xref: /openbmc/linux/drivers/gpu/drm/drm_edid.c (revision 9376ff9b)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/module.h>
35 #include <linux/vga_switcheroo.h>
36 #include <drm/drmP.h>
37 #include <drm/drm_edid.h>
38 #include <drm/drm_encoder.h>
39 #include <drm/drm_displayid.h>
40 #include <drm/drm_scdc_helper.h>
41 
42 #include "drm_crtc_internal.h"
43 
44 #define version_greater(edid, maj, min) \
45 	(((edid)->version > (maj)) || \
46 	 ((edid)->version == (maj) && (edid)->revision > (min)))
47 
48 #define EDID_EST_TIMINGS 16
49 #define EDID_STD_TIMINGS 8
50 #define EDID_DETAILED_TIMINGS 4
51 
52 /*
53  * EDID blocks out in the wild have a variety of bugs, try to collect
54  * them here (note that userspace may work around broken monitors first,
55  * but fixes should make their way here so that the kernel "just works"
56  * on as many displays as possible).
57  */
58 
59 /* First detailed mode wrong, use largest 60Hz mode */
60 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
61 /* Reported 135MHz pixel clock is too high, needs adjustment */
62 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
63 /* Prefer the largest mode at 75 Hz */
64 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
65 /* Detail timing is in cm not mm */
66 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
67 /* Detailed timing descriptors have bogus size values, so just take the
68  * maximum size and use that.
69  */
70 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
71 /* Monitor forgot to set the first detailed is preferred bit. */
72 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED	(1 << 5)
73 /* use +hsync +vsync for detailed mode */
74 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
75 /* Force reduced-blanking timings for detailed modes */
76 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
77 /* Force 8bpc */
78 #define EDID_QUIRK_FORCE_8BPC			(1 << 8)
79 /* Force 12bpc */
80 #define EDID_QUIRK_FORCE_12BPC			(1 << 9)
81 /* Force 6bpc */
82 #define EDID_QUIRK_FORCE_6BPC			(1 << 10)
83 /* Force 10bpc */
84 #define EDID_QUIRK_FORCE_10BPC			(1 << 11)
85 /* Non desktop display (i.e. HMD) */
86 #define EDID_QUIRK_NON_DESKTOP			(1 << 12)
87 
88 struct detailed_mode_closure {
89 	struct drm_connector *connector;
90 	struct edid *edid;
91 	bool preferred;
92 	u32 quirks;
93 	int modes;
94 };
95 
96 #define LEVEL_DMT	0
97 #define LEVEL_GTF	1
98 #define LEVEL_GTF2	2
99 #define LEVEL_CVT	3
100 
101 static const struct edid_quirk {
102 	char vendor[4];
103 	int product_id;
104 	u32 quirks;
105 } edid_quirk_list[] = {
106 	/* Acer AL1706 */
107 	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
108 	/* Acer F51 */
109 	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
110 	/* Unknown Acer */
111 	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
112 
113 	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
114 	{ "AEO", 0, EDID_QUIRK_FORCE_6BPC },
115 
116 	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
117 	{ "CPT", 0x17df, EDID_QUIRK_FORCE_6BPC },
118 
119 	/* Belinea 10 15 55 */
120 	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
121 	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
122 
123 	/* Envision Peripherals, Inc. EN-7100e */
124 	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
125 	/* Envision EN2028 */
126 	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
127 
128 	/* Funai Electronics PM36B */
129 	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
130 	  EDID_QUIRK_DETAILED_IN_CM },
131 
132 	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
133 	{ "LGD", 764, EDID_QUIRK_FORCE_10BPC },
134 
135 	/* LG Philips LCD LP154W01-A5 */
136 	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
137 	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
138 
139 	/* Philips 107p5 CRT */
140 	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
141 
142 	/* Proview AY765C */
143 	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
144 
145 	/* Samsung SyncMaster 205BW.  Note: irony */
146 	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
147 	/* Samsung SyncMaster 22[5-6]BW */
148 	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
149 	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
150 
151 	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
152 	{ "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
153 
154 	/* ViewSonic VA2026w */
155 	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
156 
157 	/* Medion MD 30217 PG */
158 	{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
159 
160 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
161 	{ "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
162 
163 	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
164 	{ "ETR", 13896, EDID_QUIRK_FORCE_8BPC },
165 
166 	/* HTC Vive VR Headset */
167 	{ "HVR", 0xaa01, EDID_QUIRK_NON_DESKTOP },
168 
169 	/* Oculus Rift DK1, DK2, and CV1 VR Headsets */
170 	{ "OVR", 0x0001, EDID_QUIRK_NON_DESKTOP },
171 	{ "OVR", 0x0003, EDID_QUIRK_NON_DESKTOP },
172 	{ "OVR", 0x0004, EDID_QUIRK_NON_DESKTOP },
173 
174 	/* Windows Mixed Reality Headsets */
175 	{ "ACR", 0x7fce, EDID_QUIRK_NON_DESKTOP },
176 	{ "HPN", 0x3515, EDID_QUIRK_NON_DESKTOP },
177 	{ "LEN", 0x0408, EDID_QUIRK_NON_DESKTOP },
178 	{ "LEN", 0xb800, EDID_QUIRK_NON_DESKTOP },
179 	{ "FUJ", 0x1970, EDID_QUIRK_NON_DESKTOP },
180 	{ "DEL", 0x7fce, EDID_QUIRK_NON_DESKTOP },
181 	{ "SEC", 0x144a, EDID_QUIRK_NON_DESKTOP },
182 	{ "AUS", 0xc102, EDID_QUIRK_NON_DESKTOP },
183 
184 	/* Sony PlayStation VR Headset */
185 	{ "SNY", 0x0704, EDID_QUIRK_NON_DESKTOP },
186 };
187 
188 /*
189  * Autogenerated from the DMT spec.
190  * This table is copied from xfree86/modes/xf86EdidModes.c.
191  */
192 static const struct drm_display_mode drm_dmt_modes[] = {
193 	/* 0x01 - 640x350@85Hz */
194 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
195 		   736, 832, 0, 350, 382, 385, 445, 0,
196 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
197 	/* 0x02 - 640x400@85Hz */
198 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
199 		   736, 832, 0, 400, 401, 404, 445, 0,
200 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
201 	/* 0x03 - 720x400@85Hz */
202 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
203 		   828, 936, 0, 400, 401, 404, 446, 0,
204 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
205 	/* 0x04 - 640x480@60Hz */
206 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
207 		   752, 800, 0, 480, 490, 492, 525, 0,
208 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
209 	/* 0x05 - 640x480@72Hz */
210 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
211 		   704, 832, 0, 480, 489, 492, 520, 0,
212 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
213 	/* 0x06 - 640x480@75Hz */
214 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
215 		   720, 840, 0, 480, 481, 484, 500, 0,
216 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
217 	/* 0x07 - 640x480@85Hz */
218 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
219 		   752, 832, 0, 480, 481, 484, 509, 0,
220 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
221 	/* 0x08 - 800x600@56Hz */
222 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
223 		   896, 1024, 0, 600, 601, 603, 625, 0,
224 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
225 	/* 0x09 - 800x600@60Hz */
226 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
227 		   968, 1056, 0, 600, 601, 605, 628, 0,
228 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
229 	/* 0x0a - 800x600@72Hz */
230 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
231 		   976, 1040, 0, 600, 637, 643, 666, 0,
232 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
233 	/* 0x0b - 800x600@75Hz */
234 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
235 		   896, 1056, 0, 600, 601, 604, 625, 0,
236 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
237 	/* 0x0c - 800x600@85Hz */
238 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
239 		   896, 1048, 0, 600, 601, 604, 631, 0,
240 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
241 	/* 0x0d - 800x600@120Hz RB */
242 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
243 		   880, 960, 0, 600, 603, 607, 636, 0,
244 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
245 	/* 0x0e - 848x480@60Hz */
246 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
247 		   976, 1088, 0, 480, 486, 494, 517, 0,
248 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
249 	/* 0x0f - 1024x768@43Hz, interlace */
250 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
251 		   1208, 1264, 0, 768, 768, 776, 817, 0,
252 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
253 		   DRM_MODE_FLAG_INTERLACE) },
254 	/* 0x10 - 1024x768@60Hz */
255 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
256 		   1184, 1344, 0, 768, 771, 777, 806, 0,
257 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
258 	/* 0x11 - 1024x768@70Hz */
259 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
260 		   1184, 1328, 0, 768, 771, 777, 806, 0,
261 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
262 	/* 0x12 - 1024x768@75Hz */
263 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
264 		   1136, 1312, 0, 768, 769, 772, 800, 0,
265 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
266 	/* 0x13 - 1024x768@85Hz */
267 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
268 		   1168, 1376, 0, 768, 769, 772, 808, 0,
269 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
270 	/* 0x14 - 1024x768@120Hz RB */
271 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
272 		   1104, 1184, 0, 768, 771, 775, 813, 0,
273 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
274 	/* 0x15 - 1152x864@75Hz */
275 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
276 		   1344, 1600, 0, 864, 865, 868, 900, 0,
277 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
278 	/* 0x55 - 1280x720@60Hz */
279 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
280 		   1430, 1650, 0, 720, 725, 730, 750, 0,
281 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
282 	/* 0x16 - 1280x768@60Hz RB */
283 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
284 		   1360, 1440, 0, 768, 771, 778, 790, 0,
285 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
286 	/* 0x17 - 1280x768@60Hz */
287 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
288 		   1472, 1664, 0, 768, 771, 778, 798, 0,
289 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
290 	/* 0x18 - 1280x768@75Hz */
291 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
292 		   1488, 1696, 0, 768, 771, 778, 805, 0,
293 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
294 	/* 0x19 - 1280x768@85Hz */
295 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
296 		   1496, 1712, 0, 768, 771, 778, 809, 0,
297 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
298 	/* 0x1a - 1280x768@120Hz RB */
299 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
300 		   1360, 1440, 0, 768, 771, 778, 813, 0,
301 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
302 	/* 0x1b - 1280x800@60Hz RB */
303 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
304 		   1360, 1440, 0, 800, 803, 809, 823, 0,
305 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
306 	/* 0x1c - 1280x800@60Hz */
307 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
308 		   1480, 1680, 0, 800, 803, 809, 831, 0,
309 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
310 	/* 0x1d - 1280x800@75Hz */
311 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
312 		   1488, 1696, 0, 800, 803, 809, 838, 0,
313 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
314 	/* 0x1e - 1280x800@85Hz */
315 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
316 		   1496, 1712, 0, 800, 803, 809, 843, 0,
317 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
318 	/* 0x1f - 1280x800@120Hz RB */
319 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
320 		   1360, 1440, 0, 800, 803, 809, 847, 0,
321 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
322 	/* 0x20 - 1280x960@60Hz */
323 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
324 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
325 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
326 	/* 0x21 - 1280x960@85Hz */
327 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
328 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
329 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
330 	/* 0x22 - 1280x960@120Hz RB */
331 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
332 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
333 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
334 	/* 0x23 - 1280x1024@60Hz */
335 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
336 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
337 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
338 	/* 0x24 - 1280x1024@75Hz */
339 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
340 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
341 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
342 	/* 0x25 - 1280x1024@85Hz */
343 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
344 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
345 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
346 	/* 0x26 - 1280x1024@120Hz RB */
347 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
348 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
349 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
350 	/* 0x27 - 1360x768@60Hz */
351 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
352 		   1536, 1792, 0, 768, 771, 777, 795, 0,
353 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
354 	/* 0x28 - 1360x768@120Hz RB */
355 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
356 		   1440, 1520, 0, 768, 771, 776, 813, 0,
357 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
358 	/* 0x51 - 1366x768@60Hz */
359 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
360 		   1579, 1792, 0, 768, 771, 774, 798, 0,
361 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
362 	/* 0x56 - 1366x768@60Hz */
363 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
364 		   1436, 1500, 0, 768, 769, 772, 800, 0,
365 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
366 	/* 0x29 - 1400x1050@60Hz RB */
367 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
368 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
369 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
370 	/* 0x2a - 1400x1050@60Hz */
371 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
372 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
373 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
374 	/* 0x2b - 1400x1050@75Hz */
375 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
376 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
377 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
378 	/* 0x2c - 1400x1050@85Hz */
379 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
380 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
381 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
382 	/* 0x2d - 1400x1050@120Hz RB */
383 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
384 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
385 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
386 	/* 0x2e - 1440x900@60Hz RB */
387 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
388 		   1520, 1600, 0, 900, 903, 909, 926, 0,
389 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
390 	/* 0x2f - 1440x900@60Hz */
391 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
392 		   1672, 1904, 0, 900, 903, 909, 934, 0,
393 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
394 	/* 0x30 - 1440x900@75Hz */
395 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
396 		   1688, 1936, 0, 900, 903, 909, 942, 0,
397 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
398 	/* 0x31 - 1440x900@85Hz */
399 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
400 		   1696, 1952, 0, 900, 903, 909, 948, 0,
401 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
402 	/* 0x32 - 1440x900@120Hz RB */
403 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
404 		   1520, 1600, 0, 900, 903, 909, 953, 0,
405 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
406 	/* 0x53 - 1600x900@60Hz */
407 	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
408 		   1704, 1800, 0, 900, 901, 904, 1000, 0,
409 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
410 	/* 0x33 - 1600x1200@60Hz */
411 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
412 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
413 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
414 	/* 0x34 - 1600x1200@65Hz */
415 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
416 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
417 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
418 	/* 0x35 - 1600x1200@70Hz */
419 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
420 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
421 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
422 	/* 0x36 - 1600x1200@75Hz */
423 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
424 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
425 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
426 	/* 0x37 - 1600x1200@85Hz */
427 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
428 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
429 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
430 	/* 0x38 - 1600x1200@120Hz RB */
431 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
432 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
433 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
434 	/* 0x39 - 1680x1050@60Hz RB */
435 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
436 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
437 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
438 	/* 0x3a - 1680x1050@60Hz */
439 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
440 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
441 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
442 	/* 0x3b - 1680x1050@75Hz */
443 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
444 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
445 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
446 	/* 0x3c - 1680x1050@85Hz */
447 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
448 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
449 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
450 	/* 0x3d - 1680x1050@120Hz RB */
451 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
452 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
453 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
454 	/* 0x3e - 1792x1344@60Hz */
455 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
456 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
457 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
458 	/* 0x3f - 1792x1344@75Hz */
459 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
460 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
461 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
462 	/* 0x40 - 1792x1344@120Hz RB */
463 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
464 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
465 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
466 	/* 0x41 - 1856x1392@60Hz */
467 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
468 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
469 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
470 	/* 0x42 - 1856x1392@75Hz */
471 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
472 		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
473 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
474 	/* 0x43 - 1856x1392@120Hz RB */
475 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
476 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
477 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
478 	/* 0x52 - 1920x1080@60Hz */
479 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
480 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
481 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
482 	/* 0x44 - 1920x1200@60Hz RB */
483 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
484 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
485 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
486 	/* 0x45 - 1920x1200@60Hz */
487 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
488 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
489 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
490 	/* 0x46 - 1920x1200@75Hz */
491 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
492 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
493 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
494 	/* 0x47 - 1920x1200@85Hz */
495 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
496 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
497 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
498 	/* 0x48 - 1920x1200@120Hz RB */
499 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
500 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
501 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
502 	/* 0x49 - 1920x1440@60Hz */
503 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
504 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
505 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
506 	/* 0x4a - 1920x1440@75Hz */
507 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
508 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
509 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
510 	/* 0x4b - 1920x1440@120Hz RB */
511 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
512 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
513 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
514 	/* 0x54 - 2048x1152@60Hz */
515 	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
516 		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
517 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
518 	/* 0x4c - 2560x1600@60Hz RB */
519 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
520 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
521 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
522 	/* 0x4d - 2560x1600@60Hz */
523 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
524 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
525 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
526 	/* 0x4e - 2560x1600@75Hz */
527 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
528 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
529 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
530 	/* 0x4f - 2560x1600@85Hz */
531 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
532 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
533 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
534 	/* 0x50 - 2560x1600@120Hz RB */
535 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
536 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
537 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
538 	/* 0x57 - 4096x2160@60Hz RB */
539 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
540 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
541 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
542 	/* 0x58 - 4096x2160@59.94Hz RB */
543 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
544 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
545 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
546 };
547 
548 /*
549  * These more or less come from the DMT spec.  The 720x400 modes are
550  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
551  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
552  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
553  * mode.
554  *
555  * The DMT modes have been fact-checked; the rest are mild guesses.
556  */
557 static const struct drm_display_mode edid_est_modes[] = {
558 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
559 		   968, 1056, 0, 600, 601, 605, 628, 0,
560 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
561 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
562 		   896, 1024, 0, 600, 601, 603,  625, 0,
563 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
564 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
565 		   720, 840, 0, 480, 481, 484, 500, 0,
566 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
567 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
568 		   704,  832, 0, 480, 489, 492, 520, 0,
569 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
570 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
571 		   768,  864, 0, 480, 483, 486, 525, 0,
572 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
573 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
574 		   752, 800, 0, 480, 490, 492, 525, 0,
575 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
576 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
577 		   846, 900, 0, 400, 421, 423,  449, 0,
578 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
579 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
580 		   846,  900, 0, 400, 412, 414, 449, 0,
581 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
582 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
583 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
584 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
585 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
586 		   1136, 1312, 0,  768, 769, 772, 800, 0,
587 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
588 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
589 		   1184, 1328, 0,  768, 771, 777, 806, 0,
590 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
591 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
592 		   1184, 1344, 0,  768, 771, 777, 806, 0,
593 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
594 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
595 		   1208, 1264, 0, 768, 768, 776, 817, 0,
596 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
597 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
598 		   928, 1152, 0, 624, 625, 628, 667, 0,
599 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
600 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
601 		   896, 1056, 0, 600, 601, 604,  625, 0,
602 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
603 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
604 		   976, 1040, 0, 600, 637, 643, 666, 0,
605 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
606 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
607 		   1344, 1600, 0,  864, 865, 868, 900, 0,
608 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
609 };
610 
611 struct minimode {
612 	short w;
613 	short h;
614 	short r;
615 	short rb;
616 };
617 
618 static const struct minimode est3_modes[] = {
619 	/* byte 6 */
620 	{ 640, 350, 85, 0 },
621 	{ 640, 400, 85, 0 },
622 	{ 720, 400, 85, 0 },
623 	{ 640, 480, 85, 0 },
624 	{ 848, 480, 60, 0 },
625 	{ 800, 600, 85, 0 },
626 	{ 1024, 768, 85, 0 },
627 	{ 1152, 864, 75, 0 },
628 	/* byte 7 */
629 	{ 1280, 768, 60, 1 },
630 	{ 1280, 768, 60, 0 },
631 	{ 1280, 768, 75, 0 },
632 	{ 1280, 768, 85, 0 },
633 	{ 1280, 960, 60, 0 },
634 	{ 1280, 960, 85, 0 },
635 	{ 1280, 1024, 60, 0 },
636 	{ 1280, 1024, 85, 0 },
637 	/* byte 8 */
638 	{ 1360, 768, 60, 0 },
639 	{ 1440, 900, 60, 1 },
640 	{ 1440, 900, 60, 0 },
641 	{ 1440, 900, 75, 0 },
642 	{ 1440, 900, 85, 0 },
643 	{ 1400, 1050, 60, 1 },
644 	{ 1400, 1050, 60, 0 },
645 	{ 1400, 1050, 75, 0 },
646 	/* byte 9 */
647 	{ 1400, 1050, 85, 0 },
648 	{ 1680, 1050, 60, 1 },
649 	{ 1680, 1050, 60, 0 },
650 	{ 1680, 1050, 75, 0 },
651 	{ 1680, 1050, 85, 0 },
652 	{ 1600, 1200, 60, 0 },
653 	{ 1600, 1200, 65, 0 },
654 	{ 1600, 1200, 70, 0 },
655 	/* byte 10 */
656 	{ 1600, 1200, 75, 0 },
657 	{ 1600, 1200, 85, 0 },
658 	{ 1792, 1344, 60, 0 },
659 	{ 1792, 1344, 75, 0 },
660 	{ 1856, 1392, 60, 0 },
661 	{ 1856, 1392, 75, 0 },
662 	{ 1920, 1200, 60, 1 },
663 	{ 1920, 1200, 60, 0 },
664 	/* byte 11 */
665 	{ 1920, 1200, 75, 0 },
666 	{ 1920, 1200, 85, 0 },
667 	{ 1920, 1440, 60, 0 },
668 	{ 1920, 1440, 75, 0 },
669 };
670 
671 static const struct minimode extra_modes[] = {
672 	{ 1024, 576,  60, 0 },
673 	{ 1366, 768,  60, 0 },
674 	{ 1600, 900,  60, 0 },
675 	{ 1680, 945,  60, 0 },
676 	{ 1920, 1080, 60, 0 },
677 	{ 2048, 1152, 60, 0 },
678 	{ 2048, 1536, 60, 0 },
679 };
680 
681 /*
682  * Probably taken from CEA-861 spec.
683  * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
684  *
685  * Index using the VIC.
686  */
687 static const struct drm_display_mode edid_cea_modes[] = {
688 	/* 0 - dummy, VICs start at 1 */
689 	{ },
690 	/* 1 - 640x480@60Hz */
691 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
692 		   752, 800, 0, 480, 490, 492, 525, 0,
693 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
694 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
695 	/* 2 - 720x480@60Hz */
696 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
697 		   798, 858, 0, 480, 489, 495, 525, 0,
698 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
699 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
700 	/* 3 - 720x480@60Hz */
701 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
702 		   798, 858, 0, 480, 489, 495, 525, 0,
703 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
704 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
705 	/* 4 - 1280x720@60Hz */
706 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
707 		   1430, 1650, 0, 720, 725, 730, 750, 0,
708 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
709 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
710 	/* 5 - 1920x1080i@60Hz */
711 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
712 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
713 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
714 			DRM_MODE_FLAG_INTERLACE),
715 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
716 	/* 6 - 720(1440)x480i@60Hz */
717 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
718 		   801, 858, 0, 480, 488, 494, 525, 0,
719 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
720 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
721 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
722 	/* 7 - 720(1440)x480i@60Hz */
723 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
724 		   801, 858, 0, 480, 488, 494, 525, 0,
725 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
726 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
727 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
728 	/* 8 - 720(1440)x240@60Hz */
729 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
730 		   801, 858, 0, 240, 244, 247, 262, 0,
731 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
732 			DRM_MODE_FLAG_DBLCLK),
733 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
734 	/* 9 - 720(1440)x240@60Hz */
735 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
736 		   801, 858, 0, 240, 244, 247, 262, 0,
737 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
738 			DRM_MODE_FLAG_DBLCLK),
739 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
740 	/* 10 - 2880x480i@60Hz */
741 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
742 		   3204, 3432, 0, 480, 488, 494, 525, 0,
743 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
744 			DRM_MODE_FLAG_INTERLACE),
745 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
746 	/* 11 - 2880x480i@60Hz */
747 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
748 		   3204, 3432, 0, 480, 488, 494, 525, 0,
749 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
750 			DRM_MODE_FLAG_INTERLACE),
751 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
752 	/* 12 - 2880x240@60Hz */
753 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
754 		   3204, 3432, 0, 240, 244, 247, 262, 0,
755 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
756 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
757 	/* 13 - 2880x240@60Hz */
758 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
759 		   3204, 3432, 0, 240, 244, 247, 262, 0,
760 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
761 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
762 	/* 14 - 1440x480@60Hz */
763 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
764 		   1596, 1716, 0, 480, 489, 495, 525, 0,
765 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
766 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
767 	/* 15 - 1440x480@60Hz */
768 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
769 		   1596, 1716, 0, 480, 489, 495, 525, 0,
770 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
771 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
772 	/* 16 - 1920x1080@60Hz */
773 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
774 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
775 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
776 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
777 	/* 17 - 720x576@50Hz */
778 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
779 		   796, 864, 0, 576, 581, 586, 625, 0,
780 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
781 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
782 	/* 18 - 720x576@50Hz */
783 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
784 		   796, 864, 0, 576, 581, 586, 625, 0,
785 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
786 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
787 	/* 19 - 1280x720@50Hz */
788 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
789 		   1760, 1980, 0, 720, 725, 730, 750, 0,
790 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
791 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
792 	/* 20 - 1920x1080i@50Hz */
793 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
794 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
795 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
796 			DRM_MODE_FLAG_INTERLACE),
797 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
798 	/* 21 - 720(1440)x576i@50Hz */
799 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
800 		   795, 864, 0, 576, 580, 586, 625, 0,
801 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
802 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
803 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
804 	/* 22 - 720(1440)x576i@50Hz */
805 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
806 		   795, 864, 0, 576, 580, 586, 625, 0,
807 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
808 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
809 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
810 	/* 23 - 720(1440)x288@50Hz */
811 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
812 		   795, 864, 0, 288, 290, 293, 312, 0,
813 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
814 			DRM_MODE_FLAG_DBLCLK),
815 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
816 	/* 24 - 720(1440)x288@50Hz */
817 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
818 		   795, 864, 0, 288, 290, 293, 312, 0,
819 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
820 			DRM_MODE_FLAG_DBLCLK),
821 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
822 	/* 25 - 2880x576i@50Hz */
823 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
824 		   3180, 3456, 0, 576, 580, 586, 625, 0,
825 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
826 			DRM_MODE_FLAG_INTERLACE),
827 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
828 	/* 26 - 2880x576i@50Hz */
829 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
830 		   3180, 3456, 0, 576, 580, 586, 625, 0,
831 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
832 			DRM_MODE_FLAG_INTERLACE),
833 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
834 	/* 27 - 2880x288@50Hz */
835 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
836 		   3180, 3456, 0, 288, 290, 293, 312, 0,
837 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
838 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
839 	/* 28 - 2880x288@50Hz */
840 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
841 		   3180, 3456, 0, 288, 290, 293, 312, 0,
842 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
843 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
844 	/* 29 - 1440x576@50Hz */
845 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
846 		   1592, 1728, 0, 576, 581, 586, 625, 0,
847 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
848 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
849 	/* 30 - 1440x576@50Hz */
850 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
851 		   1592, 1728, 0, 576, 581, 586, 625, 0,
852 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
853 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
854 	/* 31 - 1920x1080@50Hz */
855 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
856 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
857 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
858 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
859 	/* 32 - 1920x1080@24Hz */
860 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
861 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
862 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
863 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
864 	/* 33 - 1920x1080@25Hz */
865 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
866 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
867 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
868 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
869 	/* 34 - 1920x1080@30Hz */
870 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
871 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
872 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
873 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
874 	/* 35 - 2880x480@60Hz */
875 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
876 		   3192, 3432, 0, 480, 489, 495, 525, 0,
877 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
878 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
879 	/* 36 - 2880x480@60Hz */
880 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
881 		   3192, 3432, 0, 480, 489, 495, 525, 0,
882 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
883 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
884 	/* 37 - 2880x576@50Hz */
885 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
886 		   3184, 3456, 0, 576, 581, 586, 625, 0,
887 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
888 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
889 	/* 38 - 2880x576@50Hz */
890 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
891 		   3184, 3456, 0, 576, 581, 586, 625, 0,
892 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
893 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
894 	/* 39 - 1920x1080i@50Hz */
895 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
896 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
897 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
898 			DRM_MODE_FLAG_INTERLACE),
899 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
900 	/* 40 - 1920x1080i@100Hz */
901 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
902 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
903 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
904 			DRM_MODE_FLAG_INTERLACE),
905 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
906 	/* 41 - 1280x720@100Hz */
907 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
908 		   1760, 1980, 0, 720, 725, 730, 750, 0,
909 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
910 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
911 	/* 42 - 720x576@100Hz */
912 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
913 		   796, 864, 0, 576, 581, 586, 625, 0,
914 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
915 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
916 	/* 43 - 720x576@100Hz */
917 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
918 		   796, 864, 0, 576, 581, 586, 625, 0,
919 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
920 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
921 	/* 44 - 720(1440)x576i@100Hz */
922 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
923 		   795, 864, 0, 576, 580, 586, 625, 0,
924 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
925 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
926 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
927 	/* 45 - 720(1440)x576i@100Hz */
928 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
929 		   795, 864, 0, 576, 580, 586, 625, 0,
930 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
931 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
932 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
933 	/* 46 - 1920x1080i@120Hz */
934 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
935 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
936 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
937 			DRM_MODE_FLAG_INTERLACE),
938 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
939 	/* 47 - 1280x720@120Hz */
940 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
941 		   1430, 1650, 0, 720, 725, 730, 750, 0,
942 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
943 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
944 	/* 48 - 720x480@120Hz */
945 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
946 		   798, 858, 0, 480, 489, 495, 525, 0,
947 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
948 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
949 	/* 49 - 720x480@120Hz */
950 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
951 		   798, 858, 0, 480, 489, 495, 525, 0,
952 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
953 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
954 	/* 50 - 720(1440)x480i@120Hz */
955 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
956 		   801, 858, 0, 480, 488, 494, 525, 0,
957 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
958 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
959 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
960 	/* 51 - 720(1440)x480i@120Hz */
961 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
962 		   801, 858, 0, 480, 488, 494, 525, 0,
963 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
964 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
965 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
966 	/* 52 - 720x576@200Hz */
967 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
968 		   796, 864, 0, 576, 581, 586, 625, 0,
969 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
970 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
971 	/* 53 - 720x576@200Hz */
972 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
973 		   796, 864, 0, 576, 581, 586, 625, 0,
974 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
975 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
976 	/* 54 - 720(1440)x576i@200Hz */
977 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
978 		   795, 864, 0, 576, 580, 586, 625, 0,
979 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
980 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
981 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
982 	/* 55 - 720(1440)x576i@200Hz */
983 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
984 		   795, 864, 0, 576, 580, 586, 625, 0,
985 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
986 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
987 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
988 	/* 56 - 720x480@240Hz */
989 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
990 		   798, 858, 0, 480, 489, 495, 525, 0,
991 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
992 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
993 	/* 57 - 720x480@240Hz */
994 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
995 		   798, 858, 0, 480, 489, 495, 525, 0,
996 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
997 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
998 	/* 58 - 720(1440)x480i@240Hz */
999 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1000 		   801, 858, 0, 480, 488, 494, 525, 0,
1001 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1002 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1003 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1004 	/* 59 - 720(1440)x480i@240Hz */
1005 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1006 		   801, 858, 0, 480, 488, 494, 525, 0,
1007 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1008 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1009 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1010 	/* 60 - 1280x720@24Hz */
1011 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1012 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1013 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1014 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1015 	/* 61 - 1280x720@25Hz */
1016 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1017 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1018 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1019 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1020 	/* 62 - 1280x720@30Hz */
1021 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1022 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1023 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1024 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1025 	/* 63 - 1920x1080@120Hz */
1026 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1027 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1028 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1029 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1030 	/* 64 - 1920x1080@100Hz */
1031 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1032 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1033 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1034 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1035 	/* 65 - 1280x720@24Hz */
1036 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1037 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1038 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1039 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1040 	/* 66 - 1280x720@25Hz */
1041 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1042 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1043 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1044 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1045 	/* 67 - 1280x720@30Hz */
1046 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1047 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1048 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1049 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1050 	/* 68 - 1280x720@50Hz */
1051 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1052 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1053 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1054 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1055 	/* 69 - 1280x720@60Hz */
1056 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1057 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1058 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1059 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1060 	/* 70 - 1280x720@100Hz */
1061 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1062 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1063 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1064 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1065 	/* 71 - 1280x720@120Hz */
1066 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1067 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1068 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1069 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1070 	/* 72 - 1920x1080@24Hz */
1071 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1072 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1073 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1074 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1075 	/* 73 - 1920x1080@25Hz */
1076 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1077 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1078 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1079 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1080 	/* 74 - 1920x1080@30Hz */
1081 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1082 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1083 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1084 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1085 	/* 75 - 1920x1080@50Hz */
1086 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1087 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1088 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1089 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1090 	/* 76 - 1920x1080@60Hz */
1091 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1092 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1093 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1094 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1095 	/* 77 - 1920x1080@100Hz */
1096 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1097 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1098 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1099 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1100 	/* 78 - 1920x1080@120Hz */
1101 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1102 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1103 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1104 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1105 	/* 79 - 1680x720@24Hz */
1106 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1107 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1108 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1109 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1110 	/* 80 - 1680x720@25Hz */
1111 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1112 		   2948, 3168, 0, 720, 725, 730, 750, 0,
1113 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1114 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1115 	/* 81 - 1680x720@30Hz */
1116 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1117 		   2420, 2640, 0, 720, 725, 730, 750, 0,
1118 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1119 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1120 	/* 82 - 1680x720@50Hz */
1121 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1122 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1123 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1124 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1125 	/* 83 - 1680x720@60Hz */
1126 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1127 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1128 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1129 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1130 	/* 84 - 1680x720@100Hz */
1131 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1132 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1133 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1134 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1135 	/* 85 - 1680x720@120Hz */
1136 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1137 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1138 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1139 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1140 	/* 86 - 2560x1080@24Hz */
1141 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1142 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1143 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1144 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1145 	/* 87 - 2560x1080@25Hz */
1146 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1147 		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1148 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1149 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1150 	/* 88 - 2560x1080@30Hz */
1151 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1152 		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1153 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1154 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1155 	/* 89 - 2560x1080@50Hz */
1156 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1157 		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1158 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1159 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1160 	/* 90 - 2560x1080@60Hz */
1161 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1162 		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1163 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1164 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1165 	/* 91 - 2560x1080@100Hz */
1166 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1167 		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1168 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1169 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1170 	/* 92 - 2560x1080@120Hz */
1171 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1172 		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1173 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1174 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1175 	/* 93 - 3840x2160p@24Hz 16:9 */
1176 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1177 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1178 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1179 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1180 	/* 94 - 3840x2160p@25Hz 16:9 */
1181 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1182 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1183 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1184 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1185 	/* 95 - 3840x2160p@30Hz 16:9 */
1186 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1187 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1188 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1189 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1190 	/* 96 - 3840x2160p@50Hz 16:9 */
1191 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1192 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1193 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1194 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1195 	/* 97 - 3840x2160p@60Hz 16:9 */
1196 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1197 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1198 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1199 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1200 	/* 98 - 4096x2160p@24Hz 256:135 */
1201 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1202 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1203 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1204 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1205 	/* 99 - 4096x2160p@25Hz 256:135 */
1206 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1207 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1208 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1209 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1210 	/* 100 - 4096x2160p@30Hz 256:135 */
1211 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1212 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1213 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1214 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1215 	/* 101 - 4096x2160p@50Hz 256:135 */
1216 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1217 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1218 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1219 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1220 	/* 102 - 4096x2160p@60Hz 256:135 */
1221 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1222 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1223 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1224 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1225 	/* 103 - 3840x2160p@24Hz 64:27 */
1226 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1227 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1228 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1229 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1230 	/* 104 - 3840x2160p@25Hz 64:27 */
1231 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1232 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1233 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1234 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1235 	/* 105 - 3840x2160p@30Hz 64:27 */
1236 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1237 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1238 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1239 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1240 	/* 106 - 3840x2160p@50Hz 64:27 */
1241 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1242 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1243 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1244 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1245 	/* 107 - 3840x2160p@60Hz 64:27 */
1246 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1247 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1248 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1249 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1250 };
1251 
1252 /*
1253  * HDMI 1.4 4k modes. Index using the VIC.
1254  */
1255 static const struct drm_display_mode edid_4k_modes[] = {
1256 	/* 0 - dummy, VICs start at 1 */
1257 	{ },
1258 	/* 1 - 3840x2160@30Hz */
1259 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1260 		   3840, 4016, 4104, 4400, 0,
1261 		   2160, 2168, 2178, 2250, 0,
1262 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1263 	  .vrefresh = 30, },
1264 	/* 2 - 3840x2160@25Hz */
1265 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1266 		   3840, 4896, 4984, 5280, 0,
1267 		   2160, 2168, 2178, 2250, 0,
1268 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1269 	  .vrefresh = 25, },
1270 	/* 3 - 3840x2160@24Hz */
1271 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1272 		   3840, 5116, 5204, 5500, 0,
1273 		   2160, 2168, 2178, 2250, 0,
1274 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1275 	  .vrefresh = 24, },
1276 	/* 4 - 4096x2160@24Hz (SMPTE) */
1277 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1278 		   4096, 5116, 5204, 5500, 0,
1279 		   2160, 2168, 2178, 2250, 0,
1280 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1281 	  .vrefresh = 24, },
1282 };
1283 
1284 /*** DDC fetch and block validation ***/
1285 
1286 static const u8 edid_header[] = {
1287 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1288 };
1289 
1290 /**
1291  * drm_edid_header_is_valid - sanity check the header of the base EDID block
1292  * @raw_edid: pointer to raw base EDID block
1293  *
1294  * Sanity check the header of the base EDID block.
1295  *
1296  * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1297  */
1298 int drm_edid_header_is_valid(const u8 *raw_edid)
1299 {
1300 	int i, score = 0;
1301 
1302 	for (i = 0; i < sizeof(edid_header); i++)
1303 		if (raw_edid[i] == edid_header[i])
1304 			score++;
1305 
1306 	return score;
1307 }
1308 EXPORT_SYMBOL(drm_edid_header_is_valid);
1309 
1310 static int edid_fixup __read_mostly = 6;
1311 module_param_named(edid_fixup, edid_fixup, int, 0400);
1312 MODULE_PARM_DESC(edid_fixup,
1313 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1314 
1315 static void drm_get_displayid(struct drm_connector *connector,
1316 			      struct edid *edid);
1317 
1318 static int drm_edid_block_checksum(const u8 *raw_edid)
1319 {
1320 	int i;
1321 	u8 csum = 0;
1322 	for (i = 0; i < EDID_LENGTH; i++)
1323 		csum += raw_edid[i];
1324 
1325 	return csum;
1326 }
1327 
1328 static bool drm_edid_is_zero(const u8 *in_edid, int length)
1329 {
1330 	if (memchr_inv(in_edid, 0, length))
1331 		return false;
1332 
1333 	return true;
1334 }
1335 
1336 /**
1337  * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1338  * @raw_edid: pointer to raw EDID block
1339  * @block: type of block to validate (0 for base, extension otherwise)
1340  * @print_bad_edid: if true, dump bad EDID blocks to the console
1341  * @edid_corrupt: if true, the header or checksum is invalid
1342  *
1343  * Validate a base or extension EDID block and optionally dump bad blocks to
1344  * the console.
1345  *
1346  * Return: True if the block is valid, false otherwise.
1347  */
1348 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
1349 			  bool *edid_corrupt)
1350 {
1351 	u8 csum;
1352 	struct edid *edid = (struct edid *)raw_edid;
1353 
1354 	if (WARN_ON(!raw_edid))
1355 		return false;
1356 
1357 	if (edid_fixup > 8 || edid_fixup < 0)
1358 		edid_fixup = 6;
1359 
1360 	if (block == 0) {
1361 		int score = drm_edid_header_is_valid(raw_edid);
1362 		if (score == 8) {
1363 			if (edid_corrupt)
1364 				*edid_corrupt = false;
1365 		} else if (score >= edid_fixup) {
1366 			/* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
1367 			 * The corrupt flag needs to be set here otherwise, the
1368 			 * fix-up code here will correct the problem, the
1369 			 * checksum is correct and the test fails
1370 			 */
1371 			if (edid_corrupt)
1372 				*edid_corrupt = true;
1373 			DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1374 			memcpy(raw_edid, edid_header, sizeof(edid_header));
1375 		} else {
1376 			if (edid_corrupt)
1377 				*edid_corrupt = true;
1378 			goto bad;
1379 		}
1380 	}
1381 
1382 	csum = drm_edid_block_checksum(raw_edid);
1383 	if (csum) {
1384 		if (edid_corrupt)
1385 			*edid_corrupt = true;
1386 
1387 		/* allow CEA to slide through, switches mangle this */
1388 		if (raw_edid[0] == CEA_EXT) {
1389 			DRM_DEBUG("EDID checksum is invalid, remainder is %d\n", csum);
1390 			DRM_DEBUG("Assuming a KVM switch modified the CEA block but left the original checksum\n");
1391 		} else {
1392 			if (print_bad_edid)
1393 				DRM_NOTE("EDID checksum is invalid, remainder is %d\n", csum);
1394 
1395 			goto bad;
1396 		}
1397 	}
1398 
1399 	/* per-block-type checks */
1400 	switch (raw_edid[0]) {
1401 	case 0: /* base */
1402 		if (edid->version != 1) {
1403 			DRM_NOTE("EDID has major version %d, instead of 1\n", edid->version);
1404 			goto bad;
1405 		}
1406 
1407 		if (edid->revision > 4)
1408 			DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1409 		break;
1410 
1411 	default:
1412 		break;
1413 	}
1414 
1415 	return true;
1416 
1417 bad:
1418 	if (print_bad_edid) {
1419 		if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) {
1420 			pr_notice("EDID block is all zeroes\n");
1421 		} else {
1422 			pr_notice("Raw EDID:\n");
1423 			print_hex_dump(KERN_NOTICE,
1424 				       " \t", DUMP_PREFIX_NONE, 16, 1,
1425 				       raw_edid, EDID_LENGTH, false);
1426 		}
1427 	}
1428 	return false;
1429 }
1430 EXPORT_SYMBOL(drm_edid_block_valid);
1431 
1432 /**
1433  * drm_edid_is_valid - sanity check EDID data
1434  * @edid: EDID data
1435  *
1436  * Sanity-check an entire EDID record (including extensions)
1437  *
1438  * Return: True if the EDID data is valid, false otherwise.
1439  */
1440 bool drm_edid_is_valid(struct edid *edid)
1441 {
1442 	int i;
1443 	u8 *raw = (u8 *)edid;
1444 
1445 	if (!edid)
1446 		return false;
1447 
1448 	for (i = 0; i <= edid->extensions; i++)
1449 		if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL))
1450 			return false;
1451 
1452 	return true;
1453 }
1454 EXPORT_SYMBOL(drm_edid_is_valid);
1455 
1456 #define DDC_SEGMENT_ADDR 0x30
1457 /**
1458  * drm_do_probe_ddc_edid() - get EDID information via I2C
1459  * @data: I2C device adapter
1460  * @buf: EDID data buffer to be filled
1461  * @block: 128 byte EDID block to start fetching from
1462  * @len: EDID data buffer length to fetch
1463  *
1464  * Try to fetch EDID information by calling I2C driver functions.
1465  *
1466  * Return: 0 on success or -1 on failure.
1467  */
1468 static int
1469 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
1470 {
1471 	struct i2c_adapter *adapter = data;
1472 	unsigned char start = block * EDID_LENGTH;
1473 	unsigned char segment = block >> 1;
1474 	unsigned char xfers = segment ? 3 : 2;
1475 	int ret, retries = 5;
1476 
1477 	/*
1478 	 * The core I2C driver will automatically retry the transfer if the
1479 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
1480 	 * are susceptible to errors under a heavily loaded machine and
1481 	 * generate spurious NAKs and timeouts. Retrying the transfer
1482 	 * of the individual block a few times seems to overcome this.
1483 	 */
1484 	do {
1485 		struct i2c_msg msgs[] = {
1486 			{
1487 				.addr	= DDC_SEGMENT_ADDR,
1488 				.flags	= 0,
1489 				.len	= 1,
1490 				.buf	= &segment,
1491 			}, {
1492 				.addr	= DDC_ADDR,
1493 				.flags	= 0,
1494 				.len	= 1,
1495 				.buf	= &start,
1496 			}, {
1497 				.addr	= DDC_ADDR,
1498 				.flags	= I2C_M_RD,
1499 				.len	= len,
1500 				.buf	= buf,
1501 			}
1502 		};
1503 
1504 		/*
1505 		 * Avoid sending the segment addr to not upset non-compliant
1506 		 * DDC monitors.
1507 		 */
1508 		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1509 
1510 		if (ret == -ENXIO) {
1511 			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1512 					adapter->name);
1513 			break;
1514 		}
1515 	} while (ret != xfers && --retries);
1516 
1517 	return ret == xfers ? 0 : -1;
1518 }
1519 
1520 static void connector_bad_edid(struct drm_connector *connector,
1521 			       u8 *edid, int num_blocks)
1522 {
1523 	int i;
1524 
1525 	if (connector->bad_edid_counter++ && !(drm_debug & DRM_UT_KMS))
1526 		return;
1527 
1528 	dev_warn(connector->dev->dev,
1529 		 "%s: EDID is invalid:\n",
1530 		 connector->name);
1531 	for (i = 0; i < num_blocks; i++) {
1532 		u8 *block = edid + i * EDID_LENGTH;
1533 		char prefix[20];
1534 
1535 		if (drm_edid_is_zero(block, EDID_LENGTH))
1536 			sprintf(prefix, "\t[%02x] ZERO ", i);
1537 		else if (!drm_edid_block_valid(block, i, false, NULL))
1538 			sprintf(prefix, "\t[%02x] BAD  ", i);
1539 		else
1540 			sprintf(prefix, "\t[%02x] GOOD ", i);
1541 
1542 		print_hex_dump(KERN_WARNING,
1543 			       prefix, DUMP_PREFIX_NONE, 16, 1,
1544 			       block, EDID_LENGTH, false);
1545 	}
1546 }
1547 
1548 /**
1549  * drm_do_get_edid - get EDID data using a custom EDID block read function
1550  * @connector: connector we're probing
1551  * @get_edid_block: EDID block read function
1552  * @data: private data passed to the block read function
1553  *
1554  * When the I2C adapter connected to the DDC bus is hidden behind a device that
1555  * exposes a different interface to read EDID blocks this function can be used
1556  * to get EDID data using a custom block read function.
1557  *
1558  * As in the general case the DDC bus is accessible by the kernel at the I2C
1559  * level, drivers must make all reasonable efforts to expose it as an I2C
1560  * adapter and use drm_get_edid() instead of abusing this function.
1561  *
1562  * The EDID may be overridden using debugfs override_edid or firmare EDID
1563  * (drm_load_edid_firmware() and drm.edid_firmware parameter), in this priority
1564  * order. Having either of them bypasses actual EDID reads.
1565  *
1566  * Return: Pointer to valid EDID or NULL if we couldn't find any.
1567  */
1568 struct edid *drm_do_get_edid(struct drm_connector *connector,
1569 	int (*get_edid_block)(void *data, u8 *buf, unsigned int block,
1570 			      size_t len),
1571 	void *data)
1572 {
1573 	int i, j = 0, valid_extensions = 0;
1574 	u8 *edid, *new;
1575 	struct edid *override = NULL;
1576 
1577 	if (connector->override_edid)
1578 		override = drm_edid_duplicate(connector->edid_blob_ptr->data);
1579 
1580 	if (!override)
1581 		override = drm_load_edid_firmware(connector);
1582 
1583 	if (!IS_ERR_OR_NULL(override))
1584 		return override;
1585 
1586 	if ((edid = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1587 		return NULL;
1588 
1589 	/* base block fetch */
1590 	for (i = 0; i < 4; i++) {
1591 		if (get_edid_block(data, edid, 0, EDID_LENGTH))
1592 			goto out;
1593 		if (drm_edid_block_valid(edid, 0, false,
1594 					 &connector->edid_corrupt))
1595 			break;
1596 		if (i == 0 && drm_edid_is_zero(edid, EDID_LENGTH)) {
1597 			connector->null_edid_counter++;
1598 			goto carp;
1599 		}
1600 	}
1601 	if (i == 4)
1602 		goto carp;
1603 
1604 	/* if there's no extensions, we're done */
1605 	valid_extensions = edid[0x7e];
1606 	if (valid_extensions == 0)
1607 		return (struct edid *)edid;
1608 
1609 	new = krealloc(edid, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1610 	if (!new)
1611 		goto out;
1612 	edid = new;
1613 
1614 	for (j = 1; j <= edid[0x7e]; j++) {
1615 		u8 *block = edid + j * EDID_LENGTH;
1616 
1617 		for (i = 0; i < 4; i++) {
1618 			if (get_edid_block(data, block, j, EDID_LENGTH))
1619 				goto out;
1620 			if (drm_edid_block_valid(block, j, false, NULL))
1621 				break;
1622 		}
1623 
1624 		if (i == 4)
1625 			valid_extensions--;
1626 	}
1627 
1628 	if (valid_extensions != edid[0x7e]) {
1629 		u8 *base;
1630 
1631 		connector_bad_edid(connector, edid, edid[0x7e] + 1);
1632 
1633 		edid[EDID_LENGTH-1] += edid[0x7e] - valid_extensions;
1634 		edid[0x7e] = valid_extensions;
1635 
1636 		new = kmalloc((valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1637 		if (!new)
1638 			goto out;
1639 
1640 		base = new;
1641 		for (i = 0; i <= edid[0x7e]; i++) {
1642 			u8 *block = edid + i * EDID_LENGTH;
1643 
1644 			if (!drm_edid_block_valid(block, i, false, NULL))
1645 				continue;
1646 
1647 			memcpy(base, block, EDID_LENGTH);
1648 			base += EDID_LENGTH;
1649 		}
1650 
1651 		kfree(edid);
1652 		edid = new;
1653 	}
1654 
1655 	return (struct edid *)edid;
1656 
1657 carp:
1658 	connector_bad_edid(connector, edid, 1);
1659 out:
1660 	kfree(edid);
1661 	return NULL;
1662 }
1663 EXPORT_SYMBOL_GPL(drm_do_get_edid);
1664 
1665 /**
1666  * drm_probe_ddc() - probe DDC presence
1667  * @adapter: I2C adapter to probe
1668  *
1669  * Return: True on success, false on failure.
1670  */
1671 bool
1672 drm_probe_ddc(struct i2c_adapter *adapter)
1673 {
1674 	unsigned char out;
1675 
1676 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1677 }
1678 EXPORT_SYMBOL(drm_probe_ddc);
1679 
1680 /**
1681  * drm_get_edid - get EDID data, if available
1682  * @connector: connector we're probing
1683  * @adapter: I2C adapter to use for DDC
1684  *
1685  * Poke the given I2C channel to grab EDID data if possible.  If found,
1686  * attach it to the connector.
1687  *
1688  * Return: Pointer to valid EDID or NULL if we couldn't find any.
1689  */
1690 struct edid *drm_get_edid(struct drm_connector *connector,
1691 			  struct i2c_adapter *adapter)
1692 {
1693 	struct edid *edid;
1694 
1695 	if (connector->force == DRM_FORCE_OFF)
1696 		return NULL;
1697 
1698 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
1699 		return NULL;
1700 
1701 	edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter);
1702 	if (edid)
1703 		drm_get_displayid(connector, edid);
1704 	return edid;
1705 }
1706 EXPORT_SYMBOL(drm_get_edid);
1707 
1708 /**
1709  * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
1710  * @connector: connector we're probing
1711  * @adapter: I2C adapter to use for DDC
1712  *
1713  * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
1714  * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
1715  * switch DDC to the GPU which is retrieving EDID.
1716  *
1717  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
1718  */
1719 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
1720 				     struct i2c_adapter *adapter)
1721 {
1722 	struct pci_dev *pdev = connector->dev->pdev;
1723 	struct edid *edid;
1724 
1725 	vga_switcheroo_lock_ddc(pdev);
1726 	edid = drm_get_edid(connector, adapter);
1727 	vga_switcheroo_unlock_ddc(pdev);
1728 
1729 	return edid;
1730 }
1731 EXPORT_SYMBOL(drm_get_edid_switcheroo);
1732 
1733 /**
1734  * drm_edid_duplicate - duplicate an EDID and the extensions
1735  * @edid: EDID to duplicate
1736  *
1737  * Return: Pointer to duplicated EDID or NULL on allocation failure.
1738  */
1739 struct edid *drm_edid_duplicate(const struct edid *edid)
1740 {
1741 	return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1742 }
1743 EXPORT_SYMBOL(drm_edid_duplicate);
1744 
1745 /*** EDID parsing ***/
1746 
1747 /**
1748  * edid_vendor - match a string against EDID's obfuscated vendor field
1749  * @edid: EDID to match
1750  * @vendor: vendor string
1751  *
1752  * Returns true if @vendor is in @edid, false otherwise
1753  */
1754 static bool edid_vendor(const struct edid *edid, const char *vendor)
1755 {
1756 	char edid_vendor[3];
1757 
1758 	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1759 	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1760 			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1761 	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1762 
1763 	return !strncmp(edid_vendor, vendor, 3);
1764 }
1765 
1766 /**
1767  * edid_get_quirks - return quirk flags for a given EDID
1768  * @edid: EDID to process
1769  *
1770  * This tells subsequent routines what fixes they need to apply.
1771  */
1772 static u32 edid_get_quirks(const struct edid *edid)
1773 {
1774 	const struct edid_quirk *quirk;
1775 	int i;
1776 
1777 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1778 		quirk = &edid_quirk_list[i];
1779 
1780 		if (edid_vendor(edid, quirk->vendor) &&
1781 		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
1782 			return quirk->quirks;
1783 	}
1784 
1785 	return 0;
1786 }
1787 
1788 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1789 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1790 
1791 /**
1792  * edid_fixup_preferred - set preferred modes based on quirk list
1793  * @connector: has mode list to fix up
1794  * @quirks: quirks list
1795  *
1796  * Walk the mode list for @connector, clearing the preferred status
1797  * on existing modes and setting it anew for the right mode ala @quirks.
1798  */
1799 static void edid_fixup_preferred(struct drm_connector *connector,
1800 				 u32 quirks)
1801 {
1802 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
1803 	int target_refresh = 0;
1804 	int cur_vrefresh, preferred_vrefresh;
1805 
1806 	if (list_empty(&connector->probed_modes))
1807 		return;
1808 
1809 	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1810 		target_refresh = 60;
1811 	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1812 		target_refresh = 75;
1813 
1814 	preferred_mode = list_first_entry(&connector->probed_modes,
1815 					  struct drm_display_mode, head);
1816 
1817 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1818 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1819 
1820 		if (cur_mode == preferred_mode)
1821 			continue;
1822 
1823 		/* Largest mode is preferred */
1824 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1825 			preferred_mode = cur_mode;
1826 
1827 		cur_vrefresh = cur_mode->vrefresh ?
1828 			cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1829 		preferred_vrefresh = preferred_mode->vrefresh ?
1830 			preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1831 		/* At a given size, try to get closest to target refresh */
1832 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1833 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1834 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1835 			preferred_mode = cur_mode;
1836 		}
1837 	}
1838 
1839 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1840 }
1841 
1842 static bool
1843 mode_is_rb(const struct drm_display_mode *mode)
1844 {
1845 	return (mode->htotal - mode->hdisplay == 160) &&
1846 	       (mode->hsync_end - mode->hdisplay == 80) &&
1847 	       (mode->hsync_end - mode->hsync_start == 32) &&
1848 	       (mode->vsync_start - mode->vdisplay == 3);
1849 }
1850 
1851 /*
1852  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1853  * @dev: Device to duplicate against
1854  * @hsize: Mode width
1855  * @vsize: Mode height
1856  * @fresh: Mode refresh rate
1857  * @rb: Mode reduced-blanking-ness
1858  *
1859  * Walk the DMT mode list looking for a match for the given parameters.
1860  *
1861  * Return: A newly allocated copy of the mode, or NULL if not found.
1862  */
1863 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1864 					   int hsize, int vsize, int fresh,
1865 					   bool rb)
1866 {
1867 	int i;
1868 
1869 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1870 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1871 		if (hsize != ptr->hdisplay)
1872 			continue;
1873 		if (vsize != ptr->vdisplay)
1874 			continue;
1875 		if (fresh != drm_mode_vrefresh(ptr))
1876 			continue;
1877 		if (rb != mode_is_rb(ptr))
1878 			continue;
1879 
1880 		return drm_mode_duplicate(dev, ptr);
1881 	}
1882 
1883 	return NULL;
1884 }
1885 EXPORT_SYMBOL(drm_mode_find_dmt);
1886 
1887 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1888 
1889 static void
1890 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1891 {
1892 	int i, n = 0;
1893 	u8 d = ext[0x02];
1894 	u8 *det_base = ext + d;
1895 
1896 	n = (127 - d) / 18;
1897 	for (i = 0; i < n; i++)
1898 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1899 }
1900 
1901 static void
1902 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1903 {
1904 	unsigned int i, n = min((int)ext[0x02], 6);
1905 	u8 *det_base = ext + 5;
1906 
1907 	if (ext[0x01] != 1)
1908 		return; /* unknown version */
1909 
1910 	for (i = 0; i < n; i++)
1911 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1912 }
1913 
1914 static void
1915 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1916 {
1917 	int i;
1918 	struct edid *edid = (struct edid *)raw_edid;
1919 
1920 	if (edid == NULL)
1921 		return;
1922 
1923 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1924 		cb(&(edid->detailed_timings[i]), closure);
1925 
1926 	for (i = 1; i <= raw_edid[0x7e]; i++) {
1927 		u8 *ext = raw_edid + (i * EDID_LENGTH);
1928 		switch (*ext) {
1929 		case CEA_EXT:
1930 			cea_for_each_detailed_block(ext, cb, closure);
1931 			break;
1932 		case VTB_EXT:
1933 			vtb_for_each_detailed_block(ext, cb, closure);
1934 			break;
1935 		default:
1936 			break;
1937 		}
1938 	}
1939 }
1940 
1941 static void
1942 is_rb(struct detailed_timing *t, void *data)
1943 {
1944 	u8 *r = (u8 *)t;
1945 	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1946 		if (r[15] & 0x10)
1947 			*(bool *)data = true;
1948 }
1949 
1950 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
1951 static bool
1952 drm_monitor_supports_rb(struct edid *edid)
1953 {
1954 	if (edid->revision >= 4) {
1955 		bool ret = false;
1956 		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1957 		return ret;
1958 	}
1959 
1960 	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1961 }
1962 
1963 static void
1964 find_gtf2(struct detailed_timing *t, void *data)
1965 {
1966 	u8 *r = (u8 *)t;
1967 	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1968 		*(u8 **)data = r;
1969 }
1970 
1971 /* Secondary GTF curve kicks in above some break frequency */
1972 static int
1973 drm_gtf2_hbreak(struct edid *edid)
1974 {
1975 	u8 *r = NULL;
1976 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1977 	return r ? (r[12] * 2) : 0;
1978 }
1979 
1980 static int
1981 drm_gtf2_2c(struct edid *edid)
1982 {
1983 	u8 *r = NULL;
1984 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1985 	return r ? r[13] : 0;
1986 }
1987 
1988 static int
1989 drm_gtf2_m(struct edid *edid)
1990 {
1991 	u8 *r = NULL;
1992 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1993 	return r ? (r[15] << 8) + r[14] : 0;
1994 }
1995 
1996 static int
1997 drm_gtf2_k(struct edid *edid)
1998 {
1999 	u8 *r = NULL;
2000 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2001 	return r ? r[16] : 0;
2002 }
2003 
2004 static int
2005 drm_gtf2_2j(struct edid *edid)
2006 {
2007 	u8 *r = NULL;
2008 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2009 	return r ? r[17] : 0;
2010 }
2011 
2012 /**
2013  * standard_timing_level - get std. timing level(CVT/GTF/DMT)
2014  * @edid: EDID block to scan
2015  */
2016 static int standard_timing_level(struct edid *edid)
2017 {
2018 	if (edid->revision >= 2) {
2019 		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
2020 			return LEVEL_CVT;
2021 		if (drm_gtf2_hbreak(edid))
2022 			return LEVEL_GTF2;
2023 		return LEVEL_GTF;
2024 	}
2025 	return LEVEL_DMT;
2026 }
2027 
2028 /*
2029  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
2030  * monitors fill with ascii space (0x20) instead.
2031  */
2032 static int
2033 bad_std_timing(u8 a, u8 b)
2034 {
2035 	return (a == 0x00 && b == 0x00) ||
2036 	       (a == 0x01 && b == 0x01) ||
2037 	       (a == 0x20 && b == 0x20);
2038 }
2039 
2040 /**
2041  * drm_mode_std - convert standard mode info (width, height, refresh) into mode
2042  * @connector: connector of for the EDID block
2043  * @edid: EDID block to scan
2044  * @t: standard timing params
2045  *
2046  * Take the standard timing params (in this case width, aspect, and refresh)
2047  * and convert them into a real mode using CVT/GTF/DMT.
2048  */
2049 static struct drm_display_mode *
2050 drm_mode_std(struct drm_connector *connector, struct edid *edid,
2051 	     struct std_timing *t)
2052 {
2053 	struct drm_device *dev = connector->dev;
2054 	struct drm_display_mode *m, *mode = NULL;
2055 	int hsize, vsize;
2056 	int vrefresh_rate;
2057 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
2058 		>> EDID_TIMING_ASPECT_SHIFT;
2059 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
2060 		>> EDID_TIMING_VFREQ_SHIFT;
2061 	int timing_level = standard_timing_level(edid);
2062 
2063 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
2064 		return NULL;
2065 
2066 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
2067 	hsize = t->hsize * 8 + 248;
2068 	/* vrefresh_rate = vfreq + 60 */
2069 	vrefresh_rate = vfreq + 60;
2070 	/* the vdisplay is calculated based on the aspect ratio */
2071 	if (aspect_ratio == 0) {
2072 		if (edid->revision < 3)
2073 			vsize = hsize;
2074 		else
2075 			vsize = (hsize * 10) / 16;
2076 	} else if (aspect_ratio == 1)
2077 		vsize = (hsize * 3) / 4;
2078 	else if (aspect_ratio == 2)
2079 		vsize = (hsize * 4) / 5;
2080 	else
2081 		vsize = (hsize * 9) / 16;
2082 
2083 	/* HDTV hack, part 1 */
2084 	if (vrefresh_rate == 60 &&
2085 	    ((hsize == 1360 && vsize == 765) ||
2086 	     (hsize == 1368 && vsize == 769))) {
2087 		hsize = 1366;
2088 		vsize = 768;
2089 	}
2090 
2091 	/*
2092 	 * If this connector already has a mode for this size and refresh
2093 	 * rate (because it came from detailed or CVT info), use that
2094 	 * instead.  This way we don't have to guess at interlace or
2095 	 * reduced blanking.
2096 	 */
2097 	list_for_each_entry(m, &connector->probed_modes, head)
2098 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
2099 		    drm_mode_vrefresh(m) == vrefresh_rate)
2100 			return NULL;
2101 
2102 	/* HDTV hack, part 2 */
2103 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
2104 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
2105 				    false);
2106 		if (!mode)
2107 			return NULL;
2108 		mode->hdisplay = 1366;
2109 		mode->hsync_start = mode->hsync_start - 1;
2110 		mode->hsync_end = mode->hsync_end - 1;
2111 		return mode;
2112 	}
2113 
2114 	/* check whether it can be found in default mode table */
2115 	if (drm_monitor_supports_rb(edid)) {
2116 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
2117 					 true);
2118 		if (mode)
2119 			return mode;
2120 	}
2121 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
2122 	if (mode)
2123 		return mode;
2124 
2125 	/* okay, generate it */
2126 	switch (timing_level) {
2127 	case LEVEL_DMT:
2128 		break;
2129 	case LEVEL_GTF:
2130 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
2131 		break;
2132 	case LEVEL_GTF2:
2133 		/*
2134 		 * This is potentially wrong if there's ever a monitor with
2135 		 * more than one ranges section, each claiming a different
2136 		 * secondary GTF curve.  Please don't do that.
2137 		 */
2138 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
2139 		if (!mode)
2140 			return NULL;
2141 		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
2142 			drm_mode_destroy(dev, mode);
2143 			mode = drm_gtf_mode_complex(dev, hsize, vsize,
2144 						    vrefresh_rate, 0, 0,
2145 						    drm_gtf2_m(edid),
2146 						    drm_gtf2_2c(edid),
2147 						    drm_gtf2_k(edid),
2148 						    drm_gtf2_2j(edid));
2149 		}
2150 		break;
2151 	case LEVEL_CVT:
2152 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
2153 				    false);
2154 		break;
2155 	}
2156 	return mode;
2157 }
2158 
2159 /*
2160  * EDID is delightfully ambiguous about how interlaced modes are to be
2161  * encoded.  Our internal representation is of frame height, but some
2162  * HDTV detailed timings are encoded as field height.
2163  *
2164  * The format list here is from CEA, in frame size.  Technically we
2165  * should be checking refresh rate too.  Whatever.
2166  */
2167 static void
2168 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
2169 			    struct detailed_pixel_timing *pt)
2170 {
2171 	int i;
2172 	static const struct {
2173 		int w, h;
2174 	} cea_interlaced[] = {
2175 		{ 1920, 1080 },
2176 		{  720,  480 },
2177 		{ 1440,  480 },
2178 		{ 2880,  480 },
2179 		{  720,  576 },
2180 		{ 1440,  576 },
2181 		{ 2880,  576 },
2182 	};
2183 
2184 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
2185 		return;
2186 
2187 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
2188 		if ((mode->hdisplay == cea_interlaced[i].w) &&
2189 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
2190 			mode->vdisplay *= 2;
2191 			mode->vsync_start *= 2;
2192 			mode->vsync_end *= 2;
2193 			mode->vtotal *= 2;
2194 			mode->vtotal |= 1;
2195 		}
2196 	}
2197 
2198 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
2199 }
2200 
2201 /**
2202  * drm_mode_detailed - create a new mode from an EDID detailed timing section
2203  * @dev: DRM device (needed to create new mode)
2204  * @edid: EDID block
2205  * @timing: EDID detailed timing info
2206  * @quirks: quirks to apply
2207  *
2208  * An EDID detailed timing block contains enough info for us to create and
2209  * return a new struct drm_display_mode.
2210  */
2211 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
2212 						  struct edid *edid,
2213 						  struct detailed_timing *timing,
2214 						  u32 quirks)
2215 {
2216 	struct drm_display_mode *mode;
2217 	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
2218 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
2219 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
2220 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
2221 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
2222 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
2223 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
2224 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
2225 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
2226 
2227 	/* ignore tiny modes */
2228 	if (hactive < 64 || vactive < 64)
2229 		return NULL;
2230 
2231 	if (pt->misc & DRM_EDID_PT_STEREO) {
2232 		DRM_DEBUG_KMS("stereo mode not supported\n");
2233 		return NULL;
2234 	}
2235 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
2236 		DRM_DEBUG_KMS("composite sync not supported\n");
2237 	}
2238 
2239 	/* it is incorrect if hsync/vsync width is zero */
2240 	if (!hsync_pulse_width || !vsync_pulse_width) {
2241 		DRM_DEBUG_KMS("Incorrect Detailed timing. "
2242 				"Wrong Hsync/Vsync pulse width\n");
2243 		return NULL;
2244 	}
2245 
2246 	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
2247 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
2248 		if (!mode)
2249 			return NULL;
2250 
2251 		goto set_size;
2252 	}
2253 
2254 	mode = drm_mode_create(dev);
2255 	if (!mode)
2256 		return NULL;
2257 
2258 	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
2259 		timing->pixel_clock = cpu_to_le16(1088);
2260 
2261 	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
2262 
2263 	mode->hdisplay = hactive;
2264 	mode->hsync_start = mode->hdisplay + hsync_offset;
2265 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
2266 	mode->htotal = mode->hdisplay + hblank;
2267 
2268 	mode->vdisplay = vactive;
2269 	mode->vsync_start = mode->vdisplay + vsync_offset;
2270 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
2271 	mode->vtotal = mode->vdisplay + vblank;
2272 
2273 	/* Some EDIDs have bogus h/vtotal values */
2274 	if (mode->hsync_end > mode->htotal)
2275 		mode->htotal = mode->hsync_end + 1;
2276 	if (mode->vsync_end > mode->vtotal)
2277 		mode->vtotal = mode->vsync_end + 1;
2278 
2279 	drm_mode_do_interlace_quirk(mode, pt);
2280 
2281 	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
2282 		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
2283 	}
2284 
2285 	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
2286 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
2287 	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
2288 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
2289 
2290 set_size:
2291 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
2292 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
2293 
2294 	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
2295 		mode->width_mm *= 10;
2296 		mode->height_mm *= 10;
2297 	}
2298 
2299 	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
2300 		mode->width_mm = edid->width_cm * 10;
2301 		mode->height_mm = edid->height_cm * 10;
2302 	}
2303 
2304 	mode->type = DRM_MODE_TYPE_DRIVER;
2305 	mode->vrefresh = drm_mode_vrefresh(mode);
2306 	drm_mode_set_name(mode);
2307 
2308 	return mode;
2309 }
2310 
2311 static bool
2312 mode_in_hsync_range(const struct drm_display_mode *mode,
2313 		    struct edid *edid, u8 *t)
2314 {
2315 	int hsync, hmin, hmax;
2316 
2317 	hmin = t[7];
2318 	if (edid->revision >= 4)
2319 	    hmin += ((t[4] & 0x04) ? 255 : 0);
2320 	hmax = t[8];
2321 	if (edid->revision >= 4)
2322 	    hmax += ((t[4] & 0x08) ? 255 : 0);
2323 	hsync = drm_mode_hsync(mode);
2324 
2325 	return (hsync <= hmax && hsync >= hmin);
2326 }
2327 
2328 static bool
2329 mode_in_vsync_range(const struct drm_display_mode *mode,
2330 		    struct edid *edid, u8 *t)
2331 {
2332 	int vsync, vmin, vmax;
2333 
2334 	vmin = t[5];
2335 	if (edid->revision >= 4)
2336 	    vmin += ((t[4] & 0x01) ? 255 : 0);
2337 	vmax = t[6];
2338 	if (edid->revision >= 4)
2339 	    vmax += ((t[4] & 0x02) ? 255 : 0);
2340 	vsync = drm_mode_vrefresh(mode);
2341 
2342 	return (vsync <= vmax && vsync >= vmin);
2343 }
2344 
2345 static u32
2346 range_pixel_clock(struct edid *edid, u8 *t)
2347 {
2348 	/* unspecified */
2349 	if (t[9] == 0 || t[9] == 255)
2350 		return 0;
2351 
2352 	/* 1.4 with CVT support gives us real precision, yay */
2353 	if (edid->revision >= 4 && t[10] == 0x04)
2354 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
2355 
2356 	/* 1.3 is pathetic, so fuzz up a bit */
2357 	return t[9] * 10000 + 5001;
2358 }
2359 
2360 static bool
2361 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
2362 	      struct detailed_timing *timing)
2363 {
2364 	u32 max_clock;
2365 	u8 *t = (u8 *)timing;
2366 
2367 	if (!mode_in_hsync_range(mode, edid, t))
2368 		return false;
2369 
2370 	if (!mode_in_vsync_range(mode, edid, t))
2371 		return false;
2372 
2373 	if ((max_clock = range_pixel_clock(edid, t)))
2374 		if (mode->clock > max_clock)
2375 			return false;
2376 
2377 	/* 1.4 max horizontal check */
2378 	if (edid->revision >= 4 && t[10] == 0x04)
2379 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
2380 			return false;
2381 
2382 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
2383 		return false;
2384 
2385 	return true;
2386 }
2387 
2388 static bool valid_inferred_mode(const struct drm_connector *connector,
2389 				const struct drm_display_mode *mode)
2390 {
2391 	const struct drm_display_mode *m;
2392 	bool ok = false;
2393 
2394 	list_for_each_entry(m, &connector->probed_modes, head) {
2395 		if (mode->hdisplay == m->hdisplay &&
2396 		    mode->vdisplay == m->vdisplay &&
2397 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
2398 			return false; /* duplicated */
2399 		if (mode->hdisplay <= m->hdisplay &&
2400 		    mode->vdisplay <= m->vdisplay)
2401 			ok = true;
2402 	}
2403 	return ok;
2404 }
2405 
2406 static int
2407 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2408 			struct detailed_timing *timing)
2409 {
2410 	int i, modes = 0;
2411 	struct drm_display_mode *newmode;
2412 	struct drm_device *dev = connector->dev;
2413 
2414 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2415 		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
2416 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
2417 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
2418 			if (newmode) {
2419 				drm_mode_probed_add(connector, newmode);
2420 				modes++;
2421 			}
2422 		}
2423 	}
2424 
2425 	return modes;
2426 }
2427 
2428 /* fix up 1366x768 mode from 1368x768;
2429  * GFT/CVT can't express 1366 width which isn't dividable by 8
2430  */
2431 void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
2432 {
2433 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
2434 		mode->hdisplay = 1366;
2435 		mode->hsync_start--;
2436 		mode->hsync_end--;
2437 		drm_mode_set_name(mode);
2438 	}
2439 }
2440 
2441 static int
2442 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
2443 			struct detailed_timing *timing)
2444 {
2445 	int i, modes = 0;
2446 	struct drm_display_mode *newmode;
2447 	struct drm_device *dev = connector->dev;
2448 
2449 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2450 		const struct minimode *m = &extra_modes[i];
2451 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2452 		if (!newmode)
2453 			return modes;
2454 
2455 		drm_mode_fixup_1366x768(newmode);
2456 		if (!mode_in_range(newmode, edid, timing) ||
2457 		    !valid_inferred_mode(connector, newmode)) {
2458 			drm_mode_destroy(dev, newmode);
2459 			continue;
2460 		}
2461 
2462 		drm_mode_probed_add(connector, newmode);
2463 		modes++;
2464 	}
2465 
2466 	return modes;
2467 }
2468 
2469 static int
2470 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2471 			struct detailed_timing *timing)
2472 {
2473 	int i, modes = 0;
2474 	struct drm_display_mode *newmode;
2475 	struct drm_device *dev = connector->dev;
2476 	bool rb = drm_monitor_supports_rb(edid);
2477 
2478 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2479 		const struct minimode *m = &extra_modes[i];
2480 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2481 		if (!newmode)
2482 			return modes;
2483 
2484 		drm_mode_fixup_1366x768(newmode);
2485 		if (!mode_in_range(newmode, edid, timing) ||
2486 		    !valid_inferred_mode(connector, newmode)) {
2487 			drm_mode_destroy(dev, newmode);
2488 			continue;
2489 		}
2490 
2491 		drm_mode_probed_add(connector, newmode);
2492 		modes++;
2493 	}
2494 
2495 	return modes;
2496 }
2497 
2498 static void
2499 do_inferred_modes(struct detailed_timing *timing, void *c)
2500 {
2501 	struct detailed_mode_closure *closure = c;
2502 	struct detailed_non_pixel *data = &timing->data.other_data;
2503 	struct detailed_data_monitor_range *range = &data->data.range;
2504 
2505 	if (data->type != EDID_DETAIL_MONITOR_RANGE)
2506 		return;
2507 
2508 	closure->modes += drm_dmt_modes_for_range(closure->connector,
2509 						  closure->edid,
2510 						  timing);
2511 
2512 	if (!version_greater(closure->edid, 1, 1))
2513 		return; /* GTF not defined yet */
2514 
2515 	switch (range->flags) {
2516 	case 0x02: /* secondary gtf, XXX could do more */
2517 	case 0x00: /* default gtf */
2518 		closure->modes += drm_gtf_modes_for_range(closure->connector,
2519 							  closure->edid,
2520 							  timing);
2521 		break;
2522 	case 0x04: /* cvt, only in 1.4+ */
2523 		if (!version_greater(closure->edid, 1, 3))
2524 			break;
2525 
2526 		closure->modes += drm_cvt_modes_for_range(closure->connector,
2527 							  closure->edid,
2528 							  timing);
2529 		break;
2530 	case 0x01: /* just the ranges, no formula */
2531 	default:
2532 		break;
2533 	}
2534 }
2535 
2536 static int
2537 add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2538 {
2539 	struct detailed_mode_closure closure = {
2540 		.connector = connector,
2541 		.edid = edid,
2542 	};
2543 
2544 	if (version_greater(edid, 1, 0))
2545 		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2546 					    &closure);
2547 
2548 	return closure.modes;
2549 }
2550 
2551 static int
2552 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2553 {
2554 	int i, j, m, modes = 0;
2555 	struct drm_display_mode *mode;
2556 	u8 *est = ((u8 *)timing) + 6;
2557 
2558 	for (i = 0; i < 6; i++) {
2559 		for (j = 7; j >= 0; j--) {
2560 			m = (i * 8) + (7 - j);
2561 			if (m >= ARRAY_SIZE(est3_modes))
2562 				break;
2563 			if (est[i] & (1 << j)) {
2564 				mode = drm_mode_find_dmt(connector->dev,
2565 							 est3_modes[m].w,
2566 							 est3_modes[m].h,
2567 							 est3_modes[m].r,
2568 							 est3_modes[m].rb);
2569 				if (mode) {
2570 					drm_mode_probed_add(connector, mode);
2571 					modes++;
2572 				}
2573 			}
2574 		}
2575 	}
2576 
2577 	return modes;
2578 }
2579 
2580 static void
2581 do_established_modes(struct detailed_timing *timing, void *c)
2582 {
2583 	struct detailed_mode_closure *closure = c;
2584 	struct detailed_non_pixel *data = &timing->data.other_data;
2585 
2586 	if (data->type == EDID_DETAIL_EST_TIMINGS)
2587 		closure->modes += drm_est3_modes(closure->connector, timing);
2588 }
2589 
2590 /**
2591  * add_established_modes - get est. modes from EDID and add them
2592  * @connector: connector to add mode(s) to
2593  * @edid: EDID block to scan
2594  *
2595  * Each EDID block contains a bitmap of the supported "established modes" list
2596  * (defined above).  Tease them out and add them to the global modes list.
2597  */
2598 static int
2599 add_established_modes(struct drm_connector *connector, struct edid *edid)
2600 {
2601 	struct drm_device *dev = connector->dev;
2602 	unsigned long est_bits = edid->established_timings.t1 |
2603 		(edid->established_timings.t2 << 8) |
2604 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
2605 	int i, modes = 0;
2606 	struct detailed_mode_closure closure = {
2607 		.connector = connector,
2608 		.edid = edid,
2609 	};
2610 
2611 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2612 		if (est_bits & (1<<i)) {
2613 			struct drm_display_mode *newmode;
2614 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2615 			if (newmode) {
2616 				drm_mode_probed_add(connector, newmode);
2617 				modes++;
2618 			}
2619 		}
2620 	}
2621 
2622 	if (version_greater(edid, 1, 0))
2623 		    drm_for_each_detailed_block((u8 *)edid,
2624 						do_established_modes, &closure);
2625 
2626 	return modes + closure.modes;
2627 }
2628 
2629 static void
2630 do_standard_modes(struct detailed_timing *timing, void *c)
2631 {
2632 	struct detailed_mode_closure *closure = c;
2633 	struct detailed_non_pixel *data = &timing->data.other_data;
2634 	struct drm_connector *connector = closure->connector;
2635 	struct edid *edid = closure->edid;
2636 
2637 	if (data->type == EDID_DETAIL_STD_MODES) {
2638 		int i;
2639 		for (i = 0; i < 6; i++) {
2640 			struct std_timing *std;
2641 			struct drm_display_mode *newmode;
2642 
2643 			std = &data->data.timings[i];
2644 			newmode = drm_mode_std(connector, edid, std);
2645 			if (newmode) {
2646 				drm_mode_probed_add(connector, newmode);
2647 				closure->modes++;
2648 			}
2649 		}
2650 	}
2651 }
2652 
2653 /**
2654  * add_standard_modes - get std. modes from EDID and add them
2655  * @connector: connector to add mode(s) to
2656  * @edid: EDID block to scan
2657  *
2658  * Standard modes can be calculated using the appropriate standard (DMT,
2659  * GTF or CVT. Grab them from @edid and add them to the list.
2660  */
2661 static int
2662 add_standard_modes(struct drm_connector *connector, struct edid *edid)
2663 {
2664 	int i, modes = 0;
2665 	struct detailed_mode_closure closure = {
2666 		.connector = connector,
2667 		.edid = edid,
2668 	};
2669 
2670 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
2671 		struct drm_display_mode *newmode;
2672 
2673 		newmode = drm_mode_std(connector, edid,
2674 				       &edid->standard_timings[i]);
2675 		if (newmode) {
2676 			drm_mode_probed_add(connector, newmode);
2677 			modes++;
2678 		}
2679 	}
2680 
2681 	if (version_greater(edid, 1, 0))
2682 		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2683 					    &closure);
2684 
2685 	/* XXX should also look for standard codes in VTB blocks */
2686 
2687 	return modes + closure.modes;
2688 }
2689 
2690 static int drm_cvt_modes(struct drm_connector *connector,
2691 			 struct detailed_timing *timing)
2692 {
2693 	int i, j, modes = 0;
2694 	struct drm_display_mode *newmode;
2695 	struct drm_device *dev = connector->dev;
2696 	struct cvt_timing *cvt;
2697 	const int rates[] = { 60, 85, 75, 60, 50 };
2698 	const u8 empty[3] = { 0, 0, 0 };
2699 
2700 	for (i = 0; i < 4; i++) {
2701 		int uninitialized_var(width), height;
2702 		cvt = &(timing->data.other_data.data.cvt[i]);
2703 
2704 		if (!memcmp(cvt->code, empty, 3))
2705 			continue;
2706 
2707 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2708 		switch (cvt->code[1] & 0x0c) {
2709 		case 0x00:
2710 			width = height * 4 / 3;
2711 			break;
2712 		case 0x04:
2713 			width = height * 16 / 9;
2714 			break;
2715 		case 0x08:
2716 			width = height * 16 / 10;
2717 			break;
2718 		case 0x0c:
2719 			width = height * 15 / 9;
2720 			break;
2721 		}
2722 
2723 		for (j = 1; j < 5; j++) {
2724 			if (cvt->code[2] & (1 << j)) {
2725 				newmode = drm_cvt_mode(dev, width, height,
2726 						       rates[j], j == 0,
2727 						       false, false);
2728 				if (newmode) {
2729 					drm_mode_probed_add(connector, newmode);
2730 					modes++;
2731 				}
2732 			}
2733 		}
2734 	}
2735 
2736 	return modes;
2737 }
2738 
2739 static void
2740 do_cvt_mode(struct detailed_timing *timing, void *c)
2741 {
2742 	struct detailed_mode_closure *closure = c;
2743 	struct detailed_non_pixel *data = &timing->data.other_data;
2744 
2745 	if (data->type == EDID_DETAIL_CVT_3BYTE)
2746 		closure->modes += drm_cvt_modes(closure->connector, timing);
2747 }
2748 
2749 static int
2750 add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2751 {
2752 	struct detailed_mode_closure closure = {
2753 		.connector = connector,
2754 		.edid = edid,
2755 	};
2756 
2757 	if (version_greater(edid, 1, 2))
2758 		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2759 
2760 	/* XXX should also look for CVT codes in VTB blocks */
2761 
2762 	return closure.modes;
2763 }
2764 
2765 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode);
2766 
2767 static void
2768 do_detailed_mode(struct detailed_timing *timing, void *c)
2769 {
2770 	struct detailed_mode_closure *closure = c;
2771 	struct drm_display_mode *newmode;
2772 
2773 	if (timing->pixel_clock) {
2774 		newmode = drm_mode_detailed(closure->connector->dev,
2775 					    closure->edid, timing,
2776 					    closure->quirks);
2777 		if (!newmode)
2778 			return;
2779 
2780 		if (closure->preferred)
2781 			newmode->type |= DRM_MODE_TYPE_PREFERRED;
2782 
2783 		/*
2784 		 * Detailed modes are limited to 10kHz pixel clock resolution,
2785 		 * so fix up anything that looks like CEA/HDMI mode, but the clock
2786 		 * is just slightly off.
2787 		 */
2788 		fixup_detailed_cea_mode_clock(newmode);
2789 
2790 		drm_mode_probed_add(closure->connector, newmode);
2791 		closure->modes++;
2792 		closure->preferred = false;
2793 	}
2794 }
2795 
2796 /*
2797  * add_detailed_modes - Add modes from detailed timings
2798  * @connector: attached connector
2799  * @edid: EDID block to scan
2800  * @quirks: quirks to apply
2801  */
2802 static int
2803 add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2804 		   u32 quirks)
2805 {
2806 	struct detailed_mode_closure closure = {
2807 		.connector = connector,
2808 		.edid = edid,
2809 		.preferred = true,
2810 		.quirks = quirks,
2811 	};
2812 
2813 	if (closure.preferred && !version_greater(edid, 1, 3))
2814 		closure.preferred =
2815 		    (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2816 
2817 	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2818 
2819 	return closure.modes;
2820 }
2821 
2822 #define AUDIO_BLOCK	0x01
2823 #define VIDEO_BLOCK     0x02
2824 #define VENDOR_BLOCK    0x03
2825 #define SPEAKER_BLOCK	0x04
2826 #define USE_EXTENDED_TAG 0x07
2827 #define EXT_VIDEO_CAPABILITY_BLOCK 0x00
2828 #define EXT_VIDEO_DATA_BLOCK_420	0x0E
2829 #define EXT_VIDEO_CAP_BLOCK_Y420CMDB 0x0F
2830 #define EDID_BASIC_AUDIO	(1 << 6)
2831 #define EDID_CEA_YCRCB444	(1 << 5)
2832 #define EDID_CEA_YCRCB422	(1 << 4)
2833 #define EDID_CEA_VCDB_QS	(1 << 6)
2834 
2835 /*
2836  * Search EDID for CEA extension block.
2837  */
2838 static u8 *drm_find_edid_extension(const struct edid *edid, int ext_id)
2839 {
2840 	u8 *edid_ext = NULL;
2841 	int i;
2842 
2843 	/* No EDID or EDID extensions */
2844 	if (edid == NULL || edid->extensions == 0)
2845 		return NULL;
2846 
2847 	/* Find CEA extension */
2848 	for (i = 0; i < edid->extensions; i++) {
2849 		edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2850 		if (edid_ext[0] == ext_id)
2851 			break;
2852 	}
2853 
2854 	if (i == edid->extensions)
2855 		return NULL;
2856 
2857 	return edid_ext;
2858 }
2859 
2860 static u8 *drm_find_cea_extension(const struct edid *edid)
2861 {
2862 	return drm_find_edid_extension(edid, CEA_EXT);
2863 }
2864 
2865 static u8 *drm_find_displayid_extension(const struct edid *edid)
2866 {
2867 	return drm_find_edid_extension(edid, DISPLAYID_EXT);
2868 }
2869 
2870 /*
2871  * Calculate the alternate clock for the CEA mode
2872  * (60Hz vs. 59.94Hz etc.)
2873  */
2874 static unsigned int
2875 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2876 {
2877 	unsigned int clock = cea_mode->clock;
2878 
2879 	if (cea_mode->vrefresh % 6 != 0)
2880 		return clock;
2881 
2882 	/*
2883 	 * edid_cea_modes contains the 59.94Hz
2884 	 * variant for 240 and 480 line modes,
2885 	 * and the 60Hz variant otherwise.
2886 	 */
2887 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2888 		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
2889 	else
2890 		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
2891 
2892 	return clock;
2893 }
2894 
2895 static bool
2896 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
2897 {
2898 	/*
2899 	 * For certain VICs the spec allows the vertical
2900 	 * front porch to vary by one or two lines.
2901 	 *
2902 	 * cea_modes[] stores the variant with the shortest
2903 	 * vertical front porch. We can adjust the mode to
2904 	 * get the other variants by simply increasing the
2905 	 * vertical front porch length.
2906 	 */
2907 	BUILD_BUG_ON(edid_cea_modes[8].vtotal != 262 ||
2908 		     edid_cea_modes[9].vtotal != 262 ||
2909 		     edid_cea_modes[12].vtotal != 262 ||
2910 		     edid_cea_modes[13].vtotal != 262 ||
2911 		     edid_cea_modes[23].vtotal != 312 ||
2912 		     edid_cea_modes[24].vtotal != 312 ||
2913 		     edid_cea_modes[27].vtotal != 312 ||
2914 		     edid_cea_modes[28].vtotal != 312);
2915 
2916 	if (((vic == 8 || vic == 9 ||
2917 	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
2918 	    ((vic == 23 || vic == 24 ||
2919 	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
2920 		mode->vsync_start++;
2921 		mode->vsync_end++;
2922 		mode->vtotal++;
2923 
2924 		return true;
2925 	}
2926 
2927 	return false;
2928 }
2929 
2930 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
2931 					     unsigned int clock_tolerance)
2932 {
2933 	u8 vic;
2934 
2935 	if (!to_match->clock)
2936 		return 0;
2937 
2938 	for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
2939 		struct drm_display_mode cea_mode = edid_cea_modes[vic];
2940 		unsigned int clock1, clock2;
2941 
2942 		/* Check both 60Hz and 59.94Hz */
2943 		clock1 = cea_mode.clock;
2944 		clock2 = cea_mode_alternate_clock(&cea_mode);
2945 
2946 		if (abs(to_match->clock - clock1) > clock_tolerance &&
2947 		    abs(to_match->clock - clock2) > clock_tolerance)
2948 			continue;
2949 
2950 		do {
2951 			if (drm_mode_equal_no_clocks_no_stereo(to_match, &cea_mode))
2952 				return vic;
2953 		} while (cea_mode_alternate_timings(vic, &cea_mode));
2954 	}
2955 
2956 	return 0;
2957 }
2958 
2959 /**
2960  * drm_match_cea_mode - look for a CEA mode matching given mode
2961  * @to_match: display mode
2962  *
2963  * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2964  * mode.
2965  */
2966 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2967 {
2968 	u8 vic;
2969 
2970 	if (!to_match->clock)
2971 		return 0;
2972 
2973 	for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
2974 		struct drm_display_mode cea_mode = edid_cea_modes[vic];
2975 		unsigned int clock1, clock2;
2976 
2977 		/* Check both 60Hz and 59.94Hz */
2978 		clock1 = cea_mode.clock;
2979 		clock2 = cea_mode_alternate_clock(&cea_mode);
2980 
2981 		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
2982 		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
2983 			continue;
2984 
2985 		do {
2986 			if (drm_mode_equal_no_clocks_no_stereo(to_match, &cea_mode))
2987 				return vic;
2988 		} while (cea_mode_alternate_timings(vic, &cea_mode));
2989 	}
2990 
2991 	return 0;
2992 }
2993 EXPORT_SYMBOL(drm_match_cea_mode);
2994 
2995 static bool drm_valid_cea_vic(u8 vic)
2996 {
2997 	return vic > 0 && vic < ARRAY_SIZE(edid_cea_modes);
2998 }
2999 
3000 /**
3001  * drm_get_cea_aspect_ratio - get the picture aspect ratio corresponding to
3002  * the input VIC from the CEA mode list
3003  * @video_code: ID given to each of the CEA modes
3004  *
3005  * Returns picture aspect ratio
3006  */
3007 enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
3008 {
3009 	return edid_cea_modes[video_code].picture_aspect_ratio;
3010 }
3011 EXPORT_SYMBOL(drm_get_cea_aspect_ratio);
3012 
3013 /*
3014  * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
3015  * specific block).
3016  *
3017  * It's almost like cea_mode_alternate_clock(), we just need to add an
3018  * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
3019  * one.
3020  */
3021 static unsigned int
3022 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
3023 {
3024 	if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
3025 		return hdmi_mode->clock;
3026 
3027 	return cea_mode_alternate_clock(hdmi_mode);
3028 }
3029 
3030 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
3031 					      unsigned int clock_tolerance)
3032 {
3033 	u8 vic;
3034 
3035 	if (!to_match->clock)
3036 		return 0;
3037 
3038 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3039 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3040 		unsigned int clock1, clock2;
3041 
3042 		/* Make sure to also match alternate clocks */
3043 		clock1 = hdmi_mode->clock;
3044 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3045 
3046 		if (abs(to_match->clock - clock1) > clock_tolerance &&
3047 		    abs(to_match->clock - clock2) > clock_tolerance)
3048 			continue;
3049 
3050 		if (drm_mode_equal_no_clocks(to_match, hdmi_mode))
3051 			return vic;
3052 	}
3053 
3054 	return 0;
3055 }
3056 
3057 /*
3058  * drm_match_hdmi_mode - look for a HDMI mode matching given mode
3059  * @to_match: display mode
3060  *
3061  * An HDMI mode is one defined in the HDMI vendor specific block.
3062  *
3063  * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
3064  */
3065 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
3066 {
3067 	u8 vic;
3068 
3069 	if (!to_match->clock)
3070 		return 0;
3071 
3072 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3073 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3074 		unsigned int clock1, clock2;
3075 
3076 		/* Make sure to also match alternate clocks */
3077 		clock1 = hdmi_mode->clock;
3078 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3079 
3080 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
3081 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
3082 		    drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
3083 			return vic;
3084 	}
3085 	return 0;
3086 }
3087 
3088 static bool drm_valid_hdmi_vic(u8 vic)
3089 {
3090 	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
3091 }
3092 
3093 static int
3094 add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
3095 {
3096 	struct drm_device *dev = connector->dev;
3097 	struct drm_display_mode *mode, *tmp;
3098 	LIST_HEAD(list);
3099 	int modes = 0;
3100 
3101 	/* Don't add CEA modes if the CEA extension block is missing */
3102 	if (!drm_find_cea_extension(edid))
3103 		return 0;
3104 
3105 	/*
3106 	 * Go through all probed modes and create a new mode
3107 	 * with the alternate clock for certain CEA modes.
3108 	 */
3109 	list_for_each_entry(mode, &connector->probed_modes, head) {
3110 		const struct drm_display_mode *cea_mode = NULL;
3111 		struct drm_display_mode *newmode;
3112 		u8 vic = drm_match_cea_mode(mode);
3113 		unsigned int clock1, clock2;
3114 
3115 		if (drm_valid_cea_vic(vic)) {
3116 			cea_mode = &edid_cea_modes[vic];
3117 			clock2 = cea_mode_alternate_clock(cea_mode);
3118 		} else {
3119 			vic = drm_match_hdmi_mode(mode);
3120 			if (drm_valid_hdmi_vic(vic)) {
3121 				cea_mode = &edid_4k_modes[vic];
3122 				clock2 = hdmi_mode_alternate_clock(cea_mode);
3123 			}
3124 		}
3125 
3126 		if (!cea_mode)
3127 			continue;
3128 
3129 		clock1 = cea_mode->clock;
3130 
3131 		if (clock1 == clock2)
3132 			continue;
3133 
3134 		if (mode->clock != clock1 && mode->clock != clock2)
3135 			continue;
3136 
3137 		newmode = drm_mode_duplicate(dev, cea_mode);
3138 		if (!newmode)
3139 			continue;
3140 
3141 		/* Carry over the stereo flags */
3142 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
3143 
3144 		/*
3145 		 * The current mode could be either variant. Make
3146 		 * sure to pick the "other" clock for the new mode.
3147 		 */
3148 		if (mode->clock != clock1)
3149 			newmode->clock = clock1;
3150 		else
3151 			newmode->clock = clock2;
3152 
3153 		list_add_tail(&newmode->head, &list);
3154 	}
3155 
3156 	list_for_each_entry_safe(mode, tmp, &list, head) {
3157 		list_del(&mode->head);
3158 		drm_mode_probed_add(connector, mode);
3159 		modes++;
3160 	}
3161 
3162 	return modes;
3163 }
3164 
3165 static u8 svd_to_vic(u8 svd)
3166 {
3167 	/* 0-6 bit vic, 7th bit native mode indicator */
3168 	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
3169 		return svd & 127;
3170 
3171 	return svd;
3172 }
3173 
3174 static struct drm_display_mode *
3175 drm_display_mode_from_vic_index(struct drm_connector *connector,
3176 				const u8 *video_db, u8 video_len,
3177 				u8 video_index)
3178 {
3179 	struct drm_device *dev = connector->dev;
3180 	struct drm_display_mode *newmode;
3181 	u8 vic;
3182 
3183 	if (video_db == NULL || video_index >= video_len)
3184 		return NULL;
3185 
3186 	/* CEA modes are numbered 1..127 */
3187 	vic = svd_to_vic(video_db[video_index]);
3188 	if (!drm_valid_cea_vic(vic))
3189 		return NULL;
3190 
3191 	newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]);
3192 	if (!newmode)
3193 		return NULL;
3194 
3195 	newmode->vrefresh = 0;
3196 
3197 	return newmode;
3198 }
3199 
3200 /*
3201  * do_y420vdb_modes - Parse YCBCR 420 only modes
3202  * @connector: connector corresponding to the HDMI sink
3203  * @svds: start of the data block of CEA YCBCR 420 VDB
3204  * @len: length of the CEA YCBCR 420 VDB
3205  *
3206  * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
3207  * which contains modes which can be supported in YCBCR 420
3208  * output format only.
3209  */
3210 static int do_y420vdb_modes(struct drm_connector *connector,
3211 			    const u8 *svds, u8 svds_len)
3212 {
3213 	int modes = 0, i;
3214 	struct drm_device *dev = connector->dev;
3215 	struct drm_display_info *info = &connector->display_info;
3216 	struct drm_hdmi_info *hdmi = &info->hdmi;
3217 
3218 	for (i = 0; i < svds_len; i++) {
3219 		u8 vic = svd_to_vic(svds[i]);
3220 		struct drm_display_mode *newmode;
3221 
3222 		if (!drm_valid_cea_vic(vic))
3223 			continue;
3224 
3225 		newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]);
3226 		if (!newmode)
3227 			break;
3228 		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
3229 		drm_mode_probed_add(connector, newmode);
3230 		modes++;
3231 	}
3232 
3233 	if (modes > 0)
3234 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3235 	return modes;
3236 }
3237 
3238 /*
3239  * drm_add_cmdb_modes - Add a YCBCR 420 mode into bitmap
3240  * @connector: connector corresponding to the HDMI sink
3241  * @vic: CEA vic for the video mode to be added in the map
3242  *
3243  * Makes an entry for a videomode in the YCBCR 420 bitmap
3244  */
3245 static void
3246 drm_add_cmdb_modes(struct drm_connector *connector, u8 svd)
3247 {
3248 	u8 vic = svd_to_vic(svd);
3249 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3250 
3251 	if (!drm_valid_cea_vic(vic))
3252 		return;
3253 
3254 	bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
3255 }
3256 
3257 static int
3258 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
3259 {
3260 	int i, modes = 0;
3261 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3262 
3263 	for (i = 0; i < len; i++) {
3264 		struct drm_display_mode *mode;
3265 		mode = drm_display_mode_from_vic_index(connector, db, len, i);
3266 		if (mode) {
3267 			/*
3268 			 * YCBCR420 capability block contains a bitmap which
3269 			 * gives the index of CEA modes from CEA VDB, which
3270 			 * can support YCBCR 420 sampling output also (apart
3271 			 * from RGB/YCBCR444 etc).
3272 			 * For example, if the bit 0 in bitmap is set,
3273 			 * first mode in VDB can support YCBCR420 output too.
3274 			 * Add YCBCR420 modes only if sink is HDMI 2.0 capable.
3275 			 */
3276 			if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
3277 				drm_add_cmdb_modes(connector, db[i]);
3278 
3279 			drm_mode_probed_add(connector, mode);
3280 			modes++;
3281 		}
3282 	}
3283 
3284 	return modes;
3285 }
3286 
3287 struct stereo_mandatory_mode {
3288 	int width, height, vrefresh;
3289 	unsigned int flags;
3290 };
3291 
3292 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
3293 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3294 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
3295 	{ 1920, 1080, 50,
3296 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
3297 	{ 1920, 1080, 60,
3298 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
3299 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3300 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
3301 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3302 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
3303 };
3304 
3305 static bool
3306 stereo_match_mandatory(const struct drm_display_mode *mode,
3307 		       const struct stereo_mandatory_mode *stereo_mode)
3308 {
3309 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
3310 
3311 	return mode->hdisplay == stereo_mode->width &&
3312 	       mode->vdisplay == stereo_mode->height &&
3313 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
3314 	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
3315 }
3316 
3317 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
3318 {
3319 	struct drm_device *dev = connector->dev;
3320 	const struct drm_display_mode *mode;
3321 	struct list_head stereo_modes;
3322 	int modes = 0, i;
3323 
3324 	INIT_LIST_HEAD(&stereo_modes);
3325 
3326 	list_for_each_entry(mode, &connector->probed_modes, head) {
3327 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
3328 			const struct stereo_mandatory_mode *mandatory;
3329 			struct drm_display_mode *new_mode;
3330 
3331 			if (!stereo_match_mandatory(mode,
3332 						    &stereo_mandatory_modes[i]))
3333 				continue;
3334 
3335 			mandatory = &stereo_mandatory_modes[i];
3336 			new_mode = drm_mode_duplicate(dev, mode);
3337 			if (!new_mode)
3338 				continue;
3339 
3340 			new_mode->flags |= mandatory->flags;
3341 			list_add_tail(&new_mode->head, &stereo_modes);
3342 			modes++;
3343 		}
3344 	}
3345 
3346 	list_splice_tail(&stereo_modes, &connector->probed_modes);
3347 
3348 	return modes;
3349 }
3350 
3351 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
3352 {
3353 	struct drm_device *dev = connector->dev;
3354 	struct drm_display_mode *newmode;
3355 
3356 	if (!drm_valid_hdmi_vic(vic)) {
3357 		DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
3358 		return 0;
3359 	}
3360 
3361 	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
3362 	if (!newmode)
3363 		return 0;
3364 
3365 	drm_mode_probed_add(connector, newmode);
3366 
3367 	return 1;
3368 }
3369 
3370 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
3371 			       const u8 *video_db, u8 video_len, u8 video_index)
3372 {
3373 	struct drm_display_mode *newmode;
3374 	int modes = 0;
3375 
3376 	if (structure & (1 << 0)) {
3377 		newmode = drm_display_mode_from_vic_index(connector, video_db,
3378 							  video_len,
3379 							  video_index);
3380 		if (newmode) {
3381 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
3382 			drm_mode_probed_add(connector, newmode);
3383 			modes++;
3384 		}
3385 	}
3386 	if (structure & (1 << 6)) {
3387 		newmode = drm_display_mode_from_vic_index(connector, video_db,
3388 							  video_len,
3389 							  video_index);
3390 		if (newmode) {
3391 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3392 			drm_mode_probed_add(connector, newmode);
3393 			modes++;
3394 		}
3395 	}
3396 	if (structure & (1 << 8)) {
3397 		newmode = drm_display_mode_from_vic_index(connector, video_db,
3398 							  video_len,
3399 							  video_index);
3400 		if (newmode) {
3401 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3402 			drm_mode_probed_add(connector, newmode);
3403 			modes++;
3404 		}
3405 	}
3406 
3407 	return modes;
3408 }
3409 
3410 /*
3411  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
3412  * @connector: connector corresponding to the HDMI sink
3413  * @db: start of the CEA vendor specific block
3414  * @len: length of the CEA block payload, ie. one can access up to db[len]
3415  *
3416  * Parses the HDMI VSDB looking for modes to add to @connector. This function
3417  * also adds the stereo 3d modes when applicable.
3418  */
3419 static int
3420 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
3421 		   const u8 *video_db, u8 video_len)
3422 {
3423 	struct drm_display_info *info = &connector->display_info;
3424 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
3425 	u8 vic_len, hdmi_3d_len = 0;
3426 	u16 mask;
3427 	u16 structure_all;
3428 
3429 	if (len < 8)
3430 		goto out;
3431 
3432 	/* no HDMI_Video_Present */
3433 	if (!(db[8] & (1 << 5)))
3434 		goto out;
3435 
3436 	/* Latency_Fields_Present */
3437 	if (db[8] & (1 << 7))
3438 		offset += 2;
3439 
3440 	/* I_Latency_Fields_Present */
3441 	if (db[8] & (1 << 6))
3442 		offset += 2;
3443 
3444 	/* the declared length is not long enough for the 2 first bytes
3445 	 * of additional video format capabilities */
3446 	if (len < (8 + offset + 2))
3447 		goto out;
3448 
3449 	/* 3D_Present */
3450 	offset++;
3451 	if (db[8 + offset] & (1 << 7)) {
3452 		modes += add_hdmi_mandatory_stereo_modes(connector);
3453 
3454 		/* 3D_Multi_present */
3455 		multi_present = (db[8 + offset] & 0x60) >> 5;
3456 	}
3457 
3458 	offset++;
3459 	vic_len = db[8 + offset] >> 5;
3460 	hdmi_3d_len = db[8 + offset] & 0x1f;
3461 
3462 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
3463 		u8 vic;
3464 
3465 		vic = db[9 + offset + i];
3466 		modes += add_hdmi_mode(connector, vic);
3467 	}
3468 	offset += 1 + vic_len;
3469 
3470 	if (multi_present == 1)
3471 		multi_len = 2;
3472 	else if (multi_present == 2)
3473 		multi_len = 4;
3474 	else
3475 		multi_len = 0;
3476 
3477 	if (len < (8 + offset + hdmi_3d_len - 1))
3478 		goto out;
3479 
3480 	if (hdmi_3d_len < multi_len)
3481 		goto out;
3482 
3483 	if (multi_present == 1 || multi_present == 2) {
3484 		/* 3D_Structure_ALL */
3485 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
3486 
3487 		/* check if 3D_MASK is present */
3488 		if (multi_present == 2)
3489 			mask = (db[10 + offset] << 8) | db[11 + offset];
3490 		else
3491 			mask = 0xffff;
3492 
3493 		for (i = 0; i < 16; i++) {
3494 			if (mask & (1 << i))
3495 				modes += add_3d_struct_modes(connector,
3496 						structure_all,
3497 						video_db,
3498 						video_len, i);
3499 		}
3500 	}
3501 
3502 	offset += multi_len;
3503 
3504 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
3505 		int vic_index;
3506 		struct drm_display_mode *newmode = NULL;
3507 		unsigned int newflag = 0;
3508 		bool detail_present;
3509 
3510 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
3511 
3512 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
3513 			break;
3514 
3515 		/* 2D_VIC_order_X */
3516 		vic_index = db[8 + offset + i] >> 4;
3517 
3518 		/* 3D_Structure_X */
3519 		switch (db[8 + offset + i] & 0x0f) {
3520 		case 0:
3521 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
3522 			break;
3523 		case 6:
3524 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3525 			break;
3526 		case 8:
3527 			/* 3D_Detail_X */
3528 			if ((db[9 + offset + i] >> 4) == 1)
3529 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3530 			break;
3531 		}
3532 
3533 		if (newflag != 0) {
3534 			newmode = drm_display_mode_from_vic_index(connector,
3535 								  video_db,
3536 								  video_len,
3537 								  vic_index);
3538 
3539 			if (newmode) {
3540 				newmode->flags |= newflag;
3541 				drm_mode_probed_add(connector, newmode);
3542 				modes++;
3543 			}
3544 		}
3545 
3546 		if (detail_present)
3547 			i++;
3548 	}
3549 
3550 out:
3551 	if (modes > 0)
3552 		info->has_hdmi_infoframe = true;
3553 	return modes;
3554 }
3555 
3556 static int
3557 cea_db_payload_len(const u8 *db)
3558 {
3559 	return db[0] & 0x1f;
3560 }
3561 
3562 static int
3563 cea_db_extended_tag(const u8 *db)
3564 {
3565 	return db[1];
3566 }
3567 
3568 static int
3569 cea_db_tag(const u8 *db)
3570 {
3571 	return db[0] >> 5;
3572 }
3573 
3574 static int
3575 cea_revision(const u8 *cea)
3576 {
3577 	return cea[1];
3578 }
3579 
3580 static int
3581 cea_db_offsets(const u8 *cea, int *start, int *end)
3582 {
3583 	/* Data block offset in CEA extension block */
3584 	*start = 4;
3585 	*end = cea[2];
3586 	if (*end == 0)
3587 		*end = 127;
3588 	if (*end < 4 || *end > 127)
3589 		return -ERANGE;
3590 	return 0;
3591 }
3592 
3593 static bool cea_db_is_hdmi_vsdb(const u8 *db)
3594 {
3595 	int hdmi_id;
3596 
3597 	if (cea_db_tag(db) != VENDOR_BLOCK)
3598 		return false;
3599 
3600 	if (cea_db_payload_len(db) < 5)
3601 		return false;
3602 
3603 	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
3604 
3605 	return hdmi_id == HDMI_IEEE_OUI;
3606 }
3607 
3608 static bool cea_db_is_hdmi_forum_vsdb(const u8 *db)
3609 {
3610 	unsigned int oui;
3611 
3612 	if (cea_db_tag(db) != VENDOR_BLOCK)
3613 		return false;
3614 
3615 	if (cea_db_payload_len(db) < 7)
3616 		return false;
3617 
3618 	oui = db[3] << 16 | db[2] << 8 | db[1];
3619 
3620 	return oui == HDMI_FORUM_IEEE_OUI;
3621 }
3622 
3623 static bool cea_db_is_y420cmdb(const u8 *db)
3624 {
3625 	if (cea_db_tag(db) != USE_EXTENDED_TAG)
3626 		return false;
3627 
3628 	if (!cea_db_payload_len(db))
3629 		return false;
3630 
3631 	if (cea_db_extended_tag(db) != EXT_VIDEO_CAP_BLOCK_Y420CMDB)
3632 		return false;
3633 
3634 	return true;
3635 }
3636 
3637 static bool cea_db_is_y420vdb(const u8 *db)
3638 {
3639 	if (cea_db_tag(db) != USE_EXTENDED_TAG)
3640 		return false;
3641 
3642 	if (!cea_db_payload_len(db))
3643 		return false;
3644 
3645 	if (cea_db_extended_tag(db) != EXT_VIDEO_DATA_BLOCK_420)
3646 		return false;
3647 
3648 	return true;
3649 }
3650 
3651 #define for_each_cea_db(cea, i, start, end) \
3652 	for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
3653 
3654 static void drm_parse_y420cmdb_bitmap(struct drm_connector *connector,
3655 				      const u8 *db)
3656 {
3657 	struct drm_display_info *info = &connector->display_info;
3658 	struct drm_hdmi_info *hdmi = &info->hdmi;
3659 	u8 map_len = cea_db_payload_len(db) - 1;
3660 	u8 count;
3661 	u64 map = 0;
3662 
3663 	if (map_len == 0) {
3664 		/* All CEA modes support ycbcr420 sampling also.*/
3665 		hdmi->y420_cmdb_map = U64_MAX;
3666 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3667 		return;
3668 	}
3669 
3670 	/*
3671 	 * This map indicates which of the existing CEA block modes
3672 	 * from VDB can support YCBCR420 output too. So if bit=0 is
3673 	 * set, first mode from VDB can support YCBCR420 output too.
3674 	 * We will parse and keep this map, before parsing VDB itself
3675 	 * to avoid going through the same block again and again.
3676 	 *
3677 	 * Spec is not clear about max possible size of this block.
3678 	 * Clamping max bitmap block size at 8 bytes. Every byte can
3679 	 * address 8 CEA modes, in this way this map can address
3680 	 * 8*8 = first 64 SVDs.
3681 	 */
3682 	if (WARN_ON_ONCE(map_len > 8))
3683 		map_len = 8;
3684 
3685 	for (count = 0; count < map_len; count++)
3686 		map |= (u64)db[2 + count] << (8 * count);
3687 
3688 	if (map)
3689 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3690 
3691 	hdmi->y420_cmdb_map = map;
3692 }
3693 
3694 static int
3695 add_cea_modes(struct drm_connector *connector, struct edid *edid)
3696 {
3697 	const u8 *cea = drm_find_cea_extension(edid);
3698 	const u8 *db, *hdmi = NULL, *video = NULL;
3699 	u8 dbl, hdmi_len, video_len = 0;
3700 	int modes = 0;
3701 
3702 	if (cea && cea_revision(cea) >= 3) {
3703 		int i, start, end;
3704 
3705 		if (cea_db_offsets(cea, &start, &end))
3706 			return 0;
3707 
3708 		for_each_cea_db(cea, i, start, end) {
3709 			db = &cea[i];
3710 			dbl = cea_db_payload_len(db);
3711 
3712 			if (cea_db_tag(db) == VIDEO_BLOCK) {
3713 				video = db + 1;
3714 				video_len = dbl;
3715 				modes += do_cea_modes(connector, video, dbl);
3716 			} else if (cea_db_is_hdmi_vsdb(db)) {
3717 				hdmi = db;
3718 				hdmi_len = dbl;
3719 			} else if (cea_db_is_y420vdb(db)) {
3720 				const u8 *vdb420 = &db[2];
3721 
3722 				/* Add 4:2:0(only) modes present in EDID */
3723 				modes += do_y420vdb_modes(connector,
3724 							  vdb420,
3725 							  dbl - 1);
3726 			}
3727 		}
3728 	}
3729 
3730 	/*
3731 	 * We parse the HDMI VSDB after having added the cea modes as we will
3732 	 * be patching their flags when the sink supports stereo 3D.
3733 	 */
3734 	if (hdmi)
3735 		modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
3736 					    video_len);
3737 
3738 	return modes;
3739 }
3740 
3741 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
3742 {
3743 	const struct drm_display_mode *cea_mode;
3744 	int clock1, clock2, clock;
3745 	u8 vic;
3746 	const char *type;
3747 
3748 	/*
3749 	 * allow 5kHz clock difference either way to account for
3750 	 * the 10kHz clock resolution limit of detailed timings.
3751 	 */
3752 	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
3753 	if (drm_valid_cea_vic(vic)) {
3754 		type = "CEA";
3755 		cea_mode = &edid_cea_modes[vic];
3756 		clock1 = cea_mode->clock;
3757 		clock2 = cea_mode_alternate_clock(cea_mode);
3758 	} else {
3759 		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
3760 		if (drm_valid_hdmi_vic(vic)) {
3761 			type = "HDMI";
3762 			cea_mode = &edid_4k_modes[vic];
3763 			clock1 = cea_mode->clock;
3764 			clock2 = hdmi_mode_alternate_clock(cea_mode);
3765 		} else {
3766 			return;
3767 		}
3768 	}
3769 
3770 	/* pick whichever is closest */
3771 	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
3772 		clock = clock1;
3773 	else
3774 		clock = clock2;
3775 
3776 	if (mode->clock == clock)
3777 		return;
3778 
3779 	DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
3780 		  type, vic, mode->clock, clock);
3781 	mode->clock = clock;
3782 }
3783 
3784 static void
3785 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
3786 {
3787 	u8 len = cea_db_payload_len(db);
3788 
3789 	if (len >= 6 && (db[6] & (1 << 7)))
3790 		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
3791 	if (len >= 8) {
3792 		connector->latency_present[0] = db[8] >> 7;
3793 		connector->latency_present[1] = (db[8] >> 6) & 1;
3794 	}
3795 	if (len >= 9)
3796 		connector->video_latency[0] = db[9];
3797 	if (len >= 10)
3798 		connector->audio_latency[0] = db[10];
3799 	if (len >= 11)
3800 		connector->video_latency[1] = db[11];
3801 	if (len >= 12)
3802 		connector->audio_latency[1] = db[12];
3803 
3804 	DRM_DEBUG_KMS("HDMI: latency present %d %d, "
3805 		      "video latency %d %d, "
3806 		      "audio latency %d %d\n",
3807 		      connector->latency_present[0],
3808 		      connector->latency_present[1],
3809 		      connector->video_latency[0],
3810 		      connector->video_latency[1],
3811 		      connector->audio_latency[0],
3812 		      connector->audio_latency[1]);
3813 }
3814 
3815 static void
3816 monitor_name(struct detailed_timing *t, void *data)
3817 {
3818 	if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
3819 		*(u8 **)data = t->data.other_data.data.str.str;
3820 }
3821 
3822 static int get_monitor_name(struct edid *edid, char name[13])
3823 {
3824 	char *edid_name = NULL;
3825 	int mnl;
3826 
3827 	if (!edid || !name)
3828 		return 0;
3829 
3830 	drm_for_each_detailed_block((u8 *)edid, monitor_name, &edid_name);
3831 	for (mnl = 0; edid_name && mnl < 13; mnl++) {
3832 		if (edid_name[mnl] == 0x0a)
3833 			break;
3834 
3835 		name[mnl] = edid_name[mnl];
3836 	}
3837 
3838 	return mnl;
3839 }
3840 
3841 /**
3842  * drm_edid_get_monitor_name - fetch the monitor name from the edid
3843  * @edid: monitor EDID information
3844  * @name: pointer to a character array to hold the name of the monitor
3845  * @bufsize: The size of the name buffer (should be at least 14 chars.)
3846  *
3847  */
3848 void drm_edid_get_monitor_name(struct edid *edid, char *name, int bufsize)
3849 {
3850 	int name_length;
3851 	char buf[13];
3852 
3853 	if (bufsize <= 0)
3854 		return;
3855 
3856 	name_length = min(get_monitor_name(edid, buf), bufsize - 1);
3857 	memcpy(name, buf, name_length);
3858 	name[name_length] = '\0';
3859 }
3860 EXPORT_SYMBOL(drm_edid_get_monitor_name);
3861 
3862 static void clear_eld(struct drm_connector *connector)
3863 {
3864 	memset(connector->eld, 0, sizeof(connector->eld));
3865 
3866 	connector->latency_present[0] = false;
3867 	connector->latency_present[1] = false;
3868 	connector->video_latency[0] = 0;
3869 	connector->audio_latency[0] = 0;
3870 	connector->video_latency[1] = 0;
3871 	connector->audio_latency[1] = 0;
3872 }
3873 
3874 /*
3875  * drm_edid_to_eld - build ELD from EDID
3876  * @connector: connector corresponding to the HDMI/DP sink
3877  * @edid: EDID to parse
3878  *
3879  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
3880  * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
3881  */
3882 static void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
3883 {
3884 	uint8_t *eld = connector->eld;
3885 	u8 *cea;
3886 	u8 *db;
3887 	int total_sad_count = 0;
3888 	int mnl;
3889 	int dbl;
3890 
3891 	clear_eld(connector);
3892 
3893 	if (!edid)
3894 		return;
3895 
3896 	cea = drm_find_cea_extension(edid);
3897 	if (!cea) {
3898 		DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
3899 		return;
3900 	}
3901 
3902 	mnl = get_monitor_name(edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
3903 	DRM_DEBUG_KMS("ELD monitor %s\n", &eld[DRM_ELD_MONITOR_NAME_STRING]);
3904 
3905 	eld[DRM_ELD_CEA_EDID_VER_MNL] = cea[1] << DRM_ELD_CEA_EDID_VER_SHIFT;
3906 	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
3907 
3908 	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
3909 
3910 	eld[DRM_ELD_MANUFACTURER_NAME0] = edid->mfg_id[0];
3911 	eld[DRM_ELD_MANUFACTURER_NAME1] = edid->mfg_id[1];
3912 	eld[DRM_ELD_PRODUCT_CODE0] = edid->prod_code[0];
3913 	eld[DRM_ELD_PRODUCT_CODE1] = edid->prod_code[1];
3914 
3915 	if (cea_revision(cea) >= 3) {
3916 		int i, start, end;
3917 
3918 		if (cea_db_offsets(cea, &start, &end)) {
3919 			start = 0;
3920 			end = 0;
3921 		}
3922 
3923 		for_each_cea_db(cea, i, start, end) {
3924 			db = &cea[i];
3925 			dbl = cea_db_payload_len(db);
3926 
3927 			switch (cea_db_tag(db)) {
3928 				int sad_count;
3929 
3930 			case AUDIO_BLOCK:
3931 				/* Audio Data Block, contains SADs */
3932 				sad_count = min(dbl / 3, 15 - total_sad_count);
3933 				if (sad_count >= 1)
3934 					memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
3935 					       &db[1], sad_count * 3);
3936 				total_sad_count += sad_count;
3937 				break;
3938 			case SPEAKER_BLOCK:
3939 				/* Speaker Allocation Data Block */
3940 				if (dbl >= 1)
3941 					eld[DRM_ELD_SPEAKER] = db[1];
3942 				break;
3943 			case VENDOR_BLOCK:
3944 				/* HDMI Vendor-Specific Data Block */
3945 				if (cea_db_is_hdmi_vsdb(db))
3946 					drm_parse_hdmi_vsdb_audio(connector, db);
3947 				break;
3948 			default:
3949 				break;
3950 			}
3951 		}
3952 	}
3953 	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
3954 
3955 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
3956 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3957 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
3958 	else
3959 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
3960 
3961 	eld[DRM_ELD_BASELINE_ELD_LEN] =
3962 		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
3963 
3964 	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n",
3965 		      drm_eld_size(eld), total_sad_count);
3966 }
3967 
3968 /**
3969  * drm_edid_to_sad - extracts SADs from EDID
3970  * @edid: EDID to parse
3971  * @sads: pointer that will be set to the extracted SADs
3972  *
3973  * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
3974  *
3975  * Note: The returned pointer needs to be freed using kfree().
3976  *
3977  * Return: The number of found SADs or negative number on error.
3978  */
3979 int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
3980 {
3981 	int count = 0;
3982 	int i, start, end, dbl;
3983 	u8 *cea;
3984 
3985 	cea = drm_find_cea_extension(edid);
3986 	if (!cea) {
3987 		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3988 		return -ENOENT;
3989 	}
3990 
3991 	if (cea_revision(cea) < 3) {
3992 		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3993 		return -ENOTSUPP;
3994 	}
3995 
3996 	if (cea_db_offsets(cea, &start, &end)) {
3997 		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3998 		return -EPROTO;
3999 	}
4000 
4001 	for_each_cea_db(cea, i, start, end) {
4002 		u8 *db = &cea[i];
4003 
4004 		if (cea_db_tag(db) == AUDIO_BLOCK) {
4005 			int j;
4006 			dbl = cea_db_payload_len(db);
4007 
4008 			count = dbl / 3; /* SAD is 3B */
4009 			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
4010 			if (!*sads)
4011 				return -ENOMEM;
4012 			for (j = 0; j < count; j++) {
4013 				u8 *sad = &db[1 + j * 3];
4014 
4015 				(*sads)[j].format = (sad[0] & 0x78) >> 3;
4016 				(*sads)[j].channels = sad[0] & 0x7;
4017 				(*sads)[j].freq = sad[1] & 0x7F;
4018 				(*sads)[j].byte2 = sad[2];
4019 			}
4020 			break;
4021 		}
4022 	}
4023 
4024 	return count;
4025 }
4026 EXPORT_SYMBOL(drm_edid_to_sad);
4027 
4028 /**
4029  * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
4030  * @edid: EDID to parse
4031  * @sadb: pointer to the speaker block
4032  *
4033  * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
4034  *
4035  * Note: The returned pointer needs to be freed using kfree().
4036  *
4037  * Return: The number of found Speaker Allocation Blocks or negative number on
4038  * error.
4039  */
4040 int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
4041 {
4042 	int count = 0;
4043 	int i, start, end, dbl;
4044 	const u8 *cea;
4045 
4046 	cea = drm_find_cea_extension(edid);
4047 	if (!cea) {
4048 		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
4049 		return -ENOENT;
4050 	}
4051 
4052 	if (cea_revision(cea) < 3) {
4053 		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
4054 		return -ENOTSUPP;
4055 	}
4056 
4057 	if (cea_db_offsets(cea, &start, &end)) {
4058 		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
4059 		return -EPROTO;
4060 	}
4061 
4062 	for_each_cea_db(cea, i, start, end) {
4063 		const u8 *db = &cea[i];
4064 
4065 		if (cea_db_tag(db) == SPEAKER_BLOCK) {
4066 			dbl = cea_db_payload_len(db);
4067 
4068 			/* Speaker Allocation Data Block */
4069 			if (dbl == 3) {
4070 				*sadb = kmemdup(&db[1], dbl, GFP_KERNEL);
4071 				if (!*sadb)
4072 					return -ENOMEM;
4073 				count = dbl;
4074 				break;
4075 			}
4076 		}
4077 	}
4078 
4079 	return count;
4080 }
4081 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
4082 
4083 /**
4084  * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
4085  * @connector: connector associated with the HDMI/DP sink
4086  * @mode: the display mode
4087  *
4088  * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
4089  * the sink doesn't support audio or video.
4090  */
4091 int drm_av_sync_delay(struct drm_connector *connector,
4092 		      const struct drm_display_mode *mode)
4093 {
4094 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
4095 	int a, v;
4096 
4097 	if (!connector->latency_present[0])
4098 		return 0;
4099 	if (!connector->latency_present[1])
4100 		i = 0;
4101 
4102 	a = connector->audio_latency[i];
4103 	v = connector->video_latency[i];
4104 
4105 	/*
4106 	 * HDMI/DP sink doesn't support audio or video?
4107 	 */
4108 	if (a == 255 || v == 255)
4109 		return 0;
4110 
4111 	/*
4112 	 * Convert raw EDID values to millisecond.
4113 	 * Treat unknown latency as 0ms.
4114 	 */
4115 	if (a)
4116 		a = min(2 * (a - 1), 500);
4117 	if (v)
4118 		v = min(2 * (v - 1), 500);
4119 
4120 	return max(v - a, 0);
4121 }
4122 EXPORT_SYMBOL(drm_av_sync_delay);
4123 
4124 /**
4125  * drm_detect_hdmi_monitor - detect whether monitor is HDMI
4126  * @edid: monitor EDID information
4127  *
4128  * Parse the CEA extension according to CEA-861-B.
4129  *
4130  * Return: True if the monitor is HDMI, false if not or unknown.
4131  */
4132 bool drm_detect_hdmi_monitor(struct edid *edid)
4133 {
4134 	u8 *edid_ext;
4135 	int i;
4136 	int start_offset, end_offset;
4137 
4138 	edid_ext = drm_find_cea_extension(edid);
4139 	if (!edid_ext)
4140 		return false;
4141 
4142 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
4143 		return false;
4144 
4145 	/*
4146 	 * Because HDMI identifier is in Vendor Specific Block,
4147 	 * search it from all data blocks of CEA extension.
4148 	 */
4149 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
4150 		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
4151 			return true;
4152 	}
4153 
4154 	return false;
4155 }
4156 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
4157 
4158 /**
4159  * drm_detect_monitor_audio - check monitor audio capability
4160  * @edid: EDID block to scan
4161  *
4162  * Monitor should have CEA extension block.
4163  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
4164  * audio' only. If there is any audio extension block and supported
4165  * audio format, assume at least 'basic audio' support, even if 'basic
4166  * audio' is not defined in EDID.
4167  *
4168  * Return: True if the monitor supports audio, false otherwise.
4169  */
4170 bool drm_detect_monitor_audio(struct edid *edid)
4171 {
4172 	u8 *edid_ext;
4173 	int i, j;
4174 	bool has_audio = false;
4175 	int start_offset, end_offset;
4176 
4177 	edid_ext = drm_find_cea_extension(edid);
4178 	if (!edid_ext)
4179 		goto end;
4180 
4181 	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
4182 
4183 	if (has_audio) {
4184 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
4185 		goto end;
4186 	}
4187 
4188 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
4189 		goto end;
4190 
4191 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
4192 		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
4193 			has_audio = true;
4194 			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
4195 				DRM_DEBUG_KMS("CEA audio format %d\n",
4196 					      (edid_ext[i + j] >> 3) & 0xf);
4197 			goto end;
4198 		}
4199 	}
4200 end:
4201 	return has_audio;
4202 }
4203 EXPORT_SYMBOL(drm_detect_monitor_audio);
4204 
4205 /**
4206  * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
4207  * @edid: EDID block to scan
4208  *
4209  * Check whether the monitor reports the RGB quantization range selection
4210  * as supported. The AVI infoframe can then be used to inform the monitor
4211  * which quantization range (full or limited) is used.
4212  *
4213  * Return: True if the RGB quantization range is selectable, false otherwise.
4214  */
4215 bool drm_rgb_quant_range_selectable(struct edid *edid)
4216 {
4217 	u8 *edid_ext;
4218 	int i, start, end;
4219 
4220 	edid_ext = drm_find_cea_extension(edid);
4221 	if (!edid_ext)
4222 		return false;
4223 
4224 	if (cea_db_offsets(edid_ext, &start, &end))
4225 		return false;
4226 
4227 	for_each_cea_db(edid_ext, i, start, end) {
4228 		if (cea_db_tag(&edid_ext[i]) == USE_EXTENDED_TAG &&
4229 		    cea_db_payload_len(&edid_ext[i]) == 2 &&
4230 		    cea_db_extended_tag(&edid_ext[i]) ==
4231 			EXT_VIDEO_CAPABILITY_BLOCK) {
4232 			DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
4233 			return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
4234 		}
4235 	}
4236 
4237 	return false;
4238 }
4239 EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
4240 
4241 /**
4242  * drm_default_rgb_quant_range - default RGB quantization range
4243  * @mode: display mode
4244  *
4245  * Determine the default RGB quantization range for the mode,
4246  * as specified in CEA-861.
4247  *
4248  * Return: The default RGB quantization range for the mode
4249  */
4250 enum hdmi_quantization_range
4251 drm_default_rgb_quant_range(const struct drm_display_mode *mode)
4252 {
4253 	/* All CEA modes other than VIC 1 use limited quantization range. */
4254 	return drm_match_cea_mode(mode) > 1 ?
4255 		HDMI_QUANTIZATION_RANGE_LIMITED :
4256 		HDMI_QUANTIZATION_RANGE_FULL;
4257 }
4258 EXPORT_SYMBOL(drm_default_rgb_quant_range);
4259 
4260 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
4261 					       const u8 *db)
4262 {
4263 	u8 dc_mask;
4264 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
4265 
4266 	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
4267 	hdmi->y420_dc_modes |= dc_mask;
4268 }
4269 
4270 static void drm_parse_hdmi_forum_vsdb(struct drm_connector *connector,
4271 				 const u8 *hf_vsdb)
4272 {
4273 	struct drm_display_info *display = &connector->display_info;
4274 	struct drm_hdmi_info *hdmi = &display->hdmi;
4275 
4276 	display->has_hdmi_infoframe = true;
4277 
4278 	if (hf_vsdb[6] & 0x80) {
4279 		hdmi->scdc.supported = true;
4280 		if (hf_vsdb[6] & 0x40)
4281 			hdmi->scdc.read_request = true;
4282 	}
4283 
4284 	/*
4285 	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
4286 	 * And as per the spec, three factors confirm this:
4287 	 * * Availability of a HF-VSDB block in EDID (check)
4288 	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
4289 	 * * SCDC support available (let's check)
4290 	 * Lets check it out.
4291 	 */
4292 
4293 	if (hf_vsdb[5]) {
4294 		/* max clock is 5000 KHz times block value */
4295 		u32 max_tmds_clock = hf_vsdb[5] * 5000;
4296 		struct drm_scdc *scdc = &hdmi->scdc;
4297 
4298 		if (max_tmds_clock > 340000) {
4299 			display->max_tmds_clock = max_tmds_clock;
4300 			DRM_DEBUG_KMS("HF-VSDB: max TMDS clock %d kHz\n",
4301 				display->max_tmds_clock);
4302 		}
4303 
4304 		if (scdc->supported) {
4305 			scdc->scrambling.supported = true;
4306 
4307 			/* Few sinks support scrambling for cloks < 340M */
4308 			if ((hf_vsdb[6] & 0x8))
4309 				scdc->scrambling.low_rates = true;
4310 		}
4311 	}
4312 
4313 	drm_parse_ycbcr420_deep_color_info(connector, hf_vsdb);
4314 }
4315 
4316 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
4317 					   const u8 *hdmi)
4318 {
4319 	struct drm_display_info *info = &connector->display_info;
4320 	unsigned int dc_bpc = 0;
4321 
4322 	/* HDMI supports at least 8 bpc */
4323 	info->bpc = 8;
4324 
4325 	if (cea_db_payload_len(hdmi) < 6)
4326 		return;
4327 
4328 	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
4329 		dc_bpc = 10;
4330 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
4331 		DRM_DEBUG("%s: HDMI sink does deep color 30.\n",
4332 			  connector->name);
4333 	}
4334 
4335 	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
4336 		dc_bpc = 12;
4337 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
4338 		DRM_DEBUG("%s: HDMI sink does deep color 36.\n",
4339 			  connector->name);
4340 	}
4341 
4342 	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
4343 		dc_bpc = 16;
4344 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
4345 		DRM_DEBUG("%s: HDMI sink does deep color 48.\n",
4346 			  connector->name);
4347 	}
4348 
4349 	if (dc_bpc == 0) {
4350 		DRM_DEBUG("%s: No deep color support on this HDMI sink.\n",
4351 			  connector->name);
4352 		return;
4353 	}
4354 
4355 	DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n",
4356 		  connector->name, dc_bpc);
4357 	info->bpc = dc_bpc;
4358 
4359 	/*
4360 	 * Deep color support mandates RGB444 support for all video
4361 	 * modes and forbids YCRCB422 support for all video modes per
4362 	 * HDMI 1.3 spec.
4363 	 */
4364 	info->color_formats = DRM_COLOR_FORMAT_RGB444;
4365 
4366 	/* YCRCB444 is optional according to spec. */
4367 	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
4368 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4369 		DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n",
4370 			  connector->name);
4371 	}
4372 
4373 	/*
4374 	 * Spec says that if any deep color mode is supported at all,
4375 	 * then deep color 36 bit must be supported.
4376 	 */
4377 	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
4378 		DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n",
4379 			  connector->name);
4380 	}
4381 }
4382 
4383 static void
4384 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
4385 {
4386 	struct drm_display_info *info = &connector->display_info;
4387 	u8 len = cea_db_payload_len(db);
4388 
4389 	if (len >= 6)
4390 		info->dvi_dual = db[6] & 1;
4391 	if (len >= 7)
4392 		info->max_tmds_clock = db[7] * 5000;
4393 
4394 	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
4395 		      "max TMDS clock %d kHz\n",
4396 		      info->dvi_dual,
4397 		      info->max_tmds_clock);
4398 
4399 	drm_parse_hdmi_deep_color_info(connector, db);
4400 }
4401 
4402 static void drm_parse_cea_ext(struct drm_connector *connector,
4403 			      const struct edid *edid)
4404 {
4405 	struct drm_display_info *info = &connector->display_info;
4406 	const u8 *edid_ext;
4407 	int i, start, end;
4408 
4409 	edid_ext = drm_find_cea_extension(edid);
4410 	if (!edid_ext)
4411 		return;
4412 
4413 	info->cea_rev = edid_ext[1];
4414 
4415 	/* The existence of a CEA block should imply RGB support */
4416 	info->color_formats = DRM_COLOR_FORMAT_RGB444;
4417 	if (edid_ext[3] & EDID_CEA_YCRCB444)
4418 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4419 	if (edid_ext[3] & EDID_CEA_YCRCB422)
4420 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
4421 
4422 	if (cea_db_offsets(edid_ext, &start, &end))
4423 		return;
4424 
4425 	for_each_cea_db(edid_ext, i, start, end) {
4426 		const u8 *db = &edid_ext[i];
4427 
4428 		if (cea_db_is_hdmi_vsdb(db))
4429 			drm_parse_hdmi_vsdb_video(connector, db);
4430 		if (cea_db_is_hdmi_forum_vsdb(db))
4431 			drm_parse_hdmi_forum_vsdb(connector, db);
4432 		if (cea_db_is_y420cmdb(db))
4433 			drm_parse_y420cmdb_bitmap(connector, db);
4434 	}
4435 }
4436 
4437 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
4438  * all of the values which would have been set from EDID
4439  */
4440 void
4441 drm_reset_display_info(struct drm_connector *connector)
4442 {
4443 	struct drm_display_info *info = &connector->display_info;
4444 
4445 	info->width_mm = 0;
4446 	info->height_mm = 0;
4447 
4448 	info->bpc = 0;
4449 	info->color_formats = 0;
4450 	info->cea_rev = 0;
4451 	info->max_tmds_clock = 0;
4452 	info->dvi_dual = false;
4453 	info->has_hdmi_infoframe = false;
4454 
4455 	info->non_desktop = 0;
4456 }
4457 EXPORT_SYMBOL_GPL(drm_reset_display_info);
4458 
4459 u32 drm_add_display_info(struct drm_connector *connector, const struct edid *edid)
4460 {
4461 	struct drm_display_info *info = &connector->display_info;
4462 
4463 	u32 quirks = edid_get_quirks(edid);
4464 
4465 	info->width_mm = edid->width_cm * 10;
4466 	info->height_mm = edid->height_cm * 10;
4467 
4468 	/* driver figures it out in this case */
4469 	info->bpc = 0;
4470 	info->color_formats = 0;
4471 	info->cea_rev = 0;
4472 	info->max_tmds_clock = 0;
4473 	info->dvi_dual = false;
4474 	info->has_hdmi_infoframe = false;
4475 
4476 	info->non_desktop = !!(quirks & EDID_QUIRK_NON_DESKTOP);
4477 
4478 	DRM_DEBUG_KMS("non_desktop set to %d\n", info->non_desktop);
4479 
4480 	if (edid->revision < 3)
4481 		return quirks;
4482 
4483 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
4484 		return quirks;
4485 
4486 	drm_parse_cea_ext(connector, edid);
4487 
4488 	/*
4489 	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
4490 	 *
4491 	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
4492 	 * tells us to assume 8 bpc color depth if the EDID doesn't have
4493 	 * extensions which tell otherwise.
4494 	 */
4495 	if ((info->bpc == 0) && (edid->revision < 4) &&
4496 	    (edid->input & DRM_EDID_DIGITAL_TYPE_DVI)) {
4497 		info->bpc = 8;
4498 		DRM_DEBUG("%s: Assigning DFP sink color depth as %d bpc.\n",
4499 			  connector->name, info->bpc);
4500 	}
4501 
4502 	/* Only defined for 1.4 with digital displays */
4503 	if (edid->revision < 4)
4504 		return quirks;
4505 
4506 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
4507 	case DRM_EDID_DIGITAL_DEPTH_6:
4508 		info->bpc = 6;
4509 		break;
4510 	case DRM_EDID_DIGITAL_DEPTH_8:
4511 		info->bpc = 8;
4512 		break;
4513 	case DRM_EDID_DIGITAL_DEPTH_10:
4514 		info->bpc = 10;
4515 		break;
4516 	case DRM_EDID_DIGITAL_DEPTH_12:
4517 		info->bpc = 12;
4518 		break;
4519 	case DRM_EDID_DIGITAL_DEPTH_14:
4520 		info->bpc = 14;
4521 		break;
4522 	case DRM_EDID_DIGITAL_DEPTH_16:
4523 		info->bpc = 16;
4524 		break;
4525 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
4526 	default:
4527 		info->bpc = 0;
4528 		break;
4529 	}
4530 
4531 	DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
4532 			  connector->name, info->bpc);
4533 
4534 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
4535 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
4536 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4537 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
4538 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
4539 	return quirks;
4540 }
4541 EXPORT_SYMBOL_GPL(drm_add_display_info);
4542 
4543 static int validate_displayid(u8 *displayid, int length, int idx)
4544 {
4545 	int i;
4546 	u8 csum = 0;
4547 	struct displayid_hdr *base;
4548 
4549 	base = (struct displayid_hdr *)&displayid[idx];
4550 
4551 	DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n",
4552 		      base->rev, base->bytes, base->prod_id, base->ext_count);
4553 
4554 	if (base->bytes + 5 > length - idx)
4555 		return -EINVAL;
4556 	for (i = idx; i <= base->bytes + 5; i++) {
4557 		csum += displayid[i];
4558 	}
4559 	if (csum) {
4560 		DRM_NOTE("DisplayID checksum invalid, remainder is %d\n", csum);
4561 		return -EINVAL;
4562 	}
4563 	return 0;
4564 }
4565 
4566 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
4567 							    struct displayid_detailed_timings_1 *timings)
4568 {
4569 	struct drm_display_mode *mode;
4570 	unsigned pixel_clock = (timings->pixel_clock[0] |
4571 				(timings->pixel_clock[1] << 8) |
4572 				(timings->pixel_clock[2] << 16));
4573 	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
4574 	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
4575 	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
4576 	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
4577 	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
4578 	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
4579 	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
4580 	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
4581 	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
4582 	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
4583 	mode = drm_mode_create(dev);
4584 	if (!mode)
4585 		return NULL;
4586 
4587 	mode->clock = pixel_clock * 10;
4588 	mode->hdisplay = hactive;
4589 	mode->hsync_start = mode->hdisplay + hsync;
4590 	mode->hsync_end = mode->hsync_start + hsync_width;
4591 	mode->htotal = mode->hdisplay + hblank;
4592 
4593 	mode->vdisplay = vactive;
4594 	mode->vsync_start = mode->vdisplay + vsync;
4595 	mode->vsync_end = mode->vsync_start + vsync_width;
4596 	mode->vtotal = mode->vdisplay + vblank;
4597 
4598 	mode->flags = 0;
4599 	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
4600 	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
4601 	mode->type = DRM_MODE_TYPE_DRIVER;
4602 
4603 	if (timings->flags & 0x80)
4604 		mode->type |= DRM_MODE_TYPE_PREFERRED;
4605 	mode->vrefresh = drm_mode_vrefresh(mode);
4606 	drm_mode_set_name(mode);
4607 
4608 	return mode;
4609 }
4610 
4611 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
4612 					  struct displayid_block *block)
4613 {
4614 	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
4615 	int i;
4616 	int num_timings;
4617 	struct drm_display_mode *newmode;
4618 	int num_modes = 0;
4619 	/* blocks must be multiple of 20 bytes length */
4620 	if (block->num_bytes % 20)
4621 		return 0;
4622 
4623 	num_timings = block->num_bytes / 20;
4624 	for (i = 0; i < num_timings; i++) {
4625 		struct displayid_detailed_timings_1 *timings = &det->timings[i];
4626 
4627 		newmode = drm_mode_displayid_detailed(connector->dev, timings);
4628 		if (!newmode)
4629 			continue;
4630 
4631 		drm_mode_probed_add(connector, newmode);
4632 		num_modes++;
4633 	}
4634 	return num_modes;
4635 }
4636 
4637 static int add_displayid_detailed_modes(struct drm_connector *connector,
4638 					struct edid *edid)
4639 {
4640 	u8 *displayid;
4641 	int ret;
4642 	int idx = 1;
4643 	int length = EDID_LENGTH;
4644 	struct displayid_block *block;
4645 	int num_modes = 0;
4646 
4647 	displayid = drm_find_displayid_extension(edid);
4648 	if (!displayid)
4649 		return 0;
4650 
4651 	ret = validate_displayid(displayid, length, idx);
4652 	if (ret)
4653 		return 0;
4654 
4655 	idx += sizeof(struct displayid_hdr);
4656 	while (block = (struct displayid_block *)&displayid[idx],
4657 	       idx + sizeof(struct displayid_block) <= length &&
4658 	       idx + sizeof(struct displayid_block) + block->num_bytes <= length &&
4659 	       block->num_bytes > 0) {
4660 		idx += block->num_bytes + sizeof(struct displayid_block);
4661 		switch (block->tag) {
4662 		case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
4663 			num_modes += add_displayid_detailed_1_modes(connector, block);
4664 			break;
4665 		}
4666 	}
4667 	return num_modes;
4668 }
4669 
4670 /**
4671  * drm_add_edid_modes - add modes from EDID data, if available
4672  * @connector: connector we're probing
4673  * @edid: EDID data
4674  *
4675  * Add the specified modes to the connector's mode list. Also fills out the
4676  * &drm_display_info structure and ELD in @connector with any information which
4677  * can be derived from the edid.
4678  *
4679  * Return: The number of modes added or 0 if we couldn't find any.
4680  */
4681 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
4682 {
4683 	int num_modes = 0;
4684 	u32 quirks;
4685 
4686 	if (edid == NULL) {
4687 		clear_eld(connector);
4688 		return 0;
4689 	}
4690 	if (!drm_edid_is_valid(edid)) {
4691 		clear_eld(connector);
4692 		dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
4693 			 connector->name);
4694 		return 0;
4695 	}
4696 
4697 	drm_edid_to_eld(connector, edid);
4698 
4699 	/*
4700 	 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
4701 	 * To avoid multiple parsing of same block, lets parse that map
4702 	 * from sink info, before parsing CEA modes.
4703 	 */
4704 	quirks = drm_add_display_info(connector, edid);
4705 
4706 	/*
4707 	 * EDID spec says modes should be preferred in this order:
4708 	 * - preferred detailed mode
4709 	 * - other detailed modes from base block
4710 	 * - detailed modes from extension blocks
4711 	 * - CVT 3-byte code modes
4712 	 * - standard timing codes
4713 	 * - established timing codes
4714 	 * - modes inferred from GTF or CVT range information
4715 	 *
4716 	 * We get this pretty much right.
4717 	 *
4718 	 * XXX order for additional mode types in extension blocks?
4719 	 */
4720 	num_modes += add_detailed_modes(connector, edid, quirks);
4721 	num_modes += add_cvt_modes(connector, edid);
4722 	num_modes += add_standard_modes(connector, edid);
4723 	num_modes += add_established_modes(connector, edid);
4724 	num_modes += add_cea_modes(connector, edid);
4725 	num_modes += add_alternate_cea_modes(connector, edid);
4726 	num_modes += add_displayid_detailed_modes(connector, edid);
4727 	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
4728 		num_modes += add_inferred_modes(connector, edid);
4729 
4730 	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
4731 		edid_fixup_preferred(connector, quirks);
4732 
4733 	if (quirks & EDID_QUIRK_FORCE_6BPC)
4734 		connector->display_info.bpc = 6;
4735 
4736 	if (quirks & EDID_QUIRK_FORCE_8BPC)
4737 		connector->display_info.bpc = 8;
4738 
4739 	if (quirks & EDID_QUIRK_FORCE_10BPC)
4740 		connector->display_info.bpc = 10;
4741 
4742 	if (quirks & EDID_QUIRK_FORCE_12BPC)
4743 		connector->display_info.bpc = 12;
4744 
4745 	return num_modes;
4746 }
4747 EXPORT_SYMBOL(drm_add_edid_modes);
4748 
4749 /**
4750  * drm_add_modes_noedid - add modes for the connectors without EDID
4751  * @connector: connector we're probing
4752  * @hdisplay: the horizontal display limit
4753  * @vdisplay: the vertical display limit
4754  *
4755  * Add the specified modes to the connector's mode list. Only when the
4756  * hdisplay/vdisplay is not beyond the given limit, it will be added.
4757  *
4758  * Return: The number of modes added or 0 if we couldn't find any.
4759  */
4760 int drm_add_modes_noedid(struct drm_connector *connector,
4761 			int hdisplay, int vdisplay)
4762 {
4763 	int i, count, num_modes = 0;
4764 	struct drm_display_mode *mode;
4765 	struct drm_device *dev = connector->dev;
4766 
4767 	count = ARRAY_SIZE(drm_dmt_modes);
4768 	if (hdisplay < 0)
4769 		hdisplay = 0;
4770 	if (vdisplay < 0)
4771 		vdisplay = 0;
4772 
4773 	for (i = 0; i < count; i++) {
4774 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
4775 		if (hdisplay && vdisplay) {
4776 			/*
4777 			 * Only when two are valid, they will be used to check
4778 			 * whether the mode should be added to the mode list of
4779 			 * the connector.
4780 			 */
4781 			if (ptr->hdisplay > hdisplay ||
4782 					ptr->vdisplay > vdisplay)
4783 				continue;
4784 		}
4785 		if (drm_mode_vrefresh(ptr) > 61)
4786 			continue;
4787 		mode = drm_mode_duplicate(dev, ptr);
4788 		if (mode) {
4789 			drm_mode_probed_add(connector, mode);
4790 			num_modes++;
4791 		}
4792 	}
4793 	return num_modes;
4794 }
4795 EXPORT_SYMBOL(drm_add_modes_noedid);
4796 
4797 /**
4798  * drm_set_preferred_mode - Sets the preferred mode of a connector
4799  * @connector: connector whose mode list should be processed
4800  * @hpref: horizontal resolution of preferred mode
4801  * @vpref: vertical resolution of preferred mode
4802  *
4803  * Marks a mode as preferred if it matches the resolution specified by @hpref
4804  * and @vpref.
4805  */
4806 void drm_set_preferred_mode(struct drm_connector *connector,
4807 			   int hpref, int vpref)
4808 {
4809 	struct drm_display_mode *mode;
4810 
4811 	list_for_each_entry(mode, &connector->probed_modes, head) {
4812 		if (mode->hdisplay == hpref &&
4813 		    mode->vdisplay == vpref)
4814 			mode->type |= DRM_MODE_TYPE_PREFERRED;
4815 	}
4816 }
4817 EXPORT_SYMBOL(drm_set_preferred_mode);
4818 
4819 /**
4820  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
4821  *                                              data from a DRM display mode
4822  * @frame: HDMI AVI infoframe
4823  * @mode: DRM display mode
4824  * @is_hdmi2_sink: Sink is HDMI 2.0 compliant
4825  *
4826  * Return: 0 on success or a negative error code on failure.
4827  */
4828 int
4829 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
4830 					 const struct drm_display_mode *mode,
4831 					 bool is_hdmi2_sink)
4832 {
4833 	int err;
4834 
4835 	if (!frame || !mode)
4836 		return -EINVAL;
4837 
4838 	err = hdmi_avi_infoframe_init(frame);
4839 	if (err < 0)
4840 		return err;
4841 
4842 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
4843 		frame->pixel_repeat = 1;
4844 
4845 	frame->video_code = drm_match_cea_mode(mode);
4846 
4847 	/*
4848 	 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
4849 	 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
4850 	 * have to make sure we dont break HDMI 1.4 sinks.
4851 	 */
4852 	if (!is_hdmi2_sink && frame->video_code > 64)
4853 		frame->video_code = 0;
4854 
4855 	/*
4856 	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
4857 	 * we should send its VIC in vendor infoframes, else send the
4858 	 * VIC in AVI infoframes. Lets check if this mode is present in
4859 	 * HDMI 1.4b 4K modes
4860 	 */
4861 	if (frame->video_code) {
4862 		u8 vendor_if_vic = drm_match_hdmi_mode(mode);
4863 		bool is_s3d = mode->flags & DRM_MODE_FLAG_3D_MASK;
4864 
4865 		if (drm_valid_hdmi_vic(vendor_if_vic) && !is_s3d)
4866 			frame->video_code = 0;
4867 	}
4868 
4869 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
4870 
4871 	/*
4872 	 * Populate picture aspect ratio from either
4873 	 * user input (if specified) or from the CEA mode list.
4874 	 */
4875 	if (mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_4_3 ||
4876 		mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_16_9)
4877 		frame->picture_aspect = mode->picture_aspect_ratio;
4878 	else if (frame->video_code > 0)
4879 		frame->picture_aspect = drm_get_cea_aspect_ratio(
4880 						frame->video_code);
4881 
4882 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
4883 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
4884 
4885 	return 0;
4886 }
4887 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
4888 
4889 /**
4890  * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
4891  *                                        quantization range information
4892  * @frame: HDMI AVI infoframe
4893  * @mode: DRM display mode
4894  * @rgb_quant_range: RGB quantization range (Q)
4895  * @rgb_quant_range_selectable: Sink support selectable RGB quantization range (QS)
4896  * @is_hdmi2_sink: HDMI 2.0 sink, which has different default recommendations
4897  *
4898  * Note that @is_hdmi2_sink can be derived by looking at the
4899  * &drm_scdc.supported flag stored in &drm_hdmi_info.scdc,
4900  * &drm_display_info.hdmi, which can be found in &drm_connector.display_info.
4901  */
4902 void
4903 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
4904 				   const struct drm_display_mode *mode,
4905 				   enum hdmi_quantization_range rgb_quant_range,
4906 				   bool rgb_quant_range_selectable,
4907 				   bool is_hdmi2_sink)
4908 {
4909 	/*
4910 	 * CEA-861:
4911 	 * "A Source shall not send a non-zero Q value that does not correspond
4912 	 *  to the default RGB Quantization Range for the transmitted Picture
4913 	 *  unless the Sink indicates support for the Q bit in a Video
4914 	 *  Capabilities Data Block."
4915 	 *
4916 	 * HDMI 2.0 recommends sending non-zero Q when it does match the
4917 	 * default RGB quantization range for the mode, even when QS=0.
4918 	 */
4919 	if (rgb_quant_range_selectable ||
4920 	    rgb_quant_range == drm_default_rgb_quant_range(mode))
4921 		frame->quantization_range = rgb_quant_range;
4922 	else
4923 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
4924 
4925 	/*
4926 	 * CEA-861-F:
4927 	 * "When transmitting any RGB colorimetry, the Source should set the
4928 	 *  YQ-field to match the RGB Quantization Range being transmitted
4929 	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
4930 	 *  set YQ=1) and the Sink shall ignore the YQ-field."
4931 	 *
4932 	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
4933 	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
4934 	 * good way to tell which version of CEA-861 the sink supports, so
4935 	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
4936 	 * on on CEA-861-F.
4937 	 */
4938 	if (!is_hdmi2_sink ||
4939 	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
4940 		frame->ycc_quantization_range =
4941 			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
4942 	else
4943 		frame->ycc_quantization_range =
4944 			HDMI_YCC_QUANTIZATION_RANGE_FULL;
4945 }
4946 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
4947 
4948 static enum hdmi_3d_structure
4949 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
4950 {
4951 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
4952 
4953 	switch (layout) {
4954 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
4955 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
4956 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
4957 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
4958 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
4959 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
4960 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
4961 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
4962 	case DRM_MODE_FLAG_3D_L_DEPTH:
4963 		return HDMI_3D_STRUCTURE_L_DEPTH;
4964 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
4965 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
4966 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
4967 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
4968 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
4969 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
4970 	default:
4971 		return HDMI_3D_STRUCTURE_INVALID;
4972 	}
4973 }
4974 
4975 /**
4976  * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
4977  * data from a DRM display mode
4978  * @frame: HDMI vendor infoframe
4979  * @connector: the connector
4980  * @mode: DRM display mode
4981  *
4982  * Note that there's is a need to send HDMI vendor infoframes only when using a
4983  * 4k or stereoscopic 3D mode. So when giving any other mode as input this
4984  * function will return -EINVAL, error that can be safely ignored.
4985  *
4986  * Return: 0 on success or a negative error code on failure.
4987  */
4988 int
4989 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
4990 					    struct drm_connector *connector,
4991 					    const struct drm_display_mode *mode)
4992 {
4993 	/*
4994 	 * FIXME: sil-sii8620 doesn't have a connector around when
4995 	 * we need one, so we have to be prepared for a NULL connector.
4996 	 */
4997 	bool has_hdmi_infoframe = connector ?
4998 		connector->display_info.has_hdmi_infoframe : false;
4999 	int err;
5000 	u32 s3d_flags;
5001 	u8 vic;
5002 
5003 	if (!frame || !mode)
5004 		return -EINVAL;
5005 
5006 	if (!has_hdmi_infoframe)
5007 		return -EINVAL;
5008 
5009 	vic = drm_match_hdmi_mode(mode);
5010 	s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
5011 
5012 	/*
5013 	 * Even if it's not absolutely necessary to send the infoframe
5014 	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
5015 	 * know that the sink can handle it. This is based on a
5016 	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
5017 	 * have trouble realizing that they shuld switch from 3D to 2D
5018 	 * mode if the source simply stops sending the infoframe when
5019 	 * it wants to switch from 3D to 2D.
5020 	 */
5021 
5022 	if (vic && s3d_flags)
5023 		return -EINVAL;
5024 
5025 	err = hdmi_vendor_infoframe_init(frame);
5026 	if (err < 0)
5027 		return err;
5028 
5029 	frame->vic = vic;
5030 	frame->s3d_struct = s3d_structure_from_display_mode(mode);
5031 
5032 	return 0;
5033 }
5034 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
5035 
5036 static int drm_parse_tiled_block(struct drm_connector *connector,
5037 				 struct displayid_block *block)
5038 {
5039 	struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
5040 	u16 w, h;
5041 	u8 tile_v_loc, tile_h_loc;
5042 	u8 num_v_tile, num_h_tile;
5043 	struct drm_tile_group *tg;
5044 
5045 	w = tile->tile_size[0] | tile->tile_size[1] << 8;
5046 	h = tile->tile_size[2] | tile->tile_size[3] << 8;
5047 
5048 	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
5049 	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
5050 	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
5051 	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
5052 
5053 	connector->has_tile = true;
5054 	if (tile->tile_cap & 0x80)
5055 		connector->tile_is_single_monitor = true;
5056 
5057 	connector->num_h_tile = num_h_tile + 1;
5058 	connector->num_v_tile = num_v_tile + 1;
5059 	connector->tile_h_loc = tile_h_loc;
5060 	connector->tile_v_loc = tile_v_loc;
5061 	connector->tile_h_size = w + 1;
5062 	connector->tile_v_size = h + 1;
5063 
5064 	DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap);
5065 	DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1);
5066 	DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n",
5067 		      num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc);
5068 	DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
5069 
5070 	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
5071 	if (!tg) {
5072 		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
5073 	}
5074 	if (!tg)
5075 		return -ENOMEM;
5076 
5077 	if (connector->tile_group != tg) {
5078 		/* if we haven't got a pointer,
5079 		   take the reference, drop ref to old tile group */
5080 		if (connector->tile_group) {
5081 			drm_mode_put_tile_group(connector->dev, connector->tile_group);
5082 		}
5083 		connector->tile_group = tg;
5084 	} else
5085 		/* if same tile group, then release the ref we just took. */
5086 		drm_mode_put_tile_group(connector->dev, tg);
5087 	return 0;
5088 }
5089 
5090 static int drm_parse_display_id(struct drm_connector *connector,
5091 				u8 *displayid, int length,
5092 				bool is_edid_extension)
5093 {
5094 	/* if this is an EDID extension the first byte will be 0x70 */
5095 	int idx = 0;
5096 	struct displayid_block *block;
5097 	int ret;
5098 
5099 	if (is_edid_extension)
5100 		idx = 1;
5101 
5102 	ret = validate_displayid(displayid, length, idx);
5103 	if (ret)
5104 		return ret;
5105 
5106 	idx += sizeof(struct displayid_hdr);
5107 	while (block = (struct displayid_block *)&displayid[idx],
5108 	       idx + sizeof(struct displayid_block) <= length &&
5109 	       idx + sizeof(struct displayid_block) + block->num_bytes <= length &&
5110 	       block->num_bytes > 0) {
5111 		idx += block->num_bytes + sizeof(struct displayid_block);
5112 		DRM_DEBUG_KMS("block id 0x%x, rev %d, len %d\n",
5113 			      block->tag, block->rev, block->num_bytes);
5114 
5115 		switch (block->tag) {
5116 		case DATA_BLOCK_TILED_DISPLAY:
5117 			ret = drm_parse_tiled_block(connector, block);
5118 			if (ret)
5119 				return ret;
5120 			break;
5121 		case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
5122 			/* handled in mode gathering code. */
5123 			break;
5124 		default:
5125 			DRM_DEBUG_KMS("found DisplayID tag 0x%x, unhandled\n", block->tag);
5126 			break;
5127 		}
5128 	}
5129 	return 0;
5130 }
5131 
5132 static void drm_get_displayid(struct drm_connector *connector,
5133 			      struct edid *edid)
5134 {
5135 	void *displayid = NULL;
5136 	int ret;
5137 	connector->has_tile = false;
5138 	displayid = drm_find_displayid_extension(edid);
5139 	if (!displayid) {
5140 		/* drop reference to any tile group we had */
5141 		goto out_drop_ref;
5142 	}
5143 
5144 	ret = drm_parse_display_id(connector, displayid, EDID_LENGTH, true);
5145 	if (ret < 0)
5146 		goto out_drop_ref;
5147 	if (!connector->has_tile)
5148 		goto out_drop_ref;
5149 	return;
5150 out_drop_ref:
5151 	if (connector->tile_group) {
5152 		drm_mode_put_tile_group(connector->dev, connector->tile_group);
5153 		connector->tile_group = NULL;
5154 	}
5155 	return;
5156 }
5157