xref: /openbmc/linux/drivers/gpu/drm/drm_edid.c (revision 97da55fc)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/module.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_edid.h>
37 
38 #define version_greater(edid, maj, min) \
39 	(((edid)->version > (maj)) || \
40 	 ((edid)->version == (maj) && (edid)->revision > (min)))
41 
42 #define EDID_EST_TIMINGS 16
43 #define EDID_STD_TIMINGS 8
44 #define EDID_DETAILED_TIMINGS 4
45 
46 /*
47  * EDID blocks out in the wild have a variety of bugs, try to collect
48  * them here (note that userspace may work around broken monitors first,
49  * but fixes should make their way here so that the kernel "just works"
50  * on as many displays as possible).
51  */
52 
53 /* First detailed mode wrong, use largest 60Hz mode */
54 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
55 /* Reported 135MHz pixel clock is too high, needs adjustment */
56 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
57 /* Prefer the largest mode at 75 Hz */
58 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
59 /* Detail timing is in cm not mm */
60 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
61 /* Detailed timing descriptors have bogus size values, so just take the
62  * maximum size and use that.
63  */
64 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
65 /* Monitor forgot to set the first detailed is preferred bit. */
66 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED	(1 << 5)
67 /* use +hsync +vsync for detailed mode */
68 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
69 /* Force reduced-blanking timings for detailed modes */
70 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
71 
72 struct detailed_mode_closure {
73 	struct drm_connector *connector;
74 	struct edid *edid;
75 	bool preferred;
76 	u32 quirks;
77 	int modes;
78 };
79 
80 #define LEVEL_DMT	0
81 #define LEVEL_GTF	1
82 #define LEVEL_GTF2	2
83 #define LEVEL_CVT	3
84 
85 static struct edid_quirk {
86 	char vendor[4];
87 	int product_id;
88 	u32 quirks;
89 } edid_quirk_list[] = {
90 	/* Acer AL1706 */
91 	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
92 	/* Acer F51 */
93 	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
94 	/* Unknown Acer */
95 	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
96 
97 	/* Belinea 10 15 55 */
98 	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
99 	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
100 
101 	/* Envision Peripherals, Inc. EN-7100e */
102 	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
103 	/* Envision EN2028 */
104 	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
105 
106 	/* Funai Electronics PM36B */
107 	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
108 	  EDID_QUIRK_DETAILED_IN_CM },
109 
110 	/* LG Philips LCD LP154W01-A5 */
111 	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
112 	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
113 
114 	/* Philips 107p5 CRT */
115 	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
116 
117 	/* Proview AY765C */
118 	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
119 
120 	/* Samsung SyncMaster 205BW.  Note: irony */
121 	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
122 	/* Samsung SyncMaster 22[5-6]BW */
123 	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
124 	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
125 
126 	/* ViewSonic VA2026w */
127 	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
128 };
129 
130 /*
131  * Autogenerated from the DMT spec.
132  * This table is copied from xfree86/modes/xf86EdidModes.c.
133  */
134 static const struct drm_display_mode drm_dmt_modes[] = {
135 	/* 640x350@85Hz */
136 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
137 		   736, 832, 0, 350, 382, 385, 445, 0,
138 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
139 	/* 640x400@85Hz */
140 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
141 		   736, 832, 0, 400, 401, 404, 445, 0,
142 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
143 	/* 720x400@85Hz */
144 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
145 		   828, 936, 0, 400, 401, 404, 446, 0,
146 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
147 	/* 640x480@60Hz */
148 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
149 		   752, 800, 0, 480, 489, 492, 525, 0,
150 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
151 	/* 640x480@72Hz */
152 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
153 		   704, 832, 0, 480, 489, 492, 520, 0,
154 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
155 	/* 640x480@75Hz */
156 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
157 		   720, 840, 0, 480, 481, 484, 500, 0,
158 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
159 	/* 640x480@85Hz */
160 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
161 		   752, 832, 0, 480, 481, 484, 509, 0,
162 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
163 	/* 800x600@56Hz */
164 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
165 		   896, 1024, 0, 600, 601, 603, 625, 0,
166 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
167 	/* 800x600@60Hz */
168 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
169 		   968, 1056, 0, 600, 601, 605, 628, 0,
170 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
171 	/* 800x600@72Hz */
172 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
173 		   976, 1040, 0, 600, 637, 643, 666, 0,
174 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
175 	/* 800x600@75Hz */
176 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
177 		   896, 1056, 0, 600, 601, 604, 625, 0,
178 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
179 	/* 800x600@85Hz */
180 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
181 		   896, 1048, 0, 600, 601, 604, 631, 0,
182 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
183 	/* 800x600@120Hz RB */
184 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
185 		   880, 960, 0, 600, 603, 607, 636, 0,
186 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
187 	/* 848x480@60Hz */
188 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
189 		   976, 1088, 0, 480, 486, 494, 517, 0,
190 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
191 	/* 1024x768@43Hz, interlace */
192 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
193 		   1208, 1264, 0, 768, 768, 772, 817, 0,
194 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
195 			DRM_MODE_FLAG_INTERLACE) },
196 	/* 1024x768@60Hz */
197 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
198 		   1184, 1344, 0, 768, 771, 777, 806, 0,
199 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
200 	/* 1024x768@70Hz */
201 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
202 		   1184, 1328, 0, 768, 771, 777, 806, 0,
203 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
204 	/* 1024x768@75Hz */
205 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
206 		   1136, 1312, 0, 768, 769, 772, 800, 0,
207 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
208 	/* 1024x768@85Hz */
209 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
210 		   1168, 1376, 0, 768, 769, 772, 808, 0,
211 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
212 	/* 1024x768@120Hz RB */
213 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
214 		   1104, 1184, 0, 768, 771, 775, 813, 0,
215 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
216 	/* 1152x864@75Hz */
217 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
218 		   1344, 1600, 0, 864, 865, 868, 900, 0,
219 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
220 	/* 1280x768@60Hz RB */
221 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
222 		   1360, 1440, 0, 768, 771, 778, 790, 0,
223 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
224 	/* 1280x768@60Hz */
225 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
226 		   1472, 1664, 0, 768, 771, 778, 798, 0,
227 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
228 	/* 1280x768@75Hz */
229 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
230 		   1488, 1696, 0, 768, 771, 778, 805, 0,
231 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
232 	/* 1280x768@85Hz */
233 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
234 		   1496, 1712, 0, 768, 771, 778, 809, 0,
235 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
236 	/* 1280x768@120Hz RB */
237 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
238 		   1360, 1440, 0, 768, 771, 778, 813, 0,
239 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
240 	/* 1280x800@60Hz RB */
241 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
242 		   1360, 1440, 0, 800, 803, 809, 823, 0,
243 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
244 	/* 1280x800@60Hz */
245 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
246 		   1480, 1680, 0, 800, 803, 809, 831, 0,
247 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
248 	/* 1280x800@75Hz */
249 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
250 		   1488, 1696, 0, 800, 803, 809, 838, 0,
251 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
252 	/* 1280x800@85Hz */
253 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
254 		   1496, 1712, 0, 800, 803, 809, 843, 0,
255 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
256 	/* 1280x800@120Hz RB */
257 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
258 		   1360, 1440, 0, 800, 803, 809, 847, 0,
259 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
260 	/* 1280x960@60Hz */
261 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
262 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
263 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
264 	/* 1280x960@85Hz */
265 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
266 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
267 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
268 	/* 1280x960@120Hz RB */
269 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
270 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
271 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
272 	/* 1280x1024@60Hz */
273 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
274 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
275 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
276 	/* 1280x1024@75Hz */
277 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
278 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
279 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
280 	/* 1280x1024@85Hz */
281 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
282 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
283 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
284 	/* 1280x1024@120Hz RB */
285 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
286 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
287 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
288 	/* 1360x768@60Hz */
289 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
290 		   1536, 1792, 0, 768, 771, 777, 795, 0,
291 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
292 	/* 1360x768@120Hz RB */
293 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
294 		   1440, 1520, 0, 768, 771, 776, 813, 0,
295 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
296 	/* 1400x1050@60Hz RB */
297 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
298 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
299 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
300 	/* 1400x1050@60Hz */
301 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
302 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
303 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
304 	/* 1400x1050@75Hz */
305 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
306 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
307 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
308 	/* 1400x1050@85Hz */
309 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
310 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
311 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
312 	/* 1400x1050@120Hz RB */
313 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
314 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
315 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
316 	/* 1440x900@60Hz RB */
317 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
318 		   1520, 1600, 0, 900, 903, 909, 926, 0,
319 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
320 	/* 1440x900@60Hz */
321 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
322 		   1672, 1904, 0, 900, 903, 909, 934, 0,
323 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
324 	/* 1440x900@75Hz */
325 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
326 		   1688, 1936, 0, 900, 903, 909, 942, 0,
327 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
328 	/* 1440x900@85Hz */
329 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
330 		   1696, 1952, 0, 900, 903, 909, 948, 0,
331 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
332 	/* 1440x900@120Hz RB */
333 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
334 		   1520, 1600, 0, 900, 903, 909, 953, 0,
335 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
336 	/* 1600x1200@60Hz */
337 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
338 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
339 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
340 	/* 1600x1200@65Hz */
341 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
342 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
343 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
344 	/* 1600x1200@70Hz */
345 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
346 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
347 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
348 	/* 1600x1200@75Hz */
349 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
350 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
351 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
352 	/* 1600x1200@85Hz */
353 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
354 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
355 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
356 	/* 1600x1200@120Hz RB */
357 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
358 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
359 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
360 	/* 1680x1050@60Hz RB */
361 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
362 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
363 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
364 	/* 1680x1050@60Hz */
365 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
366 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
367 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
368 	/* 1680x1050@75Hz */
369 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
370 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
371 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
372 	/* 1680x1050@85Hz */
373 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
374 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
375 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
376 	/* 1680x1050@120Hz RB */
377 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
378 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
379 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
380 	/* 1792x1344@60Hz */
381 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
382 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
383 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
384 	/* 1792x1344@75Hz */
385 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
386 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
387 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
388 	/* 1792x1344@120Hz RB */
389 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
390 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
391 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
392 	/* 1856x1392@60Hz */
393 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
394 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
395 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
396 	/* 1856x1392@75Hz */
397 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
398 		   2208, 2560, 0, 1392, 1395, 1399, 1500, 0,
399 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
400 	/* 1856x1392@120Hz RB */
401 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
402 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
403 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
404 	/* 1920x1200@60Hz RB */
405 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
406 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
407 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
408 	/* 1920x1200@60Hz */
409 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
410 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
411 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
412 	/* 1920x1200@75Hz */
413 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
414 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
415 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
416 	/* 1920x1200@85Hz */
417 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
418 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
419 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
420 	/* 1920x1200@120Hz RB */
421 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
422 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
423 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
424 	/* 1920x1440@60Hz */
425 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
426 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
427 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
428 	/* 1920x1440@75Hz */
429 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
430 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
431 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
432 	/* 1920x1440@120Hz RB */
433 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
434 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
435 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
436 	/* 2560x1600@60Hz RB */
437 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
438 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
439 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
440 	/* 2560x1600@60Hz */
441 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
442 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
443 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
444 	/* 2560x1600@75HZ */
445 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
446 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
447 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
448 	/* 2560x1600@85HZ */
449 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
450 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
451 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
452 	/* 2560x1600@120Hz RB */
453 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
454 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
455 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
456 };
457 
458 static const struct drm_display_mode edid_est_modes[] = {
459 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
460 		   968, 1056, 0, 600, 601, 605, 628, 0,
461 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
462 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
463 		   896, 1024, 0, 600, 601, 603,  625, 0,
464 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
465 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
466 		   720, 840, 0, 480, 481, 484, 500, 0,
467 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
468 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
469 		   704,  832, 0, 480, 489, 491, 520, 0,
470 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
471 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
472 		   768,  864, 0, 480, 483, 486, 525, 0,
473 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
474 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25200, 640, 656,
475 		   752, 800, 0, 480, 490, 492, 525, 0,
476 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
477 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
478 		   846, 900, 0, 400, 421, 423,  449, 0,
479 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
480 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
481 		   846,  900, 0, 400, 412, 414, 449, 0,
482 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
483 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
484 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
485 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
486 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78800, 1024, 1040,
487 		   1136, 1312, 0,  768, 769, 772, 800, 0,
488 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
489 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
490 		   1184, 1328, 0,  768, 771, 777, 806, 0,
491 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
492 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
493 		   1184, 1344, 0,  768, 771, 777, 806, 0,
494 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
495 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
496 		   1208, 1264, 0, 768, 768, 776, 817, 0,
497 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
498 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
499 		   928, 1152, 0, 624, 625, 628, 667, 0,
500 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
501 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
502 		   896, 1056, 0, 600, 601, 604,  625, 0,
503 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
504 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
505 		   976, 1040, 0, 600, 637, 643, 666, 0,
506 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
507 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
508 		   1344, 1600, 0,  864, 865, 868, 900, 0,
509 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
510 };
511 
512 struct minimode {
513 	short w;
514 	short h;
515 	short r;
516 	short rb;
517 };
518 
519 static const struct minimode est3_modes[] = {
520 	/* byte 6 */
521 	{ 640, 350, 85, 0 },
522 	{ 640, 400, 85, 0 },
523 	{ 720, 400, 85, 0 },
524 	{ 640, 480, 85, 0 },
525 	{ 848, 480, 60, 0 },
526 	{ 800, 600, 85, 0 },
527 	{ 1024, 768, 85, 0 },
528 	{ 1152, 864, 75, 0 },
529 	/* byte 7 */
530 	{ 1280, 768, 60, 1 },
531 	{ 1280, 768, 60, 0 },
532 	{ 1280, 768, 75, 0 },
533 	{ 1280, 768, 85, 0 },
534 	{ 1280, 960, 60, 0 },
535 	{ 1280, 960, 85, 0 },
536 	{ 1280, 1024, 60, 0 },
537 	{ 1280, 1024, 85, 0 },
538 	/* byte 8 */
539 	{ 1360, 768, 60, 0 },
540 	{ 1440, 900, 60, 1 },
541 	{ 1440, 900, 60, 0 },
542 	{ 1440, 900, 75, 0 },
543 	{ 1440, 900, 85, 0 },
544 	{ 1400, 1050, 60, 1 },
545 	{ 1400, 1050, 60, 0 },
546 	{ 1400, 1050, 75, 0 },
547 	/* byte 9 */
548 	{ 1400, 1050, 85, 0 },
549 	{ 1680, 1050, 60, 1 },
550 	{ 1680, 1050, 60, 0 },
551 	{ 1680, 1050, 75, 0 },
552 	{ 1680, 1050, 85, 0 },
553 	{ 1600, 1200, 60, 0 },
554 	{ 1600, 1200, 65, 0 },
555 	{ 1600, 1200, 70, 0 },
556 	/* byte 10 */
557 	{ 1600, 1200, 75, 0 },
558 	{ 1600, 1200, 85, 0 },
559 	{ 1792, 1344, 60, 0 },
560 	{ 1792, 1344, 85, 0 },
561 	{ 1856, 1392, 60, 0 },
562 	{ 1856, 1392, 75, 0 },
563 	{ 1920, 1200, 60, 1 },
564 	{ 1920, 1200, 60, 0 },
565 	/* byte 11 */
566 	{ 1920, 1200, 75, 0 },
567 	{ 1920, 1200, 85, 0 },
568 	{ 1920, 1440, 60, 0 },
569 	{ 1920, 1440, 75, 0 },
570 };
571 
572 static const struct minimode extra_modes[] = {
573 	{ 1024, 576,  60, 0 },
574 	{ 1366, 768,  60, 0 },
575 	{ 1600, 900,  60, 0 },
576 	{ 1680, 945,  60, 0 },
577 	{ 1920, 1080, 60, 0 },
578 	{ 2048, 1152, 60, 0 },
579 	{ 2048, 1536, 60, 0 },
580 };
581 
582 /*
583  * Probably taken from CEA-861 spec.
584  * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
585  */
586 static const struct drm_display_mode edid_cea_modes[] = {
587 	/* 1 - 640x480@60Hz */
588 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
589 		   752, 800, 0, 480, 490, 492, 525, 0,
590 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
591 	/* 2 - 720x480@60Hz */
592 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
593 		   798, 858, 0, 480, 489, 495, 525, 0,
594 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
595 	/* 3 - 720x480@60Hz */
596 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
597 		   798, 858, 0, 480, 489, 495, 525, 0,
598 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
599 	/* 4 - 1280x720@60Hz */
600 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
601 		   1430, 1650, 0, 720, 725, 730, 750, 0,
602 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
603 	/* 5 - 1920x1080i@60Hz */
604 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
605 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
606 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
607 			DRM_MODE_FLAG_INTERLACE) },
608 	/* 6 - 1440x480i@60Hz */
609 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
610 		   1602, 1716, 0, 480, 488, 494, 525, 0,
611 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
612 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
613 	/* 7 - 1440x480i@60Hz */
614 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
615 		   1602, 1716, 0, 480, 488, 494, 525, 0,
616 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
617 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
618 	/* 8 - 1440x240@60Hz */
619 	{ DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
620 		   1602, 1716, 0, 240, 244, 247, 262, 0,
621 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
622 			DRM_MODE_FLAG_DBLCLK) },
623 	/* 9 - 1440x240@60Hz */
624 	{ DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
625 		   1602, 1716, 0, 240, 244, 247, 262, 0,
626 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
627 			DRM_MODE_FLAG_DBLCLK) },
628 	/* 10 - 2880x480i@60Hz */
629 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
630 		   3204, 3432, 0, 480, 488, 494, 525, 0,
631 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
632 			DRM_MODE_FLAG_INTERLACE) },
633 	/* 11 - 2880x480i@60Hz */
634 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
635 		   3204, 3432, 0, 480, 488, 494, 525, 0,
636 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
637 			DRM_MODE_FLAG_INTERLACE) },
638 	/* 12 - 2880x240@60Hz */
639 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
640 		   3204, 3432, 0, 240, 244, 247, 262, 0,
641 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
642 	/* 13 - 2880x240@60Hz */
643 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
644 		   3204, 3432, 0, 240, 244, 247, 262, 0,
645 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
646 	/* 14 - 1440x480@60Hz */
647 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
648 		   1596, 1716, 0, 480, 489, 495, 525, 0,
649 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
650 	/* 15 - 1440x480@60Hz */
651 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
652 		   1596, 1716, 0, 480, 489, 495, 525, 0,
653 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
654 	/* 16 - 1920x1080@60Hz */
655 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
656 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
657 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
658 	/* 17 - 720x576@50Hz */
659 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
660 		   796, 864, 0, 576, 581, 586, 625, 0,
661 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
662 	/* 18 - 720x576@50Hz */
663 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
664 		   796, 864, 0, 576, 581, 586, 625, 0,
665 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
666 	/* 19 - 1280x720@50Hz */
667 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
668 		   1760, 1980, 0, 720, 725, 730, 750, 0,
669 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
670 	/* 20 - 1920x1080i@50Hz */
671 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
672 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
673 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
674 			DRM_MODE_FLAG_INTERLACE) },
675 	/* 21 - 1440x576i@50Hz */
676 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
677 		   1590, 1728, 0, 576, 580, 586, 625, 0,
678 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
679 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
680 	/* 22 - 1440x576i@50Hz */
681 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
682 		   1590, 1728, 0, 576, 580, 586, 625, 0,
683 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
684 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
685 	/* 23 - 1440x288@50Hz */
686 	{ DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
687 		   1590, 1728, 0, 288, 290, 293, 312, 0,
688 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
689 			DRM_MODE_FLAG_DBLCLK) },
690 	/* 24 - 1440x288@50Hz */
691 	{ DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
692 		   1590, 1728, 0, 288, 290, 293, 312, 0,
693 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
694 			DRM_MODE_FLAG_DBLCLK) },
695 	/* 25 - 2880x576i@50Hz */
696 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
697 		   3180, 3456, 0, 576, 580, 586, 625, 0,
698 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
699 			DRM_MODE_FLAG_INTERLACE) },
700 	/* 26 - 2880x576i@50Hz */
701 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
702 		   3180, 3456, 0, 576, 580, 586, 625, 0,
703 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
704 			DRM_MODE_FLAG_INTERLACE) },
705 	/* 27 - 2880x288@50Hz */
706 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
707 		   3180, 3456, 0, 288, 290, 293, 312, 0,
708 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
709 	/* 28 - 2880x288@50Hz */
710 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
711 		   3180, 3456, 0, 288, 290, 293, 312, 0,
712 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
713 	/* 29 - 1440x576@50Hz */
714 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
715 		   1592, 1728, 0, 576, 581, 586, 625, 0,
716 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
717 	/* 30 - 1440x576@50Hz */
718 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
719 		   1592, 1728, 0, 576, 581, 586, 625, 0,
720 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
721 	/* 31 - 1920x1080@50Hz */
722 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
723 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
724 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
725 	/* 32 - 1920x1080@24Hz */
726 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
727 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
728 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
729 	/* 33 - 1920x1080@25Hz */
730 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
731 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
732 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
733 	/* 34 - 1920x1080@30Hz */
734 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
735 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
736 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
737 	/* 35 - 2880x480@60Hz */
738 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
739 		   3192, 3432, 0, 480, 489, 495, 525, 0,
740 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
741 	/* 36 - 2880x480@60Hz */
742 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
743 		   3192, 3432, 0, 480, 489, 495, 525, 0,
744 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
745 	/* 37 - 2880x576@50Hz */
746 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
747 		   3184, 3456, 0, 576, 581, 586, 625, 0,
748 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
749 	/* 38 - 2880x576@50Hz */
750 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
751 		   3184, 3456, 0, 576, 581, 586, 625, 0,
752 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
753 	/* 39 - 1920x1080i@50Hz */
754 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
755 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
756 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
757 			DRM_MODE_FLAG_INTERLACE) },
758 	/* 40 - 1920x1080i@100Hz */
759 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
760 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
761 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
762 			DRM_MODE_FLAG_INTERLACE) },
763 	/* 41 - 1280x720@100Hz */
764 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
765 		   1760, 1980, 0, 720, 725, 730, 750, 0,
766 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
767 	/* 42 - 720x576@100Hz */
768 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
769 		   796, 864, 0, 576, 581, 586, 625, 0,
770 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
771 	/* 43 - 720x576@100Hz */
772 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
773 		   796, 864, 0, 576, 581, 586, 625, 0,
774 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
775 	/* 44 - 1440x576i@100Hz */
776 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
777 		   1590, 1728, 0, 576, 580, 586, 625, 0,
778 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
779 			DRM_MODE_FLAG_DBLCLK) },
780 	/* 45 - 1440x576i@100Hz */
781 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
782 		   1590, 1728, 0, 576, 580, 586, 625, 0,
783 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
784 			DRM_MODE_FLAG_DBLCLK) },
785 	/* 46 - 1920x1080i@120Hz */
786 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
787 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
788 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
789 			DRM_MODE_FLAG_INTERLACE) },
790 	/* 47 - 1280x720@120Hz */
791 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
792 		   1430, 1650, 0, 720, 725, 730, 750, 0,
793 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
794 	/* 48 - 720x480@120Hz */
795 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
796 		   798, 858, 0, 480, 489, 495, 525, 0,
797 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
798 	/* 49 - 720x480@120Hz */
799 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
800 		   798, 858, 0, 480, 489, 495, 525, 0,
801 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
802 	/* 50 - 1440x480i@120Hz */
803 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
804 		   1602, 1716, 0, 480, 488, 494, 525, 0,
805 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
806 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
807 	/* 51 - 1440x480i@120Hz */
808 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
809 		   1602, 1716, 0, 480, 488, 494, 525, 0,
810 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
811 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
812 	/* 52 - 720x576@200Hz */
813 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
814 		   796, 864, 0, 576, 581, 586, 625, 0,
815 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
816 	/* 53 - 720x576@200Hz */
817 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
818 		   796, 864, 0, 576, 581, 586, 625, 0,
819 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
820 	/* 54 - 1440x576i@200Hz */
821 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
822 		   1590, 1728, 0, 576, 580, 586, 625, 0,
823 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
824 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
825 	/* 55 - 1440x576i@200Hz */
826 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
827 		   1590, 1728, 0, 576, 580, 586, 625, 0,
828 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
829 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
830 	/* 56 - 720x480@240Hz */
831 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
832 		   798, 858, 0, 480, 489, 495, 525, 0,
833 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
834 	/* 57 - 720x480@240Hz */
835 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
836 		   798, 858, 0, 480, 489, 495, 525, 0,
837 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
838 	/* 58 - 1440x480i@240 */
839 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
840 		   1602, 1716, 0, 480, 488, 494, 525, 0,
841 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
842 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
843 	/* 59 - 1440x480i@240 */
844 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
845 		   1602, 1716, 0, 480, 488, 494, 525, 0,
846 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
847 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK) },
848 	/* 60 - 1280x720@24Hz */
849 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
850 		   3080, 3300, 0, 720, 725, 730, 750, 0,
851 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
852 	/* 61 - 1280x720@25Hz */
853 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
854 		   3740, 3960, 0, 720, 725, 730, 750, 0,
855 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
856 	/* 62 - 1280x720@30Hz */
857 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
858 		   3080, 3300, 0, 720, 725, 730, 750, 0,
859 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
860 	/* 63 - 1920x1080@120Hz */
861 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
862 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
863 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
864 	/* 64 - 1920x1080@100Hz */
865 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
866 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
867 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
868 };
869 
870 /*** DDC fetch and block validation ***/
871 
872 static const u8 edid_header[] = {
873 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
874 };
875 
876  /*
877  * Sanity check the header of the base EDID block.  Return 8 if the header
878  * is perfect, down to 0 if it's totally wrong.
879  */
880 int drm_edid_header_is_valid(const u8 *raw_edid)
881 {
882 	int i, score = 0;
883 
884 	for (i = 0; i < sizeof(edid_header); i++)
885 		if (raw_edid[i] == edid_header[i])
886 			score++;
887 
888 	return score;
889 }
890 EXPORT_SYMBOL(drm_edid_header_is_valid);
891 
892 static int edid_fixup __read_mostly = 6;
893 module_param_named(edid_fixup, edid_fixup, int, 0400);
894 MODULE_PARM_DESC(edid_fixup,
895 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
896 
897 /*
898  * Sanity check the EDID block (base or extension).  Return 0 if the block
899  * doesn't check out, or 1 if it's valid.
900  */
901 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid)
902 {
903 	int i;
904 	u8 csum = 0;
905 	struct edid *edid = (struct edid *)raw_edid;
906 
907 	if (edid_fixup > 8 || edid_fixup < 0)
908 		edid_fixup = 6;
909 
910 	if (block == 0) {
911 		int score = drm_edid_header_is_valid(raw_edid);
912 		if (score == 8) ;
913 		else if (score >= edid_fixup) {
914 			DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
915 			memcpy(raw_edid, edid_header, sizeof(edid_header));
916 		} else {
917 			goto bad;
918 		}
919 	}
920 
921 	for (i = 0; i < EDID_LENGTH; i++)
922 		csum += raw_edid[i];
923 	if (csum) {
924 		if (print_bad_edid) {
925 			DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
926 		}
927 
928 		/* allow CEA to slide through, switches mangle this */
929 		if (raw_edid[0] != 0x02)
930 			goto bad;
931 	}
932 
933 	/* per-block-type checks */
934 	switch (raw_edid[0]) {
935 	case 0: /* base */
936 		if (edid->version != 1) {
937 			DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
938 			goto bad;
939 		}
940 
941 		if (edid->revision > 4)
942 			DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
943 		break;
944 
945 	default:
946 		break;
947 	}
948 
949 	return 1;
950 
951 bad:
952 	if (raw_edid && print_bad_edid) {
953 		printk(KERN_ERR "Raw EDID:\n");
954 		print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
955 			       raw_edid, EDID_LENGTH, false);
956 	}
957 	return 0;
958 }
959 EXPORT_SYMBOL(drm_edid_block_valid);
960 
961 /**
962  * drm_edid_is_valid - sanity check EDID data
963  * @edid: EDID data
964  *
965  * Sanity-check an entire EDID record (including extensions)
966  */
967 bool drm_edid_is_valid(struct edid *edid)
968 {
969 	int i;
970 	u8 *raw = (u8 *)edid;
971 
972 	if (!edid)
973 		return false;
974 
975 	for (i = 0; i <= edid->extensions; i++)
976 		if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true))
977 			return false;
978 
979 	return true;
980 }
981 EXPORT_SYMBOL(drm_edid_is_valid);
982 
983 #define DDC_SEGMENT_ADDR 0x30
984 /**
985  * Get EDID information via I2C.
986  *
987  * \param adapter : i2c device adaptor
988  * \param buf     : EDID data buffer to be filled
989  * \param len     : EDID data buffer length
990  * \return 0 on success or -1 on failure.
991  *
992  * Try to fetch EDID information by calling i2c driver function.
993  */
994 static int
995 drm_do_probe_ddc_edid(struct i2c_adapter *adapter, unsigned char *buf,
996 		      int block, int len)
997 {
998 	unsigned char start = block * EDID_LENGTH;
999 	unsigned char segment = block >> 1;
1000 	unsigned char xfers = segment ? 3 : 2;
1001 	int ret, retries = 5;
1002 
1003 	/* The core i2c driver will automatically retry the transfer if the
1004 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
1005 	 * are susceptible to errors under a heavily loaded machine and
1006 	 * generate spurious NAKs and timeouts. Retrying the transfer
1007 	 * of the individual block a few times seems to overcome this.
1008 	 */
1009 	do {
1010 		struct i2c_msg msgs[] = {
1011 			{
1012 				.addr	= DDC_SEGMENT_ADDR,
1013 				.flags	= 0,
1014 				.len	= 1,
1015 				.buf	= &segment,
1016 			}, {
1017 				.addr	= DDC_ADDR,
1018 				.flags	= 0,
1019 				.len	= 1,
1020 				.buf	= &start,
1021 			}, {
1022 				.addr	= DDC_ADDR,
1023 				.flags	= I2C_M_RD,
1024 				.len	= len,
1025 				.buf	= buf,
1026 			}
1027 		};
1028 
1029 	/*
1030 	 * Avoid sending the segment addr to not upset non-compliant ddc
1031 	 * monitors.
1032 	 */
1033 		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1034 
1035 		if (ret == -ENXIO) {
1036 			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1037 					adapter->name);
1038 			break;
1039 		}
1040 	} while (ret != xfers && --retries);
1041 
1042 	return ret == xfers ? 0 : -1;
1043 }
1044 
1045 static bool drm_edid_is_zero(u8 *in_edid, int length)
1046 {
1047 	if (memchr_inv(in_edid, 0, length))
1048 		return false;
1049 
1050 	return true;
1051 }
1052 
1053 static u8 *
1054 drm_do_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
1055 {
1056 	int i, j = 0, valid_extensions = 0;
1057 	u8 *block, *new;
1058 	bool print_bad_edid = !connector->bad_edid_counter || (drm_debug & DRM_UT_KMS);
1059 
1060 	if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1061 		return NULL;
1062 
1063 	/* base block fetch */
1064 	for (i = 0; i < 4; i++) {
1065 		if (drm_do_probe_ddc_edid(adapter, block, 0, EDID_LENGTH))
1066 			goto out;
1067 		if (drm_edid_block_valid(block, 0, print_bad_edid))
1068 			break;
1069 		if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
1070 			connector->null_edid_counter++;
1071 			goto carp;
1072 		}
1073 	}
1074 	if (i == 4)
1075 		goto carp;
1076 
1077 	/* if there's no extensions, we're done */
1078 	if (block[0x7e] == 0)
1079 		return block;
1080 
1081 	new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
1082 	if (!new)
1083 		goto out;
1084 	block = new;
1085 
1086 	for (j = 1; j <= block[0x7e]; j++) {
1087 		for (i = 0; i < 4; i++) {
1088 			if (drm_do_probe_ddc_edid(adapter,
1089 				  block + (valid_extensions + 1) * EDID_LENGTH,
1090 				  j, EDID_LENGTH))
1091 				goto out;
1092 			if (drm_edid_block_valid(block + (valid_extensions + 1) * EDID_LENGTH, j, print_bad_edid)) {
1093 				valid_extensions++;
1094 				break;
1095 			}
1096 		}
1097 
1098 		if (i == 4 && print_bad_edid) {
1099 			dev_warn(connector->dev->dev,
1100 			 "%s: Ignoring invalid EDID block %d.\n",
1101 			 drm_get_connector_name(connector), j);
1102 
1103 			connector->bad_edid_counter++;
1104 		}
1105 	}
1106 
1107 	if (valid_extensions != block[0x7e]) {
1108 		block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1109 		block[0x7e] = valid_extensions;
1110 		new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1111 		if (!new)
1112 			goto out;
1113 		block = new;
1114 	}
1115 
1116 	return block;
1117 
1118 carp:
1119 	if (print_bad_edid) {
1120 		dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
1121 			 drm_get_connector_name(connector), j);
1122 	}
1123 	connector->bad_edid_counter++;
1124 
1125 out:
1126 	kfree(block);
1127 	return NULL;
1128 }
1129 
1130 /**
1131  * Probe DDC presence.
1132  *
1133  * \param adapter : i2c device adaptor
1134  * \return 1 on success
1135  */
1136 bool
1137 drm_probe_ddc(struct i2c_adapter *adapter)
1138 {
1139 	unsigned char out;
1140 
1141 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1142 }
1143 EXPORT_SYMBOL(drm_probe_ddc);
1144 
1145 /**
1146  * drm_get_edid - get EDID data, if available
1147  * @connector: connector we're probing
1148  * @adapter: i2c adapter to use for DDC
1149  *
1150  * Poke the given i2c channel to grab EDID data if possible.  If found,
1151  * attach it to the connector.
1152  *
1153  * Return edid data or NULL if we couldn't find any.
1154  */
1155 struct edid *drm_get_edid(struct drm_connector *connector,
1156 			  struct i2c_adapter *adapter)
1157 {
1158 	struct edid *edid = NULL;
1159 
1160 	if (drm_probe_ddc(adapter))
1161 		edid = (struct edid *)drm_do_get_edid(connector, adapter);
1162 
1163 	return edid;
1164 }
1165 EXPORT_SYMBOL(drm_get_edid);
1166 
1167 /*** EDID parsing ***/
1168 
1169 /**
1170  * edid_vendor - match a string against EDID's obfuscated vendor field
1171  * @edid: EDID to match
1172  * @vendor: vendor string
1173  *
1174  * Returns true if @vendor is in @edid, false otherwise
1175  */
1176 static bool edid_vendor(struct edid *edid, char *vendor)
1177 {
1178 	char edid_vendor[3];
1179 
1180 	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1181 	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1182 			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1183 	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1184 
1185 	return !strncmp(edid_vendor, vendor, 3);
1186 }
1187 
1188 /**
1189  * edid_get_quirks - return quirk flags for a given EDID
1190  * @edid: EDID to process
1191  *
1192  * This tells subsequent routines what fixes they need to apply.
1193  */
1194 static u32 edid_get_quirks(struct edid *edid)
1195 {
1196 	struct edid_quirk *quirk;
1197 	int i;
1198 
1199 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1200 		quirk = &edid_quirk_list[i];
1201 
1202 		if (edid_vendor(edid, quirk->vendor) &&
1203 		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
1204 			return quirk->quirks;
1205 	}
1206 
1207 	return 0;
1208 }
1209 
1210 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1211 #define MODE_REFRESH_DIFF(m,r) (abs((m)->vrefresh - target_refresh))
1212 
1213 /**
1214  * edid_fixup_preferred - set preferred modes based on quirk list
1215  * @connector: has mode list to fix up
1216  * @quirks: quirks list
1217  *
1218  * Walk the mode list for @connector, clearing the preferred status
1219  * on existing modes and setting it anew for the right mode ala @quirks.
1220  */
1221 static void edid_fixup_preferred(struct drm_connector *connector,
1222 				 u32 quirks)
1223 {
1224 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
1225 	int target_refresh = 0;
1226 
1227 	if (list_empty(&connector->probed_modes))
1228 		return;
1229 
1230 	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1231 		target_refresh = 60;
1232 	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1233 		target_refresh = 75;
1234 
1235 	preferred_mode = list_first_entry(&connector->probed_modes,
1236 					  struct drm_display_mode, head);
1237 
1238 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1239 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1240 
1241 		if (cur_mode == preferred_mode)
1242 			continue;
1243 
1244 		/* Largest mode is preferred */
1245 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1246 			preferred_mode = cur_mode;
1247 
1248 		/* At a given size, try to get closest to target refresh */
1249 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1250 		    MODE_REFRESH_DIFF(cur_mode, target_refresh) <
1251 		    MODE_REFRESH_DIFF(preferred_mode, target_refresh)) {
1252 			preferred_mode = cur_mode;
1253 		}
1254 	}
1255 
1256 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1257 }
1258 
1259 static bool
1260 mode_is_rb(const struct drm_display_mode *mode)
1261 {
1262 	return (mode->htotal - mode->hdisplay == 160) &&
1263 	       (mode->hsync_end - mode->hdisplay == 80) &&
1264 	       (mode->hsync_end - mode->hsync_start == 32) &&
1265 	       (mode->vsync_start - mode->vdisplay == 3);
1266 }
1267 
1268 /*
1269  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1270  * @dev: Device to duplicate against
1271  * @hsize: Mode width
1272  * @vsize: Mode height
1273  * @fresh: Mode refresh rate
1274  * @rb: Mode reduced-blanking-ness
1275  *
1276  * Walk the DMT mode list looking for a match for the given parameters.
1277  * Return a newly allocated copy of the mode, or NULL if not found.
1278  */
1279 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1280 					   int hsize, int vsize, int fresh,
1281 					   bool rb)
1282 {
1283 	int i;
1284 
1285 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1286 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1287 		if (hsize != ptr->hdisplay)
1288 			continue;
1289 		if (vsize != ptr->vdisplay)
1290 			continue;
1291 		if (fresh != drm_mode_vrefresh(ptr))
1292 			continue;
1293 		if (rb != mode_is_rb(ptr))
1294 			continue;
1295 
1296 		return drm_mode_duplicate(dev, ptr);
1297 	}
1298 
1299 	return NULL;
1300 }
1301 EXPORT_SYMBOL(drm_mode_find_dmt);
1302 
1303 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1304 
1305 static void
1306 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1307 {
1308 	int i, n = 0;
1309 	u8 d = ext[0x02];
1310 	u8 *det_base = ext + d;
1311 
1312 	n = (127 - d) / 18;
1313 	for (i = 0; i < n; i++)
1314 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1315 }
1316 
1317 static void
1318 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1319 {
1320 	unsigned int i, n = min((int)ext[0x02], 6);
1321 	u8 *det_base = ext + 5;
1322 
1323 	if (ext[0x01] != 1)
1324 		return; /* unknown version */
1325 
1326 	for (i = 0; i < n; i++)
1327 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1328 }
1329 
1330 static void
1331 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1332 {
1333 	int i;
1334 	struct edid *edid = (struct edid *)raw_edid;
1335 
1336 	if (edid == NULL)
1337 		return;
1338 
1339 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1340 		cb(&(edid->detailed_timings[i]), closure);
1341 
1342 	for (i = 1; i <= raw_edid[0x7e]; i++) {
1343 		u8 *ext = raw_edid + (i * EDID_LENGTH);
1344 		switch (*ext) {
1345 		case CEA_EXT:
1346 			cea_for_each_detailed_block(ext, cb, closure);
1347 			break;
1348 		case VTB_EXT:
1349 			vtb_for_each_detailed_block(ext, cb, closure);
1350 			break;
1351 		default:
1352 			break;
1353 		}
1354 	}
1355 }
1356 
1357 static void
1358 is_rb(struct detailed_timing *t, void *data)
1359 {
1360 	u8 *r = (u8 *)t;
1361 	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1362 		if (r[15] & 0x10)
1363 			*(bool *)data = true;
1364 }
1365 
1366 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
1367 static bool
1368 drm_monitor_supports_rb(struct edid *edid)
1369 {
1370 	if (edid->revision >= 4) {
1371 		bool ret = false;
1372 		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1373 		return ret;
1374 	}
1375 
1376 	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1377 }
1378 
1379 static void
1380 find_gtf2(struct detailed_timing *t, void *data)
1381 {
1382 	u8 *r = (u8 *)t;
1383 	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1384 		*(u8 **)data = r;
1385 }
1386 
1387 /* Secondary GTF curve kicks in above some break frequency */
1388 static int
1389 drm_gtf2_hbreak(struct edid *edid)
1390 {
1391 	u8 *r = NULL;
1392 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1393 	return r ? (r[12] * 2) : 0;
1394 }
1395 
1396 static int
1397 drm_gtf2_2c(struct edid *edid)
1398 {
1399 	u8 *r = NULL;
1400 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1401 	return r ? r[13] : 0;
1402 }
1403 
1404 static int
1405 drm_gtf2_m(struct edid *edid)
1406 {
1407 	u8 *r = NULL;
1408 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1409 	return r ? (r[15] << 8) + r[14] : 0;
1410 }
1411 
1412 static int
1413 drm_gtf2_k(struct edid *edid)
1414 {
1415 	u8 *r = NULL;
1416 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1417 	return r ? r[16] : 0;
1418 }
1419 
1420 static int
1421 drm_gtf2_2j(struct edid *edid)
1422 {
1423 	u8 *r = NULL;
1424 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1425 	return r ? r[17] : 0;
1426 }
1427 
1428 /**
1429  * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1430  * @edid: EDID block to scan
1431  */
1432 static int standard_timing_level(struct edid *edid)
1433 {
1434 	if (edid->revision >= 2) {
1435 		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1436 			return LEVEL_CVT;
1437 		if (drm_gtf2_hbreak(edid))
1438 			return LEVEL_GTF2;
1439 		return LEVEL_GTF;
1440 	}
1441 	return LEVEL_DMT;
1442 }
1443 
1444 /*
1445  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
1446  * monitors fill with ascii space (0x20) instead.
1447  */
1448 static int
1449 bad_std_timing(u8 a, u8 b)
1450 {
1451 	return (a == 0x00 && b == 0x00) ||
1452 	       (a == 0x01 && b == 0x01) ||
1453 	       (a == 0x20 && b == 0x20);
1454 }
1455 
1456 /**
1457  * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1458  * @t: standard timing params
1459  * @timing_level: standard timing level
1460  *
1461  * Take the standard timing params (in this case width, aspect, and refresh)
1462  * and convert them into a real mode using CVT/GTF/DMT.
1463  */
1464 static struct drm_display_mode *
1465 drm_mode_std(struct drm_connector *connector, struct edid *edid,
1466 	     struct std_timing *t, int revision)
1467 {
1468 	struct drm_device *dev = connector->dev;
1469 	struct drm_display_mode *m, *mode = NULL;
1470 	int hsize, vsize;
1471 	int vrefresh_rate;
1472 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1473 		>> EDID_TIMING_ASPECT_SHIFT;
1474 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1475 		>> EDID_TIMING_VFREQ_SHIFT;
1476 	int timing_level = standard_timing_level(edid);
1477 
1478 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
1479 		return NULL;
1480 
1481 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1482 	hsize = t->hsize * 8 + 248;
1483 	/* vrefresh_rate = vfreq + 60 */
1484 	vrefresh_rate = vfreq + 60;
1485 	/* the vdisplay is calculated based on the aspect ratio */
1486 	if (aspect_ratio == 0) {
1487 		if (revision < 3)
1488 			vsize = hsize;
1489 		else
1490 			vsize = (hsize * 10) / 16;
1491 	} else if (aspect_ratio == 1)
1492 		vsize = (hsize * 3) / 4;
1493 	else if (aspect_ratio == 2)
1494 		vsize = (hsize * 4) / 5;
1495 	else
1496 		vsize = (hsize * 9) / 16;
1497 
1498 	/* HDTV hack, part 1 */
1499 	if (vrefresh_rate == 60 &&
1500 	    ((hsize == 1360 && vsize == 765) ||
1501 	     (hsize == 1368 && vsize == 769))) {
1502 		hsize = 1366;
1503 		vsize = 768;
1504 	}
1505 
1506 	/*
1507 	 * If this connector already has a mode for this size and refresh
1508 	 * rate (because it came from detailed or CVT info), use that
1509 	 * instead.  This way we don't have to guess at interlace or
1510 	 * reduced blanking.
1511 	 */
1512 	list_for_each_entry(m, &connector->probed_modes, head)
1513 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
1514 		    drm_mode_vrefresh(m) == vrefresh_rate)
1515 			return NULL;
1516 
1517 	/* HDTV hack, part 2 */
1518 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1519 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1520 				    false);
1521 		mode->hdisplay = 1366;
1522 		mode->hsync_start = mode->hsync_start - 1;
1523 		mode->hsync_end = mode->hsync_end - 1;
1524 		return mode;
1525 	}
1526 
1527 	/* check whether it can be found in default mode table */
1528 	if (drm_monitor_supports_rb(edid)) {
1529 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1530 					 true);
1531 		if (mode)
1532 			return mode;
1533 	}
1534 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1535 	if (mode)
1536 		return mode;
1537 
1538 	/* okay, generate it */
1539 	switch (timing_level) {
1540 	case LEVEL_DMT:
1541 		break;
1542 	case LEVEL_GTF:
1543 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1544 		break;
1545 	case LEVEL_GTF2:
1546 		/*
1547 		 * This is potentially wrong if there's ever a monitor with
1548 		 * more than one ranges section, each claiming a different
1549 		 * secondary GTF curve.  Please don't do that.
1550 		 */
1551 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1552 		if (!mode)
1553 			return NULL;
1554 		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1555 			drm_mode_destroy(dev, mode);
1556 			mode = drm_gtf_mode_complex(dev, hsize, vsize,
1557 						    vrefresh_rate, 0, 0,
1558 						    drm_gtf2_m(edid),
1559 						    drm_gtf2_2c(edid),
1560 						    drm_gtf2_k(edid),
1561 						    drm_gtf2_2j(edid));
1562 		}
1563 		break;
1564 	case LEVEL_CVT:
1565 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1566 				    false);
1567 		break;
1568 	}
1569 	return mode;
1570 }
1571 
1572 /*
1573  * EDID is delightfully ambiguous about how interlaced modes are to be
1574  * encoded.  Our internal representation is of frame height, but some
1575  * HDTV detailed timings are encoded as field height.
1576  *
1577  * The format list here is from CEA, in frame size.  Technically we
1578  * should be checking refresh rate too.  Whatever.
1579  */
1580 static void
1581 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1582 			    struct detailed_pixel_timing *pt)
1583 {
1584 	int i;
1585 	static const struct {
1586 		int w, h;
1587 	} cea_interlaced[] = {
1588 		{ 1920, 1080 },
1589 		{  720,  480 },
1590 		{ 1440,  480 },
1591 		{ 2880,  480 },
1592 		{  720,  576 },
1593 		{ 1440,  576 },
1594 		{ 2880,  576 },
1595 	};
1596 
1597 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1598 		return;
1599 
1600 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1601 		if ((mode->hdisplay == cea_interlaced[i].w) &&
1602 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
1603 			mode->vdisplay *= 2;
1604 			mode->vsync_start *= 2;
1605 			mode->vsync_end *= 2;
1606 			mode->vtotal *= 2;
1607 			mode->vtotal |= 1;
1608 		}
1609 	}
1610 
1611 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
1612 }
1613 
1614 /**
1615  * drm_mode_detailed - create a new mode from an EDID detailed timing section
1616  * @dev: DRM device (needed to create new mode)
1617  * @edid: EDID block
1618  * @timing: EDID detailed timing info
1619  * @quirks: quirks to apply
1620  *
1621  * An EDID detailed timing block contains enough info for us to create and
1622  * return a new struct drm_display_mode.
1623  */
1624 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1625 						  struct edid *edid,
1626 						  struct detailed_timing *timing,
1627 						  u32 quirks)
1628 {
1629 	struct drm_display_mode *mode;
1630 	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1631 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1632 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1633 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1634 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1635 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1636 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1637 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) >> 2 | pt->vsync_offset_pulse_width_lo >> 4;
1638 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1639 
1640 	/* ignore tiny modes */
1641 	if (hactive < 64 || vactive < 64)
1642 		return NULL;
1643 
1644 	if (pt->misc & DRM_EDID_PT_STEREO) {
1645 		printk(KERN_WARNING "stereo mode not supported\n");
1646 		return NULL;
1647 	}
1648 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1649 		printk(KERN_WARNING "composite sync not supported\n");
1650 	}
1651 
1652 	/* it is incorrect if hsync/vsync width is zero */
1653 	if (!hsync_pulse_width || !vsync_pulse_width) {
1654 		DRM_DEBUG_KMS("Incorrect Detailed timing. "
1655 				"Wrong Hsync/Vsync pulse width\n");
1656 		return NULL;
1657 	}
1658 
1659 	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1660 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1661 		if (!mode)
1662 			return NULL;
1663 
1664 		goto set_size;
1665 	}
1666 
1667 	mode = drm_mode_create(dev);
1668 	if (!mode)
1669 		return NULL;
1670 
1671 	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1672 		timing->pixel_clock = cpu_to_le16(1088);
1673 
1674 	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1675 
1676 	mode->hdisplay = hactive;
1677 	mode->hsync_start = mode->hdisplay + hsync_offset;
1678 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1679 	mode->htotal = mode->hdisplay + hblank;
1680 
1681 	mode->vdisplay = vactive;
1682 	mode->vsync_start = mode->vdisplay + vsync_offset;
1683 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1684 	mode->vtotal = mode->vdisplay + vblank;
1685 
1686 	/* Some EDIDs have bogus h/vtotal values */
1687 	if (mode->hsync_end > mode->htotal)
1688 		mode->htotal = mode->hsync_end + 1;
1689 	if (mode->vsync_end > mode->vtotal)
1690 		mode->vtotal = mode->vsync_end + 1;
1691 
1692 	drm_mode_do_interlace_quirk(mode, pt);
1693 
1694 	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
1695 		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
1696 	}
1697 
1698 	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
1699 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1700 	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
1701 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1702 
1703 set_size:
1704 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
1705 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
1706 
1707 	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
1708 		mode->width_mm *= 10;
1709 		mode->height_mm *= 10;
1710 	}
1711 
1712 	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
1713 		mode->width_mm = edid->width_cm * 10;
1714 		mode->height_mm = edid->height_cm * 10;
1715 	}
1716 
1717 	mode->type = DRM_MODE_TYPE_DRIVER;
1718 	drm_mode_set_name(mode);
1719 
1720 	return mode;
1721 }
1722 
1723 static bool
1724 mode_in_hsync_range(const struct drm_display_mode *mode,
1725 		    struct edid *edid, u8 *t)
1726 {
1727 	int hsync, hmin, hmax;
1728 
1729 	hmin = t[7];
1730 	if (edid->revision >= 4)
1731 	    hmin += ((t[4] & 0x04) ? 255 : 0);
1732 	hmax = t[8];
1733 	if (edid->revision >= 4)
1734 	    hmax += ((t[4] & 0x08) ? 255 : 0);
1735 	hsync = drm_mode_hsync(mode);
1736 
1737 	return (hsync <= hmax && hsync >= hmin);
1738 }
1739 
1740 static bool
1741 mode_in_vsync_range(const struct drm_display_mode *mode,
1742 		    struct edid *edid, u8 *t)
1743 {
1744 	int vsync, vmin, vmax;
1745 
1746 	vmin = t[5];
1747 	if (edid->revision >= 4)
1748 	    vmin += ((t[4] & 0x01) ? 255 : 0);
1749 	vmax = t[6];
1750 	if (edid->revision >= 4)
1751 	    vmax += ((t[4] & 0x02) ? 255 : 0);
1752 	vsync = drm_mode_vrefresh(mode);
1753 
1754 	return (vsync <= vmax && vsync >= vmin);
1755 }
1756 
1757 static u32
1758 range_pixel_clock(struct edid *edid, u8 *t)
1759 {
1760 	/* unspecified */
1761 	if (t[9] == 0 || t[9] == 255)
1762 		return 0;
1763 
1764 	/* 1.4 with CVT support gives us real precision, yay */
1765 	if (edid->revision >= 4 && t[10] == 0x04)
1766 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
1767 
1768 	/* 1.3 is pathetic, so fuzz up a bit */
1769 	return t[9] * 10000 + 5001;
1770 }
1771 
1772 static bool
1773 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
1774 	      struct detailed_timing *timing)
1775 {
1776 	u32 max_clock;
1777 	u8 *t = (u8 *)timing;
1778 
1779 	if (!mode_in_hsync_range(mode, edid, t))
1780 		return false;
1781 
1782 	if (!mode_in_vsync_range(mode, edid, t))
1783 		return false;
1784 
1785 	if ((max_clock = range_pixel_clock(edid, t)))
1786 		if (mode->clock > max_clock)
1787 			return false;
1788 
1789 	/* 1.4 max horizontal check */
1790 	if (edid->revision >= 4 && t[10] == 0x04)
1791 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
1792 			return false;
1793 
1794 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
1795 		return false;
1796 
1797 	return true;
1798 }
1799 
1800 static bool valid_inferred_mode(const struct drm_connector *connector,
1801 				const struct drm_display_mode *mode)
1802 {
1803 	struct drm_display_mode *m;
1804 	bool ok = false;
1805 
1806 	list_for_each_entry(m, &connector->probed_modes, head) {
1807 		if (mode->hdisplay == m->hdisplay &&
1808 		    mode->vdisplay == m->vdisplay &&
1809 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
1810 			return false; /* duplicated */
1811 		if (mode->hdisplay <= m->hdisplay &&
1812 		    mode->vdisplay <= m->vdisplay)
1813 			ok = true;
1814 	}
1815 	return ok;
1816 }
1817 
1818 static int
1819 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
1820 			struct detailed_timing *timing)
1821 {
1822 	int i, modes = 0;
1823 	struct drm_display_mode *newmode;
1824 	struct drm_device *dev = connector->dev;
1825 
1826 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1827 		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
1828 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
1829 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
1830 			if (newmode) {
1831 				drm_mode_probed_add(connector, newmode);
1832 				modes++;
1833 			}
1834 		}
1835 	}
1836 
1837 	return modes;
1838 }
1839 
1840 /* fix up 1366x768 mode from 1368x768;
1841  * GFT/CVT can't express 1366 width which isn't dividable by 8
1842  */
1843 static void fixup_mode_1366x768(struct drm_display_mode *mode)
1844 {
1845 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
1846 		mode->hdisplay = 1366;
1847 		mode->hsync_start--;
1848 		mode->hsync_end--;
1849 		drm_mode_set_name(mode);
1850 	}
1851 }
1852 
1853 static int
1854 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
1855 			struct detailed_timing *timing)
1856 {
1857 	int i, modes = 0;
1858 	struct drm_display_mode *newmode;
1859 	struct drm_device *dev = connector->dev;
1860 
1861 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
1862 		const struct minimode *m = &extra_modes[i];
1863 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
1864 		if (!newmode)
1865 			return modes;
1866 
1867 		fixup_mode_1366x768(newmode);
1868 		if (!mode_in_range(newmode, edid, timing) ||
1869 		    !valid_inferred_mode(connector, newmode)) {
1870 			drm_mode_destroy(dev, newmode);
1871 			continue;
1872 		}
1873 
1874 		drm_mode_probed_add(connector, newmode);
1875 		modes++;
1876 	}
1877 
1878 	return modes;
1879 }
1880 
1881 static int
1882 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
1883 			struct detailed_timing *timing)
1884 {
1885 	int i, modes = 0;
1886 	struct drm_display_mode *newmode;
1887 	struct drm_device *dev = connector->dev;
1888 	bool rb = drm_monitor_supports_rb(edid);
1889 
1890 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
1891 		const struct minimode *m = &extra_modes[i];
1892 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
1893 		if (!newmode)
1894 			return modes;
1895 
1896 		fixup_mode_1366x768(newmode);
1897 		if (!mode_in_range(newmode, edid, timing) ||
1898 		    !valid_inferred_mode(connector, newmode)) {
1899 			drm_mode_destroy(dev, newmode);
1900 			continue;
1901 		}
1902 
1903 		drm_mode_probed_add(connector, newmode);
1904 		modes++;
1905 	}
1906 
1907 	return modes;
1908 }
1909 
1910 static void
1911 do_inferred_modes(struct detailed_timing *timing, void *c)
1912 {
1913 	struct detailed_mode_closure *closure = c;
1914 	struct detailed_non_pixel *data = &timing->data.other_data;
1915 	struct detailed_data_monitor_range *range = &data->data.range;
1916 
1917 	if (data->type != EDID_DETAIL_MONITOR_RANGE)
1918 		return;
1919 
1920 	closure->modes += drm_dmt_modes_for_range(closure->connector,
1921 						  closure->edid,
1922 						  timing);
1923 
1924 	if (!version_greater(closure->edid, 1, 1))
1925 		return; /* GTF not defined yet */
1926 
1927 	switch (range->flags) {
1928 	case 0x02: /* secondary gtf, XXX could do more */
1929 	case 0x00: /* default gtf */
1930 		closure->modes += drm_gtf_modes_for_range(closure->connector,
1931 							  closure->edid,
1932 							  timing);
1933 		break;
1934 	case 0x04: /* cvt, only in 1.4+ */
1935 		if (!version_greater(closure->edid, 1, 3))
1936 			break;
1937 
1938 		closure->modes += drm_cvt_modes_for_range(closure->connector,
1939 							  closure->edid,
1940 							  timing);
1941 		break;
1942 	case 0x01: /* just the ranges, no formula */
1943 	default:
1944 		break;
1945 	}
1946 }
1947 
1948 static int
1949 add_inferred_modes(struct drm_connector *connector, struct edid *edid)
1950 {
1951 	struct detailed_mode_closure closure = {
1952 		connector, edid, 0, 0, 0
1953 	};
1954 
1955 	if (version_greater(edid, 1, 0))
1956 		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
1957 					    &closure);
1958 
1959 	return closure.modes;
1960 }
1961 
1962 static int
1963 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
1964 {
1965 	int i, j, m, modes = 0;
1966 	struct drm_display_mode *mode;
1967 	u8 *est = ((u8 *)timing) + 5;
1968 
1969 	for (i = 0; i < 6; i++) {
1970 		for (j = 7; j > 0; j--) {
1971 			m = (i * 8) + (7 - j);
1972 			if (m >= ARRAY_SIZE(est3_modes))
1973 				break;
1974 			if (est[i] & (1 << j)) {
1975 				mode = drm_mode_find_dmt(connector->dev,
1976 							 est3_modes[m].w,
1977 							 est3_modes[m].h,
1978 							 est3_modes[m].r,
1979 							 est3_modes[m].rb);
1980 				if (mode) {
1981 					drm_mode_probed_add(connector, mode);
1982 					modes++;
1983 				}
1984 			}
1985 		}
1986 	}
1987 
1988 	return modes;
1989 }
1990 
1991 static void
1992 do_established_modes(struct detailed_timing *timing, void *c)
1993 {
1994 	struct detailed_mode_closure *closure = c;
1995 	struct detailed_non_pixel *data = &timing->data.other_data;
1996 
1997 	if (data->type == EDID_DETAIL_EST_TIMINGS)
1998 		closure->modes += drm_est3_modes(closure->connector, timing);
1999 }
2000 
2001 /**
2002  * add_established_modes - get est. modes from EDID and add them
2003  * @edid: EDID block to scan
2004  *
2005  * Each EDID block contains a bitmap of the supported "established modes" list
2006  * (defined above).  Tease them out and add them to the global modes list.
2007  */
2008 static int
2009 add_established_modes(struct drm_connector *connector, struct edid *edid)
2010 {
2011 	struct drm_device *dev = connector->dev;
2012 	unsigned long est_bits = edid->established_timings.t1 |
2013 		(edid->established_timings.t2 << 8) |
2014 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
2015 	int i, modes = 0;
2016 	struct detailed_mode_closure closure = {
2017 		connector, edid, 0, 0, 0
2018 	};
2019 
2020 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2021 		if (est_bits & (1<<i)) {
2022 			struct drm_display_mode *newmode;
2023 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2024 			if (newmode) {
2025 				drm_mode_probed_add(connector, newmode);
2026 				modes++;
2027 			}
2028 		}
2029 	}
2030 
2031 	if (version_greater(edid, 1, 0))
2032 		    drm_for_each_detailed_block((u8 *)edid,
2033 						do_established_modes, &closure);
2034 
2035 	return modes + closure.modes;
2036 }
2037 
2038 static void
2039 do_standard_modes(struct detailed_timing *timing, void *c)
2040 {
2041 	struct detailed_mode_closure *closure = c;
2042 	struct detailed_non_pixel *data = &timing->data.other_data;
2043 	struct drm_connector *connector = closure->connector;
2044 	struct edid *edid = closure->edid;
2045 
2046 	if (data->type == EDID_DETAIL_STD_MODES) {
2047 		int i;
2048 		for (i = 0; i < 6; i++) {
2049 			struct std_timing *std;
2050 			struct drm_display_mode *newmode;
2051 
2052 			std = &data->data.timings[i];
2053 			newmode = drm_mode_std(connector, edid, std,
2054 					       edid->revision);
2055 			if (newmode) {
2056 				drm_mode_probed_add(connector, newmode);
2057 				closure->modes++;
2058 			}
2059 		}
2060 	}
2061 }
2062 
2063 /**
2064  * add_standard_modes - get std. modes from EDID and add them
2065  * @edid: EDID block to scan
2066  *
2067  * Standard modes can be calculated using the appropriate standard (DMT,
2068  * GTF or CVT. Grab them from @edid and add them to the list.
2069  */
2070 static int
2071 add_standard_modes(struct drm_connector *connector, struct edid *edid)
2072 {
2073 	int i, modes = 0;
2074 	struct detailed_mode_closure closure = {
2075 		connector, edid, 0, 0, 0
2076 	};
2077 
2078 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
2079 		struct drm_display_mode *newmode;
2080 
2081 		newmode = drm_mode_std(connector, edid,
2082 				       &edid->standard_timings[i],
2083 				       edid->revision);
2084 		if (newmode) {
2085 			drm_mode_probed_add(connector, newmode);
2086 			modes++;
2087 		}
2088 	}
2089 
2090 	if (version_greater(edid, 1, 0))
2091 		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2092 					    &closure);
2093 
2094 	/* XXX should also look for standard codes in VTB blocks */
2095 
2096 	return modes + closure.modes;
2097 }
2098 
2099 static int drm_cvt_modes(struct drm_connector *connector,
2100 			 struct detailed_timing *timing)
2101 {
2102 	int i, j, modes = 0;
2103 	struct drm_display_mode *newmode;
2104 	struct drm_device *dev = connector->dev;
2105 	struct cvt_timing *cvt;
2106 	const int rates[] = { 60, 85, 75, 60, 50 };
2107 	const u8 empty[3] = { 0, 0, 0 };
2108 
2109 	for (i = 0; i < 4; i++) {
2110 		int uninitialized_var(width), height;
2111 		cvt = &(timing->data.other_data.data.cvt[i]);
2112 
2113 		if (!memcmp(cvt->code, empty, 3))
2114 			continue;
2115 
2116 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2117 		switch (cvt->code[1] & 0x0c) {
2118 		case 0x00:
2119 			width = height * 4 / 3;
2120 			break;
2121 		case 0x04:
2122 			width = height * 16 / 9;
2123 			break;
2124 		case 0x08:
2125 			width = height * 16 / 10;
2126 			break;
2127 		case 0x0c:
2128 			width = height * 15 / 9;
2129 			break;
2130 		}
2131 
2132 		for (j = 1; j < 5; j++) {
2133 			if (cvt->code[2] & (1 << j)) {
2134 				newmode = drm_cvt_mode(dev, width, height,
2135 						       rates[j], j == 0,
2136 						       false, false);
2137 				if (newmode) {
2138 					drm_mode_probed_add(connector, newmode);
2139 					modes++;
2140 				}
2141 			}
2142 		}
2143 	}
2144 
2145 	return modes;
2146 }
2147 
2148 static void
2149 do_cvt_mode(struct detailed_timing *timing, void *c)
2150 {
2151 	struct detailed_mode_closure *closure = c;
2152 	struct detailed_non_pixel *data = &timing->data.other_data;
2153 
2154 	if (data->type == EDID_DETAIL_CVT_3BYTE)
2155 		closure->modes += drm_cvt_modes(closure->connector, timing);
2156 }
2157 
2158 static int
2159 add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2160 {
2161 	struct detailed_mode_closure closure = {
2162 		connector, edid, 0, 0, 0
2163 	};
2164 
2165 	if (version_greater(edid, 1, 2))
2166 		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2167 
2168 	/* XXX should also look for CVT codes in VTB blocks */
2169 
2170 	return closure.modes;
2171 }
2172 
2173 static void
2174 do_detailed_mode(struct detailed_timing *timing, void *c)
2175 {
2176 	struct detailed_mode_closure *closure = c;
2177 	struct drm_display_mode *newmode;
2178 
2179 	if (timing->pixel_clock) {
2180 		newmode = drm_mode_detailed(closure->connector->dev,
2181 					    closure->edid, timing,
2182 					    closure->quirks);
2183 		if (!newmode)
2184 			return;
2185 
2186 		if (closure->preferred)
2187 			newmode->type |= DRM_MODE_TYPE_PREFERRED;
2188 
2189 		drm_mode_probed_add(closure->connector, newmode);
2190 		closure->modes++;
2191 		closure->preferred = 0;
2192 	}
2193 }
2194 
2195 /*
2196  * add_detailed_modes - Add modes from detailed timings
2197  * @connector: attached connector
2198  * @edid: EDID block to scan
2199  * @quirks: quirks to apply
2200  */
2201 static int
2202 add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2203 		   u32 quirks)
2204 {
2205 	struct detailed_mode_closure closure = {
2206 		connector,
2207 		edid,
2208 		1,
2209 		quirks,
2210 		0
2211 	};
2212 
2213 	if (closure.preferred && !version_greater(edid, 1, 3))
2214 		closure.preferred =
2215 		    (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2216 
2217 	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2218 
2219 	return closure.modes;
2220 }
2221 
2222 #define HDMI_IDENTIFIER 0x000C03
2223 #define AUDIO_BLOCK	0x01
2224 #define VIDEO_BLOCK     0x02
2225 #define VENDOR_BLOCK    0x03
2226 #define SPEAKER_BLOCK	0x04
2227 #define VIDEO_CAPABILITY_BLOCK	0x07
2228 #define EDID_BASIC_AUDIO	(1 << 6)
2229 #define EDID_CEA_YCRCB444	(1 << 5)
2230 #define EDID_CEA_YCRCB422	(1 << 4)
2231 #define EDID_CEA_VCDB_QS	(1 << 6)
2232 
2233 /**
2234  * Search EDID for CEA extension block.
2235  */
2236 u8 *drm_find_cea_extension(struct edid *edid)
2237 {
2238 	u8 *edid_ext = NULL;
2239 	int i;
2240 
2241 	/* No EDID or EDID extensions */
2242 	if (edid == NULL || edid->extensions == 0)
2243 		return NULL;
2244 
2245 	/* Find CEA extension */
2246 	for (i = 0; i < edid->extensions; i++) {
2247 		edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2248 		if (edid_ext[0] == CEA_EXT)
2249 			break;
2250 	}
2251 
2252 	if (i == edid->extensions)
2253 		return NULL;
2254 
2255 	return edid_ext;
2256 }
2257 EXPORT_SYMBOL(drm_find_cea_extension);
2258 
2259 /**
2260  * drm_match_cea_mode - look for a CEA mode matching given mode
2261  * @to_match: display mode
2262  *
2263  * Returns the CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2264  * mode.
2265  */
2266 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2267 {
2268 	struct drm_display_mode *cea_mode;
2269 	u8 mode;
2270 
2271 	for (mode = 0; mode < ARRAY_SIZE(edid_cea_modes); mode++) {
2272 		cea_mode = (struct drm_display_mode *)&edid_cea_modes[mode];
2273 
2274 		if (drm_mode_equal(to_match, cea_mode))
2275 			return mode + 1;
2276 	}
2277 	return 0;
2278 }
2279 EXPORT_SYMBOL(drm_match_cea_mode);
2280 
2281 
2282 static int
2283 do_cea_modes (struct drm_connector *connector, u8 *db, u8 len)
2284 {
2285 	struct drm_device *dev = connector->dev;
2286 	u8 * mode, cea_mode;
2287 	int modes = 0;
2288 
2289 	for (mode = db; mode < db + len; mode++) {
2290 		cea_mode = (*mode & 127) - 1; /* CEA modes are numbered 1..127 */
2291 		if (cea_mode < ARRAY_SIZE(edid_cea_modes)) {
2292 			struct drm_display_mode *newmode;
2293 			newmode = drm_mode_duplicate(dev,
2294 						     &edid_cea_modes[cea_mode]);
2295 			if (newmode) {
2296 				drm_mode_probed_add(connector, newmode);
2297 				modes++;
2298 			}
2299 		}
2300 	}
2301 
2302 	return modes;
2303 }
2304 
2305 static int
2306 cea_db_payload_len(const u8 *db)
2307 {
2308 	return db[0] & 0x1f;
2309 }
2310 
2311 static int
2312 cea_db_tag(const u8 *db)
2313 {
2314 	return db[0] >> 5;
2315 }
2316 
2317 static int
2318 cea_revision(const u8 *cea)
2319 {
2320 	return cea[1];
2321 }
2322 
2323 static int
2324 cea_db_offsets(const u8 *cea, int *start, int *end)
2325 {
2326 	/* Data block offset in CEA extension block */
2327 	*start = 4;
2328 	*end = cea[2];
2329 	if (*end == 0)
2330 		*end = 127;
2331 	if (*end < 4 || *end > 127)
2332 		return -ERANGE;
2333 	return 0;
2334 }
2335 
2336 #define for_each_cea_db(cea, i, start, end) \
2337 	for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
2338 
2339 static int
2340 add_cea_modes(struct drm_connector *connector, struct edid *edid)
2341 {
2342 	u8 * cea = drm_find_cea_extension(edid);
2343 	u8 * db, dbl;
2344 	int modes = 0;
2345 
2346 	if (cea && cea_revision(cea) >= 3) {
2347 		int i, start, end;
2348 
2349 		if (cea_db_offsets(cea, &start, &end))
2350 			return 0;
2351 
2352 		for_each_cea_db(cea, i, start, end) {
2353 			db = &cea[i];
2354 			dbl = cea_db_payload_len(db);
2355 
2356 			if (cea_db_tag(db) == VIDEO_BLOCK)
2357 				modes += do_cea_modes (connector, db+1, dbl);
2358 		}
2359 	}
2360 
2361 	return modes;
2362 }
2363 
2364 static void
2365 parse_hdmi_vsdb(struct drm_connector *connector, const u8 *db)
2366 {
2367 	u8 len = cea_db_payload_len(db);
2368 
2369 	if (len >= 6) {
2370 		connector->eld[5] |= (db[6] >> 7) << 1;  /* Supports_AI */
2371 		connector->dvi_dual = db[6] & 1;
2372 	}
2373 	if (len >= 7)
2374 		connector->max_tmds_clock = db[7] * 5;
2375 	if (len >= 8) {
2376 		connector->latency_present[0] = db[8] >> 7;
2377 		connector->latency_present[1] = (db[8] >> 6) & 1;
2378 	}
2379 	if (len >= 9)
2380 		connector->video_latency[0] = db[9];
2381 	if (len >= 10)
2382 		connector->audio_latency[0] = db[10];
2383 	if (len >= 11)
2384 		connector->video_latency[1] = db[11];
2385 	if (len >= 12)
2386 		connector->audio_latency[1] = db[12];
2387 
2388 	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
2389 		    "max TMDS clock %d, "
2390 		    "latency present %d %d, "
2391 		    "video latency %d %d, "
2392 		    "audio latency %d %d\n",
2393 		    connector->dvi_dual,
2394 		    connector->max_tmds_clock,
2395 	      (int) connector->latency_present[0],
2396 	      (int) connector->latency_present[1],
2397 		    connector->video_latency[0],
2398 		    connector->video_latency[1],
2399 		    connector->audio_latency[0],
2400 		    connector->audio_latency[1]);
2401 }
2402 
2403 static void
2404 monitor_name(struct detailed_timing *t, void *data)
2405 {
2406 	if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
2407 		*(u8 **)data = t->data.other_data.data.str.str;
2408 }
2409 
2410 static bool cea_db_is_hdmi_vsdb(const u8 *db)
2411 {
2412 	int hdmi_id;
2413 
2414 	if (cea_db_tag(db) != VENDOR_BLOCK)
2415 		return false;
2416 
2417 	if (cea_db_payload_len(db) < 5)
2418 		return false;
2419 
2420 	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
2421 
2422 	return hdmi_id == HDMI_IDENTIFIER;
2423 }
2424 
2425 /**
2426  * drm_edid_to_eld - build ELD from EDID
2427  * @connector: connector corresponding to the HDMI/DP sink
2428  * @edid: EDID to parse
2429  *
2430  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver.
2431  * Some ELD fields are left to the graphics driver caller:
2432  * - Conn_Type
2433  * - HDCP
2434  * - Port_ID
2435  */
2436 void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
2437 {
2438 	uint8_t *eld = connector->eld;
2439 	u8 *cea;
2440 	u8 *name;
2441 	u8 *db;
2442 	int sad_count = 0;
2443 	int mnl;
2444 	int dbl;
2445 
2446 	memset(eld, 0, sizeof(connector->eld));
2447 
2448 	cea = drm_find_cea_extension(edid);
2449 	if (!cea) {
2450 		DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
2451 		return;
2452 	}
2453 
2454 	name = NULL;
2455 	drm_for_each_detailed_block((u8 *)edid, monitor_name, &name);
2456 	for (mnl = 0; name && mnl < 13; mnl++) {
2457 		if (name[mnl] == 0x0a)
2458 			break;
2459 		eld[20 + mnl] = name[mnl];
2460 	}
2461 	eld[4] = (cea[1] << 5) | mnl;
2462 	DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
2463 
2464 	eld[0] = 2 << 3;		/* ELD version: 2 */
2465 
2466 	eld[16] = edid->mfg_id[0];
2467 	eld[17] = edid->mfg_id[1];
2468 	eld[18] = edid->prod_code[0];
2469 	eld[19] = edid->prod_code[1];
2470 
2471 	if (cea_revision(cea) >= 3) {
2472 		int i, start, end;
2473 
2474 		if (cea_db_offsets(cea, &start, &end)) {
2475 			start = 0;
2476 			end = 0;
2477 		}
2478 
2479 		for_each_cea_db(cea, i, start, end) {
2480 			db = &cea[i];
2481 			dbl = cea_db_payload_len(db);
2482 
2483 			switch (cea_db_tag(db)) {
2484 			case AUDIO_BLOCK:
2485 				/* Audio Data Block, contains SADs */
2486 				sad_count = dbl / 3;
2487 				if (dbl >= 1)
2488 					memcpy(eld + 20 + mnl, &db[1], dbl);
2489 				break;
2490 			case SPEAKER_BLOCK:
2491 				/* Speaker Allocation Data Block */
2492 				if (dbl >= 1)
2493 					eld[7] = db[1];
2494 				break;
2495 			case VENDOR_BLOCK:
2496 				/* HDMI Vendor-Specific Data Block */
2497 				if (cea_db_is_hdmi_vsdb(db))
2498 					parse_hdmi_vsdb(connector, db);
2499 				break;
2500 			default:
2501 				break;
2502 			}
2503 		}
2504 	}
2505 	eld[5] |= sad_count << 4;
2506 	eld[2] = (20 + mnl + sad_count * 3 + 3) / 4;
2507 
2508 	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n", (int)eld[2], sad_count);
2509 }
2510 EXPORT_SYMBOL(drm_edid_to_eld);
2511 
2512 /**
2513  * drm_av_sync_delay - HDMI/DP sink audio-video sync delay in millisecond
2514  * @connector: connector associated with the HDMI/DP sink
2515  * @mode: the display mode
2516  */
2517 int drm_av_sync_delay(struct drm_connector *connector,
2518 		      struct drm_display_mode *mode)
2519 {
2520 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
2521 	int a, v;
2522 
2523 	if (!connector->latency_present[0])
2524 		return 0;
2525 	if (!connector->latency_present[1])
2526 		i = 0;
2527 
2528 	a = connector->audio_latency[i];
2529 	v = connector->video_latency[i];
2530 
2531 	/*
2532 	 * HDMI/DP sink doesn't support audio or video?
2533 	 */
2534 	if (a == 255 || v == 255)
2535 		return 0;
2536 
2537 	/*
2538 	 * Convert raw EDID values to millisecond.
2539 	 * Treat unknown latency as 0ms.
2540 	 */
2541 	if (a)
2542 		a = min(2 * (a - 1), 500);
2543 	if (v)
2544 		v = min(2 * (v - 1), 500);
2545 
2546 	return max(v - a, 0);
2547 }
2548 EXPORT_SYMBOL(drm_av_sync_delay);
2549 
2550 /**
2551  * drm_select_eld - select one ELD from multiple HDMI/DP sinks
2552  * @encoder: the encoder just changed display mode
2553  * @mode: the adjusted display mode
2554  *
2555  * It's possible for one encoder to be associated with multiple HDMI/DP sinks.
2556  * The policy is now hard coded to simply use the first HDMI/DP sink's ELD.
2557  */
2558 struct drm_connector *drm_select_eld(struct drm_encoder *encoder,
2559 				     struct drm_display_mode *mode)
2560 {
2561 	struct drm_connector *connector;
2562 	struct drm_device *dev = encoder->dev;
2563 
2564 	list_for_each_entry(connector, &dev->mode_config.connector_list, head)
2565 		if (connector->encoder == encoder && connector->eld[0])
2566 			return connector;
2567 
2568 	return NULL;
2569 }
2570 EXPORT_SYMBOL(drm_select_eld);
2571 
2572 /**
2573  * drm_detect_hdmi_monitor - detect whether monitor is hdmi.
2574  * @edid: monitor EDID information
2575  *
2576  * Parse the CEA extension according to CEA-861-B.
2577  * Return true if HDMI, false if not or unknown.
2578  */
2579 bool drm_detect_hdmi_monitor(struct edid *edid)
2580 {
2581 	u8 *edid_ext;
2582 	int i;
2583 	int start_offset, end_offset;
2584 
2585 	edid_ext = drm_find_cea_extension(edid);
2586 	if (!edid_ext)
2587 		return false;
2588 
2589 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
2590 		return false;
2591 
2592 	/*
2593 	 * Because HDMI identifier is in Vendor Specific Block,
2594 	 * search it from all data blocks of CEA extension.
2595 	 */
2596 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
2597 		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
2598 			return true;
2599 	}
2600 
2601 	return false;
2602 }
2603 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
2604 
2605 /**
2606  * drm_detect_monitor_audio - check monitor audio capability
2607  *
2608  * Monitor should have CEA extension block.
2609  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
2610  * audio' only. If there is any audio extension block and supported
2611  * audio format, assume at least 'basic audio' support, even if 'basic
2612  * audio' is not defined in EDID.
2613  *
2614  */
2615 bool drm_detect_monitor_audio(struct edid *edid)
2616 {
2617 	u8 *edid_ext;
2618 	int i, j;
2619 	bool has_audio = false;
2620 	int start_offset, end_offset;
2621 
2622 	edid_ext = drm_find_cea_extension(edid);
2623 	if (!edid_ext)
2624 		goto end;
2625 
2626 	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
2627 
2628 	if (has_audio) {
2629 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
2630 		goto end;
2631 	}
2632 
2633 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
2634 		goto end;
2635 
2636 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
2637 		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
2638 			has_audio = true;
2639 			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
2640 				DRM_DEBUG_KMS("CEA audio format %d\n",
2641 					      (edid_ext[i + j] >> 3) & 0xf);
2642 			goto end;
2643 		}
2644 	}
2645 end:
2646 	return has_audio;
2647 }
2648 EXPORT_SYMBOL(drm_detect_monitor_audio);
2649 
2650 /**
2651  * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
2652  *
2653  * Check whether the monitor reports the RGB quantization range selection
2654  * as supported. The AVI infoframe can then be used to inform the monitor
2655  * which quantization range (full or limited) is used.
2656  */
2657 bool drm_rgb_quant_range_selectable(struct edid *edid)
2658 {
2659 	u8 *edid_ext;
2660 	int i, start, end;
2661 
2662 	edid_ext = drm_find_cea_extension(edid);
2663 	if (!edid_ext)
2664 		return false;
2665 
2666 	if (cea_db_offsets(edid_ext, &start, &end))
2667 		return false;
2668 
2669 	for_each_cea_db(edid_ext, i, start, end) {
2670 		if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
2671 		    cea_db_payload_len(&edid_ext[i]) == 2) {
2672 			DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
2673 			return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
2674 		}
2675 	}
2676 
2677 	return false;
2678 }
2679 EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
2680 
2681 /**
2682  * drm_add_display_info - pull display info out if present
2683  * @edid: EDID data
2684  * @info: display info (attached to connector)
2685  *
2686  * Grab any available display info and stuff it into the drm_display_info
2687  * structure that's part of the connector.  Useful for tracking bpp and
2688  * color spaces.
2689  */
2690 static void drm_add_display_info(struct edid *edid,
2691 				 struct drm_display_info *info)
2692 {
2693 	u8 *edid_ext;
2694 
2695 	info->width_mm = edid->width_cm * 10;
2696 	info->height_mm = edid->height_cm * 10;
2697 
2698 	/* driver figures it out in this case */
2699 	info->bpc = 0;
2700 	info->color_formats = 0;
2701 
2702 	if (edid->revision < 3)
2703 		return;
2704 
2705 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
2706 		return;
2707 
2708 	/* Get data from CEA blocks if present */
2709 	edid_ext = drm_find_cea_extension(edid);
2710 	if (edid_ext) {
2711 		info->cea_rev = edid_ext[1];
2712 
2713 		/* The existence of a CEA block should imply RGB support */
2714 		info->color_formats = DRM_COLOR_FORMAT_RGB444;
2715 		if (edid_ext[3] & EDID_CEA_YCRCB444)
2716 			info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
2717 		if (edid_ext[3] & EDID_CEA_YCRCB422)
2718 			info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
2719 	}
2720 
2721 	/* Only defined for 1.4 with digital displays */
2722 	if (edid->revision < 4)
2723 		return;
2724 
2725 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
2726 	case DRM_EDID_DIGITAL_DEPTH_6:
2727 		info->bpc = 6;
2728 		break;
2729 	case DRM_EDID_DIGITAL_DEPTH_8:
2730 		info->bpc = 8;
2731 		break;
2732 	case DRM_EDID_DIGITAL_DEPTH_10:
2733 		info->bpc = 10;
2734 		break;
2735 	case DRM_EDID_DIGITAL_DEPTH_12:
2736 		info->bpc = 12;
2737 		break;
2738 	case DRM_EDID_DIGITAL_DEPTH_14:
2739 		info->bpc = 14;
2740 		break;
2741 	case DRM_EDID_DIGITAL_DEPTH_16:
2742 		info->bpc = 16;
2743 		break;
2744 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
2745 	default:
2746 		info->bpc = 0;
2747 		break;
2748 	}
2749 
2750 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
2751 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
2752 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
2753 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
2754 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
2755 }
2756 
2757 /**
2758  * drm_add_edid_modes - add modes from EDID data, if available
2759  * @connector: connector we're probing
2760  * @edid: edid data
2761  *
2762  * Add the specified modes to the connector's mode list.
2763  *
2764  * Return number of modes added or 0 if we couldn't find any.
2765  */
2766 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
2767 {
2768 	int num_modes = 0;
2769 	u32 quirks;
2770 
2771 	if (edid == NULL) {
2772 		return 0;
2773 	}
2774 	if (!drm_edid_is_valid(edid)) {
2775 		dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
2776 			 drm_get_connector_name(connector));
2777 		return 0;
2778 	}
2779 
2780 	quirks = edid_get_quirks(edid);
2781 
2782 	/*
2783 	 * EDID spec says modes should be preferred in this order:
2784 	 * - preferred detailed mode
2785 	 * - other detailed modes from base block
2786 	 * - detailed modes from extension blocks
2787 	 * - CVT 3-byte code modes
2788 	 * - standard timing codes
2789 	 * - established timing codes
2790 	 * - modes inferred from GTF or CVT range information
2791 	 *
2792 	 * We get this pretty much right.
2793 	 *
2794 	 * XXX order for additional mode types in extension blocks?
2795 	 */
2796 	num_modes += add_detailed_modes(connector, edid, quirks);
2797 	num_modes += add_cvt_modes(connector, edid);
2798 	num_modes += add_standard_modes(connector, edid);
2799 	num_modes += add_established_modes(connector, edid);
2800 	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
2801 		num_modes += add_inferred_modes(connector, edid);
2802 	num_modes += add_cea_modes(connector, edid);
2803 
2804 	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
2805 		edid_fixup_preferred(connector, quirks);
2806 
2807 	drm_add_display_info(edid, &connector->display_info);
2808 
2809 	return num_modes;
2810 }
2811 EXPORT_SYMBOL(drm_add_edid_modes);
2812 
2813 /**
2814  * drm_add_modes_noedid - add modes for the connectors without EDID
2815  * @connector: connector we're probing
2816  * @hdisplay: the horizontal display limit
2817  * @vdisplay: the vertical display limit
2818  *
2819  * Add the specified modes to the connector's mode list. Only when the
2820  * hdisplay/vdisplay is not beyond the given limit, it will be added.
2821  *
2822  * Return number of modes added or 0 if we couldn't find any.
2823  */
2824 int drm_add_modes_noedid(struct drm_connector *connector,
2825 			int hdisplay, int vdisplay)
2826 {
2827 	int i, count, num_modes = 0;
2828 	struct drm_display_mode *mode;
2829 	struct drm_device *dev = connector->dev;
2830 
2831 	count = sizeof(drm_dmt_modes) / sizeof(struct drm_display_mode);
2832 	if (hdisplay < 0)
2833 		hdisplay = 0;
2834 	if (vdisplay < 0)
2835 		vdisplay = 0;
2836 
2837 	for (i = 0; i < count; i++) {
2838 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2839 		if (hdisplay && vdisplay) {
2840 			/*
2841 			 * Only when two are valid, they will be used to check
2842 			 * whether the mode should be added to the mode list of
2843 			 * the connector.
2844 			 */
2845 			if (ptr->hdisplay > hdisplay ||
2846 					ptr->vdisplay > vdisplay)
2847 				continue;
2848 		}
2849 		if (drm_mode_vrefresh(ptr) > 61)
2850 			continue;
2851 		mode = drm_mode_duplicate(dev, ptr);
2852 		if (mode) {
2853 			drm_mode_probed_add(connector, mode);
2854 			num_modes++;
2855 		}
2856 	}
2857 	return num_modes;
2858 }
2859 EXPORT_SYMBOL(drm_add_modes_noedid);
2860 
2861 /**
2862  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
2863  *                                              data from a DRM display mode
2864  * @frame: HDMI AVI infoframe
2865  * @mode: DRM display mode
2866  *
2867  * Returns 0 on success or a negative error code on failure.
2868  */
2869 int
2870 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
2871 					 const struct drm_display_mode *mode)
2872 {
2873 	int err;
2874 
2875 	if (!frame || !mode)
2876 		return -EINVAL;
2877 
2878 	err = hdmi_avi_infoframe_init(frame);
2879 	if (err < 0)
2880 		return err;
2881 
2882 	frame->video_code = drm_match_cea_mode(mode);
2883 	if (!frame->video_code)
2884 		return 0;
2885 
2886 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
2887 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
2888 
2889 	return 0;
2890 }
2891 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
2892