1 /* 2 * Copyright (c) 2006 Luc Verhaegen (quirks list) 3 * Copyright (c) 2007-2008 Intel Corporation 4 * Jesse Barnes <jesse.barnes@intel.com> 5 * Copyright 2010 Red Hat, Inc. 6 * 7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from 8 * FB layer. 9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com> 10 * 11 * Permission is hereby granted, free of charge, to any person obtaining a 12 * copy of this software and associated documentation files (the "Software"), 13 * to deal in the Software without restriction, including without limitation 14 * the rights to use, copy, modify, merge, publish, distribute, sub license, 15 * and/or sell copies of the Software, and to permit persons to whom the 16 * Software is furnished to do so, subject to the following conditions: 17 * 18 * The above copyright notice and this permission notice (including the 19 * next paragraph) shall be included in all copies or substantial portions 20 * of the Software. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 28 * DEALINGS IN THE SOFTWARE. 29 */ 30 #include <linux/kernel.h> 31 #include <linux/slab.h> 32 #include <linux/hdmi.h> 33 #include <linux/i2c.h> 34 #include <linux/module.h> 35 #include <drm/drmP.h> 36 #include <drm/drm_edid.h> 37 38 #define version_greater(edid, maj, min) \ 39 (((edid)->version > (maj)) || \ 40 ((edid)->version == (maj) && (edid)->revision > (min))) 41 42 #define EDID_EST_TIMINGS 16 43 #define EDID_STD_TIMINGS 8 44 #define EDID_DETAILED_TIMINGS 4 45 46 /* 47 * EDID blocks out in the wild have a variety of bugs, try to collect 48 * them here (note that userspace may work around broken monitors first, 49 * but fixes should make their way here so that the kernel "just works" 50 * on as many displays as possible). 51 */ 52 53 /* First detailed mode wrong, use largest 60Hz mode */ 54 #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0) 55 /* Reported 135MHz pixel clock is too high, needs adjustment */ 56 #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1) 57 /* Prefer the largest mode at 75 Hz */ 58 #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2) 59 /* Detail timing is in cm not mm */ 60 #define EDID_QUIRK_DETAILED_IN_CM (1 << 3) 61 /* Detailed timing descriptors have bogus size values, so just take the 62 * maximum size and use that. 63 */ 64 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4) 65 /* Monitor forgot to set the first detailed is preferred bit. */ 66 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED (1 << 5) 67 /* use +hsync +vsync for detailed mode */ 68 #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6) 69 /* Force reduced-blanking timings for detailed modes */ 70 #define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7) 71 /* Force 8bpc */ 72 #define EDID_QUIRK_FORCE_8BPC (1 << 8) 73 74 struct detailed_mode_closure { 75 struct drm_connector *connector; 76 struct edid *edid; 77 bool preferred; 78 u32 quirks; 79 int modes; 80 }; 81 82 #define LEVEL_DMT 0 83 #define LEVEL_GTF 1 84 #define LEVEL_GTF2 2 85 #define LEVEL_CVT 3 86 87 static struct edid_quirk { 88 char vendor[4]; 89 int product_id; 90 u32 quirks; 91 } edid_quirk_list[] = { 92 /* Acer AL1706 */ 93 { "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 }, 94 /* Acer F51 */ 95 { "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 }, 96 /* Unknown Acer */ 97 { "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED }, 98 99 /* Belinea 10 15 55 */ 100 { "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 }, 101 { "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 }, 102 103 /* Envision Peripherals, Inc. EN-7100e */ 104 { "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH }, 105 /* Envision EN2028 */ 106 { "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 }, 107 108 /* Funai Electronics PM36B */ 109 { "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 | 110 EDID_QUIRK_DETAILED_IN_CM }, 111 112 /* LG Philips LCD LP154W01-A5 */ 113 { "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE }, 114 { "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE }, 115 116 /* Philips 107p5 CRT */ 117 { "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED }, 118 119 /* Proview AY765C */ 120 { "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED }, 121 122 /* Samsung SyncMaster 205BW. Note: irony */ 123 { "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP }, 124 /* Samsung SyncMaster 22[5-6]BW */ 125 { "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 }, 126 { "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 }, 127 128 /* ViewSonic VA2026w */ 129 { "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING }, 130 131 /* Medion MD 30217 PG */ 132 { "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 }, 133 134 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */ 135 { "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC }, 136 }; 137 138 /* 139 * Autogenerated from the DMT spec. 140 * This table is copied from xfree86/modes/xf86EdidModes.c. 141 */ 142 static const struct drm_display_mode drm_dmt_modes[] = { 143 /* 640x350@85Hz */ 144 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672, 145 736, 832, 0, 350, 382, 385, 445, 0, 146 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 147 /* 640x400@85Hz */ 148 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672, 149 736, 832, 0, 400, 401, 404, 445, 0, 150 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 151 /* 720x400@85Hz */ 152 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756, 153 828, 936, 0, 400, 401, 404, 446, 0, 154 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 155 /* 640x480@60Hz */ 156 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 157 752, 800, 0, 480, 489, 492, 525, 0, 158 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 159 /* 640x480@72Hz */ 160 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664, 161 704, 832, 0, 480, 489, 492, 520, 0, 162 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 163 /* 640x480@75Hz */ 164 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656, 165 720, 840, 0, 480, 481, 484, 500, 0, 166 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 167 /* 640x480@85Hz */ 168 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696, 169 752, 832, 0, 480, 481, 484, 509, 0, 170 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 171 /* 800x600@56Hz */ 172 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824, 173 896, 1024, 0, 600, 601, 603, 625, 0, 174 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 175 /* 800x600@60Hz */ 176 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 177 968, 1056, 0, 600, 601, 605, 628, 0, 178 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 179 /* 800x600@72Hz */ 180 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856, 181 976, 1040, 0, 600, 637, 643, 666, 0, 182 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 183 /* 800x600@75Hz */ 184 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816, 185 896, 1056, 0, 600, 601, 604, 625, 0, 186 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 187 /* 800x600@85Hz */ 188 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832, 189 896, 1048, 0, 600, 601, 604, 631, 0, 190 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 191 /* 800x600@120Hz RB */ 192 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848, 193 880, 960, 0, 600, 603, 607, 636, 0, 194 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 195 /* 848x480@60Hz */ 196 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864, 197 976, 1088, 0, 480, 486, 494, 517, 0, 198 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 199 /* 1024x768@43Hz, interlace */ 200 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032, 201 1208, 1264, 0, 768, 768, 772, 817, 0, 202 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 203 DRM_MODE_FLAG_INTERLACE) }, 204 /* 1024x768@60Hz */ 205 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 206 1184, 1344, 0, 768, 771, 777, 806, 0, 207 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 208 /* 1024x768@70Hz */ 209 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048, 210 1184, 1328, 0, 768, 771, 777, 806, 0, 211 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 212 /* 1024x768@75Hz */ 213 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040, 214 1136, 1312, 0, 768, 769, 772, 800, 0, 215 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 216 /* 1024x768@85Hz */ 217 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072, 218 1168, 1376, 0, 768, 769, 772, 808, 0, 219 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 220 /* 1024x768@120Hz RB */ 221 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072, 222 1104, 1184, 0, 768, 771, 775, 813, 0, 223 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 224 /* 1152x864@75Hz */ 225 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 226 1344, 1600, 0, 864, 865, 868, 900, 0, 227 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 228 /* 1280x768@60Hz RB */ 229 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328, 230 1360, 1440, 0, 768, 771, 778, 790, 0, 231 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 232 /* 1280x768@60Hz */ 233 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 234 1472, 1664, 0, 768, 771, 778, 798, 0, 235 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 236 /* 1280x768@75Hz */ 237 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360, 238 1488, 1696, 0, 768, 771, 778, 805, 0, 239 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 240 /* 1280x768@85Hz */ 241 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360, 242 1496, 1712, 0, 768, 771, 778, 809, 0, 243 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 244 /* 1280x768@120Hz RB */ 245 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328, 246 1360, 1440, 0, 768, 771, 778, 813, 0, 247 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 248 /* 1280x800@60Hz RB */ 249 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328, 250 1360, 1440, 0, 800, 803, 809, 823, 0, 251 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 252 /* 1280x800@60Hz */ 253 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 254 1480, 1680, 0, 800, 803, 809, 831, 0, 255 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 256 /* 1280x800@75Hz */ 257 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360, 258 1488, 1696, 0, 800, 803, 809, 838, 0, 259 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 260 /* 1280x800@85Hz */ 261 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360, 262 1496, 1712, 0, 800, 803, 809, 843, 0, 263 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 264 /* 1280x800@120Hz RB */ 265 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328, 266 1360, 1440, 0, 800, 803, 809, 847, 0, 267 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 268 /* 1280x960@60Hz */ 269 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 270 1488, 1800, 0, 960, 961, 964, 1000, 0, 271 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 272 /* 1280x960@85Hz */ 273 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344, 274 1504, 1728, 0, 960, 961, 964, 1011, 0, 275 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 276 /* 1280x960@120Hz RB */ 277 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328, 278 1360, 1440, 0, 960, 963, 967, 1017, 0, 279 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 280 /* 1280x1024@60Hz */ 281 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 282 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 283 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 284 /* 1280x1024@75Hz */ 285 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296, 286 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 287 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 288 /* 1280x1024@85Hz */ 289 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344, 290 1504, 1728, 0, 1024, 1025, 1028, 1072, 0, 291 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 292 /* 1280x1024@120Hz RB */ 293 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328, 294 1360, 1440, 0, 1024, 1027, 1034, 1084, 0, 295 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 296 /* 1360x768@60Hz */ 297 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 298 1536, 1792, 0, 768, 771, 777, 795, 0, 299 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 300 /* 1360x768@120Hz RB */ 301 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408, 302 1440, 1520, 0, 768, 771, 776, 813, 0, 303 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 304 /* 1400x1050@60Hz RB */ 305 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448, 306 1480, 1560, 0, 1050, 1053, 1057, 1080, 0, 307 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 308 /* 1400x1050@60Hz */ 309 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 310 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, 311 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 312 /* 1400x1050@75Hz */ 313 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504, 314 1648, 1896, 0, 1050, 1053, 1057, 1099, 0, 315 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 316 /* 1400x1050@85Hz */ 317 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504, 318 1656, 1912, 0, 1050, 1053, 1057, 1105, 0, 319 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 320 /* 1400x1050@120Hz RB */ 321 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448, 322 1480, 1560, 0, 1050, 1053, 1057, 1112, 0, 323 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 324 /* 1440x900@60Hz RB */ 325 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488, 326 1520, 1600, 0, 900, 903, 909, 926, 0, 327 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 328 /* 1440x900@60Hz */ 329 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 330 1672, 1904, 0, 900, 903, 909, 934, 0, 331 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 332 /* 1440x900@75Hz */ 333 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536, 334 1688, 1936, 0, 900, 903, 909, 942, 0, 335 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 336 /* 1440x900@85Hz */ 337 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544, 338 1696, 1952, 0, 900, 903, 909, 948, 0, 339 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 340 /* 1440x900@120Hz RB */ 341 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488, 342 1520, 1600, 0, 900, 903, 909, 953, 0, 343 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 344 /* 1600x1200@60Hz */ 345 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 346 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 347 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 348 /* 1600x1200@65Hz */ 349 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664, 350 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 351 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 352 /* 1600x1200@70Hz */ 353 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664, 354 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 355 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 356 /* 1600x1200@75Hz */ 357 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664, 358 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 359 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 360 /* 1600x1200@85Hz */ 361 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664, 362 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 363 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 364 /* 1600x1200@120Hz RB */ 365 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648, 366 1680, 1760, 0, 1200, 1203, 1207, 1271, 0, 367 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 368 /* 1680x1050@60Hz RB */ 369 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728, 370 1760, 1840, 0, 1050, 1053, 1059, 1080, 0, 371 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 372 /* 1680x1050@60Hz */ 373 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 374 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, 375 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 376 /* 1680x1050@75Hz */ 377 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800, 378 1976, 2272, 0, 1050, 1053, 1059, 1099, 0, 379 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 380 /* 1680x1050@85Hz */ 381 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808, 382 1984, 2288, 0, 1050, 1053, 1059, 1105, 0, 383 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 384 /* 1680x1050@120Hz RB */ 385 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728, 386 1760, 1840, 0, 1050, 1053, 1059, 1112, 0, 387 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 388 /* 1792x1344@60Hz */ 389 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 390 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, 391 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 392 /* 1792x1344@75Hz */ 393 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888, 394 2104, 2456, 0, 1344, 1345, 1348, 1417, 0, 395 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 396 /* 1792x1344@120Hz RB */ 397 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840, 398 1872, 1952, 0, 1344, 1347, 1351, 1423, 0, 399 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 400 /* 1856x1392@60Hz */ 401 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 402 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, 403 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 404 /* 1856x1392@75Hz */ 405 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984, 406 2208, 2560, 0, 1392, 1395, 1399, 1500, 0, 407 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 408 /* 1856x1392@120Hz RB */ 409 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904, 410 1936, 2016, 0, 1392, 1395, 1399, 1474, 0, 411 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 412 /* 1920x1200@60Hz RB */ 413 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968, 414 2000, 2080, 0, 1200, 1203, 1209, 1235, 0, 415 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 416 /* 1920x1200@60Hz */ 417 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 418 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, 419 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 420 /* 1920x1200@75Hz */ 421 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056, 422 2264, 2608, 0, 1200, 1203, 1209, 1255, 0, 423 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 424 /* 1920x1200@85Hz */ 425 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064, 426 2272, 2624, 0, 1200, 1203, 1209, 1262, 0, 427 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 428 /* 1920x1200@120Hz RB */ 429 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968, 430 2000, 2080, 0, 1200, 1203, 1209, 1271, 0, 431 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 432 /* 1920x1440@60Hz */ 433 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 434 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, 435 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 436 /* 1920x1440@75Hz */ 437 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064, 438 2288, 2640, 0, 1440, 1441, 1444, 1500, 0, 439 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 440 /* 1920x1440@120Hz RB */ 441 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968, 442 2000, 2080, 0, 1440, 1443, 1447, 1525, 0, 443 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 444 /* 2560x1600@60Hz RB */ 445 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608, 446 2640, 2720, 0, 1600, 1603, 1609, 1646, 0, 447 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 448 /* 2560x1600@60Hz */ 449 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 450 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, 451 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 452 /* 2560x1600@75HZ */ 453 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768, 454 3048, 3536, 0, 1600, 1603, 1609, 1672, 0, 455 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 456 /* 2560x1600@85HZ */ 457 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768, 458 3048, 3536, 0, 1600, 1603, 1609, 1682, 0, 459 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 460 /* 2560x1600@120Hz RB */ 461 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608, 462 2640, 2720, 0, 1600, 1603, 1609, 1694, 0, 463 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 464 }; 465 466 /* 467 * These more or less come from the DMT spec. The 720x400 modes are 468 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75 469 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode 470 * should be 1152x870, again for the Mac, but instead we use the x864 DMT 471 * mode. 472 * 473 * The DMT modes have been fact-checked; the rest are mild guesses. 474 */ 475 static const struct drm_display_mode edid_est_modes[] = { 476 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 477 968, 1056, 0, 600, 601, 605, 628, 0, 478 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */ 479 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824, 480 896, 1024, 0, 600, 601, 603, 625, 0, 481 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */ 482 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656, 483 720, 840, 0, 480, 481, 484, 500, 0, 484 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */ 485 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664, 486 704, 832, 0, 480, 489, 491, 520, 0, 487 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */ 488 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704, 489 768, 864, 0, 480, 483, 486, 525, 0, 490 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */ 491 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25200, 640, 656, 492 752, 800, 0, 480, 490, 492, 525, 0, 493 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */ 494 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738, 495 846, 900, 0, 400, 421, 423, 449, 0, 496 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */ 497 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738, 498 846, 900, 0, 400, 412, 414, 449, 0, 499 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */ 500 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296, 501 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 502 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */ 503 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78800, 1024, 1040, 504 1136, 1312, 0, 768, 769, 772, 800, 0, 505 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */ 506 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048, 507 1184, 1328, 0, 768, 771, 777, 806, 0, 508 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */ 509 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 510 1184, 1344, 0, 768, 771, 777, 806, 0, 511 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */ 512 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032, 513 1208, 1264, 0, 768, 768, 776, 817, 0, 514 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */ 515 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864, 516 928, 1152, 0, 624, 625, 628, 667, 0, 517 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */ 518 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816, 519 896, 1056, 0, 600, 601, 604, 625, 0, 520 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */ 521 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856, 522 976, 1040, 0, 600, 637, 643, 666, 0, 523 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */ 524 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 525 1344, 1600, 0, 864, 865, 868, 900, 0, 526 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */ 527 }; 528 529 struct minimode { 530 short w; 531 short h; 532 short r; 533 short rb; 534 }; 535 536 static const struct minimode est3_modes[] = { 537 /* byte 6 */ 538 { 640, 350, 85, 0 }, 539 { 640, 400, 85, 0 }, 540 { 720, 400, 85, 0 }, 541 { 640, 480, 85, 0 }, 542 { 848, 480, 60, 0 }, 543 { 800, 600, 85, 0 }, 544 { 1024, 768, 85, 0 }, 545 { 1152, 864, 75, 0 }, 546 /* byte 7 */ 547 { 1280, 768, 60, 1 }, 548 { 1280, 768, 60, 0 }, 549 { 1280, 768, 75, 0 }, 550 { 1280, 768, 85, 0 }, 551 { 1280, 960, 60, 0 }, 552 { 1280, 960, 85, 0 }, 553 { 1280, 1024, 60, 0 }, 554 { 1280, 1024, 85, 0 }, 555 /* byte 8 */ 556 { 1360, 768, 60, 0 }, 557 { 1440, 900, 60, 1 }, 558 { 1440, 900, 60, 0 }, 559 { 1440, 900, 75, 0 }, 560 { 1440, 900, 85, 0 }, 561 { 1400, 1050, 60, 1 }, 562 { 1400, 1050, 60, 0 }, 563 { 1400, 1050, 75, 0 }, 564 /* byte 9 */ 565 { 1400, 1050, 85, 0 }, 566 { 1680, 1050, 60, 1 }, 567 { 1680, 1050, 60, 0 }, 568 { 1680, 1050, 75, 0 }, 569 { 1680, 1050, 85, 0 }, 570 { 1600, 1200, 60, 0 }, 571 { 1600, 1200, 65, 0 }, 572 { 1600, 1200, 70, 0 }, 573 /* byte 10 */ 574 { 1600, 1200, 75, 0 }, 575 { 1600, 1200, 85, 0 }, 576 { 1792, 1344, 60, 0 }, 577 { 1792, 1344, 75, 0 }, 578 { 1856, 1392, 60, 0 }, 579 { 1856, 1392, 75, 0 }, 580 { 1920, 1200, 60, 1 }, 581 { 1920, 1200, 60, 0 }, 582 /* byte 11 */ 583 { 1920, 1200, 75, 0 }, 584 { 1920, 1200, 85, 0 }, 585 { 1920, 1440, 60, 0 }, 586 { 1920, 1440, 75, 0 }, 587 }; 588 589 static const struct minimode extra_modes[] = { 590 { 1024, 576, 60, 0 }, 591 { 1366, 768, 60, 0 }, 592 { 1600, 900, 60, 0 }, 593 { 1680, 945, 60, 0 }, 594 { 1920, 1080, 60, 0 }, 595 { 2048, 1152, 60, 0 }, 596 { 2048, 1536, 60, 0 }, 597 }; 598 599 /* 600 * Probably taken from CEA-861 spec. 601 * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c. 602 */ 603 static const struct drm_display_mode edid_cea_modes[] = { 604 /* 1 - 640x480@60Hz */ 605 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 606 752, 800, 0, 480, 490, 492, 525, 0, 607 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 608 .vrefresh = 60, }, 609 /* 2 - 720x480@60Hz */ 610 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736, 611 798, 858, 0, 480, 489, 495, 525, 0, 612 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 613 .vrefresh = 60, }, 614 /* 3 - 720x480@60Hz */ 615 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736, 616 798, 858, 0, 480, 489, 495, 525, 0, 617 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 618 .vrefresh = 60, }, 619 /* 4 - 1280x720@60Hz */ 620 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 621 1430, 1650, 0, 720, 725, 730, 750, 0, 622 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 623 .vrefresh = 60, }, 624 /* 5 - 1920x1080i@60Hz */ 625 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 626 2052, 2200, 0, 1080, 1084, 1094, 1125, 0, 627 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 628 DRM_MODE_FLAG_INTERLACE), 629 .vrefresh = 60, }, 630 /* 6 - 1440x480i@60Hz */ 631 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478, 632 1602, 1716, 0, 480, 488, 494, 525, 0, 633 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 634 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 635 .vrefresh = 60, }, 636 /* 7 - 1440x480i@60Hz */ 637 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478, 638 1602, 1716, 0, 480, 488, 494, 525, 0, 639 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 640 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 641 .vrefresh = 60, }, 642 /* 8 - 1440x240@60Hz */ 643 { DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478, 644 1602, 1716, 0, 240, 244, 247, 262, 0, 645 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 646 DRM_MODE_FLAG_DBLCLK), 647 .vrefresh = 60, }, 648 /* 9 - 1440x240@60Hz */ 649 { DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478, 650 1602, 1716, 0, 240, 244, 247, 262, 0, 651 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 652 DRM_MODE_FLAG_DBLCLK), 653 .vrefresh = 60, }, 654 /* 10 - 2880x480i@60Hz */ 655 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 656 3204, 3432, 0, 480, 488, 494, 525, 0, 657 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 658 DRM_MODE_FLAG_INTERLACE), 659 .vrefresh = 60, }, 660 /* 11 - 2880x480i@60Hz */ 661 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 662 3204, 3432, 0, 480, 488, 494, 525, 0, 663 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 664 DRM_MODE_FLAG_INTERLACE), 665 .vrefresh = 60, }, 666 /* 12 - 2880x240@60Hz */ 667 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 668 3204, 3432, 0, 240, 244, 247, 262, 0, 669 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 670 .vrefresh = 60, }, 671 /* 13 - 2880x240@60Hz */ 672 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 673 3204, 3432, 0, 240, 244, 247, 262, 0, 674 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 675 .vrefresh = 60, }, 676 /* 14 - 1440x480@60Hz */ 677 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472, 678 1596, 1716, 0, 480, 489, 495, 525, 0, 679 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 680 .vrefresh = 60, }, 681 /* 15 - 1440x480@60Hz */ 682 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472, 683 1596, 1716, 0, 480, 489, 495, 525, 0, 684 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 685 .vrefresh = 60, }, 686 /* 16 - 1920x1080@60Hz */ 687 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 688 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 689 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 690 .vrefresh = 60, }, 691 /* 17 - 720x576@50Hz */ 692 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 693 796, 864, 0, 576, 581, 586, 625, 0, 694 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 695 .vrefresh = 50, }, 696 /* 18 - 720x576@50Hz */ 697 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 698 796, 864, 0, 576, 581, 586, 625, 0, 699 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 700 .vrefresh = 50, }, 701 /* 19 - 1280x720@50Hz */ 702 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720, 703 1760, 1980, 0, 720, 725, 730, 750, 0, 704 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 705 .vrefresh = 50, }, 706 /* 20 - 1920x1080i@50Hz */ 707 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 708 2492, 2640, 0, 1080, 1084, 1094, 1125, 0, 709 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 710 DRM_MODE_FLAG_INTERLACE), 711 .vrefresh = 50, }, 712 /* 21 - 1440x576i@50Hz */ 713 { DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464, 714 1590, 1728, 0, 576, 580, 586, 625, 0, 715 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 716 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 717 .vrefresh = 50, }, 718 /* 22 - 1440x576i@50Hz */ 719 { DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464, 720 1590, 1728, 0, 576, 580, 586, 625, 0, 721 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 722 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 723 .vrefresh = 50, }, 724 /* 23 - 1440x288@50Hz */ 725 { DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464, 726 1590, 1728, 0, 288, 290, 293, 312, 0, 727 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 728 DRM_MODE_FLAG_DBLCLK), 729 .vrefresh = 50, }, 730 /* 24 - 1440x288@50Hz */ 731 { DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464, 732 1590, 1728, 0, 288, 290, 293, 312, 0, 733 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 734 DRM_MODE_FLAG_DBLCLK), 735 .vrefresh = 50, }, 736 /* 25 - 2880x576i@50Hz */ 737 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 738 3180, 3456, 0, 576, 580, 586, 625, 0, 739 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 740 DRM_MODE_FLAG_INTERLACE), 741 .vrefresh = 50, }, 742 /* 26 - 2880x576i@50Hz */ 743 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 744 3180, 3456, 0, 576, 580, 586, 625, 0, 745 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 746 DRM_MODE_FLAG_INTERLACE), 747 .vrefresh = 50, }, 748 /* 27 - 2880x288@50Hz */ 749 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 750 3180, 3456, 0, 288, 290, 293, 312, 0, 751 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 752 .vrefresh = 50, }, 753 /* 28 - 2880x288@50Hz */ 754 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 755 3180, 3456, 0, 288, 290, 293, 312, 0, 756 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 757 .vrefresh = 50, }, 758 /* 29 - 1440x576@50Hz */ 759 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464, 760 1592, 1728, 0, 576, 581, 586, 625, 0, 761 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 762 .vrefresh = 50, }, 763 /* 30 - 1440x576@50Hz */ 764 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464, 765 1592, 1728, 0, 576, 581, 586, 625, 0, 766 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 767 .vrefresh = 50, }, 768 /* 31 - 1920x1080@50Hz */ 769 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448, 770 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 771 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 772 .vrefresh = 50, }, 773 /* 32 - 1920x1080@24Hz */ 774 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558, 775 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, 776 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 777 .vrefresh = 24, }, 778 /* 33 - 1920x1080@25Hz */ 779 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 780 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, 781 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 782 .vrefresh = 25, }, 783 /* 34 - 1920x1080@30Hz */ 784 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 785 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 786 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 787 .vrefresh = 30, }, 788 /* 35 - 2880x480@60Hz */ 789 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944, 790 3192, 3432, 0, 480, 489, 495, 525, 0, 791 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 792 .vrefresh = 60, }, 793 /* 36 - 2880x480@60Hz */ 794 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944, 795 3192, 3432, 0, 480, 489, 495, 525, 0, 796 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 797 .vrefresh = 60, }, 798 /* 37 - 2880x576@50Hz */ 799 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928, 800 3184, 3456, 0, 576, 581, 586, 625, 0, 801 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 802 .vrefresh = 50, }, 803 /* 38 - 2880x576@50Hz */ 804 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928, 805 3184, 3456, 0, 576, 581, 586, 625, 0, 806 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 807 .vrefresh = 50, }, 808 /* 39 - 1920x1080i@50Hz */ 809 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952, 810 2120, 2304, 0, 1080, 1126, 1136, 1250, 0, 811 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC | 812 DRM_MODE_FLAG_INTERLACE), 813 .vrefresh = 50, }, 814 /* 40 - 1920x1080i@100Hz */ 815 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448, 816 2492, 2640, 0, 1080, 1084, 1094, 1125, 0, 817 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 818 DRM_MODE_FLAG_INTERLACE), 819 .vrefresh = 100, }, 820 /* 41 - 1280x720@100Hz */ 821 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720, 822 1760, 1980, 0, 720, 725, 730, 750, 0, 823 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 824 .vrefresh = 100, }, 825 /* 42 - 720x576@100Hz */ 826 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 827 796, 864, 0, 576, 581, 586, 625, 0, 828 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 829 .vrefresh = 100, }, 830 /* 43 - 720x576@100Hz */ 831 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 832 796, 864, 0, 576, 581, 586, 625, 0, 833 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 834 .vrefresh = 100, }, 835 /* 44 - 1440x576i@100Hz */ 836 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464, 837 1590, 1728, 0, 576, 580, 586, 625, 0, 838 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 839 DRM_MODE_FLAG_DBLCLK), 840 .vrefresh = 100, }, 841 /* 45 - 1440x576i@100Hz */ 842 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464, 843 1590, 1728, 0, 576, 580, 586, 625, 0, 844 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 845 DRM_MODE_FLAG_DBLCLK), 846 .vrefresh = 100, }, 847 /* 46 - 1920x1080i@120Hz */ 848 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 849 2052, 2200, 0, 1080, 1084, 1094, 1125, 0, 850 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | 851 DRM_MODE_FLAG_INTERLACE), 852 .vrefresh = 120, }, 853 /* 47 - 1280x720@120Hz */ 854 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390, 855 1430, 1650, 0, 720, 725, 730, 750, 0, 856 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 857 .vrefresh = 120, }, 858 /* 48 - 720x480@120Hz */ 859 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736, 860 798, 858, 0, 480, 489, 495, 525, 0, 861 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 862 .vrefresh = 120, }, 863 /* 49 - 720x480@120Hz */ 864 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736, 865 798, 858, 0, 480, 489, 495, 525, 0, 866 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 867 .vrefresh = 120, }, 868 /* 50 - 1440x480i@120Hz */ 869 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478, 870 1602, 1716, 0, 480, 488, 494, 525, 0, 871 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 872 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 873 .vrefresh = 120, }, 874 /* 51 - 1440x480i@120Hz */ 875 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478, 876 1602, 1716, 0, 480, 488, 494, 525, 0, 877 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 878 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 879 .vrefresh = 120, }, 880 /* 52 - 720x576@200Hz */ 881 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732, 882 796, 864, 0, 576, 581, 586, 625, 0, 883 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 884 .vrefresh = 200, }, 885 /* 53 - 720x576@200Hz */ 886 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732, 887 796, 864, 0, 576, 581, 586, 625, 0, 888 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 889 .vrefresh = 200, }, 890 /* 54 - 1440x576i@200Hz */ 891 { DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464, 892 1590, 1728, 0, 576, 580, 586, 625, 0, 893 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 894 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 895 .vrefresh = 200, }, 896 /* 55 - 1440x576i@200Hz */ 897 { DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464, 898 1590, 1728, 0, 576, 580, 586, 625, 0, 899 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 900 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 901 .vrefresh = 200, }, 902 /* 56 - 720x480@240Hz */ 903 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736, 904 798, 858, 0, 480, 489, 495, 525, 0, 905 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 906 .vrefresh = 240, }, 907 /* 57 - 720x480@240Hz */ 908 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736, 909 798, 858, 0, 480, 489, 495, 525, 0, 910 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 911 .vrefresh = 240, }, 912 /* 58 - 1440x480i@240 */ 913 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478, 914 1602, 1716, 0, 480, 488, 494, 525, 0, 915 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 916 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 917 .vrefresh = 240, }, 918 /* 59 - 1440x480i@240 */ 919 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478, 920 1602, 1716, 0, 480, 488, 494, 525, 0, 921 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | 922 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), 923 .vrefresh = 240, }, 924 /* 60 - 1280x720@24Hz */ 925 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040, 926 3080, 3300, 0, 720, 725, 730, 750, 0, 927 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 928 .vrefresh = 24, }, 929 /* 61 - 1280x720@25Hz */ 930 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700, 931 3740, 3960, 0, 720, 725, 730, 750, 0, 932 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 933 .vrefresh = 25, }, 934 /* 62 - 1280x720@30Hz */ 935 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040, 936 3080, 3300, 0, 720, 725, 730, 750, 0, 937 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 938 .vrefresh = 30, }, 939 /* 63 - 1920x1080@120Hz */ 940 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008, 941 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, 942 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 943 .vrefresh = 120, }, 944 /* 64 - 1920x1080@100Hz */ 945 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448, 946 2492, 2640, 0, 1080, 1084, 1094, 1125, 0, 947 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 948 .vrefresh = 100, }, 949 }; 950 951 /* 952 * HDMI 1.4 4k modes. 953 */ 954 static const struct drm_display_mode edid_4k_modes[] = { 955 /* 1 - 3840x2160@30Hz */ 956 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 957 3840, 4016, 4104, 4400, 0, 958 2160, 2168, 2178, 2250, 0, 959 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 960 .vrefresh = 30, }, 961 /* 2 - 3840x2160@25Hz */ 962 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 963 3840, 4896, 4984, 5280, 0, 964 2160, 2168, 2178, 2250, 0, 965 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 966 .vrefresh = 25, }, 967 /* 3 - 3840x2160@24Hz */ 968 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 969 3840, 5116, 5204, 5500, 0, 970 2160, 2168, 2178, 2250, 0, 971 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 972 .vrefresh = 24, }, 973 /* 4 - 4096x2160@24Hz (SMPTE) */ 974 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 975 4096, 5116, 5204, 5500, 0, 976 2160, 2168, 2178, 2250, 0, 977 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), 978 .vrefresh = 24, }, 979 }; 980 981 /*** DDC fetch and block validation ***/ 982 983 static const u8 edid_header[] = { 984 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 985 }; 986 987 /* 988 * Sanity check the header of the base EDID block. Return 8 if the header 989 * is perfect, down to 0 if it's totally wrong. 990 */ 991 int drm_edid_header_is_valid(const u8 *raw_edid) 992 { 993 int i, score = 0; 994 995 for (i = 0; i < sizeof(edid_header); i++) 996 if (raw_edid[i] == edid_header[i]) 997 score++; 998 999 return score; 1000 } 1001 EXPORT_SYMBOL(drm_edid_header_is_valid); 1002 1003 static int edid_fixup __read_mostly = 6; 1004 module_param_named(edid_fixup, edid_fixup, int, 0400); 1005 MODULE_PARM_DESC(edid_fixup, 1006 "Minimum number of valid EDID header bytes (0-8, default 6)"); 1007 1008 /* 1009 * Sanity check the EDID block (base or extension). Return 0 if the block 1010 * doesn't check out, or 1 if it's valid. 1011 */ 1012 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid) 1013 { 1014 int i; 1015 u8 csum = 0; 1016 struct edid *edid = (struct edid *)raw_edid; 1017 1018 if (WARN_ON(!raw_edid)) 1019 return false; 1020 1021 if (edid_fixup > 8 || edid_fixup < 0) 1022 edid_fixup = 6; 1023 1024 if (block == 0) { 1025 int score = drm_edid_header_is_valid(raw_edid); 1026 if (score == 8) ; 1027 else if (score >= edid_fixup) { 1028 DRM_DEBUG("Fixing EDID header, your hardware may be failing\n"); 1029 memcpy(raw_edid, edid_header, sizeof(edid_header)); 1030 } else { 1031 goto bad; 1032 } 1033 } 1034 1035 for (i = 0; i < EDID_LENGTH; i++) 1036 csum += raw_edid[i]; 1037 if (csum) { 1038 if (print_bad_edid) { 1039 DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum); 1040 } 1041 1042 /* allow CEA to slide through, switches mangle this */ 1043 if (raw_edid[0] != 0x02) 1044 goto bad; 1045 } 1046 1047 /* per-block-type checks */ 1048 switch (raw_edid[0]) { 1049 case 0: /* base */ 1050 if (edid->version != 1) { 1051 DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version); 1052 goto bad; 1053 } 1054 1055 if (edid->revision > 4) 1056 DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n"); 1057 break; 1058 1059 default: 1060 break; 1061 } 1062 1063 return true; 1064 1065 bad: 1066 if (print_bad_edid) { 1067 printk(KERN_ERR "Raw EDID:\n"); 1068 print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1, 1069 raw_edid, EDID_LENGTH, false); 1070 } 1071 return false; 1072 } 1073 EXPORT_SYMBOL(drm_edid_block_valid); 1074 1075 /** 1076 * drm_edid_is_valid - sanity check EDID data 1077 * @edid: EDID data 1078 * 1079 * Sanity-check an entire EDID record (including extensions) 1080 */ 1081 bool drm_edid_is_valid(struct edid *edid) 1082 { 1083 int i; 1084 u8 *raw = (u8 *)edid; 1085 1086 if (!edid) 1087 return false; 1088 1089 for (i = 0; i <= edid->extensions; i++) 1090 if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true)) 1091 return false; 1092 1093 return true; 1094 } 1095 EXPORT_SYMBOL(drm_edid_is_valid); 1096 1097 #define DDC_SEGMENT_ADDR 0x30 1098 /** 1099 * Get EDID information via I2C. 1100 * 1101 * \param adapter : i2c device adaptor 1102 * \param buf : EDID data buffer to be filled 1103 * \param len : EDID data buffer length 1104 * \return 0 on success or -1 on failure. 1105 * 1106 * Try to fetch EDID information by calling i2c driver function. 1107 */ 1108 static int 1109 drm_do_probe_ddc_edid(struct i2c_adapter *adapter, unsigned char *buf, 1110 int block, int len) 1111 { 1112 unsigned char start = block * EDID_LENGTH; 1113 unsigned char segment = block >> 1; 1114 unsigned char xfers = segment ? 3 : 2; 1115 int ret, retries = 5; 1116 1117 /* The core i2c driver will automatically retry the transfer if the 1118 * adapter reports EAGAIN. However, we find that bit-banging transfers 1119 * are susceptible to errors under a heavily loaded machine and 1120 * generate spurious NAKs and timeouts. Retrying the transfer 1121 * of the individual block a few times seems to overcome this. 1122 */ 1123 do { 1124 struct i2c_msg msgs[] = { 1125 { 1126 .addr = DDC_SEGMENT_ADDR, 1127 .flags = 0, 1128 .len = 1, 1129 .buf = &segment, 1130 }, { 1131 .addr = DDC_ADDR, 1132 .flags = 0, 1133 .len = 1, 1134 .buf = &start, 1135 }, { 1136 .addr = DDC_ADDR, 1137 .flags = I2C_M_RD, 1138 .len = len, 1139 .buf = buf, 1140 } 1141 }; 1142 1143 /* 1144 * Avoid sending the segment addr to not upset non-compliant ddc 1145 * monitors. 1146 */ 1147 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers); 1148 1149 if (ret == -ENXIO) { 1150 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n", 1151 adapter->name); 1152 break; 1153 } 1154 } while (ret != xfers && --retries); 1155 1156 return ret == xfers ? 0 : -1; 1157 } 1158 1159 static bool drm_edid_is_zero(u8 *in_edid, int length) 1160 { 1161 if (memchr_inv(in_edid, 0, length)) 1162 return false; 1163 1164 return true; 1165 } 1166 1167 static u8 * 1168 drm_do_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter) 1169 { 1170 int i, j = 0, valid_extensions = 0; 1171 u8 *block, *new; 1172 bool print_bad_edid = !connector->bad_edid_counter || (drm_debug & DRM_UT_KMS); 1173 1174 if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL) 1175 return NULL; 1176 1177 /* base block fetch */ 1178 for (i = 0; i < 4; i++) { 1179 if (drm_do_probe_ddc_edid(adapter, block, 0, EDID_LENGTH)) 1180 goto out; 1181 if (drm_edid_block_valid(block, 0, print_bad_edid)) 1182 break; 1183 if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) { 1184 connector->null_edid_counter++; 1185 goto carp; 1186 } 1187 } 1188 if (i == 4) 1189 goto carp; 1190 1191 /* if there's no extensions, we're done */ 1192 if (block[0x7e] == 0) 1193 return block; 1194 1195 new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL); 1196 if (!new) 1197 goto out; 1198 block = new; 1199 1200 for (j = 1; j <= block[0x7e]; j++) { 1201 for (i = 0; i < 4; i++) { 1202 if (drm_do_probe_ddc_edid(adapter, 1203 block + (valid_extensions + 1) * EDID_LENGTH, 1204 j, EDID_LENGTH)) 1205 goto out; 1206 if (drm_edid_block_valid(block + (valid_extensions + 1) * EDID_LENGTH, j, print_bad_edid)) { 1207 valid_extensions++; 1208 break; 1209 } 1210 } 1211 1212 if (i == 4 && print_bad_edid) { 1213 dev_warn(connector->dev->dev, 1214 "%s: Ignoring invalid EDID block %d.\n", 1215 drm_get_connector_name(connector), j); 1216 1217 connector->bad_edid_counter++; 1218 } 1219 } 1220 1221 if (valid_extensions != block[0x7e]) { 1222 block[EDID_LENGTH-1] += block[0x7e] - valid_extensions; 1223 block[0x7e] = valid_extensions; 1224 new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL); 1225 if (!new) 1226 goto out; 1227 block = new; 1228 } 1229 1230 return block; 1231 1232 carp: 1233 if (print_bad_edid) { 1234 dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n", 1235 drm_get_connector_name(connector), j); 1236 } 1237 connector->bad_edid_counter++; 1238 1239 out: 1240 kfree(block); 1241 return NULL; 1242 } 1243 1244 /** 1245 * Probe DDC presence. 1246 * 1247 * \param adapter : i2c device adaptor 1248 * \return 1 on success 1249 */ 1250 bool 1251 drm_probe_ddc(struct i2c_adapter *adapter) 1252 { 1253 unsigned char out; 1254 1255 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0); 1256 } 1257 EXPORT_SYMBOL(drm_probe_ddc); 1258 1259 /** 1260 * drm_get_edid - get EDID data, if available 1261 * @connector: connector we're probing 1262 * @adapter: i2c adapter to use for DDC 1263 * 1264 * Poke the given i2c channel to grab EDID data if possible. If found, 1265 * attach it to the connector. 1266 * 1267 * Return edid data or NULL if we couldn't find any. 1268 */ 1269 struct edid *drm_get_edid(struct drm_connector *connector, 1270 struct i2c_adapter *adapter) 1271 { 1272 struct edid *edid = NULL; 1273 1274 if (drm_probe_ddc(adapter)) 1275 edid = (struct edid *)drm_do_get_edid(connector, adapter); 1276 1277 return edid; 1278 } 1279 EXPORT_SYMBOL(drm_get_edid); 1280 1281 /** 1282 * drm_edid_duplicate - duplicate an EDID and the extensions 1283 * @edid: EDID to duplicate 1284 * 1285 * Return duplicate edid or NULL on allocation failure. 1286 */ 1287 struct edid *drm_edid_duplicate(const struct edid *edid) 1288 { 1289 return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL); 1290 } 1291 EXPORT_SYMBOL(drm_edid_duplicate); 1292 1293 /*** EDID parsing ***/ 1294 1295 /** 1296 * edid_vendor - match a string against EDID's obfuscated vendor field 1297 * @edid: EDID to match 1298 * @vendor: vendor string 1299 * 1300 * Returns true if @vendor is in @edid, false otherwise 1301 */ 1302 static bool edid_vendor(struct edid *edid, char *vendor) 1303 { 1304 char edid_vendor[3]; 1305 1306 edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@'; 1307 edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) | 1308 ((edid->mfg_id[1] & 0xe0) >> 5)) + '@'; 1309 edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@'; 1310 1311 return !strncmp(edid_vendor, vendor, 3); 1312 } 1313 1314 /** 1315 * edid_get_quirks - return quirk flags for a given EDID 1316 * @edid: EDID to process 1317 * 1318 * This tells subsequent routines what fixes they need to apply. 1319 */ 1320 static u32 edid_get_quirks(struct edid *edid) 1321 { 1322 struct edid_quirk *quirk; 1323 int i; 1324 1325 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) { 1326 quirk = &edid_quirk_list[i]; 1327 1328 if (edid_vendor(edid, quirk->vendor) && 1329 (EDID_PRODUCT_ID(edid) == quirk->product_id)) 1330 return quirk->quirks; 1331 } 1332 1333 return 0; 1334 } 1335 1336 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay) 1337 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t))) 1338 1339 /** 1340 * edid_fixup_preferred - set preferred modes based on quirk list 1341 * @connector: has mode list to fix up 1342 * @quirks: quirks list 1343 * 1344 * Walk the mode list for @connector, clearing the preferred status 1345 * on existing modes and setting it anew for the right mode ala @quirks. 1346 */ 1347 static void edid_fixup_preferred(struct drm_connector *connector, 1348 u32 quirks) 1349 { 1350 struct drm_display_mode *t, *cur_mode, *preferred_mode; 1351 int target_refresh = 0; 1352 int cur_vrefresh, preferred_vrefresh; 1353 1354 if (list_empty(&connector->probed_modes)) 1355 return; 1356 1357 if (quirks & EDID_QUIRK_PREFER_LARGE_60) 1358 target_refresh = 60; 1359 if (quirks & EDID_QUIRK_PREFER_LARGE_75) 1360 target_refresh = 75; 1361 1362 preferred_mode = list_first_entry(&connector->probed_modes, 1363 struct drm_display_mode, head); 1364 1365 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) { 1366 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED; 1367 1368 if (cur_mode == preferred_mode) 1369 continue; 1370 1371 /* Largest mode is preferred */ 1372 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode)) 1373 preferred_mode = cur_mode; 1374 1375 cur_vrefresh = cur_mode->vrefresh ? 1376 cur_mode->vrefresh : drm_mode_vrefresh(cur_mode); 1377 preferred_vrefresh = preferred_mode->vrefresh ? 1378 preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode); 1379 /* At a given size, try to get closest to target refresh */ 1380 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) && 1381 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) < 1382 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) { 1383 preferred_mode = cur_mode; 1384 } 1385 } 1386 1387 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED; 1388 } 1389 1390 static bool 1391 mode_is_rb(const struct drm_display_mode *mode) 1392 { 1393 return (mode->htotal - mode->hdisplay == 160) && 1394 (mode->hsync_end - mode->hdisplay == 80) && 1395 (mode->hsync_end - mode->hsync_start == 32) && 1396 (mode->vsync_start - mode->vdisplay == 3); 1397 } 1398 1399 /* 1400 * drm_mode_find_dmt - Create a copy of a mode if present in DMT 1401 * @dev: Device to duplicate against 1402 * @hsize: Mode width 1403 * @vsize: Mode height 1404 * @fresh: Mode refresh rate 1405 * @rb: Mode reduced-blanking-ness 1406 * 1407 * Walk the DMT mode list looking for a match for the given parameters. 1408 * Return a newly allocated copy of the mode, or NULL if not found. 1409 */ 1410 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev, 1411 int hsize, int vsize, int fresh, 1412 bool rb) 1413 { 1414 int i; 1415 1416 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) { 1417 const struct drm_display_mode *ptr = &drm_dmt_modes[i]; 1418 if (hsize != ptr->hdisplay) 1419 continue; 1420 if (vsize != ptr->vdisplay) 1421 continue; 1422 if (fresh != drm_mode_vrefresh(ptr)) 1423 continue; 1424 if (rb != mode_is_rb(ptr)) 1425 continue; 1426 1427 return drm_mode_duplicate(dev, ptr); 1428 } 1429 1430 return NULL; 1431 } 1432 EXPORT_SYMBOL(drm_mode_find_dmt); 1433 1434 typedef void detailed_cb(struct detailed_timing *timing, void *closure); 1435 1436 static void 1437 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure) 1438 { 1439 int i, n = 0; 1440 u8 d = ext[0x02]; 1441 u8 *det_base = ext + d; 1442 1443 n = (127 - d) / 18; 1444 for (i = 0; i < n; i++) 1445 cb((struct detailed_timing *)(det_base + 18 * i), closure); 1446 } 1447 1448 static void 1449 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure) 1450 { 1451 unsigned int i, n = min((int)ext[0x02], 6); 1452 u8 *det_base = ext + 5; 1453 1454 if (ext[0x01] != 1) 1455 return; /* unknown version */ 1456 1457 for (i = 0; i < n; i++) 1458 cb((struct detailed_timing *)(det_base + 18 * i), closure); 1459 } 1460 1461 static void 1462 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure) 1463 { 1464 int i; 1465 struct edid *edid = (struct edid *)raw_edid; 1466 1467 if (edid == NULL) 1468 return; 1469 1470 for (i = 0; i < EDID_DETAILED_TIMINGS; i++) 1471 cb(&(edid->detailed_timings[i]), closure); 1472 1473 for (i = 1; i <= raw_edid[0x7e]; i++) { 1474 u8 *ext = raw_edid + (i * EDID_LENGTH); 1475 switch (*ext) { 1476 case CEA_EXT: 1477 cea_for_each_detailed_block(ext, cb, closure); 1478 break; 1479 case VTB_EXT: 1480 vtb_for_each_detailed_block(ext, cb, closure); 1481 break; 1482 default: 1483 break; 1484 } 1485 } 1486 } 1487 1488 static void 1489 is_rb(struct detailed_timing *t, void *data) 1490 { 1491 u8 *r = (u8 *)t; 1492 if (r[3] == EDID_DETAIL_MONITOR_RANGE) 1493 if (r[15] & 0x10) 1494 *(bool *)data = true; 1495 } 1496 1497 /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */ 1498 static bool 1499 drm_monitor_supports_rb(struct edid *edid) 1500 { 1501 if (edid->revision >= 4) { 1502 bool ret = false; 1503 drm_for_each_detailed_block((u8 *)edid, is_rb, &ret); 1504 return ret; 1505 } 1506 1507 return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0); 1508 } 1509 1510 static void 1511 find_gtf2(struct detailed_timing *t, void *data) 1512 { 1513 u8 *r = (u8 *)t; 1514 if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02) 1515 *(u8 **)data = r; 1516 } 1517 1518 /* Secondary GTF curve kicks in above some break frequency */ 1519 static int 1520 drm_gtf2_hbreak(struct edid *edid) 1521 { 1522 u8 *r = NULL; 1523 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); 1524 return r ? (r[12] * 2) : 0; 1525 } 1526 1527 static int 1528 drm_gtf2_2c(struct edid *edid) 1529 { 1530 u8 *r = NULL; 1531 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); 1532 return r ? r[13] : 0; 1533 } 1534 1535 static int 1536 drm_gtf2_m(struct edid *edid) 1537 { 1538 u8 *r = NULL; 1539 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); 1540 return r ? (r[15] << 8) + r[14] : 0; 1541 } 1542 1543 static int 1544 drm_gtf2_k(struct edid *edid) 1545 { 1546 u8 *r = NULL; 1547 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); 1548 return r ? r[16] : 0; 1549 } 1550 1551 static int 1552 drm_gtf2_2j(struct edid *edid) 1553 { 1554 u8 *r = NULL; 1555 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); 1556 return r ? r[17] : 0; 1557 } 1558 1559 /** 1560 * standard_timing_level - get std. timing level(CVT/GTF/DMT) 1561 * @edid: EDID block to scan 1562 */ 1563 static int standard_timing_level(struct edid *edid) 1564 { 1565 if (edid->revision >= 2) { 1566 if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)) 1567 return LEVEL_CVT; 1568 if (drm_gtf2_hbreak(edid)) 1569 return LEVEL_GTF2; 1570 return LEVEL_GTF; 1571 } 1572 return LEVEL_DMT; 1573 } 1574 1575 /* 1576 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old 1577 * monitors fill with ascii space (0x20) instead. 1578 */ 1579 static int 1580 bad_std_timing(u8 a, u8 b) 1581 { 1582 return (a == 0x00 && b == 0x00) || 1583 (a == 0x01 && b == 0x01) || 1584 (a == 0x20 && b == 0x20); 1585 } 1586 1587 /** 1588 * drm_mode_std - convert standard mode info (width, height, refresh) into mode 1589 * @t: standard timing params 1590 * @timing_level: standard timing level 1591 * 1592 * Take the standard timing params (in this case width, aspect, and refresh) 1593 * and convert them into a real mode using CVT/GTF/DMT. 1594 */ 1595 static struct drm_display_mode * 1596 drm_mode_std(struct drm_connector *connector, struct edid *edid, 1597 struct std_timing *t, int revision) 1598 { 1599 struct drm_device *dev = connector->dev; 1600 struct drm_display_mode *m, *mode = NULL; 1601 int hsize, vsize; 1602 int vrefresh_rate; 1603 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK) 1604 >> EDID_TIMING_ASPECT_SHIFT; 1605 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK) 1606 >> EDID_TIMING_VFREQ_SHIFT; 1607 int timing_level = standard_timing_level(edid); 1608 1609 if (bad_std_timing(t->hsize, t->vfreq_aspect)) 1610 return NULL; 1611 1612 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */ 1613 hsize = t->hsize * 8 + 248; 1614 /* vrefresh_rate = vfreq + 60 */ 1615 vrefresh_rate = vfreq + 60; 1616 /* the vdisplay is calculated based on the aspect ratio */ 1617 if (aspect_ratio == 0) { 1618 if (revision < 3) 1619 vsize = hsize; 1620 else 1621 vsize = (hsize * 10) / 16; 1622 } else if (aspect_ratio == 1) 1623 vsize = (hsize * 3) / 4; 1624 else if (aspect_ratio == 2) 1625 vsize = (hsize * 4) / 5; 1626 else 1627 vsize = (hsize * 9) / 16; 1628 1629 /* HDTV hack, part 1 */ 1630 if (vrefresh_rate == 60 && 1631 ((hsize == 1360 && vsize == 765) || 1632 (hsize == 1368 && vsize == 769))) { 1633 hsize = 1366; 1634 vsize = 768; 1635 } 1636 1637 /* 1638 * If this connector already has a mode for this size and refresh 1639 * rate (because it came from detailed or CVT info), use that 1640 * instead. This way we don't have to guess at interlace or 1641 * reduced blanking. 1642 */ 1643 list_for_each_entry(m, &connector->probed_modes, head) 1644 if (m->hdisplay == hsize && m->vdisplay == vsize && 1645 drm_mode_vrefresh(m) == vrefresh_rate) 1646 return NULL; 1647 1648 /* HDTV hack, part 2 */ 1649 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) { 1650 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0, 1651 false); 1652 mode->hdisplay = 1366; 1653 mode->hsync_start = mode->hsync_start - 1; 1654 mode->hsync_end = mode->hsync_end - 1; 1655 return mode; 1656 } 1657 1658 /* check whether it can be found in default mode table */ 1659 if (drm_monitor_supports_rb(edid)) { 1660 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, 1661 true); 1662 if (mode) 1663 return mode; 1664 } 1665 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false); 1666 if (mode) 1667 return mode; 1668 1669 /* okay, generate it */ 1670 switch (timing_level) { 1671 case LEVEL_DMT: 1672 break; 1673 case LEVEL_GTF: 1674 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0); 1675 break; 1676 case LEVEL_GTF2: 1677 /* 1678 * This is potentially wrong if there's ever a monitor with 1679 * more than one ranges section, each claiming a different 1680 * secondary GTF curve. Please don't do that. 1681 */ 1682 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0); 1683 if (!mode) 1684 return NULL; 1685 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) { 1686 drm_mode_destroy(dev, mode); 1687 mode = drm_gtf_mode_complex(dev, hsize, vsize, 1688 vrefresh_rate, 0, 0, 1689 drm_gtf2_m(edid), 1690 drm_gtf2_2c(edid), 1691 drm_gtf2_k(edid), 1692 drm_gtf2_2j(edid)); 1693 } 1694 break; 1695 case LEVEL_CVT: 1696 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0, 1697 false); 1698 break; 1699 } 1700 return mode; 1701 } 1702 1703 /* 1704 * EDID is delightfully ambiguous about how interlaced modes are to be 1705 * encoded. Our internal representation is of frame height, but some 1706 * HDTV detailed timings are encoded as field height. 1707 * 1708 * The format list here is from CEA, in frame size. Technically we 1709 * should be checking refresh rate too. Whatever. 1710 */ 1711 static void 1712 drm_mode_do_interlace_quirk(struct drm_display_mode *mode, 1713 struct detailed_pixel_timing *pt) 1714 { 1715 int i; 1716 static const struct { 1717 int w, h; 1718 } cea_interlaced[] = { 1719 { 1920, 1080 }, 1720 { 720, 480 }, 1721 { 1440, 480 }, 1722 { 2880, 480 }, 1723 { 720, 576 }, 1724 { 1440, 576 }, 1725 { 2880, 576 }, 1726 }; 1727 1728 if (!(pt->misc & DRM_EDID_PT_INTERLACED)) 1729 return; 1730 1731 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) { 1732 if ((mode->hdisplay == cea_interlaced[i].w) && 1733 (mode->vdisplay == cea_interlaced[i].h / 2)) { 1734 mode->vdisplay *= 2; 1735 mode->vsync_start *= 2; 1736 mode->vsync_end *= 2; 1737 mode->vtotal *= 2; 1738 mode->vtotal |= 1; 1739 } 1740 } 1741 1742 mode->flags |= DRM_MODE_FLAG_INTERLACE; 1743 } 1744 1745 /** 1746 * drm_mode_detailed - create a new mode from an EDID detailed timing section 1747 * @dev: DRM device (needed to create new mode) 1748 * @edid: EDID block 1749 * @timing: EDID detailed timing info 1750 * @quirks: quirks to apply 1751 * 1752 * An EDID detailed timing block contains enough info for us to create and 1753 * return a new struct drm_display_mode. 1754 */ 1755 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev, 1756 struct edid *edid, 1757 struct detailed_timing *timing, 1758 u32 quirks) 1759 { 1760 struct drm_display_mode *mode; 1761 struct detailed_pixel_timing *pt = &timing->data.pixel_data; 1762 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo; 1763 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo; 1764 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo; 1765 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo; 1766 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo; 1767 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo; 1768 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4; 1769 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf); 1770 1771 /* ignore tiny modes */ 1772 if (hactive < 64 || vactive < 64) 1773 return NULL; 1774 1775 if (pt->misc & DRM_EDID_PT_STEREO) { 1776 DRM_DEBUG_KMS("stereo mode not supported\n"); 1777 return NULL; 1778 } 1779 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) { 1780 DRM_DEBUG_KMS("composite sync not supported\n"); 1781 } 1782 1783 /* it is incorrect if hsync/vsync width is zero */ 1784 if (!hsync_pulse_width || !vsync_pulse_width) { 1785 DRM_DEBUG_KMS("Incorrect Detailed timing. " 1786 "Wrong Hsync/Vsync pulse width\n"); 1787 return NULL; 1788 } 1789 1790 if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) { 1791 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false); 1792 if (!mode) 1793 return NULL; 1794 1795 goto set_size; 1796 } 1797 1798 mode = drm_mode_create(dev); 1799 if (!mode) 1800 return NULL; 1801 1802 if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH) 1803 timing->pixel_clock = cpu_to_le16(1088); 1804 1805 mode->clock = le16_to_cpu(timing->pixel_clock) * 10; 1806 1807 mode->hdisplay = hactive; 1808 mode->hsync_start = mode->hdisplay + hsync_offset; 1809 mode->hsync_end = mode->hsync_start + hsync_pulse_width; 1810 mode->htotal = mode->hdisplay + hblank; 1811 1812 mode->vdisplay = vactive; 1813 mode->vsync_start = mode->vdisplay + vsync_offset; 1814 mode->vsync_end = mode->vsync_start + vsync_pulse_width; 1815 mode->vtotal = mode->vdisplay + vblank; 1816 1817 /* Some EDIDs have bogus h/vtotal values */ 1818 if (mode->hsync_end > mode->htotal) 1819 mode->htotal = mode->hsync_end + 1; 1820 if (mode->vsync_end > mode->vtotal) 1821 mode->vtotal = mode->vsync_end + 1; 1822 1823 drm_mode_do_interlace_quirk(mode, pt); 1824 1825 if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) { 1826 pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE; 1827 } 1828 1829 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ? 1830 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC; 1831 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ? 1832 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC; 1833 1834 set_size: 1835 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4; 1836 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8; 1837 1838 if (quirks & EDID_QUIRK_DETAILED_IN_CM) { 1839 mode->width_mm *= 10; 1840 mode->height_mm *= 10; 1841 } 1842 1843 if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) { 1844 mode->width_mm = edid->width_cm * 10; 1845 mode->height_mm = edid->height_cm * 10; 1846 } 1847 1848 mode->type = DRM_MODE_TYPE_DRIVER; 1849 mode->vrefresh = drm_mode_vrefresh(mode); 1850 drm_mode_set_name(mode); 1851 1852 return mode; 1853 } 1854 1855 static bool 1856 mode_in_hsync_range(const struct drm_display_mode *mode, 1857 struct edid *edid, u8 *t) 1858 { 1859 int hsync, hmin, hmax; 1860 1861 hmin = t[7]; 1862 if (edid->revision >= 4) 1863 hmin += ((t[4] & 0x04) ? 255 : 0); 1864 hmax = t[8]; 1865 if (edid->revision >= 4) 1866 hmax += ((t[4] & 0x08) ? 255 : 0); 1867 hsync = drm_mode_hsync(mode); 1868 1869 return (hsync <= hmax && hsync >= hmin); 1870 } 1871 1872 static bool 1873 mode_in_vsync_range(const struct drm_display_mode *mode, 1874 struct edid *edid, u8 *t) 1875 { 1876 int vsync, vmin, vmax; 1877 1878 vmin = t[5]; 1879 if (edid->revision >= 4) 1880 vmin += ((t[4] & 0x01) ? 255 : 0); 1881 vmax = t[6]; 1882 if (edid->revision >= 4) 1883 vmax += ((t[4] & 0x02) ? 255 : 0); 1884 vsync = drm_mode_vrefresh(mode); 1885 1886 return (vsync <= vmax && vsync >= vmin); 1887 } 1888 1889 static u32 1890 range_pixel_clock(struct edid *edid, u8 *t) 1891 { 1892 /* unspecified */ 1893 if (t[9] == 0 || t[9] == 255) 1894 return 0; 1895 1896 /* 1.4 with CVT support gives us real precision, yay */ 1897 if (edid->revision >= 4 && t[10] == 0x04) 1898 return (t[9] * 10000) - ((t[12] >> 2) * 250); 1899 1900 /* 1.3 is pathetic, so fuzz up a bit */ 1901 return t[9] * 10000 + 5001; 1902 } 1903 1904 static bool 1905 mode_in_range(const struct drm_display_mode *mode, struct edid *edid, 1906 struct detailed_timing *timing) 1907 { 1908 u32 max_clock; 1909 u8 *t = (u8 *)timing; 1910 1911 if (!mode_in_hsync_range(mode, edid, t)) 1912 return false; 1913 1914 if (!mode_in_vsync_range(mode, edid, t)) 1915 return false; 1916 1917 if ((max_clock = range_pixel_clock(edid, t))) 1918 if (mode->clock > max_clock) 1919 return false; 1920 1921 /* 1.4 max horizontal check */ 1922 if (edid->revision >= 4 && t[10] == 0x04) 1923 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3)))) 1924 return false; 1925 1926 if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid)) 1927 return false; 1928 1929 return true; 1930 } 1931 1932 static bool valid_inferred_mode(const struct drm_connector *connector, 1933 const struct drm_display_mode *mode) 1934 { 1935 struct drm_display_mode *m; 1936 bool ok = false; 1937 1938 list_for_each_entry(m, &connector->probed_modes, head) { 1939 if (mode->hdisplay == m->hdisplay && 1940 mode->vdisplay == m->vdisplay && 1941 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m)) 1942 return false; /* duplicated */ 1943 if (mode->hdisplay <= m->hdisplay && 1944 mode->vdisplay <= m->vdisplay) 1945 ok = true; 1946 } 1947 return ok; 1948 } 1949 1950 static int 1951 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid, 1952 struct detailed_timing *timing) 1953 { 1954 int i, modes = 0; 1955 struct drm_display_mode *newmode; 1956 struct drm_device *dev = connector->dev; 1957 1958 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) { 1959 if (mode_in_range(drm_dmt_modes + i, edid, timing) && 1960 valid_inferred_mode(connector, drm_dmt_modes + i)) { 1961 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]); 1962 if (newmode) { 1963 drm_mode_probed_add(connector, newmode); 1964 modes++; 1965 } 1966 } 1967 } 1968 1969 return modes; 1970 } 1971 1972 /* fix up 1366x768 mode from 1368x768; 1973 * GFT/CVT can't express 1366 width which isn't dividable by 8 1974 */ 1975 static void fixup_mode_1366x768(struct drm_display_mode *mode) 1976 { 1977 if (mode->hdisplay == 1368 && mode->vdisplay == 768) { 1978 mode->hdisplay = 1366; 1979 mode->hsync_start--; 1980 mode->hsync_end--; 1981 drm_mode_set_name(mode); 1982 } 1983 } 1984 1985 static int 1986 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid, 1987 struct detailed_timing *timing) 1988 { 1989 int i, modes = 0; 1990 struct drm_display_mode *newmode; 1991 struct drm_device *dev = connector->dev; 1992 1993 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) { 1994 const struct minimode *m = &extra_modes[i]; 1995 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0); 1996 if (!newmode) 1997 return modes; 1998 1999 fixup_mode_1366x768(newmode); 2000 if (!mode_in_range(newmode, edid, timing) || 2001 !valid_inferred_mode(connector, newmode)) { 2002 drm_mode_destroy(dev, newmode); 2003 continue; 2004 } 2005 2006 drm_mode_probed_add(connector, newmode); 2007 modes++; 2008 } 2009 2010 return modes; 2011 } 2012 2013 static int 2014 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid, 2015 struct detailed_timing *timing) 2016 { 2017 int i, modes = 0; 2018 struct drm_display_mode *newmode; 2019 struct drm_device *dev = connector->dev; 2020 bool rb = drm_monitor_supports_rb(edid); 2021 2022 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) { 2023 const struct minimode *m = &extra_modes[i]; 2024 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0); 2025 if (!newmode) 2026 return modes; 2027 2028 fixup_mode_1366x768(newmode); 2029 if (!mode_in_range(newmode, edid, timing) || 2030 !valid_inferred_mode(connector, newmode)) { 2031 drm_mode_destroy(dev, newmode); 2032 continue; 2033 } 2034 2035 drm_mode_probed_add(connector, newmode); 2036 modes++; 2037 } 2038 2039 return modes; 2040 } 2041 2042 static void 2043 do_inferred_modes(struct detailed_timing *timing, void *c) 2044 { 2045 struct detailed_mode_closure *closure = c; 2046 struct detailed_non_pixel *data = &timing->data.other_data; 2047 struct detailed_data_monitor_range *range = &data->data.range; 2048 2049 if (data->type != EDID_DETAIL_MONITOR_RANGE) 2050 return; 2051 2052 closure->modes += drm_dmt_modes_for_range(closure->connector, 2053 closure->edid, 2054 timing); 2055 2056 if (!version_greater(closure->edid, 1, 1)) 2057 return; /* GTF not defined yet */ 2058 2059 switch (range->flags) { 2060 case 0x02: /* secondary gtf, XXX could do more */ 2061 case 0x00: /* default gtf */ 2062 closure->modes += drm_gtf_modes_for_range(closure->connector, 2063 closure->edid, 2064 timing); 2065 break; 2066 case 0x04: /* cvt, only in 1.4+ */ 2067 if (!version_greater(closure->edid, 1, 3)) 2068 break; 2069 2070 closure->modes += drm_cvt_modes_for_range(closure->connector, 2071 closure->edid, 2072 timing); 2073 break; 2074 case 0x01: /* just the ranges, no formula */ 2075 default: 2076 break; 2077 } 2078 } 2079 2080 static int 2081 add_inferred_modes(struct drm_connector *connector, struct edid *edid) 2082 { 2083 struct detailed_mode_closure closure = { 2084 connector, edid, 0, 0, 0 2085 }; 2086 2087 if (version_greater(edid, 1, 0)) 2088 drm_for_each_detailed_block((u8 *)edid, do_inferred_modes, 2089 &closure); 2090 2091 return closure.modes; 2092 } 2093 2094 static int 2095 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing) 2096 { 2097 int i, j, m, modes = 0; 2098 struct drm_display_mode *mode; 2099 u8 *est = ((u8 *)timing) + 5; 2100 2101 for (i = 0; i < 6; i++) { 2102 for (j = 7; j >= 0; j--) { 2103 m = (i * 8) + (7 - j); 2104 if (m >= ARRAY_SIZE(est3_modes)) 2105 break; 2106 if (est[i] & (1 << j)) { 2107 mode = drm_mode_find_dmt(connector->dev, 2108 est3_modes[m].w, 2109 est3_modes[m].h, 2110 est3_modes[m].r, 2111 est3_modes[m].rb); 2112 if (mode) { 2113 drm_mode_probed_add(connector, mode); 2114 modes++; 2115 } 2116 } 2117 } 2118 } 2119 2120 return modes; 2121 } 2122 2123 static void 2124 do_established_modes(struct detailed_timing *timing, void *c) 2125 { 2126 struct detailed_mode_closure *closure = c; 2127 struct detailed_non_pixel *data = &timing->data.other_data; 2128 2129 if (data->type == EDID_DETAIL_EST_TIMINGS) 2130 closure->modes += drm_est3_modes(closure->connector, timing); 2131 } 2132 2133 /** 2134 * add_established_modes - get est. modes from EDID and add them 2135 * @edid: EDID block to scan 2136 * 2137 * Each EDID block contains a bitmap of the supported "established modes" list 2138 * (defined above). Tease them out and add them to the global modes list. 2139 */ 2140 static int 2141 add_established_modes(struct drm_connector *connector, struct edid *edid) 2142 { 2143 struct drm_device *dev = connector->dev; 2144 unsigned long est_bits = edid->established_timings.t1 | 2145 (edid->established_timings.t2 << 8) | 2146 ((edid->established_timings.mfg_rsvd & 0x80) << 9); 2147 int i, modes = 0; 2148 struct detailed_mode_closure closure = { 2149 connector, edid, 0, 0, 0 2150 }; 2151 2152 for (i = 0; i <= EDID_EST_TIMINGS; i++) { 2153 if (est_bits & (1<<i)) { 2154 struct drm_display_mode *newmode; 2155 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]); 2156 if (newmode) { 2157 drm_mode_probed_add(connector, newmode); 2158 modes++; 2159 } 2160 } 2161 } 2162 2163 if (version_greater(edid, 1, 0)) 2164 drm_for_each_detailed_block((u8 *)edid, 2165 do_established_modes, &closure); 2166 2167 return modes + closure.modes; 2168 } 2169 2170 static void 2171 do_standard_modes(struct detailed_timing *timing, void *c) 2172 { 2173 struct detailed_mode_closure *closure = c; 2174 struct detailed_non_pixel *data = &timing->data.other_data; 2175 struct drm_connector *connector = closure->connector; 2176 struct edid *edid = closure->edid; 2177 2178 if (data->type == EDID_DETAIL_STD_MODES) { 2179 int i; 2180 for (i = 0; i < 6; i++) { 2181 struct std_timing *std; 2182 struct drm_display_mode *newmode; 2183 2184 std = &data->data.timings[i]; 2185 newmode = drm_mode_std(connector, edid, std, 2186 edid->revision); 2187 if (newmode) { 2188 drm_mode_probed_add(connector, newmode); 2189 closure->modes++; 2190 } 2191 } 2192 } 2193 } 2194 2195 /** 2196 * add_standard_modes - get std. modes from EDID and add them 2197 * @edid: EDID block to scan 2198 * 2199 * Standard modes can be calculated using the appropriate standard (DMT, 2200 * GTF or CVT. Grab them from @edid and add them to the list. 2201 */ 2202 static int 2203 add_standard_modes(struct drm_connector *connector, struct edid *edid) 2204 { 2205 int i, modes = 0; 2206 struct detailed_mode_closure closure = { 2207 connector, edid, 0, 0, 0 2208 }; 2209 2210 for (i = 0; i < EDID_STD_TIMINGS; i++) { 2211 struct drm_display_mode *newmode; 2212 2213 newmode = drm_mode_std(connector, edid, 2214 &edid->standard_timings[i], 2215 edid->revision); 2216 if (newmode) { 2217 drm_mode_probed_add(connector, newmode); 2218 modes++; 2219 } 2220 } 2221 2222 if (version_greater(edid, 1, 0)) 2223 drm_for_each_detailed_block((u8 *)edid, do_standard_modes, 2224 &closure); 2225 2226 /* XXX should also look for standard codes in VTB blocks */ 2227 2228 return modes + closure.modes; 2229 } 2230 2231 static int drm_cvt_modes(struct drm_connector *connector, 2232 struct detailed_timing *timing) 2233 { 2234 int i, j, modes = 0; 2235 struct drm_display_mode *newmode; 2236 struct drm_device *dev = connector->dev; 2237 struct cvt_timing *cvt; 2238 const int rates[] = { 60, 85, 75, 60, 50 }; 2239 const u8 empty[3] = { 0, 0, 0 }; 2240 2241 for (i = 0; i < 4; i++) { 2242 int uninitialized_var(width), height; 2243 cvt = &(timing->data.other_data.data.cvt[i]); 2244 2245 if (!memcmp(cvt->code, empty, 3)) 2246 continue; 2247 2248 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2; 2249 switch (cvt->code[1] & 0x0c) { 2250 case 0x00: 2251 width = height * 4 / 3; 2252 break; 2253 case 0x04: 2254 width = height * 16 / 9; 2255 break; 2256 case 0x08: 2257 width = height * 16 / 10; 2258 break; 2259 case 0x0c: 2260 width = height * 15 / 9; 2261 break; 2262 } 2263 2264 for (j = 1; j < 5; j++) { 2265 if (cvt->code[2] & (1 << j)) { 2266 newmode = drm_cvt_mode(dev, width, height, 2267 rates[j], j == 0, 2268 false, false); 2269 if (newmode) { 2270 drm_mode_probed_add(connector, newmode); 2271 modes++; 2272 } 2273 } 2274 } 2275 } 2276 2277 return modes; 2278 } 2279 2280 static void 2281 do_cvt_mode(struct detailed_timing *timing, void *c) 2282 { 2283 struct detailed_mode_closure *closure = c; 2284 struct detailed_non_pixel *data = &timing->data.other_data; 2285 2286 if (data->type == EDID_DETAIL_CVT_3BYTE) 2287 closure->modes += drm_cvt_modes(closure->connector, timing); 2288 } 2289 2290 static int 2291 add_cvt_modes(struct drm_connector *connector, struct edid *edid) 2292 { 2293 struct detailed_mode_closure closure = { 2294 connector, edid, 0, 0, 0 2295 }; 2296 2297 if (version_greater(edid, 1, 2)) 2298 drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure); 2299 2300 /* XXX should also look for CVT codes in VTB blocks */ 2301 2302 return closure.modes; 2303 } 2304 2305 static void 2306 do_detailed_mode(struct detailed_timing *timing, void *c) 2307 { 2308 struct detailed_mode_closure *closure = c; 2309 struct drm_display_mode *newmode; 2310 2311 if (timing->pixel_clock) { 2312 newmode = drm_mode_detailed(closure->connector->dev, 2313 closure->edid, timing, 2314 closure->quirks); 2315 if (!newmode) 2316 return; 2317 2318 if (closure->preferred) 2319 newmode->type |= DRM_MODE_TYPE_PREFERRED; 2320 2321 drm_mode_probed_add(closure->connector, newmode); 2322 closure->modes++; 2323 closure->preferred = 0; 2324 } 2325 } 2326 2327 /* 2328 * add_detailed_modes - Add modes from detailed timings 2329 * @connector: attached connector 2330 * @edid: EDID block to scan 2331 * @quirks: quirks to apply 2332 */ 2333 static int 2334 add_detailed_modes(struct drm_connector *connector, struct edid *edid, 2335 u32 quirks) 2336 { 2337 struct detailed_mode_closure closure = { 2338 connector, 2339 edid, 2340 1, 2341 quirks, 2342 0 2343 }; 2344 2345 if (closure.preferred && !version_greater(edid, 1, 3)) 2346 closure.preferred = 2347 (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING); 2348 2349 drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure); 2350 2351 return closure.modes; 2352 } 2353 2354 #define AUDIO_BLOCK 0x01 2355 #define VIDEO_BLOCK 0x02 2356 #define VENDOR_BLOCK 0x03 2357 #define SPEAKER_BLOCK 0x04 2358 #define VIDEO_CAPABILITY_BLOCK 0x07 2359 #define EDID_BASIC_AUDIO (1 << 6) 2360 #define EDID_CEA_YCRCB444 (1 << 5) 2361 #define EDID_CEA_YCRCB422 (1 << 4) 2362 #define EDID_CEA_VCDB_QS (1 << 6) 2363 2364 /* 2365 * Search EDID for CEA extension block. 2366 */ 2367 static u8 *drm_find_cea_extension(struct edid *edid) 2368 { 2369 u8 *edid_ext = NULL; 2370 int i; 2371 2372 /* No EDID or EDID extensions */ 2373 if (edid == NULL || edid->extensions == 0) 2374 return NULL; 2375 2376 /* Find CEA extension */ 2377 for (i = 0; i < edid->extensions; i++) { 2378 edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1); 2379 if (edid_ext[0] == CEA_EXT) 2380 break; 2381 } 2382 2383 if (i == edid->extensions) 2384 return NULL; 2385 2386 return edid_ext; 2387 } 2388 2389 /* 2390 * Calculate the alternate clock for the CEA mode 2391 * (60Hz vs. 59.94Hz etc.) 2392 */ 2393 static unsigned int 2394 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode) 2395 { 2396 unsigned int clock = cea_mode->clock; 2397 2398 if (cea_mode->vrefresh % 6 != 0) 2399 return clock; 2400 2401 /* 2402 * edid_cea_modes contains the 59.94Hz 2403 * variant for 240 and 480 line modes, 2404 * and the 60Hz variant otherwise. 2405 */ 2406 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480) 2407 clock = clock * 1001 / 1000; 2408 else 2409 clock = DIV_ROUND_UP(clock * 1000, 1001); 2410 2411 return clock; 2412 } 2413 2414 /** 2415 * drm_match_cea_mode - look for a CEA mode matching given mode 2416 * @to_match: display mode 2417 * 2418 * Returns the CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861 2419 * mode. 2420 */ 2421 u8 drm_match_cea_mode(const struct drm_display_mode *to_match) 2422 { 2423 u8 mode; 2424 2425 if (!to_match->clock) 2426 return 0; 2427 2428 for (mode = 0; mode < ARRAY_SIZE(edid_cea_modes); mode++) { 2429 const struct drm_display_mode *cea_mode = &edid_cea_modes[mode]; 2430 unsigned int clock1, clock2; 2431 2432 /* Check both 60Hz and 59.94Hz */ 2433 clock1 = cea_mode->clock; 2434 clock2 = cea_mode_alternate_clock(cea_mode); 2435 2436 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) || 2437 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) && 2438 drm_mode_equal_no_clocks_no_stereo(to_match, cea_mode)) 2439 return mode + 1; 2440 } 2441 return 0; 2442 } 2443 EXPORT_SYMBOL(drm_match_cea_mode); 2444 2445 /* 2446 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor 2447 * specific block). 2448 * 2449 * It's almost like cea_mode_alternate_clock(), we just need to add an 2450 * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this 2451 * one. 2452 */ 2453 static unsigned int 2454 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode) 2455 { 2456 if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160) 2457 return hdmi_mode->clock; 2458 2459 return cea_mode_alternate_clock(hdmi_mode); 2460 } 2461 2462 /* 2463 * drm_match_hdmi_mode - look for a HDMI mode matching given mode 2464 * @to_match: display mode 2465 * 2466 * An HDMI mode is one defined in the HDMI vendor specific block. 2467 * 2468 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one. 2469 */ 2470 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match) 2471 { 2472 u8 mode; 2473 2474 if (!to_match->clock) 2475 return 0; 2476 2477 for (mode = 0; mode < ARRAY_SIZE(edid_4k_modes); mode++) { 2478 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[mode]; 2479 unsigned int clock1, clock2; 2480 2481 /* Make sure to also match alternate clocks */ 2482 clock1 = hdmi_mode->clock; 2483 clock2 = hdmi_mode_alternate_clock(hdmi_mode); 2484 2485 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) || 2486 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) && 2487 drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode)) 2488 return mode + 1; 2489 } 2490 return 0; 2491 } 2492 2493 static int 2494 add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid) 2495 { 2496 struct drm_device *dev = connector->dev; 2497 struct drm_display_mode *mode, *tmp; 2498 LIST_HEAD(list); 2499 int modes = 0; 2500 2501 /* Don't add CEA modes if the CEA extension block is missing */ 2502 if (!drm_find_cea_extension(edid)) 2503 return 0; 2504 2505 /* 2506 * Go through all probed modes and create a new mode 2507 * with the alternate clock for certain CEA modes. 2508 */ 2509 list_for_each_entry(mode, &connector->probed_modes, head) { 2510 const struct drm_display_mode *cea_mode = NULL; 2511 struct drm_display_mode *newmode; 2512 u8 mode_idx = drm_match_cea_mode(mode) - 1; 2513 unsigned int clock1, clock2; 2514 2515 if (mode_idx < ARRAY_SIZE(edid_cea_modes)) { 2516 cea_mode = &edid_cea_modes[mode_idx]; 2517 clock2 = cea_mode_alternate_clock(cea_mode); 2518 } else { 2519 mode_idx = drm_match_hdmi_mode(mode) - 1; 2520 if (mode_idx < ARRAY_SIZE(edid_4k_modes)) { 2521 cea_mode = &edid_4k_modes[mode_idx]; 2522 clock2 = hdmi_mode_alternate_clock(cea_mode); 2523 } 2524 } 2525 2526 if (!cea_mode) 2527 continue; 2528 2529 clock1 = cea_mode->clock; 2530 2531 if (clock1 == clock2) 2532 continue; 2533 2534 if (mode->clock != clock1 && mode->clock != clock2) 2535 continue; 2536 2537 newmode = drm_mode_duplicate(dev, cea_mode); 2538 if (!newmode) 2539 continue; 2540 2541 /* Carry over the stereo flags */ 2542 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK; 2543 2544 /* 2545 * The current mode could be either variant. Make 2546 * sure to pick the "other" clock for the new mode. 2547 */ 2548 if (mode->clock != clock1) 2549 newmode->clock = clock1; 2550 else 2551 newmode->clock = clock2; 2552 2553 list_add_tail(&newmode->head, &list); 2554 } 2555 2556 list_for_each_entry_safe(mode, tmp, &list, head) { 2557 list_del(&mode->head); 2558 drm_mode_probed_add(connector, mode); 2559 modes++; 2560 } 2561 2562 return modes; 2563 } 2564 2565 static int 2566 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len) 2567 { 2568 struct drm_device *dev = connector->dev; 2569 const u8 *mode; 2570 u8 cea_mode; 2571 int modes = 0; 2572 2573 for (mode = db; mode < db + len; mode++) { 2574 cea_mode = (*mode & 127) - 1; /* CEA modes are numbered 1..127 */ 2575 if (cea_mode < ARRAY_SIZE(edid_cea_modes)) { 2576 struct drm_display_mode *newmode; 2577 newmode = drm_mode_duplicate(dev, 2578 &edid_cea_modes[cea_mode]); 2579 if (newmode) { 2580 newmode->vrefresh = 0; 2581 drm_mode_probed_add(connector, newmode); 2582 modes++; 2583 } 2584 } 2585 } 2586 2587 return modes; 2588 } 2589 2590 struct stereo_mandatory_mode { 2591 int width, height, vrefresh; 2592 unsigned int flags; 2593 }; 2594 2595 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = { 2596 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, 2597 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING }, 2598 { 1920, 1080, 50, 2599 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF }, 2600 { 1920, 1080, 60, 2601 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF }, 2602 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, 2603 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING }, 2604 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, 2605 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING } 2606 }; 2607 2608 static bool 2609 stereo_match_mandatory(const struct drm_display_mode *mode, 2610 const struct stereo_mandatory_mode *stereo_mode) 2611 { 2612 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE; 2613 2614 return mode->hdisplay == stereo_mode->width && 2615 mode->vdisplay == stereo_mode->height && 2616 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) && 2617 drm_mode_vrefresh(mode) == stereo_mode->vrefresh; 2618 } 2619 2620 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector) 2621 { 2622 struct drm_device *dev = connector->dev; 2623 const struct drm_display_mode *mode; 2624 struct list_head stereo_modes; 2625 int modes = 0, i; 2626 2627 INIT_LIST_HEAD(&stereo_modes); 2628 2629 list_for_each_entry(mode, &connector->probed_modes, head) { 2630 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) { 2631 const struct stereo_mandatory_mode *mandatory; 2632 struct drm_display_mode *new_mode; 2633 2634 if (!stereo_match_mandatory(mode, 2635 &stereo_mandatory_modes[i])) 2636 continue; 2637 2638 mandatory = &stereo_mandatory_modes[i]; 2639 new_mode = drm_mode_duplicate(dev, mode); 2640 if (!new_mode) 2641 continue; 2642 2643 new_mode->flags |= mandatory->flags; 2644 list_add_tail(&new_mode->head, &stereo_modes); 2645 modes++; 2646 } 2647 } 2648 2649 list_splice_tail(&stereo_modes, &connector->probed_modes); 2650 2651 return modes; 2652 } 2653 2654 static int add_hdmi_mode(struct drm_connector *connector, u8 vic) 2655 { 2656 struct drm_device *dev = connector->dev; 2657 struct drm_display_mode *newmode; 2658 2659 vic--; /* VICs start at 1 */ 2660 if (vic >= ARRAY_SIZE(edid_4k_modes)) { 2661 DRM_ERROR("Unknown HDMI VIC: %d\n", vic); 2662 return 0; 2663 } 2664 2665 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]); 2666 if (!newmode) 2667 return 0; 2668 2669 drm_mode_probed_add(connector, newmode); 2670 2671 return 1; 2672 } 2673 2674 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure, 2675 const u8 *video_db, u8 video_len, u8 video_index) 2676 { 2677 struct drm_device *dev = connector->dev; 2678 struct drm_display_mode *newmode; 2679 int modes = 0; 2680 u8 cea_mode; 2681 2682 if (video_db == NULL || video_index >= video_len) 2683 return 0; 2684 2685 /* CEA modes are numbered 1..127 */ 2686 cea_mode = (video_db[video_index] & 127) - 1; 2687 if (cea_mode >= ARRAY_SIZE(edid_cea_modes)) 2688 return 0; 2689 2690 if (structure & (1 << 0)) { 2691 newmode = drm_mode_duplicate(dev, &edid_cea_modes[cea_mode]); 2692 if (newmode) { 2693 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING; 2694 drm_mode_probed_add(connector, newmode); 2695 modes++; 2696 } 2697 } 2698 if (structure & (1 << 6)) { 2699 newmode = drm_mode_duplicate(dev, &edid_cea_modes[cea_mode]); 2700 if (newmode) { 2701 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM; 2702 drm_mode_probed_add(connector, newmode); 2703 modes++; 2704 } 2705 } 2706 if (structure & (1 << 8)) { 2707 newmode = drm_mode_duplicate(dev, &edid_cea_modes[cea_mode]); 2708 if (newmode) { 2709 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF; 2710 drm_mode_probed_add(connector, newmode); 2711 modes++; 2712 } 2713 } 2714 2715 return modes; 2716 } 2717 2718 /* 2719 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block 2720 * @connector: connector corresponding to the HDMI sink 2721 * @db: start of the CEA vendor specific block 2722 * @len: length of the CEA block payload, ie. one can access up to db[len] 2723 * 2724 * Parses the HDMI VSDB looking for modes to add to @connector. This function 2725 * also adds the stereo 3d modes when applicable. 2726 */ 2727 static int 2728 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len, 2729 const u8 *video_db, u8 video_len) 2730 { 2731 int modes = 0, offset = 0, i, multi_present = 0; 2732 u8 vic_len, hdmi_3d_len = 0; 2733 u16 mask; 2734 u16 structure_all; 2735 2736 if (len < 8) 2737 goto out; 2738 2739 /* no HDMI_Video_Present */ 2740 if (!(db[8] & (1 << 5))) 2741 goto out; 2742 2743 /* Latency_Fields_Present */ 2744 if (db[8] & (1 << 7)) 2745 offset += 2; 2746 2747 /* I_Latency_Fields_Present */ 2748 if (db[8] & (1 << 6)) 2749 offset += 2; 2750 2751 /* the declared length is not long enough for the 2 first bytes 2752 * of additional video format capabilities */ 2753 if (len < (8 + offset + 2)) 2754 goto out; 2755 2756 /* 3D_Present */ 2757 offset++; 2758 if (db[8 + offset] & (1 << 7)) { 2759 modes += add_hdmi_mandatory_stereo_modes(connector); 2760 2761 /* 3D_Multi_present */ 2762 multi_present = (db[8 + offset] & 0x60) >> 5; 2763 } 2764 2765 offset++; 2766 vic_len = db[8 + offset] >> 5; 2767 hdmi_3d_len = db[8 + offset] & 0x1f; 2768 2769 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) { 2770 u8 vic; 2771 2772 vic = db[9 + offset + i]; 2773 modes += add_hdmi_mode(connector, vic); 2774 } 2775 offset += 1 + vic_len; 2776 2777 if (!(multi_present == 1 || multi_present == 2)) 2778 goto out; 2779 2780 if ((multi_present == 1 && len < (9 + offset)) || 2781 (multi_present == 2 && len < (11 + offset))) 2782 goto out; 2783 2784 if ((multi_present == 1 && hdmi_3d_len < 2) || 2785 (multi_present == 2 && hdmi_3d_len < 4)) 2786 goto out; 2787 2788 /* 3D_Structure_ALL */ 2789 structure_all = (db[8 + offset] << 8) | db[9 + offset]; 2790 2791 /* check if 3D_MASK is present */ 2792 if (multi_present == 2) 2793 mask = (db[10 + offset] << 8) | db[11 + offset]; 2794 else 2795 mask = 0xffff; 2796 2797 for (i = 0; i < 16; i++) { 2798 if (mask & (1 << i)) 2799 modes += add_3d_struct_modes(connector, 2800 structure_all, 2801 video_db, 2802 video_len, i); 2803 } 2804 2805 out: 2806 return modes; 2807 } 2808 2809 static int 2810 cea_db_payload_len(const u8 *db) 2811 { 2812 return db[0] & 0x1f; 2813 } 2814 2815 static int 2816 cea_db_tag(const u8 *db) 2817 { 2818 return db[0] >> 5; 2819 } 2820 2821 static int 2822 cea_revision(const u8 *cea) 2823 { 2824 return cea[1]; 2825 } 2826 2827 static int 2828 cea_db_offsets(const u8 *cea, int *start, int *end) 2829 { 2830 /* Data block offset in CEA extension block */ 2831 *start = 4; 2832 *end = cea[2]; 2833 if (*end == 0) 2834 *end = 127; 2835 if (*end < 4 || *end > 127) 2836 return -ERANGE; 2837 return 0; 2838 } 2839 2840 static bool cea_db_is_hdmi_vsdb(const u8 *db) 2841 { 2842 int hdmi_id; 2843 2844 if (cea_db_tag(db) != VENDOR_BLOCK) 2845 return false; 2846 2847 if (cea_db_payload_len(db) < 5) 2848 return false; 2849 2850 hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16); 2851 2852 return hdmi_id == HDMI_IEEE_OUI; 2853 } 2854 2855 #define for_each_cea_db(cea, i, start, end) \ 2856 for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1) 2857 2858 static int 2859 add_cea_modes(struct drm_connector *connector, struct edid *edid) 2860 { 2861 const u8 *cea = drm_find_cea_extension(edid); 2862 const u8 *db, *hdmi = NULL, *video = NULL; 2863 u8 dbl, hdmi_len, video_len = 0; 2864 int modes = 0; 2865 2866 if (cea && cea_revision(cea) >= 3) { 2867 int i, start, end; 2868 2869 if (cea_db_offsets(cea, &start, &end)) 2870 return 0; 2871 2872 for_each_cea_db(cea, i, start, end) { 2873 db = &cea[i]; 2874 dbl = cea_db_payload_len(db); 2875 2876 if (cea_db_tag(db) == VIDEO_BLOCK) { 2877 video = db + 1; 2878 video_len = dbl; 2879 modes += do_cea_modes(connector, video, dbl); 2880 } 2881 else if (cea_db_is_hdmi_vsdb(db)) { 2882 hdmi = db; 2883 hdmi_len = dbl; 2884 } 2885 } 2886 } 2887 2888 /* 2889 * We parse the HDMI VSDB after having added the cea modes as we will 2890 * be patching their flags when the sink supports stereo 3D. 2891 */ 2892 if (hdmi) 2893 modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video, 2894 video_len); 2895 2896 return modes; 2897 } 2898 2899 static void 2900 parse_hdmi_vsdb(struct drm_connector *connector, const u8 *db) 2901 { 2902 u8 len = cea_db_payload_len(db); 2903 2904 if (len >= 6) { 2905 connector->eld[5] |= (db[6] >> 7) << 1; /* Supports_AI */ 2906 connector->dvi_dual = db[6] & 1; 2907 } 2908 if (len >= 7) 2909 connector->max_tmds_clock = db[7] * 5; 2910 if (len >= 8) { 2911 connector->latency_present[0] = db[8] >> 7; 2912 connector->latency_present[1] = (db[8] >> 6) & 1; 2913 } 2914 if (len >= 9) 2915 connector->video_latency[0] = db[9]; 2916 if (len >= 10) 2917 connector->audio_latency[0] = db[10]; 2918 if (len >= 11) 2919 connector->video_latency[1] = db[11]; 2920 if (len >= 12) 2921 connector->audio_latency[1] = db[12]; 2922 2923 DRM_DEBUG_KMS("HDMI: DVI dual %d, " 2924 "max TMDS clock %d, " 2925 "latency present %d %d, " 2926 "video latency %d %d, " 2927 "audio latency %d %d\n", 2928 connector->dvi_dual, 2929 connector->max_tmds_clock, 2930 (int) connector->latency_present[0], 2931 (int) connector->latency_present[1], 2932 connector->video_latency[0], 2933 connector->video_latency[1], 2934 connector->audio_latency[0], 2935 connector->audio_latency[1]); 2936 } 2937 2938 static void 2939 monitor_name(struct detailed_timing *t, void *data) 2940 { 2941 if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME) 2942 *(u8 **)data = t->data.other_data.data.str.str; 2943 } 2944 2945 /** 2946 * drm_edid_to_eld - build ELD from EDID 2947 * @connector: connector corresponding to the HDMI/DP sink 2948 * @edid: EDID to parse 2949 * 2950 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. 2951 * Some ELD fields are left to the graphics driver caller: 2952 * - Conn_Type 2953 * - HDCP 2954 * - Port_ID 2955 */ 2956 void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid) 2957 { 2958 uint8_t *eld = connector->eld; 2959 u8 *cea; 2960 u8 *name; 2961 u8 *db; 2962 int sad_count = 0; 2963 int mnl; 2964 int dbl; 2965 2966 memset(eld, 0, sizeof(connector->eld)); 2967 2968 cea = drm_find_cea_extension(edid); 2969 if (!cea) { 2970 DRM_DEBUG_KMS("ELD: no CEA Extension found\n"); 2971 return; 2972 } 2973 2974 name = NULL; 2975 drm_for_each_detailed_block((u8 *)edid, monitor_name, &name); 2976 for (mnl = 0; name && mnl < 13; mnl++) { 2977 if (name[mnl] == 0x0a) 2978 break; 2979 eld[20 + mnl] = name[mnl]; 2980 } 2981 eld[4] = (cea[1] << 5) | mnl; 2982 DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20); 2983 2984 eld[0] = 2 << 3; /* ELD version: 2 */ 2985 2986 eld[16] = edid->mfg_id[0]; 2987 eld[17] = edid->mfg_id[1]; 2988 eld[18] = edid->prod_code[0]; 2989 eld[19] = edid->prod_code[1]; 2990 2991 if (cea_revision(cea) >= 3) { 2992 int i, start, end; 2993 2994 if (cea_db_offsets(cea, &start, &end)) { 2995 start = 0; 2996 end = 0; 2997 } 2998 2999 for_each_cea_db(cea, i, start, end) { 3000 db = &cea[i]; 3001 dbl = cea_db_payload_len(db); 3002 3003 switch (cea_db_tag(db)) { 3004 case AUDIO_BLOCK: 3005 /* Audio Data Block, contains SADs */ 3006 sad_count = dbl / 3; 3007 if (dbl >= 1) 3008 memcpy(eld + 20 + mnl, &db[1], dbl); 3009 break; 3010 case SPEAKER_BLOCK: 3011 /* Speaker Allocation Data Block */ 3012 if (dbl >= 1) 3013 eld[7] = db[1]; 3014 break; 3015 case VENDOR_BLOCK: 3016 /* HDMI Vendor-Specific Data Block */ 3017 if (cea_db_is_hdmi_vsdb(db)) 3018 parse_hdmi_vsdb(connector, db); 3019 break; 3020 default: 3021 break; 3022 } 3023 } 3024 } 3025 eld[5] |= sad_count << 4; 3026 eld[2] = (20 + mnl + sad_count * 3 + 3) / 4; 3027 3028 DRM_DEBUG_KMS("ELD size %d, SAD count %d\n", (int)eld[2], sad_count); 3029 } 3030 EXPORT_SYMBOL(drm_edid_to_eld); 3031 3032 /** 3033 * drm_edid_to_sad - extracts SADs from EDID 3034 * @edid: EDID to parse 3035 * @sads: pointer that will be set to the extracted SADs 3036 * 3037 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it. 3038 * Note: returned pointer needs to be kfreed 3039 * 3040 * Return number of found SADs or negative number on error. 3041 */ 3042 int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads) 3043 { 3044 int count = 0; 3045 int i, start, end, dbl; 3046 u8 *cea; 3047 3048 cea = drm_find_cea_extension(edid); 3049 if (!cea) { 3050 DRM_DEBUG_KMS("SAD: no CEA Extension found\n"); 3051 return -ENOENT; 3052 } 3053 3054 if (cea_revision(cea) < 3) { 3055 DRM_DEBUG_KMS("SAD: wrong CEA revision\n"); 3056 return -ENOTSUPP; 3057 } 3058 3059 if (cea_db_offsets(cea, &start, &end)) { 3060 DRM_DEBUG_KMS("SAD: invalid data block offsets\n"); 3061 return -EPROTO; 3062 } 3063 3064 for_each_cea_db(cea, i, start, end) { 3065 u8 *db = &cea[i]; 3066 3067 if (cea_db_tag(db) == AUDIO_BLOCK) { 3068 int j; 3069 dbl = cea_db_payload_len(db); 3070 3071 count = dbl / 3; /* SAD is 3B */ 3072 *sads = kcalloc(count, sizeof(**sads), GFP_KERNEL); 3073 if (!*sads) 3074 return -ENOMEM; 3075 for (j = 0; j < count; j++) { 3076 u8 *sad = &db[1 + j * 3]; 3077 3078 (*sads)[j].format = (sad[0] & 0x78) >> 3; 3079 (*sads)[j].channels = sad[0] & 0x7; 3080 (*sads)[j].freq = sad[1] & 0x7F; 3081 (*sads)[j].byte2 = sad[2]; 3082 } 3083 break; 3084 } 3085 } 3086 3087 return count; 3088 } 3089 EXPORT_SYMBOL(drm_edid_to_sad); 3090 3091 /** 3092 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID 3093 * @edid: EDID to parse 3094 * @sadb: pointer to the speaker block 3095 * 3096 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it. 3097 * Note: returned pointer needs to be kfreed 3098 * 3099 * Return number of found Speaker Allocation Blocks or negative number on error. 3100 */ 3101 int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb) 3102 { 3103 int count = 0; 3104 int i, start, end, dbl; 3105 const u8 *cea; 3106 3107 cea = drm_find_cea_extension(edid); 3108 if (!cea) { 3109 DRM_DEBUG_KMS("SAD: no CEA Extension found\n"); 3110 return -ENOENT; 3111 } 3112 3113 if (cea_revision(cea) < 3) { 3114 DRM_DEBUG_KMS("SAD: wrong CEA revision\n"); 3115 return -ENOTSUPP; 3116 } 3117 3118 if (cea_db_offsets(cea, &start, &end)) { 3119 DRM_DEBUG_KMS("SAD: invalid data block offsets\n"); 3120 return -EPROTO; 3121 } 3122 3123 for_each_cea_db(cea, i, start, end) { 3124 const u8 *db = &cea[i]; 3125 3126 if (cea_db_tag(db) == SPEAKER_BLOCK) { 3127 dbl = cea_db_payload_len(db); 3128 3129 /* Speaker Allocation Data Block */ 3130 if (dbl == 3) { 3131 *sadb = kmalloc(dbl, GFP_KERNEL); 3132 if (!*sadb) 3133 return -ENOMEM; 3134 memcpy(*sadb, &db[1], dbl); 3135 count = dbl; 3136 break; 3137 } 3138 } 3139 } 3140 3141 return count; 3142 } 3143 EXPORT_SYMBOL(drm_edid_to_speaker_allocation); 3144 3145 /** 3146 * drm_av_sync_delay - HDMI/DP sink audio-video sync delay in millisecond 3147 * @connector: connector associated with the HDMI/DP sink 3148 * @mode: the display mode 3149 */ 3150 int drm_av_sync_delay(struct drm_connector *connector, 3151 struct drm_display_mode *mode) 3152 { 3153 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE); 3154 int a, v; 3155 3156 if (!connector->latency_present[0]) 3157 return 0; 3158 if (!connector->latency_present[1]) 3159 i = 0; 3160 3161 a = connector->audio_latency[i]; 3162 v = connector->video_latency[i]; 3163 3164 /* 3165 * HDMI/DP sink doesn't support audio or video? 3166 */ 3167 if (a == 255 || v == 255) 3168 return 0; 3169 3170 /* 3171 * Convert raw EDID values to millisecond. 3172 * Treat unknown latency as 0ms. 3173 */ 3174 if (a) 3175 a = min(2 * (a - 1), 500); 3176 if (v) 3177 v = min(2 * (v - 1), 500); 3178 3179 return max(v - a, 0); 3180 } 3181 EXPORT_SYMBOL(drm_av_sync_delay); 3182 3183 /** 3184 * drm_select_eld - select one ELD from multiple HDMI/DP sinks 3185 * @encoder: the encoder just changed display mode 3186 * @mode: the adjusted display mode 3187 * 3188 * It's possible for one encoder to be associated with multiple HDMI/DP sinks. 3189 * The policy is now hard coded to simply use the first HDMI/DP sink's ELD. 3190 */ 3191 struct drm_connector *drm_select_eld(struct drm_encoder *encoder, 3192 struct drm_display_mode *mode) 3193 { 3194 struct drm_connector *connector; 3195 struct drm_device *dev = encoder->dev; 3196 3197 list_for_each_entry(connector, &dev->mode_config.connector_list, head) 3198 if (connector->encoder == encoder && connector->eld[0]) 3199 return connector; 3200 3201 return NULL; 3202 } 3203 EXPORT_SYMBOL(drm_select_eld); 3204 3205 /** 3206 * drm_detect_hdmi_monitor - detect whether monitor is hdmi. 3207 * @edid: monitor EDID information 3208 * 3209 * Parse the CEA extension according to CEA-861-B. 3210 * Return true if HDMI, false if not or unknown. 3211 */ 3212 bool drm_detect_hdmi_monitor(struct edid *edid) 3213 { 3214 u8 *edid_ext; 3215 int i; 3216 int start_offset, end_offset; 3217 3218 edid_ext = drm_find_cea_extension(edid); 3219 if (!edid_ext) 3220 return false; 3221 3222 if (cea_db_offsets(edid_ext, &start_offset, &end_offset)) 3223 return false; 3224 3225 /* 3226 * Because HDMI identifier is in Vendor Specific Block, 3227 * search it from all data blocks of CEA extension. 3228 */ 3229 for_each_cea_db(edid_ext, i, start_offset, end_offset) { 3230 if (cea_db_is_hdmi_vsdb(&edid_ext[i])) 3231 return true; 3232 } 3233 3234 return false; 3235 } 3236 EXPORT_SYMBOL(drm_detect_hdmi_monitor); 3237 3238 /** 3239 * drm_detect_monitor_audio - check monitor audio capability 3240 * 3241 * Monitor should have CEA extension block. 3242 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic 3243 * audio' only. If there is any audio extension block and supported 3244 * audio format, assume at least 'basic audio' support, even if 'basic 3245 * audio' is not defined in EDID. 3246 * 3247 */ 3248 bool drm_detect_monitor_audio(struct edid *edid) 3249 { 3250 u8 *edid_ext; 3251 int i, j; 3252 bool has_audio = false; 3253 int start_offset, end_offset; 3254 3255 edid_ext = drm_find_cea_extension(edid); 3256 if (!edid_ext) 3257 goto end; 3258 3259 has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0); 3260 3261 if (has_audio) { 3262 DRM_DEBUG_KMS("Monitor has basic audio support\n"); 3263 goto end; 3264 } 3265 3266 if (cea_db_offsets(edid_ext, &start_offset, &end_offset)) 3267 goto end; 3268 3269 for_each_cea_db(edid_ext, i, start_offset, end_offset) { 3270 if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) { 3271 has_audio = true; 3272 for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3) 3273 DRM_DEBUG_KMS("CEA audio format %d\n", 3274 (edid_ext[i + j] >> 3) & 0xf); 3275 goto end; 3276 } 3277 } 3278 end: 3279 return has_audio; 3280 } 3281 EXPORT_SYMBOL(drm_detect_monitor_audio); 3282 3283 /** 3284 * drm_rgb_quant_range_selectable - is RGB quantization range selectable? 3285 * 3286 * Check whether the monitor reports the RGB quantization range selection 3287 * as supported. The AVI infoframe can then be used to inform the monitor 3288 * which quantization range (full or limited) is used. 3289 */ 3290 bool drm_rgb_quant_range_selectable(struct edid *edid) 3291 { 3292 u8 *edid_ext; 3293 int i, start, end; 3294 3295 edid_ext = drm_find_cea_extension(edid); 3296 if (!edid_ext) 3297 return false; 3298 3299 if (cea_db_offsets(edid_ext, &start, &end)) 3300 return false; 3301 3302 for_each_cea_db(edid_ext, i, start, end) { 3303 if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK && 3304 cea_db_payload_len(&edid_ext[i]) == 2) { 3305 DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]); 3306 return edid_ext[i + 2] & EDID_CEA_VCDB_QS; 3307 } 3308 } 3309 3310 return false; 3311 } 3312 EXPORT_SYMBOL(drm_rgb_quant_range_selectable); 3313 3314 /** 3315 * drm_add_display_info - pull display info out if present 3316 * @edid: EDID data 3317 * @info: display info (attached to connector) 3318 * 3319 * Grab any available display info and stuff it into the drm_display_info 3320 * structure that's part of the connector. Useful for tracking bpp and 3321 * color spaces. 3322 */ 3323 static void drm_add_display_info(struct edid *edid, 3324 struct drm_display_info *info) 3325 { 3326 u8 *edid_ext; 3327 3328 info->width_mm = edid->width_cm * 10; 3329 info->height_mm = edid->height_cm * 10; 3330 3331 /* driver figures it out in this case */ 3332 info->bpc = 0; 3333 info->color_formats = 0; 3334 3335 if (edid->revision < 3) 3336 return; 3337 3338 if (!(edid->input & DRM_EDID_INPUT_DIGITAL)) 3339 return; 3340 3341 /* Get data from CEA blocks if present */ 3342 edid_ext = drm_find_cea_extension(edid); 3343 if (edid_ext) { 3344 info->cea_rev = edid_ext[1]; 3345 3346 /* The existence of a CEA block should imply RGB support */ 3347 info->color_formats = DRM_COLOR_FORMAT_RGB444; 3348 if (edid_ext[3] & EDID_CEA_YCRCB444) 3349 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444; 3350 if (edid_ext[3] & EDID_CEA_YCRCB422) 3351 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422; 3352 } 3353 3354 /* Only defined for 1.4 with digital displays */ 3355 if (edid->revision < 4) 3356 return; 3357 3358 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) { 3359 case DRM_EDID_DIGITAL_DEPTH_6: 3360 info->bpc = 6; 3361 break; 3362 case DRM_EDID_DIGITAL_DEPTH_8: 3363 info->bpc = 8; 3364 break; 3365 case DRM_EDID_DIGITAL_DEPTH_10: 3366 info->bpc = 10; 3367 break; 3368 case DRM_EDID_DIGITAL_DEPTH_12: 3369 info->bpc = 12; 3370 break; 3371 case DRM_EDID_DIGITAL_DEPTH_14: 3372 info->bpc = 14; 3373 break; 3374 case DRM_EDID_DIGITAL_DEPTH_16: 3375 info->bpc = 16; 3376 break; 3377 case DRM_EDID_DIGITAL_DEPTH_UNDEF: 3378 default: 3379 info->bpc = 0; 3380 break; 3381 } 3382 3383 info->color_formats |= DRM_COLOR_FORMAT_RGB444; 3384 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444) 3385 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444; 3386 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422) 3387 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422; 3388 } 3389 3390 /** 3391 * drm_add_edid_modes - add modes from EDID data, if available 3392 * @connector: connector we're probing 3393 * @edid: edid data 3394 * 3395 * Add the specified modes to the connector's mode list. 3396 * 3397 * Return number of modes added or 0 if we couldn't find any. 3398 */ 3399 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid) 3400 { 3401 int num_modes = 0; 3402 u32 quirks; 3403 3404 if (edid == NULL) { 3405 return 0; 3406 } 3407 if (!drm_edid_is_valid(edid)) { 3408 dev_warn(connector->dev->dev, "%s: EDID invalid.\n", 3409 drm_get_connector_name(connector)); 3410 return 0; 3411 } 3412 3413 quirks = edid_get_quirks(edid); 3414 3415 /* 3416 * EDID spec says modes should be preferred in this order: 3417 * - preferred detailed mode 3418 * - other detailed modes from base block 3419 * - detailed modes from extension blocks 3420 * - CVT 3-byte code modes 3421 * - standard timing codes 3422 * - established timing codes 3423 * - modes inferred from GTF or CVT range information 3424 * 3425 * We get this pretty much right. 3426 * 3427 * XXX order for additional mode types in extension blocks? 3428 */ 3429 num_modes += add_detailed_modes(connector, edid, quirks); 3430 num_modes += add_cvt_modes(connector, edid); 3431 num_modes += add_standard_modes(connector, edid); 3432 num_modes += add_established_modes(connector, edid); 3433 if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF) 3434 num_modes += add_inferred_modes(connector, edid); 3435 num_modes += add_cea_modes(connector, edid); 3436 num_modes += add_alternate_cea_modes(connector, edid); 3437 3438 if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75)) 3439 edid_fixup_preferred(connector, quirks); 3440 3441 drm_add_display_info(edid, &connector->display_info); 3442 3443 if (quirks & EDID_QUIRK_FORCE_8BPC) 3444 connector->display_info.bpc = 8; 3445 3446 return num_modes; 3447 } 3448 EXPORT_SYMBOL(drm_add_edid_modes); 3449 3450 /** 3451 * drm_add_modes_noedid - add modes for the connectors without EDID 3452 * @connector: connector we're probing 3453 * @hdisplay: the horizontal display limit 3454 * @vdisplay: the vertical display limit 3455 * 3456 * Add the specified modes to the connector's mode list. Only when the 3457 * hdisplay/vdisplay is not beyond the given limit, it will be added. 3458 * 3459 * Return number of modes added or 0 if we couldn't find any. 3460 */ 3461 int drm_add_modes_noedid(struct drm_connector *connector, 3462 int hdisplay, int vdisplay) 3463 { 3464 int i, count, num_modes = 0; 3465 struct drm_display_mode *mode; 3466 struct drm_device *dev = connector->dev; 3467 3468 count = sizeof(drm_dmt_modes) / sizeof(struct drm_display_mode); 3469 if (hdisplay < 0) 3470 hdisplay = 0; 3471 if (vdisplay < 0) 3472 vdisplay = 0; 3473 3474 for (i = 0; i < count; i++) { 3475 const struct drm_display_mode *ptr = &drm_dmt_modes[i]; 3476 if (hdisplay && vdisplay) { 3477 /* 3478 * Only when two are valid, they will be used to check 3479 * whether the mode should be added to the mode list of 3480 * the connector. 3481 */ 3482 if (ptr->hdisplay > hdisplay || 3483 ptr->vdisplay > vdisplay) 3484 continue; 3485 } 3486 if (drm_mode_vrefresh(ptr) > 61) 3487 continue; 3488 mode = drm_mode_duplicate(dev, ptr); 3489 if (mode) { 3490 drm_mode_probed_add(connector, mode); 3491 num_modes++; 3492 } 3493 } 3494 return num_modes; 3495 } 3496 EXPORT_SYMBOL(drm_add_modes_noedid); 3497 3498 void drm_set_preferred_mode(struct drm_connector *connector, 3499 int hpref, int vpref) 3500 { 3501 struct drm_display_mode *mode; 3502 3503 list_for_each_entry(mode, &connector->probed_modes, head) { 3504 if (drm_mode_width(mode) == hpref && 3505 drm_mode_height(mode) == vpref) 3506 mode->type |= DRM_MODE_TYPE_PREFERRED; 3507 } 3508 } 3509 EXPORT_SYMBOL(drm_set_preferred_mode); 3510 3511 /** 3512 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with 3513 * data from a DRM display mode 3514 * @frame: HDMI AVI infoframe 3515 * @mode: DRM display mode 3516 * 3517 * Returns 0 on success or a negative error code on failure. 3518 */ 3519 int 3520 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame, 3521 const struct drm_display_mode *mode) 3522 { 3523 int err; 3524 3525 if (!frame || !mode) 3526 return -EINVAL; 3527 3528 err = hdmi_avi_infoframe_init(frame); 3529 if (err < 0) 3530 return err; 3531 3532 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 3533 frame->pixel_repeat = 1; 3534 3535 frame->video_code = drm_match_cea_mode(mode); 3536 3537 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE; 3538 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE; 3539 3540 return 0; 3541 } 3542 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode); 3543 3544 static enum hdmi_3d_structure 3545 s3d_structure_from_display_mode(const struct drm_display_mode *mode) 3546 { 3547 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK; 3548 3549 switch (layout) { 3550 case DRM_MODE_FLAG_3D_FRAME_PACKING: 3551 return HDMI_3D_STRUCTURE_FRAME_PACKING; 3552 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE: 3553 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE; 3554 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE: 3555 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE; 3556 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL: 3557 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL; 3558 case DRM_MODE_FLAG_3D_L_DEPTH: 3559 return HDMI_3D_STRUCTURE_L_DEPTH; 3560 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH: 3561 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH; 3562 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM: 3563 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM; 3564 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF: 3565 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF; 3566 default: 3567 return HDMI_3D_STRUCTURE_INVALID; 3568 } 3569 } 3570 3571 /** 3572 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with 3573 * data from a DRM display mode 3574 * @frame: HDMI vendor infoframe 3575 * @mode: DRM display mode 3576 * 3577 * Note that there's is a need to send HDMI vendor infoframes only when using a 3578 * 4k or stereoscopic 3D mode. So when giving any other mode as input this 3579 * function will return -EINVAL, error that can be safely ignored. 3580 * 3581 * Returns 0 on success or a negative error code on failure. 3582 */ 3583 int 3584 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame, 3585 const struct drm_display_mode *mode) 3586 { 3587 int err; 3588 u32 s3d_flags; 3589 u8 vic; 3590 3591 if (!frame || !mode) 3592 return -EINVAL; 3593 3594 vic = drm_match_hdmi_mode(mode); 3595 s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK; 3596 3597 if (!vic && !s3d_flags) 3598 return -EINVAL; 3599 3600 if (vic && s3d_flags) 3601 return -EINVAL; 3602 3603 err = hdmi_vendor_infoframe_init(frame); 3604 if (err < 0) 3605 return err; 3606 3607 if (vic) 3608 frame->vic = vic; 3609 else 3610 frame->s3d_struct = s3d_structure_from_display_mode(mode); 3611 3612 return 0; 3613 } 3614 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode); 3615