 32 - 1920x1080@24Hz */
774 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
775 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
776 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
777 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
778 	/* 33 - 1920x1080@25Hz */
779 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
780 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
781 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
782 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
783 	/* 34 - 1920x1080@30Hz */
784 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
785 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
786 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
787 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
788 	/* 35 - 2880x480@60Hz */
789 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
790 		   3192, 3432, 0, 480, 489, 495, 525, 0,
791 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
792 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
793 	/* 36 - 2880x480@60Hz */
794 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
795 		   3192, 3432, 0, 480, 489, 495, 525, 0,
796 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
797 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
798 	/* 37 - 2880x576@50Hz */
799 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
800 		   3184, 3456, 0, 576, 581, 586, 625, 0,
801 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
802 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
803 	/* 38 - 2880x576@50Hz */
804 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
805 		   3184, 3456, 0, 576, 581, 586, 625, 0,
806 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
807 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
808 	/* 39 - 1920x1080i@50Hz */
809 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
810 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
811 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
812 			DRM_MODE_FLAG_INTERLACE),
813 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
814 	/* 40 - 1920x1080i@100Hz */
815 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
816 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
817 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
818 			DRM_MODE_FLAG_INTERLACE),
819 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
820 	/* 41 - 1280x720@100Hz */
821 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
822 		   1760, 1980, 0, 720, 725, 730, 750, 0,
823 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
824 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
825 	/* 42 - 720x576@100Hz */
826 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
827 		   796, 864, 0, 576, 581, 586, 625, 0,
828 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
829 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
830 	/* 43 - 720x576@100Hz */
831 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
832 		   796, 864, 0, 576, 581, 586, 625, 0,
833 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
834 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
835 	/* 44 - 1440x576i@100Hz */
836 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
837 		   1590, 1728, 0, 576, 580, 586, 625, 0,
838 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
839 			DRM_MODE_FLAG_DBLCLK),
840 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
841 	/* 45 - 1440x576i@100Hz */
842 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
843 		   1590, 1728, 0, 576, 580, 586, 625, 0,
844 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
845 			DRM_MODE_FLAG_DBLCLK),
846 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
847 	/* 46 - 1920x1080i@120Hz */
848 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
849 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
850 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
851 			DRM_MODE_FLAG_INTERLACE),
852 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
853 	/* 47 - 1280x720@120Hz */
854 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
855 		   1430, 1650, 0, 720, 725, 730, 750, 0,
856 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
857 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
858 	/* 48 - 720x480@120Hz */
859 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
860 		   798, 858, 0, 480, 489, 495, 525, 0,
861 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
862 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
863 	/* 49 - 720x480@120Hz */
864 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
865 		   798, 858, 0, 480, 489, 495, 525, 0,
866 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
867 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
868 	/* 50 - 1440x480i@120Hz */
869 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
870 		   1602, 1716, 0, 480, 488, 494, 525, 0,
871 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
872 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
873 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
874 	/* 51 - 1440x480i@120Hz */
875 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
876 		   1602, 1716, 0, 480, 488, 494, 525, 0,
877 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
878 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
879 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
880 	/* 52 - 720x576@200Hz */
881 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
882 		   796, 864, 0, 576, 581, 586, 625, 0,
883 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
884 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
885 	/* 53 - 720x576@200Hz */
886 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
887 		   796, 864, 0, 576, 581, 586, 625, 0,
888 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
889 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
890 	/* 54 - 1440x576i@200Hz */
891 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
892 		   1590, 1728, 0, 576, 580, 586, 625, 0,
893 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
894 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
895 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
896 	/* 55 - 1440x576i@200Hz */
897 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
898 		   1590, 1728, 0, 576, 580, 586, 625, 0,
899 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
900 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
901 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
902 	/* 56 - 720x480@240Hz */
903 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
904 		   798, 858, 0, 480, 489, 495, 525, 0,
905 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
906 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
907 	/* 57 - 720x480@240Hz */
908 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
909 		   798, 858, 0, 480, 489, 495, 525, 0,
910 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
911 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
912 	/* 58 - 1440x480i@240 */
913 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
914 		   1602, 1716, 0, 480, 488, 494, 525, 0,
915 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
916 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
917 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
918 	/* 59 - 1440x480i@240 */
919 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
920 		   1602, 1716, 0, 480, 488, 494, 525, 0,
921 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
922 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
923 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
924 	/* 60 - 1280x720@24Hz */
925 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
926 		   3080, 3300, 0, 720, 725, 730, 750, 0,
927 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
928 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
929 	/* 61 - 1280x720@25Hz */
930 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
931 		   3740, 3960, 0, 720, 725, 730, 750, 0,
932 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
933 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
934 	/* 62 - 1280x720@30Hz */
935 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
936 		   3080, 3300, 0, 720, 725, 730, 750, 0,
937 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
938 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
939 	/* 63 - 1920x1080@120Hz */
940 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
941 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
942 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
943 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
944 	/* 64 - 1920x1080@100Hz */
945 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
946 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
947 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
948 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
949 };
950 
951 /*
952  * HDMI 1.4 4k modes.
953  */
954 static const struct drm_display_mode edid_4k_modes[] = {
955 	/* 1 - 3840x2160@30Hz */
956 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
957 		   3840, 4016, 4104, 4400, 0,
958 		   2160, 2168, 2178, 2250, 0,
959 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
960 	  .vrefresh = 30, },
961 	/* 2 - 3840x2160@25Hz */
962 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
963 		   3840, 4896, 4984, 5280, 0,
964 		   2160, 2168, 2178, 2250, 0,
965 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
966 	  .vrefresh = 25, },
967 	/* 3 - 3840x2160@24Hz */
968 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
969 		   3840, 5116, 5204, 5500, 0,
970 		   2160, 2168, 2178, 2250, 0,
971 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
972 	  .vrefresh = 24, },
973 	/* 4 - 4096x2160@24Hz (SMPTE) */
974 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
975 		   4096, 5116, 5204, 5500, 0,
976 		   2160, 2168, 2178, 2250, 0,
977 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
978 	  .vrefresh = 24, },
979 };
980 
981 /*** DDC fetch and block validation ***/
982 
983 static const u8 edid_header[] = {
984 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
985 };
986 
987  /*
988  * Sanity check the header of the base EDID block.  Return 8 if the header
989  * is perfect, down to 0 if it's totally wrong.
990  */
991 int drm_edid_header_is_valid(const u8 *raw_edid)
992 {
993 	int i, score = 0;
994 
995 	for (i = 0; i < sizeof(edid_header); i++)
996 		if (raw_edid[i] == edid_header[i])
997 			score++;
998 
999 	return score;
1000 }
1001 EXPORT_SYMBOL(drm_edid_header_is_valid);
1002 
1003 static int edid_fixup __read_mostly = 6;
1004 module_param_named(edid_fixup, edid_fixup, int, 0400);
1005 MODULE_PARM_DESC(edid_fixup,
1006 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1007 
1008 /*
1009  * Sanity check the EDID block (base or extension).  Return 0 if the block
1010  * doesn't check out, or 1 if it's valid.
1011  */
1012 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid)
1013 {
1014 	int i;
1015 	u8 csum = 0;
1016 	struct edid *edid = (struct edid *)raw_edid;
1017 
1018 	if (WARN_ON(!raw_edid))
1019 		return false;
1020 
1021 	if (edid_fixup > 8 || edid_fixup < 0)
1022 		edid_fixup = 6;
1023 
1024 	if (block == 0) {
1025 		int score = drm_edid_header_is_valid(raw_edid);
1026 		if (score == 8) ;
1027 		else if (score >= edid_fixup) {
1028 			DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1029 			memcpy(raw_edid, edid_header, sizeof(edid_header));
1030 		} else {
1031 			goto bad;
1032 		}
1033 	}
1034 
1035 	for (i = 0; i < EDID_LENGTH; i++)
1036 		csum += raw_edid[i];
1037 	if (csum) {
1038 		if (print_bad_edid) {
1039 			DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
1040 		}
1041 
1042 		/* allow CEA to slide through, switches mangle this */
1043 		if (raw_edid[0] != 0x02)
1044 			goto bad;
1045 	}
1046 
1047 	/* per-block-type checks */
1048 	switch (raw_edid[0]) {
1049 	case 0: /* base */
1050 		if (edid->version != 1) {
1051 			DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
1052 			goto bad;
1053 		}
1054 
1055 		if (edid->revision > 4)
1056 			DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1057 		break;
1058 
1059 	default:
1060 		break;
1061 	}
1062 
1063 	return true;
1064 
1065 bad:
1066 	if (print_bad_edid) {
1067 		printk(KERN_ERR "Raw EDID:\n");
1068 		print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
1069 			       raw_edid, EDID_LENGTH, false);
1070 	}
1071 	return false;
1072 }
1073 EXPORT_SYMBOL(drm_edid_block_valid);
1074 
1075 /**
1076  * drm_edid_is_valid - sanity check EDID data
1077  * @edid: EDID data
1078  *
1079  * Sanity-check an entire EDID record (including extensions)
1080  */
1081 bool drm_edid_is_valid(struct edid *edid)
1082 {
1083 	int i;
1084 	u8 *raw = (u8 *)edid;
1085 
1086 	if (!edid)
1087 		return false;
1088 
1089 	for (i = 0; i <= edid->extensions; i++)
1090 		if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true))
1091 			return false;
1092 
1093 	return true;
1094 }
1095 EXPORT_SYMBOL(drm_edid_is_valid);
1096 
1097 #define DDC_SEGMENT_ADDR 0x30
1098 /**
1099  * Get EDID information via I2C.
1100  *
1101  * @adapter : i2c device adaptor
1102  * @buf: EDID data buffer to be filled
1103  * @block: 128 byte EDID block to start fetching from
1104  * @len: EDID data buffer length to fetch
1105  *
1106  * Returns:
1107  *
1108  * 0 on success or -1 on failure.
1109  *
1110  * Try to fetch EDID information by calling i2c driver function.
1111  */
1112 static int
1113 drm_do_probe_ddc_edid(struct i2c_adapter *adapter, unsigned char *buf,
1114 		      int block, int len)
1115 {
1116 	unsigned char start = block * EDID_LENGTH;
1117 	unsigned char segment = block >> 1;
1118 	unsigned char xfers = segment ? 3 : 2;
1119 	int ret, retries = 5;
1120 
1121 	/* The core i2c driver will automatically retry the transfer if the
1122 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
1123 	 * are susceptible to errors under a heavily loaded machine and
1124 	 * generate spurious NAKs and timeouts. Retrying the transfer
1125 	 * of the individual block a few times seems to overcome this.
1126 	 */
1127 	do {
1128 		struct i2c_msg msgs[] = {
1129 			{
1130 				.addr	= DDC_SEGMENT_ADDR,
1131 				.flags	= 0,
1132 				.len	= 1,
1133 				.buf	= &segment,
1134 			}, {
1135 				.addr	= DDC_ADDR,
1136 				.flags	= 0,
1137 				.len	= 1,
1138 				.buf	= &start,
1139 			}, {
1140 				.addr	= DDC_ADDR,
1141 				.flags	= I2C_M_RD,
1142 				.len	= len,
1143 				.buf	= buf,
1144 			}
1145 		};
1146 
1147 	/*
1148 	 * Avoid sending the segment addr to not upset non-compliant ddc
1149 	 * monitors.
1150 	 */
1151 		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1152 
1153 		if (ret == -ENXIO) {
1154 			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1155 					adapter->name);
1156 			break;
1157 		}
1158 	} while (ret != xfers && --retries);
1159 
1160 	return ret == xfers ? 0 : -1;
1161 }
1162 
1163 static bool drm_edid_is_zero(u8 *in_edid, int length)
1164 {
1165 	if (memchr_inv(in_edid, 0, length))
1166 		return false;
1167 
1168 	return true;
1169 }
1170 
1171 static u8 *
1172 drm_do_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
1173 {
1174 	int i, j = 0, valid_extensions = 0;
1175 	u8 *block, *new;
1176 	bool print_bad_edid = !connector->bad_edid_counter || (drm_debug & DRM_UT_KMS);
1177 
1178 	if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1179 		return NULL;
1180 
1181 	/* base block fetch */
1182 	for (i = 0; i < 4; i++) {
1183 		if (drm_do_probe_ddc_edid(adapter, block, 0, EDID_LENGTH))
1184 			goto out;
1185 		if (drm_edid_block_valid(block, 0, print_bad_edid))
1186 			break;
1187 		if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
1188 			connector->null_edid_counter++;
1189 			goto carp;
1190 		}
1191 	}
1192 	if (i == 4)
1193 		goto carp;
1194 
1195 	/* if there's no extensions, we're done */
1196 	if (block[0x7e] == 0)
1197 		return block;
1198 
1199 	new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
1200 	if (!new)
1201 		goto out;
1202 	block = new;
1203 
1204 	for (j = 1; j <= block[0x7e]; j++) {
1205 		for (i = 0; i < 4; i++) {
1206 			if (drm_do_probe_ddc_edid(adapter,
1207 				  block + (valid_extensions + 1) * EDID_LENGTH,
1208 				  j, EDID_LENGTH))
1209 				goto out;
1210 			if (drm_edid_block_valid(block + (valid_extensions + 1) * EDID_LENGTH, j, print_bad_edid)) {
1211 				valid_extensions++;
1212 				break;
1213 			}
1214 		}
1215 
1216 		if (i == 4 && print_bad_edid) {
1217 			dev_warn(connector->dev->dev,
1218 			 "%s: Ignoring invalid EDID block %d.\n",
1219 			 drm_get_connector_name(connector), j);
1220 
1221 			connector->bad_edid_counter++;
1222 		}
1223 	}
1224 
1225 	if (valid_extensions != block[0x7e]) {
1226 		block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1227 		block[0x7e] = valid_extensions;
1228 		new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1229 		if (!new)
1230 			goto out;
1231 		block = new;
1232 	}
1233 
1234 	return block;
1235 
1236 carp:
1237 	if (print_bad_edid) {
1238 		dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
1239 			 drm_get_connector_name(connector), j);
1240 	}
1241 	connector->bad_edid_counter++;
1242 
1243 out:
1244 	kfree(block);
1245 	return NULL;
1246 }
1247 
1248 /**
1249  * Probe DDC presence.
1250  * @adapter: i2c adapter to probe
1251  *
1252  * Returns:
1253  *
1254  * 1 on success
1255  */
1256 bool
1257 drm_probe_ddc(struct i2c_adapter *adapter)
1258 {
1259 	unsigned char out;
1260 
1261 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1262 }
1263 EXPORT_SYMBOL(drm_probe_ddc);
1264 
1265 /**
1266  * drm_get_edid - get EDID data, if available
1267  * @connector: connector we're probing
1268  * @adapter: i2c adapter to use for DDC
1269  *
1270  * Poke the given i2c channel to grab EDID data if possible.  If found,
1271  * attach it to the connector.
1272  *
1273  * Return edid data or NULL if we couldn't find any.
1274  */
1275 struct edid *drm_get_edid(struct drm_connector *connector,
1276 			  struct i2c_adapter *adapter)
1277 {
1278 	struct edid *edid = NULL;
1279 
1280 	if (drm_probe_ddc(adapter))
1281 		edid = (struct edid *)drm_do_get_edid(connector, adapter);
1282 
1283 	return edid;
1284 }
1285 EXPORT_SYMBOL(drm_get_edid);
1286 
1287 /**
1288  * drm_edid_duplicate - duplicate an EDID and the extensions
1289  * @edid: EDID to duplicate
1290  *
1291  * Return duplicate edid or NULL on allocation failure.
1292  */
1293 struct edid *drm_edid_duplicate(const struct edid *edid)
1294 {
1295 	return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1296 }
1297 EXPORT_SYMBOL(drm_edid_duplicate);
1298 
1299 /*** EDID parsing ***/
1300 
1301 /**
1302  * edid_vendor - match a string against EDID's obfuscated vendor field
1303  * @edid: EDID to match
1304  * @vendor: vendor string
1305  *
1306  * Returns true if @vendor is in @edid, false otherwise
1307  */
1308 static bool edid_vendor(struct edid *edid, char *vendor)
1309 {
1310 	char edid_vendor[3];
1311 
1312 	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1313 	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1314 			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1315 	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1316 
1317 	return !strncmp(edid_vendor, vendor, 3);
1318 }
1319 
1320 /**
1321  * edid_get_quirks - return quirk flags for a given EDID
1322  * @edid: EDID to process
1323  *
1324  * This tells subsequent routines what fixes they need to apply.
1325  */
1326 static u32 edid_get_quirks(struct edid *edid)
1327 {
1328 	struct edid_quirk *quirk;
1329 	int i;
1330 
1331 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1332 		quirk = &edid_quirk_list[i];
1333 
1334 		if (edid_vendor(edid, quirk->vendor) &&
1335 		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
1336 			return quirk->quirks;
1337 	}
1338 
1339 	return 0;
1340 }
1341 
1342 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1343 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1344 
1345 /**
1346  * edid_fixup_preferred - set preferred modes based on quirk list
1347  * @connector: has mode list to fix up
1348  * @quirks: quirks list
1349  *
1350  * Walk the mode list for @connector, clearing the preferred status
1351  * on existing modes and setting it anew for the right mode ala @quirks.
1352  */
1353 static void edid_fixup_preferred(struct drm_connector *connector,
1354 				 u32 quirks)
1355 {
1356 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
1357 	int target_refresh = 0;
1358 	int cur_vrefresh, preferred_vrefresh;
1359 
1360 	if (list_empty(&connector->probed_modes))
1361 		return;
1362 
1363 	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1364 		target_refresh = 60;
1365 	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1366 		target_refresh = 75;
1367 
1368 	preferred_mode = list_first_entry(&connector->probed_modes,
1369 					  struct drm_display_mode, head);
1370 
1371 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1372 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1373 
1374 		if (cur_mode == preferred_mode)
1375 			continue;
1376 
1377 		/* Largest mode is preferred */
1378 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1379 			preferred_mode = cur_mode;
1380 
1381 		cur_vrefresh = cur_mode->vrefresh ?
1382 			cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1383 		preferred_vrefresh = preferred_mode->vrefresh ?
1384 			preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1385 		/* At a given size, try to get closest to target refresh */
1386 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1387 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1388 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1389 			preferred_mode = cur_mode;
1390 		}
1391 	}
1392 
1393 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1394 }
1395 
1396 static bool
1397 mode_is_rb(const struct drm_display_mode *mode)
1398 {
1399 	return (mode->htotal - mode->hdisplay == 160) &&
1400 	       (mode->hsync_end - mode->hdisplay == 80) &&
1401 	       (mode->hsync_end - mode->hsync_start == 32) &&
1402 	       (mode->vsync_start - mode->vdisplay == 3);
1403 }
1404 
1405 /*
1406  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1407  * @dev: Device to duplicate against
1408  * @hsize: Mode width
1409  * @vsize: Mode height
1410  * @fresh: Mode refresh rate
1411  * @rb: Mode reduced-blanking-ness
1412  *
1413  * Walk the DMT mode list looking for a match for the given parameters.
1414  * Return a newly allocated copy of the mode, or NULL if not found.
1415  */
1416 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1417 					   int hsize, int vsize, int fresh,
1418 					   bool rb)
1419 {
1420 	int i;
1421 
1422 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1423 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1424 		if (hsize != ptr->hdisplay)
1425 			continue;
1426 		if (vsize != ptr->vdisplay)
1427 			continue;
1428 		if (fresh != drm_mode_vrefresh(ptr))
1429 			continue;
1430 		if (rb != mode_is_rb(ptr))
1431 			continue;
1432 
1433 		return drm_mode_duplicate(dev, ptr);
1434 	}
1435 
1436 	return NULL;
1437 }
1438 EXPORT_SYMBOL(drm_mode_find_dmt);
1439 
1440 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1441 
1442 static void
1443 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1444 {
1445 	int i, n = 0;
1446 	u8 d = ext[0x02];
1447 	u8 *det_base = ext + d;
1448 
1449 	n = (127 - d) / 18;
1450 	for (i = 0; i < n; i++)
1451 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1452 }
1453 
1454 static void
1455 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1456 {
1457 	unsigned int i, n = min((int)ext[0x02], 6);
1458 	u8 *det_base = ext + 5;
1459 
1460 	if (ext[0x01] != 1)
1461 		return; /* unknown version */
1462 
1463 	for (i = 0; i < n; i++)
1464 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1465 }
1466 
1467 static void
1468 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1469 {
1470 	int i;
1471 	struct edid *edid = (struct edid *)raw_edid;
1472 
1473 	if (edid == NULL)
1474 		return;
1475 
1476 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1477 		cb(&(edid->detailed_timings[i]), closure);
1478 
1479 	for (i = 1; i <= raw_edid[0x7e]; i++) {
1480 		u8 *ext = raw_edid + (i * EDID_LENGTH);
1481 		switch (*ext) {
1482 		case CEA_EXT:
1483 			cea_for_each_detailed_block(ext, cb, closure);
1484 			break;
1485 		case VTB_EXT:
1486 			vtb_for_each_detailed_block(ext, cb, closure);
1487 			break;
1488 		default:
1489 			break;
1490 		}
1491 	}
1492 }
1493 
1494 static void
1495 is_rb(struct detailed_timing *t, void *data)
1496 {
1497 	u8 *r = (u8 *)t;
1498 	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1499 		if (r[15] & 0x10)
1500 			*(bool *)data = true;
1501 }
1502 
1503 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
1504 static bool
1505 drm_monitor_supports_rb(struct edid *edid)
1506 {
1507 	if (edid->revision >= 4) {
1508 		bool ret = false;
1509 		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1510 		return ret;
1511 	}
1512 
1513 	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1514 }
1515 
1516 static void
1517 find_gtf2(struct detailed_timing *t, void *data)
1518 {
1519 	u8 *r = (u8 *)t;
1520 	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1521 		*(u8 **)data = r;
1522 }
1523 
1524 /* Secondary GTF curve kicks in above some break frequency */
1525 static int
1526 drm_gtf2_hbreak(struct edid *edid)
1527 {
1528 	u8 *r = NULL;
1529 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1530 	return r ? (r[12] * 2) : 0;
1531 }
1532 
1533 static int
1534 drm_gtf2_2c(struct edid *edid)
1535 {
1536 	u8 *r = NULL;
1537 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1538 	return r ? r[13] : 0;
1539 }
1540 
1541 static int
1542 drm_gtf2_m(struct edid *edid)
1543 {
1544 	u8 *r = NULL;
1545 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1546 	return r ? (r[15] << 8) + r[14] : 0;
1547 }
1548 
1549 static int
1550 drm_gtf2_k(struct edid *edid)
1551 {
1552 	u8 *r = NULL;
1553 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1554 	return r ? r[16] : 0;
1555 }
1556 
1557 static int
1558 drm_gtf2_2j(struct edid *edid)
1559 {
1560 	u8 *r = NULL;
1561 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1562 	return r ? r[17] : 0;
1563 }
1564 
1565 /**
1566  * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1567  * @edid: EDID block to scan
1568  */
1569 static int standard_timing_level(struct edid *edid)
1570 {
1571 	if (edid->revision >= 2) {
1572 		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1573 			return LEVEL_CVT;
1574 		if (drm_gtf2_hbreak(edid))
1575 			return LEVEL_GTF2;
1576 		return LEVEL_GTF;
1577 	}
1578 	return LEVEL_DMT;
1579 }
1580 
1581 /*
1582  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
1583  * monitors fill with ascii space (0x20) instead.
1584  */
1585 static int
1586 bad_std_timing(u8 a, u8 b)
1587 {
1588 	return (a == 0x00 && b == 0x00) ||
1589 	       (a == 0x01 && b == 0x01) ||
1590 	       (a == 0x20 && b == 0x20);
1591 }
1592 
1593 /**
1594  * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1595  * @connector: connector of for the EDID block
1596  * @edid: EDID block to scan
1597  * @t: standard timing params
1598  * @revision: standard timing level
1599  *
1600  * Take the standard timing params (in this case width, aspect, and refresh)
1601  * and convert them into a real mode using CVT/GTF/DMT.
1602  */
1603 static struct drm_display_mode *
1604 drm_mode_std(struct drm_connector *connector, struct edid *edid,
1605 	     struct std_timing *t, int revision)
1606 {
1607 	struct drm_device *dev = connector->dev;
1608 	struct drm_display_mode *m, *mode = NULL;
1609 	int hsize, vsize;
1610 	int vrefresh_rate;
1611 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1612 		>> EDID_TIMING_ASPECT_SHIFT;
1613 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1614 		>> EDID_TIMING_VFREQ_SHIFT;
1615 	int timing_level = standard_timing_level(edid);
1616 
1617 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
1618 		return NULL;
1619 
1620 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1621 	hsize = t->hsize * 8 + 248;
1622 	/* vrefresh_rate = vfreq + 60 */
1623 	vrefresh_rate = vfreq + 60;
1624 	/* the vdisplay is calculated based on the aspect ratio */
1625 	if (aspect_ratio == 0) {
1626 		if (revision < 3)
1627 			vsize = hsize;
1628 		else
1629 			vsize = (hsize * 10) / 16;
1630 	} else if (aspect_ratio == 1)
1631 		vsize = (hsize * 3) / 4;
1632 	else if (aspect_ratio == 2)
1633 		vsize = (hsize * 4) / 5;
1634 	else
1635 		vsize = (hsize * 9) / 16;
1636 
1637 	/* HDTV hack, part 1 */
1638 	if (vrefresh_rate == 60 &&
1639 	    ((hsize == 1360 && vsize == 765) ||
1640 	     (hsize == 1368 && vsize == 769))) {
1641 		hsize = 1366;
1642 		vsize = 768;
1643 	}
1644 
1645 	/*
1646 	 * If this connector already has a mode for this size and refresh
1647 	 * rate (because it came from detailed or CVT info), use that
1648 	 * instead.  This way we don't have to guess at interlace or
1649 	 * reduced blanking.
1650 	 */
1651 	list_for_each_entry(m, &connector->probed_modes, head)
1652 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
1653 		    drm_mode_vrefresh(m) == vrefresh_rate)
1654 			return NULL;
1655 
1656 	/* HDTV hack, part 2 */
1657 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1658 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1659 				    false);
1660 		mode->hdisplay = 1366;
1661 		mode->hsync_start = mode->hsync_start - 1;
1662 		mode->hsync_end = mode->hsync_end - 1;
1663 		return mode;
1664 	}
1665 
1666 	/* check whether it can be found in default mode table */
1667 	if (drm_monitor_supports_rb(edid)) {
1668 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1669 					 true);
1670 		if (mode)
1671 			return mode;
1672 	}
1673 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1674 	if (mode)
1675 		return mode;
1676 
1677 	/* okay, generate it */
1678 	switch (timing_level) {
1679 	case LEVEL_DMT:
1680 		break;
1681 	case LEVEL_GTF:
1682 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1683 		break;
1684 	case LEVEL_GTF2:
1685 		/*
1686 		 * This is potentially wrong if there's ever a monitor with
1687 		 * more than one ranges section, each claiming a different
1688 		 * secondary GTF curve.  Please don't do that.
1689 		 */
1690 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1691 		if (!mode)
1692 			return NULL;
1693 		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1694 			drm_mode_destroy(dev, mode);
1695 			mode = drm_gtf_mode_complex(dev, hsize, vsize,
1696 						    vrefresh_rate, 0, 0,
1697 						    drm_gtf2_m(edid),
1698 						    drm_gtf2_2c(edid),
1699 						    drm_gtf2_k(edid),
1700 						    drm_gtf2_2j(edid));
1701 		}
1702 		break;
1703 	case LEVEL_CVT:
1704 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1705 				    false);
1706 		break;
1707 	}
1708 	return mode;
1709 }
1710 
1711 /*
1712  * EDID is delightfully ambiguous about how interlaced modes are to be
1713  * encoded.  Our internal representation is of frame height, but some
1714  * HDTV detailed timings are encoded as field height.
1715  *
1716  * The format list here is from CEA, in frame size.  Technically we
1717  * should be checking refresh rate too.  Whatever.
1718  */
1719 static void
1720 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1721 			    struct detailed_pixel_timing *pt)
1722 {
1723 	int i;
1724 	static const struct {
1725 		int w, h;
1726 	} cea_interlaced[] = {
1727 		{ 1920, 1080 },
1728 		{  720,  480 },
1729 		{ 1440,  480 },
1730 		{ 2880,  480 },
1731 		{  720,  576 },
1732 		{ 1440,  576 },
1733 		{ 2880,  576 },
1734 	};
1735 
1736 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1737 		return;
1738 
1739 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1740 		if ((mode->hdisplay == cea_interlaced[i].w) &&
1741 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
1742 			mode->vdisplay *= 2;
1743 			mode->vsync_start *= 2;
1744 			mode->vsync_end *= 2;
1745 			mode->vtotal *= 2;
1746 			mode->vtotal |= 1;
1747 		}
1748 	}
1749 
1750 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
1751 }
1752 
1753 /**
1754  * drm_mode_detailed - create a new mode from an EDID detailed timing section
1755  * @dev: DRM device (needed to create new mode)
1756  * @edid: EDID block
1757  * @timing: EDID detailed timing info
1758  * @quirks: quirks to apply
1759  *
1760  * An EDID detailed timing block contains enough info for us to create and
1761  * return a new struct drm_display_mode.
1762  */
1763 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1764 						  struct edid *edid,
1765 						  struct detailed_timing *timing,
1766 						  u32 quirks)
1767 {
1768 	struct drm_display_mode *mode;
1769 	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1770 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1771 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1772 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1773 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1774 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1775 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1776 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1777 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1778 
1779 	/* ignore tiny modes */
1780 	if (hactive < 64 || vactive < 64)
1781 		return NULL;
1782 
1783 	if (pt->misc & DRM_EDID_PT_STEREO) {
1784 		DRM_DEBUG_KMS("stereo mode not supported\n");
1785 		return NULL;
1786 	}
1787 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1788 		DRM_DEBUG_KMS("composite sync not supported\n");
1789 	}
1790 
1791 	/* it is incorrect if hsync/vsync width is zero */
1792 	if (!hsync_pulse_width || !vsync_pulse_width) {
1793 		DRM_DEBUG_KMS("Incorrect Detailed timing. "
1794 				"Wrong Hsync/Vsync pulse width\n");
1795 		return NULL;
1796 	}
1797 
1798 	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1799 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1800 		if (!mode)
1801 			return NULL;
1802 
1803 		goto set_size;
1804 	}
1805 
1806 	mode = drm_mode_create(dev);
1807 	if (!mode)
1808 		return NULL;
1809 
1810 	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1811 		timing->pixel_clock = cpu_to_le16(1088);
1812 
1813 	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1814 
1815 	mode->hdisplay = hactive;
1816 	mode->hsync_start = mode->hdisplay + hsync_offset;
1817 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1818 	mode->htotal = mode->hdisplay + hblank;
1819 
1820 	mode->vdisplay = vactive;
1821 	mode->vsync_start = mode->vdisplay + vsync_offset;
1822 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1823 	mode->vtotal = mode->vdisplay + vblank;
1824 
1825 	/* Some EDIDs have bogus h/vtotal values */
1826 	if (mode->hsync_end > mode->htotal)
1827 		mode->htotal = mode->hsync_end + 1;
1828 	if (mode->vsync_end > mode->vtotal)
1829 		mode->vtotal = mode->vsync_end + 1;
1830 
1831 	drm_mode_do_interlace_quirk(mode, pt);
1832 
1833 	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
1834 		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
1835 	}
1836 
1837 	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
1838 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1839 	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
1840 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1841 
1842 set_size:
1843 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
1844 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
1845 
1846 	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
1847 		mode->width_mm *= 10;
1848 		mode->height_mm *= 10;
1849 	}
1850 
1851 	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
1852 		mode->width_mm = edid->width_cm * 10;
1853 		mode->height_mm = edid->height_cm * 10;
1854 	}
1855 
1856 	mode->type = DRM_MODE_TYPE_DRIVER;
1857 	mode->vrefresh = drm_mode_vrefresh(mode);
1858 	drm_mode_set_name(mode);
1859 
1860 	return mode;
1861 }
1862 
1863 static bool
1864 mode_in_hsync_range(const struct drm_display_mode *mode,
1865 		    struct edid *edid, u8 *t)
1866 {
1867 	int hsync, hmin, hmax;
1868 
1869 	hmin = t[7];
1870 	if (edid->revision >= 4)
1871 	    hmin += ((t[4] & 0x04) ? 255 : 0);
1872 	hmax = t[8];
1873 	if (edid->revision >= 4)
1874 	    hmax += ((t[4] & 0x08) ? 255 : 0);
1875 	hsync = drm_mode_hsync(mode);
1876 
1877 	return (hsync <= hmax && hsync >= hmin);
1878 }
1879 
1880 static bool
1881 mode_in_vsync_range(const struct drm_display_mode *mode,
1882 		    struct edid *edid, u8 *t)
1883 {
1884 	int vsync, vmin, vmax;
1885 
1886 	vmin = t[5];
1887 	if (edid->revision >= 4)
1888 	    vmin += ((t[4] & 0x01) ? 255 : 0);
1889 	vmax = t[6];
1890 	if (edid->revision >= 4)
1891 	    vmax += ((t[4] & 0x02) ? 255 : 0);
1892 	vsync = drm_mode_vrefresh(mode);
1893 
1894 	return (vsync <= vmax && vsync >= vmin);
1895 }
1896 
1897 static u32
1898 range_pixel_clock(struct edid *edid, u8 *t)
1899 {
1900 	/* unspecified */
1901 	if (t[9] == 0 || t[9] == 255)
1902 		return 0;
1903 
1904 	/* 1.4 with CVT support gives us real precision, yay */
1905 	if (edid->revision >= 4 && t[10] == 0x04)
1906 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
1907 
1908 	/* 1.3 is pathetic, so fuzz up a bit */
1909 	return t[9] * 10000 + 5001;
1910 }
1911 
1912 static bool
1913 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
1914 	      struct detailed_timing *timing)
1915 {
1916 	u32 max_clock;
1917 	u8 *t = (u8 *)timing;
1918 
1919 	if (!mode_in_hsync_range(mode, edid, t))
1920 		return false;
1921 
1922 	if (!mode_in_vsync_range(mode, edid, t))
1923 		return false;
1924 
1925 	if ((max_clock = range_pixel_clock(edid, t)))
1926 		if (mode->clock > max_clock)
1927 			return false;
1928 
1929 	/* 1.4 max horizontal check */
1930 	if (edid->revision >= 4 && t[10] == 0x04)
1931 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
1932 			return false;
1933 
1934 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
1935 		return false;
1936 
1937 	return true;
1938 }
1939 
1940 static bool valid_inferred_mode(const struct drm_connector *connector,
1941 				const struct drm_display_mode *mode)
1942 {
1943 	struct drm_display_mode *m;
1944 	bool ok = false;
1945 
1946 	list_for_each_entry(m, &connector->probed_modes, head) {
1947 		if (mode->hdisplay == m->hdisplay &&
1948 		    mode->vdisplay == m->vdisplay &&
1949 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
1950 			return false; /* duplicated */
1951 		if (mode->hdisplay <= m->hdisplay &&
1952 		    mode->vdisplay <= m->vdisplay)
1953 			ok = true;
1954 	}
1955 	return ok;
1956 }
1957 
1958 static int
1959 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
1960 			struct detailed_timing *timing)
1961 {
1962 	int i, modes = 0;
1963 	struct drm_display_mode *newmode;
1964 	struct drm_device *dev = connector->dev;
1965 
1966 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1967 		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
1968 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
1969 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
1970 			if (newmode) {
1971 				drm_mode_probed_add(connector, newmode);
1972 				modes++;
1973 			}
1974 		}
1975 	}
1976 
1977 	return modes;
1978 }
1979 
1980 /* fix up 1366x768 mode from 1368x768;
1981  * GFT/CVT can't express 1366 width which isn't dividable by 8
1982  */
1983 static void fixup_mode_1366x768(struct drm_display_mode *mode)
1984 {
1985 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
1986 		mode->hdisplay = 1366;
1987 		mode->hsync_start--;
1988 		mode->hsync_end--;
1989 		drm_mode_set_name(mode);
1990 	}
1991 }
1992 
1993 static int
1994 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
1995 			struct detailed_timing *timing)
1996 {
1997 	int i, modes = 0;
1998 	struct drm_display_mode *newmode;
1999 	struct drm_device *dev = connector->dev;
2000 
2001 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2002 		const struct minimode *m = &extra_modes[i];
2003 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2004 		if (!newmode)
2005 			return modes;
2006 
2007 		fixup_mode_1366x768(newmode);
2008 		if (!mode_in_range(newmode, edid, timing) ||
2009 		    !valid_inferred_mode(connector, newmode)) {
2010 			drm_mode_destroy(dev, newmode);
2011 			continue;
2012 		}
2013 
2014 		drm_mode_probed_add(connector, newmode);
2015 		modes++;
2016 	}
2017 
2018 	return modes;
2019 }
2020 
2021 static int
2022 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2023 			struct detailed_timing *timing)
2024 {
2025 	int i, modes = 0;
2026 	struct drm_display_mode *newmode;
2027 	struct drm_device *dev = connector->dev;
2028 	bool rb = drm_monitor_supports_rb(edid);
2029 
2030 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2031 		const struct minimode *m = &extra_modes[i];
2032 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2033 		if (!newmode)
2034 			return modes;
2035 
2036 		fixup_mode_1366x768(newmode);
2037 		if (!mode_in_range(newmode, edid, timing) ||
2038 		    !valid_inferred_mode(connector, newmode)) {
2039 			drm_mode_destroy(dev, newmode);
2040 			continue;
2041 		}
2042 
2043 		drm_mode_probed_add(connector, newmode);
2044 		modes++;
2045 	}
2046 
2047 	return modes;
2048 }
2049 
2050 static void
2051 do_inferred_modes(struct detailed_timing *timing, void *c)
2052 {
2053 	struct detailed_mode_closure *closure = c;
2054 	struct detailed_non_pixel *data = &timing->data.other_data;
2055 	struct detailed_data_monitor_range *range = &data->data.range;
2056 
2057 	if (data->type != EDID_DETAIL_MONITOR_RANGE)
2058 		return;
2059 
2060 	closure->modes += drm_dmt_modes_for_range(closure->connector,
2061 						  closure->edid,
2062 						  timing);
2063 
2064 	if (!version_greater(closure->edid, 1, 1))
2065 		return; /* GTF not defined yet */
2066 
2067 	switch (range->flags) {
2068 	case 0x02: /* secondary gtf, XXX could do more */
2069 	case 0x00: /* default gtf */
2070 		closure->modes += drm_gtf_modes_for_range(closure->connector,
2071 							  closure->edid,
2072 							  timing);
2073 		break;
2074 	case 0x04: /* cvt, only in 1.4+ */
2075 		if (!version_greater(closure->edid, 1, 3))
2076 			break;
2077 
2078 		closure->modes += drm_cvt_modes_for_range(closure->connector,
2079 							  closure->edid,
2080 							  timing);
2081 		break;
2082 	case 0x01: /* just the ranges, no formula */
2083 	default:
2084 		break;
2085 	}
2086 }
2087 
2088 static int
2089 add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2090 {
2091 	struct detailed_mode_closure closure = {
2092 		connector, edid, 0, 0, 0
2093 	};
2094 
2095 	if (version_greater(edid, 1, 0))
2096 		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2097 					    &closure);
2098 
2099 	return closure.modes;
2100 }
2101 
2102 static int
2103 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2104 {
2105 	int i, j, m, modes = 0;
2106 	struct drm_display_mode *mode;
2107 	u8 *est = ((u8 *)timing) + 5;
2108 
2109 	for (i = 0; i < 6; i++) {
2110 		for (j = 7; j >= 0; j--) {
2111 			m = (i * 8) + (7 - j);
2112 			if (m >= ARRAY_SIZE(est3_modes))
2113 				break;
2114 			if (est[i] & (1 << j)) {
2115 				mode = drm_mode_find_dmt(connector->dev,
2116 							 est3_modes[m].w,
2117 							 est3_modes[m].h,
2118 							 est3_modes[m].r,
2119 							 est3_modes[m].rb);
2120 				if (mode) {
2121 					drm_mode_probed_add(connector, mode);
2122 					modes++;
2123 				}
2124 			}
2125 		}
2126 	}
2127 
2128 	return modes;
2129 }
2130 
2131 static void
2132 do_established_modes(struct detailed_timing *timing, void *c)
2133 {
2134 	struct detailed_mode_closure *closure = c;
2135 	struct detailed_non_pixel *data = &timing->data.other_data;
2136 
2137 	if (data->type == EDID_DETAIL_EST_TIMINGS)
2138 		closure->modes += drm_est3_modes(closure->connector, timing);
2139 }
2140 
2141 /**
2142  * add_established_modes - get est. modes from EDID and add them
2143  * @connector: connector of for the EDID block
2144  * @edid: EDID block to scan
2145  *
2146  * Each EDID block contains a bitmap of the supported "established modes" list
2147  * (defined above).  Tease them out and add them to the global modes list.
2148  */
2149 static int
2150 add_established_modes(struct drm_connector *connector, struct edid *edid)
2151 {
2152 	struct drm_device *dev = connector->dev;
2153 	unsigned long est_bits = edid->established_timings.t1 |
2154 		(edid->established_timings.t2 << 8) |
2155 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
2156 	int i, modes = 0;
2157 	struct detailed_mode_closure closure = {
2158 		connector, edid, 0, 0, 0
2159 	};
2160 
2161 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2162 		if (est_bits & (1<<i)) {
2163 			struct drm_display_mode *newmode;
2164 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2165 			if (newmode) {
2166 				drm_mode_probed_add(connector, newmode);
2167 				modes++;
2168 			}
2169 		}
2170 	}
2171 
2172 	if (version_greater(edid, 1, 0))
2173 		    drm_for_each_detailed_block((u8 *)edid,
2174 						do_established_modes, &closure);
2175 
2176 	return modes + closure.modes;
2177 }
2178 
2179 static void
2180 do_standard_modes(struct detailed_timing *timing, void *c)
2181 {
2182 	struct detailed_mode_closure *closure = c;
2183 	struct detailed_non_pixel *data = &timing->data.other_data;
2184 	struct drm_connector *connector = closure->connector;
2185 	struct edid *edid = closure->edid;
2186 
2187 	if (data->type == EDID_DETAIL_STD_MODES) {
2188 		int i;
2189 		for (i = 0; i < 6; i++) {
2190 			struct std_timing *std;
2191 			struct drm_display_mode *newmode;
2192 
2193 			std = &data->data.timings[i];
2194 			newmode = drm_mode_std(connector, edid, std,
2195 					       edid->revision);
2196 			if (newmode) {
2197 				drm_mode_probed_add(connector, newmode);
2198 				closure->modes++;
2199 			}
2200 		}
2201 	}
2202 }
2203 
2204 /**
2205  * add_standard_modes - get std. modes from EDID and add them
2206  * @connector: connector of for the EDID block
2207  * @edid: EDID block to scan
2208  *
2209  * Standard modes can be calculated using the appropriate standard (DMT,
2210  * GTF or CVT. Grab them from @edid and add them to the list.
2211  */
2212 static int
2213 add_standard_modes(struct drm_connector *connector, struct edid *edid)
2214 {
2215 	int i, modes = 0;
2216 	struct detailed_mode_closure closure = {
2217 		connector, edid, 0, 0, 0
2218 	};
2219 
2220 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
2221 		struct drm_display_mode *newmode;
2222 
2223 		newmode = drm_mode_std(connector, edid,
2224 				       &edid->standard_timings[i],
2225 				       edid->revision);
2226 		if (newmode) {
2227 			drm_mode_probed_add(connector, newmode);
2228 			modes++;
2229 		}
2230 	}
2231 
2232 	if (version_greater(edid, 1, 0))
2233 		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2234 					    &closure);
2235 
2236 	/* XXX should also look for standard codes in VTB blocks */
2237 
2238 	return modes + closure.modes;
2239 }
2240 
2241 static int drm_cvt_modes(struct drm_connector *connector,
2242 			 struct detailed_timing *timing)
2243 {
2244 	int i, j, modes = 0;
2245 	struct drm_display_mode *newmode;
2246 	struct drm_device *dev = connector->dev;
2247 	struct cvt_timing *cvt;
2248 	const int rates[] = { 60, 85, 75, 60, 50 };
2249 	const u8 empty[3] = { 0, 0, 0 };
2250 
2251 	for (i = 0; i < 4; i++) {
2252 		int uninitialized_var(width), height;
2253 		cvt = &(timing->data.other_data.data.cvt[i]);
2254 
2255 		if (!memcmp(cvt->code, empty, 3))
2256 			continue;
2257 
2258 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2259 		switch (cvt->code[1] & 0x0c) {
2260 		case 0x00:
2261 			width = height * 4 / 3;
2262 			break;
2263 		case 0x04:
2264 			width = height * 16 / 9;
2265 			break;
2266 		case 0x08:
2267 			width = height * 16 / 10;
2268 			break;
2269 		case 0x0c:
2270 			width = height * 15 / 9;
2271 			break;
2272 		}
2273 
2274 		for (j = 1; j < 5; j++) {
2275 			if (cvt->code[2] & (1 << j)) {
2276 				newmode = drm_cvt_mode(dev, width, height,
2277 						       rates[j], j == 0,
2278 						       false, false);
2279 				if (newmode) {
2280 					drm_mode_probed_add(connector, newmode);
2281 					modes++;
2282 				}
2283 			}
2284 		}
2285 	}
2286 
2287 	return modes;
2288 }
2289 
2290 static void
2291 do_cvt_mode(struct detailed_timing *timing, void *c)
2292 {
2293 	struct detailed_mode_closure *closure = c;
2294 	struct detailed_non_pixel *data = &timing->data.other_data;
2295 
2296 	if (data->type == EDID_DETAIL_CVT_3BYTE)
2297 		closure->modes += drm_cvt_modes(closure->connector, timing);
2298 }
2299 
2300 static int
2301 add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2302 {
2303 	struct detailed_mode_closure closure = {
2304 		connector, edid, 0, 0, 0
2305 	};
2306 
2307 	if (version_greater(edid, 1, 2))
2308 		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2309 
2310 	/* XXX should also look for CVT codes in VTB blocks */
2311 
2312 	return closure.modes;
2313 }
2314 
2315 static void
2316 do_detailed_mode(struct detailed_timing *timing, void *c)
2317 {
2318 	struct detailed_mode_closure *closure = c;
2319 	struct drm_display_mode *newmode;
2320 
2321 	if (timing->pixel_clock) {
2322 		newmode = drm_mode_detailed(closure->connector->dev,
2323 					    closure->edid, timing,
2324 					    closure->quirks);
2325 		if (!newmode)
2326 			return;
2327 
2328 		if (closure->preferred)
2329 			newmode->type |= DRM_MODE_TYPE_PREFERRED;
2330 
2331 		drm_mode_probed_add(closure->connector, newmode);
2332 		closure->modes++;
2333 		closure->preferred = 0;
2334 	}
2335 }
2336 
2337 /*
2338  * add_detailed_modes - Add modes from detailed timings
2339  * @connector: attached connector
2340  * @edid: EDID block to scan
2341  * @quirks: quirks to apply
2342  */
2343 static int
2344 add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2345 		   u32 quirks)
2346 {
2347 	struct detailed_mode_closure closure = {
2348 		connector,
2349 		edid,
2350 		1,
2351 		quirks,
2352 		0
2353 	};
2354 
2355 	if (closure.preferred && !version_greater(edid, 1, 3))
2356 		closure.preferred =
2357 		    (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2358 
2359 	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2360 
2361 	return closure.modes;
2362 }
2363 
2364 #define AUDIO_BLOCK	0x01
2365 #define VIDEO_BLOCK     0x02
2366 #define VENDOR_BLOCK    0x03
2367 #define SPEAKER_BLOCK	0x04
2368 #define VIDEO_CAPABILITY_BLOCK	0x07
2369 #define EDID_BASIC_AUDIO	(1 << 6)
2370 #define EDID_CEA_YCRCB444	(1 << 5)
2371 #define EDID_CEA_YCRCB422	(1 << 4)
2372 #define EDID_CEA_VCDB_QS	(1 << 6)
2373 
2374 /*
2375  * Search EDID for CEA extension block.
2376  */
2377 static u8 *drm_find_cea_extension(struct edid *edid)
2378 {
2379 	u8 *edid_ext = NULL;
2380 	int i;
2381 
2382 	/* No EDID or EDID extensions */
2383 	if (edid == NULL || edid->extensions == 0)
2384 		return NULL;
2385 
2386 	/* Find CEA extension */
2387 	for (i = 0; i < edid->extensions; i++) {
2388 		edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2389 		if (edid_ext[0] == CEA_EXT)
2390 			break;
2391 	}
2392 
2393 	if (i == edid->extensions)
2394 		return NULL;
2395 
2396 	return edid_ext;
2397 }
2398 
2399 /*
2400  * Calculate the alternate clock for the CEA mode
2401  * (60Hz vs. 59.94Hz etc.)
2402  */
2403 static unsigned int
2404 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2405 {
2406 	unsigned int clock = cea_mode->clock;
2407 
2408 	if (cea_mode->vrefresh % 6 != 0)
2409 		return clock;
2410 
2411 	/*
2412 	 * edid_cea_modes contains the 59.94Hz
2413 	 * variant for 240 and 480 line modes,
2414 	 * and the 60Hz variant otherwise.
2415 	 */
2416 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2417 		clock = clock * 1001 / 1000;
2418 	else
2419 		clock = DIV_ROUND_UP(clock * 1000, 1001);
2420 
2421 	return clock;
2422 }
2423 
2424 /**
2425  * drm_match_cea_mode - look for a CEA mode matching given mode
2426  * @to_match: display mode
2427  *
2428  * Returns the CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2429  * mode.
2430  */
2431 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2432 {
2433 	u8 mode;
2434 
2435 	if (!to_match->clock)
2436 		return 0;
2437 
2438 	for (mode = 0; mode < ARRAY_SIZE(edid_cea_modes); mode++) {
2439 		const struct drm_display_mode *cea_mode = &edid_cea_modes[mode];
2440 		unsigned int clock1, clock2;
2441 
2442 		/* Check both 60Hz and 59.94Hz */
2443 		clock1 = cea_mode->clock;
2444 		clock2 = cea_mode_alternate_clock(cea_mode);
2445 
2446 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2447 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2448 		    drm_mode_equal_no_clocks_no_stereo(to_match, cea_mode))
2449 			return mode + 1;
2450 	}
2451 	return 0;
2452 }
2453 EXPORT_SYMBOL(drm_match_cea_mode);
2454 
2455 /*
2456  * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
2457  * specific block).
2458  *
2459  * It's almost like cea_mode_alternate_clock(), we just need to add an
2460  * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
2461  * one.
2462  */
2463 static unsigned int
2464 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
2465 {
2466 	if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
2467 		return hdmi_mode->clock;
2468 
2469 	return cea_mode_alternate_clock(hdmi_mode);
2470 }
2471 
2472 /*
2473  * drm_match_hdmi_mode - look for a HDMI mode matching given mode
2474  * @to_match: display mode
2475  *
2476  * An HDMI mode is one defined in the HDMI vendor specific block.
2477  *
2478  * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
2479  */
2480 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
2481 {
2482 	u8 mode;
2483 
2484 	if (!to_match->clock)
2485 		return 0;
2486 
2487 	for (mode = 0; mode < ARRAY_SIZE(edid_4k_modes); mode++) {
2488 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[mode];
2489 		unsigned int clock1, clock2;
2490 
2491 		/* Make sure to also match alternate clocks */
2492 		clock1 = hdmi_mode->clock;
2493 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2494 
2495 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2496 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2497 		    drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
2498 			return mode + 1;
2499 	}
2500 	return 0;
2501 }
2502 
2503 static int
2504 add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
2505 {
2506 	struct drm_device *dev = connector->dev;
2507 	struct drm_display_mode *mode, *tmp;
2508 	LIST_HEAD(list);
2509 	int modes = 0;
2510 
2511 	/* Don't add CEA modes if the CEA extension block is missing */
2512 	if (!drm_find_cea_extension(edid))
2513 		return 0;
2514 
2515 	/*
2516 	 * Go through all probed modes and create a new mode
2517 	 * with the alternate clock for certain CEA modes.
2518 	 */
2519 	list_for_each_entry(mode, &connector->probed_modes, head) {
2520 		const struct drm_display_mode *cea_mode = NULL;
2521 		struct drm_display_mode *newmode;
2522 		u8 mode_idx = drm_match_cea_mode(mode) - 1;
2523 		unsigned int clock1, clock2;
2524 
2525 		if (mode_idx < ARRAY_SIZE(edid_cea_modes)) {
2526 			cea_mode = &edid_cea_modes[mode_idx];
2527 			clock2 = cea_mode_alternate_clock(cea_mode);
2528 		} else {
2529 			mode_idx = drm_match_hdmi_mode(mode) - 1;
2530 			if (mode_idx < ARRAY_SIZE(edid_4k_modes)) {
2531 				cea_mode = &edid_4k_modes[mode_idx];
2532 				clock2 = hdmi_mode_alternate_clock(cea_mode);
2533 			}
2534 		}
2535 
2536 		if (!cea_mode)
2537 			continue;
2538 
2539 		clock1 = cea_mode->clock;
2540 
2541 		if (clock1 == clock2)
2542 			continue;
2543 
2544 		if (mode->clock != clock1 && mode->clock != clock2)
2545 			continue;
2546 
2547 		newmode = drm_mode_duplicate(dev, cea_mode);
2548 		if (!newmode)
2549 			continue;
2550 
2551 		/* Carry over the stereo flags */
2552 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
2553 
2554 		/*
2555 		 * The current mode could be either variant. Make
2556 		 * sure to pick the "other" clock for the new mode.
2557 		 */
2558 		if (mode->clock != clock1)
2559 			newmode->clock = clock1;
2560 		else
2561 			newmode->clock = clock2;
2562 
2563 		list_add_tail(&newmode->head, &list);
2564 	}
2565 
2566 	list_for_each_entry_safe(mode, tmp, &list, head) {
2567 		list_del(&mode->head);
2568 		drm_mode_probed_add(connector, mode);
2569 		modes++;
2570 	}
2571 
2572 	return modes;
2573 }
2574 
2575 static struct drm_display_mode *
2576 drm_display_mode_from_vic_index(struct drm_connector *connector,
2577 				const u8 *video_db, u8 video_len,
2578 				u8 video_index)
2579 {
2580 	struct drm_device *dev = connector->dev;
2581 	struct drm_display_mode *newmode;
2582 	u8 cea_mode;
2583 
2584 	if (video_db == NULL || video_index >= video_len)
2585 		return NULL;
2586 
2587 	/* CEA modes are numbered 1..127 */
2588 	cea_mode = (video_db[video_index] & 127) - 1;
2589 	if (cea_mode >= ARRAY_SIZE(edid_cea_modes))
2590 		return NULL;
2591 
2592 	newmode = drm_mode_duplicate(dev, &edid_cea_modes[cea_mode]);
2593 	if (!newmode)
2594 		return NULL;
2595 
2596 	newmode->vrefresh = 0;
2597 
2598 	return newmode;
2599 }
2600 
2601 static int
2602 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
2603 {
2604 	int i, modes = 0;
2605 
2606 	for (i = 0; i < len; i++) {
2607 		struct drm_display_mode *mode;
2608 		mode = drm_display_mode_from_vic_index(connector, db, len, i);
2609 		if (mode) {
2610 			drm_mode_probed_add(connector, mode);
2611 			modes++;
2612 		}
2613 	}
2614 
2615 	return modes;
2616 }
2617 
2618 struct stereo_mandatory_mode {
2619 	int width, height, vrefresh;
2620 	unsigned int flags;
2621 };
2622 
2623 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2624 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2625 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2626 	{ 1920, 1080, 50,
2627 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2628 	{ 1920, 1080, 60,
2629 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2630 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2631 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2632 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2633 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2634 };
2635 
2636 static bool
2637 stereo_match_mandatory(const struct drm_display_mode *mode,
2638 		       const struct stereo_mandatory_mode *stereo_mode)
2639 {
2640 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2641 
2642 	return mode->hdisplay == stereo_mode->width &&
2643 	       mode->vdisplay == stereo_mode->height &&
2644 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2645 	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
2646 }
2647 
2648 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
2649 {
2650 	struct drm_device *dev = connector->dev;
2651 	const struct drm_display_mode *mode;
2652 	struct list_head stereo_modes;
2653 	int modes = 0, i;
2654 
2655 	INIT_LIST_HEAD(&stereo_modes);
2656 
2657 	list_for_each_entry(mode, &connector->probed_modes, head) {
2658 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2659 			const struct stereo_mandatory_mode *mandatory;
2660 			struct drm_display_mode *new_mode;
2661 
2662 			if (!stereo_match_mandatory(mode,
2663 						    &stereo_mandatory_modes[i]))
2664 				continue;
2665 
2666 			mandatory = &stereo_mandatory_modes[i];
2667 			new_mode = drm_mode_duplicate(dev, mode);
2668 			if (!new_mode)
2669 				continue;
2670 
2671 			new_mode->flags |= mandatory->flags;
2672 			list_add_tail(&new_mode->head, &stereo_modes);
2673 			modes++;
2674 		}
2675 	}
2676 
2677 	list_splice_tail(&stereo_modes, &connector->probed_modes);
2678 
2679 	return modes;
2680 }
2681 
2682 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
2683 {
2684 	struct drm_device *dev = connector->dev;
2685 	struct drm_display_mode *newmode;
2686 
2687 	vic--; /* VICs start at 1 */
2688 	if (vic >= ARRAY_SIZE(edid_4k_modes)) {
2689 		DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
2690 		return 0;
2691 	}
2692 
2693 	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
2694 	if (!newmode)
2695 		return 0;
2696 
2697 	drm_mode_probed_add(connector, newmode);
2698 
2699 	return 1;
2700 }
2701 
2702 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
2703 			       const u8 *video_db, u8 video_len, u8 video_index)
2704 {
2705 	struct drm_display_mode *newmode;
2706 	int modes = 0;
2707 
2708 	if (structure & (1 << 0)) {
2709 		newmode = drm_display_mode_from_vic_index(connector, video_db,
2710 							  video_len,
2711 							  video_index);
2712 		if (newmode) {
2713 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
2714 			drm_mode_probed_add(connector, newmode);
2715 			modes++;
2716 		}
2717 	}
2718 	if (structure & (1 << 6)) {
2719 		newmode = drm_display_mode_from_vic_index(connector, video_db,
2720 							  video_len,
2721 							  video_index);
2722 		if (newmode) {
2723 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2724 			drm_mode_probed_add(connector, newmode);
2725 			modes++;
2726 		}
2727 	}
2728 	if (structure & (1 << 8)) {
2729 		newmode = drm_display_mode_from_vic_index(connector, video_db,
2730 							  video_len,
2731 							  video_index);
2732 		if (newmode) {
2733 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2734 			drm_mode_probed_add(connector, newmode);
2735 			modes++;
2736 		}
2737 	}
2738 
2739 	return modes;
2740 }
2741 
2742 /*
2743  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
2744  * @connector: connector corresponding to the HDMI sink
2745  * @db: start of the CEA vendor specific block
2746  * @len: length of the CEA block payload, ie. one can access up to db[len]
2747  *
2748  * Parses the HDMI VSDB looking for modes to add to @connector. This function
2749  * also adds the stereo 3d modes when applicable.
2750  */
2751 static int
2752 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
2753 		   const u8 *video_db, u8 video_len)
2754 {
2755 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
2756 	u8 vic_len, hdmi_3d_len = 0;
2757 	u16 mask;
2758 	u16 structure_all;
2759 
2760 	if (len < 8)
2761 		goto out;
2762 
2763 	/* no HDMI_Video_Present */
2764 	if (!(db[8] & (1 << 5)))
2765 		goto out;
2766 
2767 	/* Latency_Fields_Present */
2768 	if (db[8] & (1 << 7))
2769 		offset += 2;
2770 
2771 	/* I_Latency_Fields_Present */
2772 	if (db[8] & (1 << 6))
2773 		offset += 2;
2774 
2775 	/* the declared length is not long enough for the 2 first bytes
2776 	 * of additional video format capabilities */
2777 	if (len < (8 + offset + 2))
2778 		goto out;
2779 
2780 	/* 3D_Present */
2781 	offset++;
2782 	if (db[8 + offset] & (1 << 7)) {
2783 		modes += add_hdmi_mandatory_stereo_modes(connector);
2784 
2785 		/* 3D_Multi_present */
2786 		multi_present = (db[8 + offset] & 0x60) >> 5;
2787 	}
2788 
2789 	offset++;
2790 	vic_len = db[8 + offset] >> 5;
2791 	hdmi_3d_len = db[8 + offset] & 0x1f;
2792 
2793 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
2794 		u8 vic;
2795 
2796 		vic = db[9 + offset + i];
2797 		modes += add_hdmi_mode(connector, vic);
2798 	}
2799 	offset += 1 + vic_len;
2800 
2801 	if (multi_present == 1)
2802 		multi_len = 2;
2803 	else if (multi_present == 2)
2804 		multi_len = 4;
2805 	else
2806 		multi_len = 0;
2807 
2808 	if (len < (8 + offset + hdmi_3d_len - 1))
2809 		goto out;
2810 
2811 	if (hdmi_3d_len < multi_len)
2812 		goto out;
2813 
2814 	if (multi_present == 1 || multi_present == 2) {
2815 		/* 3D_Structure_ALL */
2816 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
2817 
2818 		/* check if 3D_MASK is present */
2819 		if (multi_present == 2)
2820 			mask = (db[10 + offset] << 8) | db[11 + offset];
2821 		else
2822 			mask = 0xffff;
2823 
2824 		for (i = 0; i < 16; i++) {
2825 			if (mask & (1 << i))
2826 				modes += add_3d_struct_modes(connector,
2827 						structure_all,
2828 						video_db,
2829 						video_len, i);
2830 		}
2831 	}
2832 
2833 	offset += multi_len;
2834 
2835 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
2836 		int vic_index;
2837 		struct drm_display_mode *newmode = NULL;
2838 		unsigned int newflag = 0;
2839 		bool detail_present;
2840 
2841 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
2842 
2843 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
2844 			break;
2845 
2846 		/* 2D_VIC_order_X */
2847 		vic_index = db[8 + offset + i] >> 4;
2848 
2849 		/* 3D_Structure_X */
2850 		switch (db[8 + offset + i] & 0x0f) {
2851 		case 0:
2852 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
2853 			break;
2854 		case 6:
2855 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2856 			break;
2857 		case 8:
2858 			/* 3D_Detail_X */
2859 			if ((db[9 + offset + i] >> 4) == 1)
2860 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2861 			break;
2862 		}
2863 
2864 		if (newflag != 0) {
2865 			newmode = drm_display_mode_from_vic_index(connector,
2866 								  video_db,
2867 								  video_len,
2868 								  vic_index);
2869 
2870 			if (newmode) {
2871 				newmode->flags |= newflag;
2872 				drm_mode_probed_add(connector, newmode);
2873 				modes++;
2874 			}
2875 		}
2876 
2877 		if (detail_present)
2878 			i++;
2879 	}
2880 
2881 out:
2882 	return modes;
2883 }
2884 
2885 static int
2886 cea_db_payload_len(const u8 *db)
2887 {
2888 	return db[0] & 0x1f;
2889 }
2890 
2891 static int
2892 cea_db_tag(const u8 *db)
2893 {
2894 	return db[0] >> 5;
2895 }
2896 
2897 static int
2898 cea_revision(const u8 *cea)
2899 {
2900 	return cea[1];
2901 }
2902 
2903 static int
2904 cea_db_offsets(const u8 *cea, int *start, int *end)
2905 {
2906 	/* Data block offset in CEA extension block */
2907 	*start = 4;
2908 	*end = cea[2];
2909 	if (*end == 0)
2910 		*end = 127;
2911 	if (*end < 4 || *end > 127)
2912 		return -ERANGE;
2913 	return 0;
2914 }
2915 
2916 static bool cea_db_is_hdmi_vsdb(const u8 *db)
2917 {
2918 	int hdmi_id;
2919 
2920 	if (cea_db_tag(db) != VENDOR_BLOCK)
2921 		return false;
2922 
2923 	if (cea_db_payload_len(db) < 5)
2924 		return false;
2925 
2926 	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
2927 
2928 	return hdmi_id == HDMI_IEEE_OUI;
2929 }
2930 
2931 #define for_each_cea_db(cea, i, start, end) \
2932 	for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
2933 
2934 static int
2935 add_cea_modes(struct drm_connector *connector, struct edid *edid)
2936 {
2937 	const u8 *cea = drm_find_cea_extension(edid);
2938 	const u8 *db, *hdmi = NULL, *video = NULL;
2939 	u8 dbl, hdmi_len, video_len = 0;
2940 	int modes = 0;
2941 
2942 	if (cea && cea_revision(cea) >= 3) {
2943 		int i, start, end;
2944 
2945 		if (cea_db_offsets(cea, &start, &end))
2946 			return 0;
2947 
2948 		for_each_cea_db(cea, i, start, end) {
2949 			db = &cea[i];
2950 			dbl = cea_db_payload_len(db);
2951 
2952 			if (cea_db_tag(db) == VIDEO_BLOCK) {
2953 				video = db + 1;
2954 				video_len = dbl;
2955 				modes += do_cea_modes(connector, video, dbl);
2956 			}
2957 			else if (cea_db_is_hdmi_vsdb(db)) {
2958 				hdmi = db;
2959 				hdmi_len = dbl;
2960 			}
2961 		}
2962 	}
2963 
2964 	/*
2965 	 * We parse the HDMI VSDB after having added the cea modes as we will
2966 	 * be patching their flags when the sink supports stereo 3D.
2967 	 */
2968 	if (hdmi)
2969 		modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
2970 					    video_len);
2971 
2972 	return modes;
2973 }
2974 
2975 static void
2976 parse_hdmi_vsdb(struct drm_connector *connector, const u8 *db)
2977 {
2978 	u8 len = cea_db_payload_len(db);
2979 
2980 	if (len >= 6) {
2981 		connector->eld[5] |= (db[6] >> 7) << 1;  /* Supports_AI */
2982 		connector->dvi_dual = db[6] & 1;
2983 	}
2984 	if (len >= 7)
2985 		connector->max_tmds_clock = db[7] * 5;
2986 	if (len >= 8) {
2987 		connector->latency_present[0] = db[8] >> 7;
2988 		connector->latency_present[1] = (db[8] >> 6) & 1;
2989 	}
2990 	if (len >= 9)
2991 		connector->video_latency[0] = db[9];
2992 	if (len >= 10)
2993 		connector->audio_latency[0] = db[10];
2994 	if (len >= 11)
2995 		connector->video_latency[1] = db[11];
2996 	if (len >= 12)
2997 		connector->audio_latency[1] = db[12];
2998 
2999 	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
3000 		    "max TMDS clock %d, "
3001 		    "latency present %d %d, "
3002 		    "video latency %d %d, "
3003 		    "audio latency %d %d\n",
3004 		    connector->dvi_dual,
3005 		    connector->max_tmds_clock,
3006 	      (int) connector->latency_present[0],
3007 	      (int) connector->latency_present[1],
3008 		    connector->video_latency[0],
3009 		    connector->video_latency[1],
3010 		    connector->audio_latency[0],
3011 		    connector->audio_latency[1]);
3012 }
3013 
3014 static void
3015 monitor_name(struct detailed_timing *t, void *data)
3016 {
3017 	if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
3018 		*(u8 **)data = t->data.other_data.data.str.str;
3019 }
3020 
3021 /**
3022  * drm_edid_to_eld - build ELD from EDID
3023  * @connector: connector corresponding to the HDMI/DP sink
3024  * @edid: EDID to parse
3025  *
3026  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver.
3027  * Some ELD fields are left to the graphics driver caller:
3028  * - Conn_Type
3029  * - HDCP
3030  * - Port_ID
3031  */
3032 void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
3033 {
3034 	uint8_t *eld = connector->eld;
3035 	u8 *cea;
3036 	u8 *name;
3037 	u8 *db;
3038 	int sad_count = 0;
3039 	int mnl;
3040 	int dbl;
3041 
3042 	memset(eld, 0, sizeof(connector->eld));
3043 
3044 	cea = drm_find_cea_extension(edid);
3045 	if (!cea) {
3046 		DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
3047 		return;
3048 	}
3049 
3050 	name = NULL;
3051 	drm_for_each_detailed_block((u8 *)edid, monitor_name, &name);
3052 	for (mnl = 0; name && mnl < 13; mnl++) {
3053 		if (name[mnl] == 0x0a)
3054 			break;
3055 		eld[20 + mnl] = name[mnl];
3056 	}
3057 	eld[4] = (cea[1] << 5) | mnl;
3058 	DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
3059 
3060 	eld[0] = 2 << 3;		/* ELD version: 2 */
3061 
3062 	eld[16] = edid->mfg_id[0];
3063 	eld[17] = edid->mfg_id[1];
3064 	eld[18] = edid->prod_code[0];
3065 	eld[19] = edid->prod_code[1];
3066 
3067 	if (cea_revision(cea) >= 3) {
3068 		int i, start, end;
3069 
3070 		if (cea_db_offsets(cea, &start, &end)) {
3071 			start = 0;
3072 			end = 0;
3073 		}
3074 
3075 		for_each_cea_db(cea, i, start, end) {
3076 			db = &cea[i];
3077 			dbl = cea_db_payload_len(db);
3078 
3079 			switch (cea_db_tag(db)) {
3080 			case AUDIO_BLOCK:
3081 				/* Audio Data Block, contains SADs */
3082 				sad_count = dbl / 3;
3083 				if (dbl >= 1)
3084 					memcpy(eld + 20 + mnl, &db[1], dbl);
3085 				break;
3086 			case SPEAKER_BLOCK:
3087 				/* Speaker Allocation Data Block */
3088 				if (dbl >= 1)
3089 					eld[7] = db[1];
3090 				break;
3091 			case VENDOR_BLOCK:
3092 				/* HDMI Vendor-Specific Data Block */
3093 				if (cea_db_is_hdmi_vsdb(db))
3094 					parse_hdmi_vsdb(connector, db);
3095 				break;
3096 			default:
3097 				break;
3098 			}
3099 		}
3100 	}
3101 	eld[5] |= sad_count << 4;
3102 	eld[2] = (20 + mnl + sad_count * 3 + 3) / 4;
3103 
3104 	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n", (int)eld[2], sad_count);
3105 }
3106 EXPORT_SYMBOL(drm_edid_to_eld);
3107 
3108 /**
3109  * drm_edid_to_sad - extracts SADs from EDID
3110  * @edid: EDID to parse
3111  * @sads: pointer that will be set to the extracted SADs
3112  *
3113  * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
3114  * Note: returned pointer needs to be kfreed
3115  *
3116  * Return number of found SADs or negative number on error.
3117  */
3118 int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
3119 {
3120 	int count = 0;
3121 	int i, start, end, dbl;
3122 	u8 *cea;
3123 
3124 	cea = drm_find_cea_extension(edid);
3125 	if (!cea) {
3126 		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3127 		return -ENOENT;
3128 	}
3129 
3130 	if (cea_revision(cea) < 3) {
3131 		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3132 		return -ENOTSUPP;
3133 	}
3134 
3135 	if (cea_db_offsets(cea, &start, &end)) {
3136 		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3137 		return -EPROTO;
3138 	}
3139 
3140 	for_each_cea_db(cea, i, start, end) {
3141 		u8 *db = &cea[i];
3142 
3143 		if (cea_db_tag(db) == AUDIO_BLOCK) {
3144 			int j;
3145 			dbl = cea_db_payload_len(db);
3146 
3147 			count = dbl / 3; /* SAD is 3B */
3148 			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
3149 			if (!*sads)
3150 				return -ENOMEM;
3151 			for (j = 0; j < count; j++) {
3152 				u8 *sad = &db[1 + j * 3];
3153 
3154 				(*sads)[j].format = (sad[0] & 0x78) >> 3;
3155 				(*sads)[j].channels = sad[0] & 0x7;
3156 				(*sads)[j].freq = sad[1] & 0x7F;
3157 				(*sads)[j].byte2 = sad[2];
3158 			}
3159 			break;
3160 		}
3161 	}
3162 
3163 	return count;
3164 }
3165 EXPORT_SYMBOL(drm_edid_to_sad);
3166 
3167 /**
3168  * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
3169  * @edid: EDID to parse
3170  * @sadb: pointer to the speaker block
3171  *
3172  * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
3173  * Note: returned pointer needs to be kfreed
3174  *
3175  * Return number of found Speaker Allocation Blocks or negative number on error.
3176  */
3177 int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
3178 {
3179 	int count = 0;
3180 	int i, start, end, dbl;
3181 	const u8 *cea;
3182 
3183 	cea = drm_find_cea_extension(edid);
3184 	if (!cea) {
3185 		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3186 		return -ENOENT;
3187 	}
3188 
3189 	if (cea_revision(cea) < 3) {
3190 		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3191 		return -ENOTSUPP;
3192 	}
3193 
3194 	if (cea_db_offsets(cea, &start, &end)) {
3195 		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3196 		return -EPROTO;
3197 	}
3198 
3199 	for_each_cea_db(cea, i, start, end) {
3200 		const u8 *db = &cea[i];
3201 
3202 		if (cea_db_tag(db) == SPEAKER_BLOCK) {
3203 			dbl = cea_db_payload_len(db);
3204 
3205 			/* Speaker Allocation Data Block */
3206 			if (dbl == 3) {
3207 				*sadb = kmalloc(dbl, GFP_KERNEL);
3208 				if (!*sadb)
3209 					return -ENOMEM;
3210 				memcpy(*sadb, &db[1], dbl);
3211 				count = dbl;
3212 				break;
3213 			}
3214 		}
3215 	}
3216 
3217 	return count;
3218 }
3219 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
3220 
3221 /**
3222  * drm_av_sync_delay - HDMI/DP sink audio-video sync delay in millisecond
3223  * @connector: connector associated with the HDMI/DP sink
3224  * @mode: the display mode
3225  */
3226 int drm_av_sync_delay(struct drm_connector *connector,
3227 		      struct drm_display_mode *mode)
3228 {
3229 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
3230 	int a, v;
3231 
3232 	if (!connector->latency_present[0])
3233 		return 0;
3234 	if (!connector->latency_present[1])
3235 		i = 0;
3236 
3237 	a = connector->audio_latency[i];
3238 	v = connector->video_latency[i];
3239 
3240 	/*
3241 	 * HDMI/DP sink doesn't support audio or video?
3242 	 */
3243 	if (a == 255 || v == 255)
3244 		return 0;
3245 
3246 	/*
3247 	 * Convert raw EDID values to millisecond.
3248 	 * Treat unknown latency as 0ms.
3249 	 */
3250 	if (a)
3251 		a = min(2 * (a - 1), 500);
3252 	if (v)
3253 		v = min(2 * (v - 1), 500);
3254 
3255 	return max(v - a, 0);
3256 }
3257 EXPORT_SYMBOL(drm_av_sync_delay);
3258 
3259 /**
3260  * drm_select_eld - select one ELD from multiple HDMI/DP sinks
3261  * @encoder: the encoder just changed display mode
3262  * @mode: the adjusted display mode
3263  *
3264  * It's possible for one encoder to be associated with multiple HDMI/DP sinks.
3265  * The policy is now hard coded to simply use the first HDMI/DP sink's ELD.
3266  */
3267 struct drm_connector *drm_select_eld(struct drm_encoder *encoder,
3268 				     struct drm_display_mode *mode)
3269 {
3270 	struct drm_connector *connector;
3271 	struct drm_device *dev = encoder->dev;
3272 
3273 	list_for_each_entry(connector, &dev->mode_config.connector_list, head)
3274 		if (connector->encoder == encoder && connector->eld[0])
3275 			return connector;
3276 
3277 	return NULL;
3278 }
3279 EXPORT_SYMBOL(drm_select_eld);
3280 
3281 /**
3282  * drm_detect_hdmi_monitor - detect whether monitor is hdmi.
3283  * @edid: monitor EDID information
3284  *
3285  * Parse the CEA extension according to CEA-861-B.
3286  * Return true if HDMI, false if not or unknown.
3287  */
3288 bool drm_detect_hdmi_monitor(struct edid *edid)
3289 {
3290 	u8 *edid_ext;
3291 	int i;
3292 	int start_offset, end_offset;
3293 
3294 	edid_ext = drm_find_cea_extension(edid);
3295 	if (!edid_ext)
3296 		return false;
3297 
3298 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3299 		return false;
3300 
3301 	/*
3302 	 * Because HDMI identifier is in Vendor Specific Block,
3303 	 * search it from all data blocks of CEA extension.
3304 	 */
3305 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3306 		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3307 			return true;
3308 	}
3309 
3310 	return false;
3311 }
3312 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
3313 
3314 /**
3315  * drm_detect_monitor_audio - check monitor audio capability
3316  * @edid: EDID block to scan
3317  *
3318  * Monitor should have CEA extension block.
3319  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3320  * audio' only. If there is any audio extension block and supported
3321  * audio format, assume at least 'basic audio' support, even if 'basic
3322  * audio' is not defined in EDID.
3323  *
3324  */
3325 bool drm_detect_monitor_audio(struct edid *edid)
3326 {
3327 	u8 *edid_ext;
3328 	int i, j;
3329 	bool has_audio = false;
3330 	int start_offset, end_offset;
3331 
3332 	edid_ext = drm_find_cea_extension(edid);
3333 	if (!edid_ext)
3334 		goto end;
3335 
3336 	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3337 
3338 	if (has_audio) {
3339 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
3340 		goto end;
3341 	}
3342 
3343 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3344 		goto end;
3345 
3346 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3347 		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3348 			has_audio = true;
3349 			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
3350 				DRM_DEBUG_KMS("CEA audio format %d\n",
3351 					      (edid_ext[i + j] >> 3) & 0xf);
3352 			goto end;
3353 		}
3354 	}
3355 end:
3356 	return has_audio;
3357 }
3358 EXPORT_SYMBOL(drm_detect_monitor_audio);
3359 
3360 /**
3361  * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
3362  * @edid: EDID block to scan
3363  *
3364  * Check whether the monitor reports the RGB quantization range selection
3365  * as supported. The AVI infoframe can then be used to inform the monitor
3366  * which quantization range (full or limited) is used.
3367  */
3368 bool drm_rgb_quant_range_selectable(struct edid *edid)
3369 {
3370 	u8 *edid_ext;
3371 	int i, start, end;
3372 
3373 	edid_ext = drm_find_cea_extension(edid);
3374 	if (!edid_ext)
3375 		return false;
3376 
3377 	if (cea_db_offsets(edid_ext, &start, &end))
3378 		return false;
3379 
3380 	for_each_cea_db(edid_ext, i, start, end) {
3381 		if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
3382 		    cea_db_payload_len(&edid_ext[i]) == 2) {
3383 			DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
3384 			return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
3385 		}
3386 	}
3387 
3388 	return false;
3389 }
3390 EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
3391 
3392 /**
3393  * drm_add_display_info - pull display info out if present
3394  * @edid: EDID data
3395  * @info: display info (attached to connector)
3396  *
3397  * Grab any available display info and stuff it into the drm_display_info
3398  * structure that's part of the connector.  Useful for tracking bpp and
3399  * color spaces.
3400  */
3401 static void drm_add_display_info(struct edid *edid,
3402 				 struct drm_display_info *info)
3403 {
3404 	u8 *edid_ext;
3405 
3406 	info->width_mm = edid->width_cm * 10;
3407 	info->height_mm = edid->height_cm * 10;
3408 
3409 	/* driver figures it out in this case */
3410 	info->bpc = 0;
3411 	info->color_formats = 0;
3412 
3413 	if (edid->revision < 3)
3414 		return;
3415 
3416 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
3417 		return;
3418 
3419 	/* Get data from CEA blocks if present */
3420 	edid_ext = drm_find_cea_extension(edid);
3421 	if (edid_ext) {
3422 		info->cea_rev = edid_ext[1];
3423 
3424 		/* The existence of a CEA block should imply RGB support */
3425 		info->color_formats = DRM_COLOR_FORMAT_RGB444;
3426 		if (edid_ext[3] & EDID_CEA_YCRCB444)
3427 			info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3428 		if (edid_ext[3] & EDID_CEA_YCRCB422)
3429 			info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3430 	}
3431 
3432 	/* Only defined for 1.4 with digital displays */
3433 	if (edid->revision < 4)
3434 		return;
3435 
3436 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3437 	case DRM_EDID_DIGITAL_DEPTH_6:
3438 		info->bpc = 6;
3439 		break;
3440 	case DRM_EDID_DIGITAL_DEPTH_8:
3441 		info->bpc = 8;
3442 		break;
3443 	case DRM_EDID_DIGITAL_DEPTH_10:
3444 		info->bpc = 10;
3445 		break;
3446 	case DRM_EDID_DIGITAL_DEPTH_12:
3447 		info->bpc = 12;
3448 		break;
3449 	case DRM_EDID_DIGITAL_DEPTH_14:
3450 		info->bpc = 14;
3451 		break;
3452 	case DRM_EDID_DIGITAL_DEPTH_16:
3453 		info->bpc = 16;
3454 		break;
3455 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3456 	default:
3457 		info->bpc = 0;
3458 		break;
3459 	}
3460 
3461 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3462 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3463 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3464 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3465 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3466 }
3467 
3468 /**
3469  * drm_add_edid_modes - add modes from EDID data, if available
3470  * @connector: connector we're probing
3471  * @edid: edid data
3472  *
3473  * Add the specified modes to the connector's mode list.
3474  *
3475  * Return number of modes added or 0 if we couldn't find any.
3476  */
3477 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
3478 {
3479 	int num_modes = 0;
3480 	u32 quirks;
3481 
3482 	if (edid == NULL) {
3483 		return 0;
3484 	}
3485 	if (!drm_edid_is_valid(edid)) {
3486 		dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
3487 			 drm_get_connector_name(connector));
3488 		return 0;
3489 	}
3490 
3491 	quirks = edid_get_quirks(edid);
3492 
3493 	/*
3494 	 * EDID spec says modes should be preferred in this order:
3495 	 * - preferred detailed mode
3496 	 * - other detailed modes from base block
3497 	 * - detailed modes from extension blocks
3498 	 * - CVT 3-byte code modes
3499 	 * - standard timing codes
3500 	 * - established timing codes
3501 	 * - modes inferred from GTF or CVT range information
3502 	 *
3503 	 * We get this pretty much right.
3504 	 *
3505 	 * XXX order for additional mode types in extension blocks?
3506 	 */
3507 	num_modes += add_detailed_modes(connector, edid, quirks);
3508 	num_modes += add_cvt_modes(connector, edid);
3509 	num_modes += add_standard_modes(connector, edid);
3510 	num_modes += add_established_modes(connector, edid);
3511 	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
3512 		num_modes += add_inferred_modes(connector, edid);
3513 	num_modes += add_cea_modes(connector, edid);
3514 	num_modes += add_alternate_cea_modes(connector, edid);
3515 
3516 	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
3517 		edid_fixup_preferred(connector, quirks);
3518 
3519 	drm_add_display_info(edid, &connector->display_info);
3520 
3521 	if (quirks & EDID_QUIRK_FORCE_8BPC)
3522 		connector->display_info.bpc = 8;
3523 
3524 	return num_modes;
3525 }
3526 EXPORT_SYMBOL(drm_add_edid_modes);
3527 
3528 /**
3529  * drm_add_modes_noedid - add modes for the connectors without EDID
3530  * @connector: connector we're probing
3531  * @hdisplay: the horizontal display limit
3532  * @vdisplay: the vertical display limit
3533  *
3534  * Add the specified modes to the connector's mode list. Only when the
3535  * hdisplay/vdisplay is not beyond the given limit, it will be added.
3536  *
3537  * Return number of modes added or 0 if we couldn't find any.
3538  */
3539 int drm_add_modes_noedid(struct drm_connector *connector,
3540 			int hdisplay, int vdisplay)
3541 {
3542 	int i, count, num_modes = 0;
3543 	struct drm_display_mode *mode;
3544 	struct drm_device *dev = connector->dev;
3545 
3546 	count = sizeof(drm_dmt_modes) / sizeof(struct drm_display_mode);
3547 	if (hdisplay < 0)
3548 		hdisplay = 0;
3549 	if (vdisplay < 0)
3550 		vdisplay = 0;
3551 
3552 	for (i = 0; i < count; i++) {
3553 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
3554 		if (hdisplay && vdisplay) {
3555 			/*
3556 			 * Only when two are valid, they will be used to check
3557 			 * whether the mode should be added to the mode list of
3558 			 * the connector.
3559 			 */
3560 			if (ptr->hdisplay > hdisplay ||
3561 					ptr->vdisplay > vdisplay)
3562 				continue;
3563 		}
3564 		if (drm_mode_vrefresh(ptr) > 61)
3565 			continue;
3566 		mode = drm_mode_duplicate(dev, ptr);
3567 		if (mode) {
3568 			drm_mode_probed_add(connector, mode);
3569 			num_modes++;
3570 		}
3571 	}
3572 	return num_modes;
3573 }
3574 EXPORT_SYMBOL(drm_add_modes_noedid);
3575 
3576 void drm_set_preferred_mode(struct drm_connector *connector,
3577 			   int hpref, int vpref)
3578 {
3579 	struct drm_display_mode *mode;
3580 
3581 	list_for_each_entry(mode, &connector->probed_modes, head) {
3582 		if (mode->hdisplay  == hpref &&
3583 		    mode->vdisplay == vpref)
3584 			mode->type |= DRM_MODE_TYPE_PREFERRED;
3585 	}
3586 }
3587 EXPORT_SYMBOL(drm_set_preferred_mode);
3588 
3589 /**
3590  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
3591  *                                              data from a DRM display mode
3592  * @frame: HDMI AVI infoframe
3593  * @mode: DRM display mode
3594  *
3595  * Returns 0 on success or a negative error code on failure.
3596  */
3597 int
3598 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
3599 					 const struct drm_display_mode *mode)
3600 {
3601 	int err;
3602 
3603 	if (!frame || !mode)
3604 		return -EINVAL;
3605 
3606 	err = hdmi_avi_infoframe_init(frame);
3607 	if (err < 0)
3608 		return err;
3609 
3610 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
3611 		frame->pixel_repeat = 1;
3612 
3613 	frame->video_code = drm_match_cea_mode(mode);
3614 
3615 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
3616 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
3617 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
3618 
3619 	return 0;
3620 }
3621 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
3622 
3623 static enum hdmi_3d_structure
3624 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
3625 {
3626 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
3627 
3628 	switch (layout) {
3629 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
3630 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
3631 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
3632 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
3633 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
3634 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
3635 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
3636 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
3637 	case DRM_MODE_FLAG_3D_L_DEPTH:
3638 		return HDMI_3D_STRUCTURE_L_DEPTH;
3639 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
3640 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
3641 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
3642 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
3643 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
3644 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
3645 	default:
3646 		return HDMI_3D_STRUCTURE_INVALID;
3647 	}
3648 }
3649 
3650 /**
3651  * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
3652  * data from a DRM display mode
3653  * @frame: HDMI vendor infoframe
3654  * @mode: DRM display mode
3655  *
3656  * Note that there's is a need to send HDMI vendor infoframes only when using a
3657  * 4k or stereoscopic 3D mode. So when giving any other mode as input this
3658  * function will return -EINVAL, error that can be safely ignored.
3659  *
3660  * Returns 0 on success or a negative error code on failure.
3661  */
3662 int
3663 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
3664 					    const struct drm_display_mode *mode)
3665 {
3666 	int err;
3667 	u32 s3d_flags;
3668 	u8 vic;
3669 
3670 	if (!frame || !mode)
3671 		return -EINVAL;
3672 
3673 	vic = drm_match_hdmi_mode(mode);
3674 	s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
3675 
3676 	if (!vic && !s3d_flags)
3677 		return -EINVAL;
3678 
3679 	if (vic && s3d_flags)
3680 		return -EINVAL;
3681 
3682 	err = hdmi_vendor_infoframe_init(frame);
3683 	if (err < 0)
3684 		return err;
3685 
3686 	if (vic)
3687 		frame->vic = vic;
3688 	else
3689 		frame->s3d_struct = s3d_structure_from_display_mode(mode);
3690 
3691 	return 0;
3692 }
3693 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
3694