xref: /openbmc/linux/drivers/gpu/drm/drm_edid.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/module.h>
35 #include <linux/vga_switcheroo.h>
36 #include <drm/drmP.h>
37 #include <drm/drm_edid.h>
38 #include <drm/drm_encoder.h>
39 #include <drm/drm_displayid.h>
40 #include <drm/drm_scdc_helper.h>
41 
42 #include "drm_crtc_internal.h"
43 
44 #define version_greater(edid, maj, min) \
45 	(((edid)->version > (maj)) || \
46 	 ((edid)->version == (maj) && (edid)->revision > (min)))
47 
48 #define EDID_EST_TIMINGS 16
49 #define EDID_STD_TIMINGS 8
50 #define EDID_DETAILED_TIMINGS 4
51 
52 /*
53  * EDID blocks out in the wild have a variety of bugs, try to collect
54  * them here (note that userspace may work around broken monitors first,
55  * but fixes should make their way here so that the kernel "just works"
56  * on as many displays as possible).
57  */
58 
59 /* First detailed mode wrong, use largest 60Hz mode */
60 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
61 /* Reported 135MHz pixel clock is too high, needs adjustment */
62 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
63 /* Prefer the largest mode at 75 Hz */
64 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
65 /* Detail timing is in cm not mm */
66 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
67 /* Detailed timing descriptors have bogus size values, so just take the
68  * maximum size and use that.
69  */
70 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
71 /* Monitor forgot to set the first detailed is preferred bit. */
72 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED	(1 << 5)
73 /* use +hsync +vsync for detailed mode */
74 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
75 /* Force reduced-blanking timings for detailed modes */
76 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
77 /* Force 8bpc */
78 #define EDID_QUIRK_FORCE_8BPC			(1 << 8)
79 /* Force 12bpc */
80 #define EDID_QUIRK_FORCE_12BPC			(1 << 9)
81 /* Force 6bpc */
82 #define EDID_QUIRK_FORCE_6BPC			(1 << 10)
83 /* Force 10bpc */
84 #define EDID_QUIRK_FORCE_10BPC			(1 << 11)
85 /* Non desktop display (i.e. HMD) */
86 #define EDID_QUIRK_NON_DESKTOP			(1 << 12)
87 
88 struct detailed_mode_closure {
89 	struct drm_connector *connector;
90 	struct edid *edid;
91 	bool preferred;
92 	u32 quirks;
93 	int modes;
94 };
95 
96 #define LEVEL_DMT	0
97 #define LEVEL_GTF	1
98 #define LEVEL_GTF2	2
99 #define LEVEL_CVT	3
100 
101 static const struct edid_quirk {
102 	char vendor[4];
103 	int product_id;
104 	u32 quirks;
105 } edid_quirk_list[] = {
106 	/* Acer AL1706 */
107 	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
108 	/* Acer F51 */
109 	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
110 	/* Unknown Acer */
111 	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
112 
113 	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
114 	{ "AEO", 0, EDID_QUIRK_FORCE_6BPC },
115 
116 	/* Belinea 10 15 55 */
117 	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
118 	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
119 
120 	/* Envision Peripherals, Inc. EN-7100e */
121 	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
122 	/* Envision EN2028 */
123 	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
124 
125 	/* Funai Electronics PM36B */
126 	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
127 	  EDID_QUIRK_DETAILED_IN_CM },
128 
129 	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
130 	{ "LGD", 764, EDID_QUIRK_FORCE_10BPC },
131 
132 	/* LG Philips LCD LP154W01-A5 */
133 	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
134 	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
135 
136 	/* Philips 107p5 CRT */
137 	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
138 
139 	/* Proview AY765C */
140 	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
141 
142 	/* Samsung SyncMaster 205BW.  Note: irony */
143 	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
144 	/* Samsung SyncMaster 22[5-6]BW */
145 	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
146 	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
147 
148 	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
149 	{ "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
150 
151 	/* ViewSonic VA2026w */
152 	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
153 
154 	/* Medion MD 30217 PG */
155 	{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
156 
157 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
158 	{ "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
159 
160 	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
161 	{ "ETR", 13896, EDID_QUIRK_FORCE_8BPC },
162 
163 	/* HTC Vive VR Headset */
164 	{ "HVR", 0xaa01, EDID_QUIRK_NON_DESKTOP },
165 };
166 
167 /*
168  * Autogenerated from the DMT spec.
169  * This table is copied from xfree86/modes/xf86EdidModes.c.
170  */
171 static const struct drm_display_mode drm_dmt_modes[] = {
172 	/* 0x01 - 640x350@85Hz */
173 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
174 		   736, 832, 0, 350, 382, 385, 445, 0,
175 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
176 	/* 0x02 - 640x400@85Hz */
177 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
178 		   736, 832, 0, 400, 401, 404, 445, 0,
179 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
180 	/* 0x03 - 720x400@85Hz */
181 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
182 		   828, 936, 0, 400, 401, 404, 446, 0,
183 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
184 	/* 0x04 - 640x480@60Hz */
185 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
186 		   752, 800, 0, 480, 490, 492, 525, 0,
187 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
188 	/* 0x05 - 640x480@72Hz */
189 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
190 		   704, 832, 0, 480, 489, 492, 520, 0,
191 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
192 	/* 0x06 - 640x480@75Hz */
193 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
194 		   720, 840, 0, 480, 481, 484, 500, 0,
195 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
196 	/* 0x07 - 640x480@85Hz */
197 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
198 		   752, 832, 0, 480, 481, 484, 509, 0,
199 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
200 	/* 0x08 - 800x600@56Hz */
201 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
202 		   896, 1024, 0, 600, 601, 603, 625, 0,
203 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
204 	/* 0x09 - 800x600@60Hz */
205 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
206 		   968, 1056, 0, 600, 601, 605, 628, 0,
207 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
208 	/* 0x0a - 800x600@72Hz */
209 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
210 		   976, 1040, 0, 600, 637, 643, 666, 0,
211 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
212 	/* 0x0b - 800x600@75Hz */
213 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
214 		   896, 1056, 0, 600, 601, 604, 625, 0,
215 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
216 	/* 0x0c - 800x600@85Hz */
217 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
218 		   896, 1048, 0, 600, 601, 604, 631, 0,
219 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
220 	/* 0x0d - 800x600@120Hz RB */
221 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
222 		   880, 960, 0, 600, 603, 607, 636, 0,
223 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
224 	/* 0x0e - 848x480@60Hz */
225 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
226 		   976, 1088, 0, 480, 486, 494, 517, 0,
227 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
228 	/* 0x0f - 1024x768@43Hz, interlace */
229 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
230 		   1208, 1264, 0, 768, 768, 776, 817, 0,
231 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
232 		   DRM_MODE_FLAG_INTERLACE) },
233 	/* 0x10 - 1024x768@60Hz */
234 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
235 		   1184, 1344, 0, 768, 771, 777, 806, 0,
236 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
237 	/* 0x11 - 1024x768@70Hz */
238 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
239 		   1184, 1328, 0, 768, 771, 777, 806, 0,
240 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
241 	/* 0x12 - 1024x768@75Hz */
242 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
243 		   1136, 1312, 0, 768, 769, 772, 800, 0,
244 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
245 	/* 0x13 - 1024x768@85Hz */
246 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
247 		   1168, 1376, 0, 768, 769, 772, 808, 0,
248 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
249 	/* 0x14 - 1024x768@120Hz RB */
250 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
251 		   1104, 1184, 0, 768, 771, 775, 813, 0,
252 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
253 	/* 0x15 - 1152x864@75Hz */
254 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
255 		   1344, 1600, 0, 864, 865, 868, 900, 0,
256 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
257 	/* 0x55 - 1280x720@60Hz */
258 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
259 		   1430, 1650, 0, 720, 725, 730, 750, 0,
260 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
261 	/* 0x16 - 1280x768@60Hz RB */
262 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
263 		   1360, 1440, 0, 768, 771, 778, 790, 0,
264 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
265 	/* 0x17 - 1280x768@60Hz */
266 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
267 		   1472, 1664, 0, 768, 771, 778, 798, 0,
268 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
269 	/* 0x18 - 1280x768@75Hz */
270 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
271 		   1488, 1696, 0, 768, 771, 778, 805, 0,
272 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
273 	/* 0x19 - 1280x768@85Hz */
274 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
275 		   1496, 1712, 0, 768, 771, 778, 809, 0,
276 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
277 	/* 0x1a - 1280x768@120Hz RB */
278 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
279 		   1360, 1440, 0, 768, 771, 778, 813, 0,
280 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
281 	/* 0x1b - 1280x800@60Hz RB */
282 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
283 		   1360, 1440, 0, 800, 803, 809, 823, 0,
284 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
285 	/* 0x1c - 1280x800@60Hz */
286 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
287 		   1480, 1680, 0, 800, 803, 809, 831, 0,
288 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
289 	/* 0x1d - 1280x800@75Hz */
290 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
291 		   1488, 1696, 0, 800, 803, 809, 838, 0,
292 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
293 	/* 0x1e - 1280x800@85Hz */
294 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
295 		   1496, 1712, 0, 800, 803, 809, 843, 0,
296 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
297 	/* 0x1f - 1280x800@120Hz RB */
298 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
299 		   1360, 1440, 0, 800, 803, 809, 847, 0,
300 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
301 	/* 0x20 - 1280x960@60Hz */
302 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
303 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
304 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
305 	/* 0x21 - 1280x960@85Hz */
306 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
307 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
308 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
309 	/* 0x22 - 1280x960@120Hz RB */
310 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
311 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
312 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
313 	/* 0x23 - 1280x1024@60Hz */
314 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
315 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
316 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
317 	/* 0x24 - 1280x1024@75Hz */
318 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
319 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
320 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
321 	/* 0x25 - 1280x1024@85Hz */
322 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
323 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
324 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
325 	/* 0x26 - 1280x1024@120Hz RB */
326 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
327 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
328 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
329 	/* 0x27 - 1360x768@60Hz */
330 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
331 		   1536, 1792, 0, 768, 771, 777, 795, 0,
332 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
333 	/* 0x28 - 1360x768@120Hz RB */
334 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
335 		   1440, 1520, 0, 768, 771, 776, 813, 0,
336 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
337 	/* 0x51 - 1366x768@60Hz */
338 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
339 		   1579, 1792, 0, 768, 771, 774, 798, 0,
340 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
341 	/* 0x56 - 1366x768@60Hz */
342 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
343 		   1436, 1500, 0, 768, 769, 772, 800, 0,
344 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
345 	/* 0x29 - 1400x1050@60Hz RB */
346 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
347 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
348 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
349 	/* 0x2a - 1400x1050@60Hz */
350 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
351 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
352 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
353 	/* 0x2b - 1400x1050@75Hz */
354 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
355 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
356 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
357 	/* 0x2c - 1400x1050@85Hz */
358 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
359 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
360 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
361 	/* 0x2d - 1400x1050@120Hz RB */
362 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
363 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
364 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
365 	/* 0x2e - 1440x900@60Hz RB */
366 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
367 		   1520, 1600, 0, 900, 903, 909, 926, 0,
368 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
369 	/* 0x2f - 1440x900@60Hz */
370 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
371 		   1672, 1904, 0, 900, 903, 909, 934, 0,
372 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
373 	/* 0x30 - 1440x900@75Hz */
374 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
375 		   1688, 1936, 0, 900, 903, 909, 942, 0,
376 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
377 	/* 0x31 - 1440x900@85Hz */
378 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
379 		   1696, 1952, 0, 900, 903, 909, 948, 0,
380 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
381 	/* 0x32 - 1440x900@120Hz RB */
382 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
383 		   1520, 1600, 0, 900, 903, 909, 953, 0,
384 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
385 	/* 0x53 - 1600x900@60Hz */
386 	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
387 		   1704, 1800, 0, 900, 901, 904, 1000, 0,
388 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
389 	/* 0x33 - 1600x1200@60Hz */
390 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
391 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
392 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
393 	/* 0x34 - 1600x1200@65Hz */
394 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
395 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
396 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
397 	/* 0x35 - 1600x1200@70Hz */
398 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
399 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
400 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
401 	/* 0x36 - 1600x1200@75Hz */
402 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
403 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
404 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
405 	/* 0x37 - 1600x1200@85Hz */
406 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
407 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
408 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
409 	/* 0x38 - 1600x1200@120Hz RB */
410 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
411 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
412 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
413 	/* 0x39 - 1680x1050@60Hz RB */
414 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
415 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
416 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
417 	/* 0x3a - 1680x1050@60Hz */
418 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
419 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
420 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
421 	/* 0x3b - 1680x1050@75Hz */
422 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
423 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
424 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
425 	/* 0x3c - 1680x1050@85Hz */
426 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
427 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
428 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
429 	/* 0x3d - 1680x1050@120Hz RB */
430 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
431 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
432 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
433 	/* 0x3e - 1792x1344@60Hz */
434 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
435 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
436 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
437 	/* 0x3f - 1792x1344@75Hz */
438 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
439 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
440 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
441 	/* 0x40 - 1792x1344@120Hz RB */
442 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
443 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
444 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
445 	/* 0x41 - 1856x1392@60Hz */
446 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
447 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
448 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
449 	/* 0x42 - 1856x1392@75Hz */
450 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
451 		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
452 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
453 	/* 0x43 - 1856x1392@120Hz RB */
454 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
455 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
456 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
457 	/* 0x52 - 1920x1080@60Hz */
458 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
459 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
460 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
461 	/* 0x44 - 1920x1200@60Hz RB */
462 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
463 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
464 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
465 	/* 0x45 - 1920x1200@60Hz */
466 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
467 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
468 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
469 	/* 0x46 - 1920x1200@75Hz */
470 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
471 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
472 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
473 	/* 0x47 - 1920x1200@85Hz */
474 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
475 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
476 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
477 	/* 0x48 - 1920x1200@120Hz RB */
478 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
479 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
480 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
481 	/* 0x49 - 1920x1440@60Hz */
482 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
483 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
484 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
485 	/* 0x4a - 1920x1440@75Hz */
486 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
487 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
488 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
489 	/* 0x4b - 1920x1440@120Hz RB */
490 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
491 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
492 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
493 	/* 0x54 - 2048x1152@60Hz */
494 	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
495 		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
496 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
497 	/* 0x4c - 2560x1600@60Hz RB */
498 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
499 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
500 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
501 	/* 0x4d - 2560x1600@60Hz */
502 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
503 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
504 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
505 	/* 0x4e - 2560x1600@75Hz */
506 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
507 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
508 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
509 	/* 0x4f - 2560x1600@85Hz */
510 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
511 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
512 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
513 	/* 0x50 - 2560x1600@120Hz RB */
514 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
515 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
516 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
517 	/* 0x57 - 4096x2160@60Hz RB */
518 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
519 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
520 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
521 	/* 0x58 - 4096x2160@59.94Hz RB */
522 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
523 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
524 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
525 };
526 
527 /*
528  * These more or less come from the DMT spec.  The 720x400 modes are
529  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
530  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
531  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
532  * mode.
533  *
534  * The DMT modes have been fact-checked; the rest are mild guesses.
535  */
536 static const struct drm_display_mode edid_est_modes[] = {
537 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
538 		   968, 1056, 0, 600, 601, 605, 628, 0,
539 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
540 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
541 		   896, 1024, 0, 600, 601, 603,  625, 0,
542 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
543 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
544 		   720, 840, 0, 480, 481, 484, 500, 0,
545 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
546 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
547 		   704,  832, 0, 480, 489, 492, 520, 0,
548 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
549 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
550 		   768,  864, 0, 480, 483, 486, 525, 0,
551 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
552 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
553 		   752, 800, 0, 480, 490, 492, 525, 0,
554 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
555 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
556 		   846, 900, 0, 400, 421, 423,  449, 0,
557 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
558 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
559 		   846,  900, 0, 400, 412, 414, 449, 0,
560 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
561 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
562 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
563 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
564 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
565 		   1136, 1312, 0,  768, 769, 772, 800, 0,
566 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
567 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
568 		   1184, 1328, 0,  768, 771, 777, 806, 0,
569 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
570 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
571 		   1184, 1344, 0,  768, 771, 777, 806, 0,
572 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
573 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
574 		   1208, 1264, 0, 768, 768, 776, 817, 0,
575 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
576 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
577 		   928, 1152, 0, 624, 625, 628, 667, 0,
578 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
579 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
580 		   896, 1056, 0, 600, 601, 604,  625, 0,
581 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
582 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
583 		   976, 1040, 0, 600, 637, 643, 666, 0,
584 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
585 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
586 		   1344, 1600, 0,  864, 865, 868, 900, 0,
587 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
588 };
589 
590 struct minimode {
591 	short w;
592 	short h;
593 	short r;
594 	short rb;
595 };
596 
597 static const struct minimode est3_modes[] = {
598 	/* byte 6 */
599 	{ 640, 350, 85, 0 },
600 	{ 640, 400, 85, 0 },
601 	{ 720, 400, 85, 0 },
602 	{ 640, 480, 85, 0 },
603 	{ 848, 480, 60, 0 },
604 	{ 800, 600, 85, 0 },
605 	{ 1024, 768, 85, 0 },
606 	{ 1152, 864, 75, 0 },
607 	/* byte 7 */
608 	{ 1280, 768, 60, 1 },
609 	{ 1280, 768, 60, 0 },
610 	{ 1280, 768, 75, 0 },
611 	{ 1280, 768, 85, 0 },
612 	{ 1280, 960, 60, 0 },
613 	{ 1280, 960, 85, 0 },
614 	{ 1280, 1024, 60, 0 },
615 	{ 1280, 1024, 85, 0 },
616 	/* byte 8 */
617 	{ 1360, 768, 60, 0 },
618 	{ 1440, 900, 60, 1 },
619 	{ 1440, 900, 60, 0 },
620 	{ 1440, 900, 75, 0 },
621 	{ 1440, 900, 85, 0 },
622 	{ 1400, 1050, 60, 1 },
623 	{ 1400, 1050, 60, 0 },
624 	{ 1400, 1050, 75, 0 },
625 	/* byte 9 */
626 	{ 1400, 1050, 85, 0 },
627 	{ 1680, 1050, 60, 1 },
628 	{ 1680, 1050, 60, 0 },
629 	{ 1680, 1050, 75, 0 },
630 	{ 1680, 1050, 85, 0 },
631 	{ 1600, 1200, 60, 0 },
632 	{ 1600, 1200, 65, 0 },
633 	{ 1600, 1200, 70, 0 },
634 	/* byte 10 */
635 	{ 1600, 1200, 75, 0 },
636 	{ 1600, 1200, 85, 0 },
637 	{ 1792, 1344, 60, 0 },
638 	{ 1792, 1344, 75, 0 },
639 	{ 1856, 1392, 60, 0 },
640 	{ 1856, 1392, 75, 0 },
641 	{ 1920, 1200, 60, 1 },
642 	{ 1920, 1200, 60, 0 },
643 	/* byte 11 */
644 	{ 1920, 1200, 75, 0 },
645 	{ 1920, 1200, 85, 0 },
646 	{ 1920, 1440, 60, 0 },
647 	{ 1920, 1440, 75, 0 },
648 };
649 
650 static const struct minimode extra_modes[] = {
651 	{ 1024, 576,  60, 0 },
652 	{ 1366, 768,  60, 0 },
653 	{ 1600, 900,  60, 0 },
654 	{ 1680, 945,  60, 0 },
655 	{ 1920, 1080, 60, 0 },
656 	{ 2048, 1152, 60, 0 },
657 	{ 2048, 1536, 60, 0 },
658 };
659 
660 /*
661  * Probably taken from CEA-861 spec.
662  * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
663  *
664  * Index using the VIC.
665  */
666 static const struct drm_display_mode edid_cea_modes[] = {
667 	/* 0 - dummy, VICs start at 1 */
668 	{ },
669 	/* 1 - 640x480@60Hz */
670 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
671 		   752, 800, 0, 480, 490, 492, 525, 0,
672 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
673 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
674 	/* 2 - 720x480@60Hz */
675 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
676 		   798, 858, 0, 480, 489, 495, 525, 0,
677 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
678 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
679 	/* 3 - 720x480@60Hz */
680 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
681 		   798, 858, 0, 480, 489, 495, 525, 0,
682 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
683 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
684 	/* 4 - 1280x720@60Hz */
685 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
686 		   1430, 1650, 0, 720, 725, 730, 750, 0,
687 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
688 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
689 	/* 5 - 1920x1080i@60Hz */
690 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
691 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
692 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
693 			DRM_MODE_FLAG_INTERLACE),
694 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
695 	/* 6 - 720(1440)x480i@60Hz */
696 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
697 		   801, 858, 0, 480, 488, 494, 525, 0,
698 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
699 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
700 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
701 	/* 7 - 720(1440)x480i@60Hz */
702 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
703 		   801, 858, 0, 480, 488, 494, 525, 0,
704 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
705 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
706 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
707 	/* 8 - 720(1440)x240@60Hz */
708 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
709 		   801, 858, 0, 240, 244, 247, 262, 0,
710 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
711 			DRM_MODE_FLAG_DBLCLK),
712 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
713 	/* 9 - 720(1440)x240@60Hz */
714 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
715 		   801, 858, 0, 240, 244, 247, 262, 0,
716 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
717 			DRM_MODE_FLAG_DBLCLK),
718 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
719 	/* 10 - 2880x480i@60Hz */
720 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
721 		   3204, 3432, 0, 480, 488, 494, 525, 0,
722 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
723 			DRM_MODE_FLAG_INTERLACE),
724 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
725 	/* 11 - 2880x480i@60Hz */
726 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
727 		   3204, 3432, 0, 480, 488, 494, 525, 0,
728 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
729 			DRM_MODE_FLAG_INTERLACE),
730 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
731 	/* 12 - 2880x240@60Hz */
732 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
733 		   3204, 3432, 0, 240, 244, 247, 262, 0,
734 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
735 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
736 	/* 13 - 2880x240@60Hz */
737 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
738 		   3204, 3432, 0, 240, 244, 247, 262, 0,
739 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
740 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
741 	/* 14 - 1440x480@60Hz */
742 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
743 		   1596, 1716, 0, 480, 489, 495, 525, 0,
744 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
745 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
746 	/* 15 - 1440x480@60Hz */
747 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
748 		   1596, 1716, 0, 480, 489, 495, 525, 0,
749 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
750 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
751 	/* 16 - 1920x1080@60Hz */
752 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
753 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
754 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
755 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
756 	/* 17 - 720x576@50Hz */
757 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
758 		   796, 864, 0, 576, 581, 586, 625, 0,
759 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
760 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
761 	/* 18 - 720x576@50Hz */
762 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
763 		   796, 864, 0, 576, 581, 586, 625, 0,
764 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
765 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
766 	/* 19 - 1280x720@50Hz */
767 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
768 		   1760, 1980, 0, 720, 725, 730, 750, 0,
769 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
770 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
771 	/* 20 - 1920x1080i@50Hz */
772 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
773 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
774 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
775 			DRM_MODE_FLAG_INTERLACE),
776 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
777 	/* 21 - 720(1440)x576i@50Hz */
778 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
779 		   795, 864, 0, 576, 580, 586, 625, 0,
780 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
781 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
782 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
783 	/* 22 - 720(1440)x576i@50Hz */
784 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
785 		   795, 864, 0, 576, 580, 586, 625, 0,
786 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
787 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
788 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
789 	/* 23 - 720(1440)x288@50Hz */
790 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
791 		   795, 864, 0, 288, 290, 293, 312, 0,
792 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
793 			DRM_MODE_FLAG_DBLCLK),
794 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
795 	/* 24 - 720(1440)x288@50Hz */
796 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
797 		   795, 864, 0, 288, 290, 293, 312, 0,
798 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
799 			DRM_MODE_FLAG_DBLCLK),
800 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
801 	/* 25 - 2880x576i@50Hz */
802 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
803 		   3180, 3456, 0, 576, 580, 586, 625, 0,
804 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
805 			DRM_MODE_FLAG_INTERLACE),
806 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
807 	/* 26 - 2880x576i@50Hz */
808 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
809 		   3180, 3456, 0, 576, 580, 586, 625, 0,
810 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
811 			DRM_MODE_FLAG_INTERLACE),
812 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
813 	/* 27 - 2880x288@50Hz */
814 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
815 		   3180, 3456, 0, 288, 290, 293, 312, 0,
816 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
817 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
818 	/* 28 - 2880x288@50Hz */
819 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
820 		   3180, 3456, 0, 288, 290, 293, 312, 0,
821 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
822 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
823 	/* 29 - 1440x576@50Hz */
824 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
825 		   1592, 1728, 0, 576, 581, 586, 625, 0,
826 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
827 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
828 	/* 30 - 1440x576@50Hz */
829 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
830 		   1592, 1728, 0, 576, 581, 586, 625, 0,
831 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
832 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
833 	/* 31 - 1920x1080@50Hz */
834 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
835 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
836 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
837 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
838 	/* 32 - 1920x1080@24Hz */
839 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
840 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
841 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
842 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
843 	/* 33 - 1920x1080@25Hz */
844 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
845 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
846 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
847 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
848 	/* 34 - 1920x1080@30Hz */
849 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
850 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
851 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
852 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
853 	/* 35 - 2880x480@60Hz */
854 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
855 		   3192, 3432, 0, 480, 489, 495, 525, 0,
856 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
857 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
858 	/* 36 - 2880x480@60Hz */
859 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
860 		   3192, 3432, 0, 480, 489, 495, 525, 0,
861 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
862 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
863 	/* 37 - 2880x576@50Hz */
864 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
865 		   3184, 3456, 0, 576, 581, 586, 625, 0,
866 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
867 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
868 	/* 38 - 2880x576@50Hz */
869 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
870 		   3184, 3456, 0, 576, 581, 586, 625, 0,
871 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
872 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
873 	/* 39 - 1920x1080i@50Hz */
874 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
875 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
876 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
877 			DRM_MODE_FLAG_INTERLACE),
878 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
879 	/* 40 - 1920x1080i@100Hz */
880 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
881 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
882 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
883 			DRM_MODE_FLAG_INTERLACE),
884 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
885 	/* 41 - 1280x720@100Hz */
886 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
887 		   1760, 1980, 0, 720, 725, 730, 750, 0,
888 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
889 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
890 	/* 42 - 720x576@100Hz */
891 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
892 		   796, 864, 0, 576, 581, 586, 625, 0,
893 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
894 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
895 	/* 43 - 720x576@100Hz */
896 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
897 		   796, 864, 0, 576, 581, 586, 625, 0,
898 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
899 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
900 	/* 44 - 720(1440)x576i@100Hz */
901 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
902 		   795, 864, 0, 576, 580, 586, 625, 0,
903 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
904 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
905 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
906 	/* 45 - 720(1440)x576i@100Hz */
907 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
908 		   795, 864, 0, 576, 580, 586, 625, 0,
909 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
910 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
911 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
912 	/* 46 - 1920x1080i@120Hz */
913 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
914 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
915 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
916 			DRM_MODE_FLAG_INTERLACE),
917 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
918 	/* 47 - 1280x720@120Hz */
919 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
920 		   1430, 1650, 0, 720, 725, 730, 750, 0,
921 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
922 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
923 	/* 48 - 720x480@120Hz */
924 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
925 		   798, 858, 0, 480, 489, 495, 525, 0,
926 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
927 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
928 	/* 49 - 720x480@120Hz */
929 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
930 		   798, 858, 0, 480, 489, 495, 525, 0,
931 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
932 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
933 	/* 50 - 720(1440)x480i@120Hz */
934 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
935 		   801, 858, 0, 480, 488, 494, 525, 0,
936 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
937 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
938 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
939 	/* 51 - 720(1440)x480i@120Hz */
940 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
941 		   801, 858, 0, 480, 488, 494, 525, 0,
942 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
943 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
944 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
945 	/* 52 - 720x576@200Hz */
946 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
947 		   796, 864, 0, 576, 581, 586, 625, 0,
948 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
949 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
950 	/* 53 - 720x576@200Hz */
951 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
952 		   796, 864, 0, 576, 581, 586, 625, 0,
953 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
954 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
955 	/* 54 - 720(1440)x576i@200Hz */
956 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
957 		   795, 864, 0, 576, 580, 586, 625, 0,
958 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
959 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
960 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
961 	/* 55 - 720(1440)x576i@200Hz */
962 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
963 		   795, 864, 0, 576, 580, 586, 625, 0,
964 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
965 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
966 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
967 	/* 56 - 720x480@240Hz */
968 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
969 		   798, 858, 0, 480, 489, 495, 525, 0,
970 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
971 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
972 	/* 57 - 720x480@240Hz */
973 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
974 		   798, 858, 0, 480, 489, 495, 525, 0,
975 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
976 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
977 	/* 58 - 720(1440)x480i@240Hz */
978 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
979 		   801, 858, 0, 480, 488, 494, 525, 0,
980 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
981 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
982 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
983 	/* 59 - 720(1440)x480i@240Hz */
984 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
985 		   801, 858, 0, 480, 488, 494, 525, 0,
986 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
987 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
988 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
989 	/* 60 - 1280x720@24Hz */
990 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
991 		   3080, 3300, 0, 720, 725, 730, 750, 0,
992 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
993 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
994 	/* 61 - 1280x720@25Hz */
995 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
996 		   3740, 3960, 0, 720, 725, 730, 750, 0,
997 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
998 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
999 	/* 62 - 1280x720@30Hz */
1000 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1001 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1002 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1003 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1004 	/* 63 - 1920x1080@120Hz */
1005 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1006 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1007 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1008 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1009 	/* 64 - 1920x1080@100Hz */
1010 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1011 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1012 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1013 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1014 	/* 65 - 1280x720@24Hz */
1015 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1016 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1017 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1018 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1019 	/* 66 - 1280x720@25Hz */
1020 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1021 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1022 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1023 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1024 	/* 67 - 1280x720@30Hz */
1025 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1026 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1027 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1028 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1029 	/* 68 - 1280x720@50Hz */
1030 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1031 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1032 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1033 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1034 	/* 69 - 1280x720@60Hz */
1035 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1036 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1037 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1038 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1039 	/* 70 - 1280x720@100Hz */
1040 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1041 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1042 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1043 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1044 	/* 71 - 1280x720@120Hz */
1045 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1046 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1047 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1048 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1049 	/* 72 - 1920x1080@24Hz */
1050 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1051 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1052 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1053 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1054 	/* 73 - 1920x1080@25Hz */
1055 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1056 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1057 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1058 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1059 	/* 74 - 1920x1080@30Hz */
1060 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1061 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1062 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1063 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1064 	/* 75 - 1920x1080@50Hz */
1065 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1066 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1067 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1068 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1069 	/* 76 - 1920x1080@60Hz */
1070 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1071 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1072 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1073 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1074 	/* 77 - 1920x1080@100Hz */
1075 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1076 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1077 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1078 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1079 	/* 78 - 1920x1080@120Hz */
1080 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1081 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1082 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1083 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1084 	/* 79 - 1680x720@24Hz */
1085 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1086 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1087 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1088 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1089 	/* 80 - 1680x720@25Hz */
1090 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1091 		   2948, 3168, 0, 720, 725, 730, 750, 0,
1092 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1093 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1094 	/* 81 - 1680x720@30Hz */
1095 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1096 		   2420, 2640, 0, 720, 725, 730, 750, 0,
1097 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1098 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1099 	/* 82 - 1680x720@50Hz */
1100 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1101 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1102 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1103 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1104 	/* 83 - 1680x720@60Hz */
1105 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1106 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1107 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1108 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1109 	/* 84 - 1680x720@100Hz */
1110 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1111 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1112 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1113 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1114 	/* 85 - 1680x720@120Hz */
1115 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1116 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1117 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1118 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1119 	/* 86 - 2560x1080@24Hz */
1120 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1121 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1122 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1123 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1124 	/* 87 - 2560x1080@25Hz */
1125 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1126 		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1127 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1128 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1129 	/* 88 - 2560x1080@30Hz */
1130 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1131 		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1132 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1133 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1134 	/* 89 - 2560x1080@50Hz */
1135 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1136 		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1137 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1138 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1139 	/* 90 - 2560x1080@60Hz */
1140 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1141 		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1142 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1143 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1144 	/* 91 - 2560x1080@100Hz */
1145 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1146 		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1147 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1148 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1149 	/* 92 - 2560x1080@120Hz */
1150 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1151 		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1152 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1153 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1154 	/* 93 - 3840x2160p@24Hz 16:9 */
1155 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1156 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1157 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1158 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1159 	/* 94 - 3840x2160p@25Hz 16:9 */
1160 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1161 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1162 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1163 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1164 	/* 95 - 3840x2160p@30Hz 16:9 */
1165 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1166 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1167 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1168 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1169 	/* 96 - 3840x2160p@50Hz 16:9 */
1170 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1171 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1172 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1173 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1174 	/* 97 - 3840x2160p@60Hz 16:9 */
1175 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1176 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1177 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1178 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1179 	/* 98 - 4096x2160p@24Hz 256:135 */
1180 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1181 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1182 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1183 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1184 	/* 99 - 4096x2160p@25Hz 256:135 */
1185 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1186 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1187 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1188 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1189 	/* 100 - 4096x2160p@30Hz 256:135 */
1190 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1191 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1192 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1193 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1194 	/* 101 - 4096x2160p@50Hz 256:135 */
1195 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1196 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1197 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1198 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1199 	/* 102 - 4096x2160p@60Hz 256:135 */
1200 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1201 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1202 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1203 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1204 	/* 103 - 3840x2160p@24Hz 64:27 */
1205 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1206 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1207 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1208 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1209 	/* 104 - 3840x2160p@25Hz 64:27 */
1210 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1211 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1212 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1213 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1214 	/* 105 - 3840x2160p@30Hz 64:27 */
1215 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1216 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1217 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1218 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1219 	/* 106 - 3840x2160p@50Hz 64:27 */
1220 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1221 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1222 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1223 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1224 	/* 107 - 3840x2160p@60Hz 64:27 */
1225 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1226 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1227 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1228 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1229 };
1230 
1231 /*
1232  * HDMI 1.4 4k modes. Index using the VIC.
1233  */
1234 static const struct drm_display_mode edid_4k_modes[] = {
1235 	/* 0 - dummy, VICs start at 1 */
1236 	{ },
1237 	/* 1 - 3840x2160@30Hz */
1238 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1239 		   3840, 4016, 4104, 4400, 0,
1240 		   2160, 2168, 2178, 2250, 0,
1241 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1242 	  .vrefresh = 30, },
1243 	/* 2 - 3840x2160@25Hz */
1244 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1245 		   3840, 4896, 4984, 5280, 0,
1246 		   2160, 2168, 2178, 2250, 0,
1247 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1248 	  .vrefresh = 25, },
1249 	/* 3 - 3840x2160@24Hz */
1250 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1251 		   3840, 5116, 5204, 5500, 0,
1252 		   2160, 2168, 2178, 2250, 0,
1253 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1254 	  .vrefresh = 24, },
1255 	/* 4 - 4096x2160@24Hz (SMPTE) */
1256 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1257 		   4096, 5116, 5204, 5500, 0,
1258 		   2160, 2168, 2178, 2250, 0,
1259 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1260 	  .vrefresh = 24, },
1261 };
1262 
1263 /*** DDC fetch and block validation ***/
1264 
1265 static const u8 edid_header[] = {
1266 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1267 };
1268 
1269 /**
1270  * drm_edid_header_is_valid - sanity check the header of the base EDID block
1271  * @raw_edid: pointer to raw base EDID block
1272  *
1273  * Sanity check the header of the base EDID block.
1274  *
1275  * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1276  */
1277 int drm_edid_header_is_valid(const u8 *raw_edid)
1278 {
1279 	int i, score = 0;
1280 
1281 	for (i = 0; i < sizeof(edid_header); i++)
1282 		if (raw_edid[i] == edid_header[i])
1283 			score++;
1284 
1285 	return score;
1286 }
1287 EXPORT_SYMBOL(drm_edid_header_is_valid);
1288 
1289 static int edid_fixup __read_mostly = 6;
1290 module_param_named(edid_fixup, edid_fixup, int, 0400);
1291 MODULE_PARM_DESC(edid_fixup,
1292 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1293 
1294 static void drm_get_displayid(struct drm_connector *connector,
1295 			      struct edid *edid);
1296 
1297 static int drm_edid_block_checksum(const u8 *raw_edid)
1298 {
1299 	int i;
1300 	u8 csum = 0;
1301 	for (i = 0; i < EDID_LENGTH; i++)
1302 		csum += raw_edid[i];
1303 
1304 	return csum;
1305 }
1306 
1307 static bool drm_edid_is_zero(const u8 *in_edid, int length)
1308 {
1309 	if (memchr_inv(in_edid, 0, length))
1310 		return false;
1311 
1312 	return true;
1313 }
1314 
1315 /**
1316  * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1317  * @raw_edid: pointer to raw EDID block
1318  * @block: type of block to validate (0 for base, extension otherwise)
1319  * @print_bad_edid: if true, dump bad EDID blocks to the console
1320  * @edid_corrupt: if true, the header or checksum is invalid
1321  *
1322  * Validate a base or extension EDID block and optionally dump bad blocks to
1323  * the console.
1324  *
1325  * Return: True if the block is valid, false otherwise.
1326  */
1327 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
1328 			  bool *edid_corrupt)
1329 {
1330 	u8 csum;
1331 	struct edid *edid = (struct edid *)raw_edid;
1332 
1333 	if (WARN_ON(!raw_edid))
1334 		return false;
1335 
1336 	if (edid_fixup > 8 || edid_fixup < 0)
1337 		edid_fixup = 6;
1338 
1339 	if (block == 0) {
1340 		int score = drm_edid_header_is_valid(raw_edid);
1341 		if (score == 8) {
1342 			if (edid_corrupt)
1343 				*edid_corrupt = false;
1344 		} else if (score >= edid_fixup) {
1345 			/* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
1346 			 * The corrupt flag needs to be set here otherwise, the
1347 			 * fix-up code here will correct the problem, the
1348 			 * checksum is correct and the test fails
1349 			 */
1350 			if (edid_corrupt)
1351 				*edid_corrupt = true;
1352 			DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1353 			memcpy(raw_edid, edid_header, sizeof(edid_header));
1354 		} else {
1355 			if (edid_corrupt)
1356 				*edid_corrupt = true;
1357 			goto bad;
1358 		}
1359 	}
1360 
1361 	csum = drm_edid_block_checksum(raw_edid);
1362 	if (csum) {
1363 		if (edid_corrupt)
1364 			*edid_corrupt = true;
1365 
1366 		/* allow CEA to slide through, switches mangle this */
1367 		if (raw_edid[0] == CEA_EXT) {
1368 			DRM_DEBUG("EDID checksum is invalid, remainder is %d\n", csum);
1369 			DRM_DEBUG("Assuming a KVM switch modified the CEA block but left the original checksum\n");
1370 		} else {
1371 			if (print_bad_edid)
1372 				DRM_NOTE("EDID checksum is invalid, remainder is %d\n", csum);
1373 
1374 			goto bad;
1375 		}
1376 	}
1377 
1378 	/* per-block-type checks */
1379 	switch (raw_edid[0]) {
1380 	case 0: /* base */
1381 		if (edid->version != 1) {
1382 			DRM_NOTE("EDID has major version %d, instead of 1\n", edid->version);
1383 			goto bad;
1384 		}
1385 
1386 		if (edid->revision > 4)
1387 			DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1388 		break;
1389 
1390 	default:
1391 		break;
1392 	}
1393 
1394 	return true;
1395 
1396 bad:
1397 	if (print_bad_edid) {
1398 		if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) {
1399 			pr_notice("EDID block is all zeroes\n");
1400 		} else {
1401 			pr_notice("Raw EDID:\n");
1402 			print_hex_dump(KERN_NOTICE,
1403 				       " \t", DUMP_PREFIX_NONE, 16, 1,
1404 				       raw_edid, EDID_LENGTH, false);
1405 		}
1406 	}
1407 	return false;
1408 }
1409 EXPORT_SYMBOL(drm_edid_block_valid);
1410 
1411 /**
1412  * drm_edid_is_valid - sanity check EDID data
1413  * @edid: EDID data
1414  *
1415  * Sanity-check an entire EDID record (including extensions)
1416  *
1417  * Return: True if the EDID data is valid, false otherwise.
1418  */
1419 bool drm_edid_is_valid(struct edid *edid)
1420 {
1421 	int i;
1422 	u8 *raw = (u8 *)edid;
1423 
1424 	if (!edid)
1425 		return false;
1426 
1427 	for (i = 0; i <= edid->extensions; i++)
1428 		if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL))
1429 			return false;
1430 
1431 	return true;
1432 }
1433 EXPORT_SYMBOL(drm_edid_is_valid);
1434 
1435 #define DDC_SEGMENT_ADDR 0x30
1436 /**
1437  * drm_do_probe_ddc_edid() - get EDID information via I2C
1438  * @data: I2C device adapter
1439  * @buf: EDID data buffer to be filled
1440  * @block: 128 byte EDID block to start fetching from
1441  * @len: EDID data buffer length to fetch
1442  *
1443  * Try to fetch EDID information by calling I2C driver functions.
1444  *
1445  * Return: 0 on success or -1 on failure.
1446  */
1447 static int
1448 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
1449 {
1450 	struct i2c_adapter *adapter = data;
1451 	unsigned char start = block * EDID_LENGTH;
1452 	unsigned char segment = block >> 1;
1453 	unsigned char xfers = segment ? 3 : 2;
1454 	int ret, retries = 5;
1455 
1456 	/*
1457 	 * The core I2C driver will automatically retry the transfer if the
1458 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
1459 	 * are susceptible to errors under a heavily loaded machine and
1460 	 * generate spurious NAKs and timeouts. Retrying the transfer
1461 	 * of the individual block a few times seems to overcome this.
1462 	 */
1463 	do {
1464 		struct i2c_msg msgs[] = {
1465 			{
1466 				.addr	= DDC_SEGMENT_ADDR,
1467 				.flags	= 0,
1468 				.len	= 1,
1469 				.buf	= &segment,
1470 			}, {
1471 				.addr	= DDC_ADDR,
1472 				.flags	= 0,
1473 				.len	= 1,
1474 				.buf	= &start,
1475 			}, {
1476 				.addr	= DDC_ADDR,
1477 				.flags	= I2C_M_RD,
1478 				.len	= len,
1479 				.buf	= buf,
1480 			}
1481 		};
1482 
1483 		/*
1484 		 * Avoid sending the segment addr to not upset non-compliant
1485 		 * DDC monitors.
1486 		 */
1487 		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1488 
1489 		if (ret == -ENXIO) {
1490 			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1491 					adapter->name);
1492 			break;
1493 		}
1494 	} while (ret != xfers && --retries);
1495 
1496 	return ret == xfers ? 0 : -1;
1497 }
1498 
1499 static void connector_bad_edid(struct drm_connector *connector,
1500 			       u8 *edid, int num_blocks)
1501 {
1502 	int i;
1503 
1504 	if (connector->bad_edid_counter++ && !(drm_debug & DRM_UT_KMS))
1505 		return;
1506 
1507 	dev_warn(connector->dev->dev,
1508 		 "%s: EDID is invalid:\n",
1509 		 connector->name);
1510 	for (i = 0; i < num_blocks; i++) {
1511 		u8 *block = edid + i * EDID_LENGTH;
1512 		char prefix[20];
1513 
1514 		if (drm_edid_is_zero(block, EDID_LENGTH))
1515 			sprintf(prefix, "\t[%02x] ZERO ", i);
1516 		else if (!drm_edid_block_valid(block, i, false, NULL))
1517 			sprintf(prefix, "\t[%02x] BAD  ", i);
1518 		else
1519 			sprintf(prefix, "\t[%02x] GOOD ", i);
1520 
1521 		print_hex_dump(KERN_WARNING,
1522 			       prefix, DUMP_PREFIX_NONE, 16, 1,
1523 			       block, EDID_LENGTH, false);
1524 	}
1525 }
1526 
1527 /**
1528  * drm_do_get_edid - get EDID data using a custom EDID block read function
1529  * @connector: connector we're probing
1530  * @get_edid_block: EDID block read function
1531  * @data: private data passed to the block read function
1532  *
1533  * When the I2C adapter connected to the DDC bus is hidden behind a device that
1534  * exposes a different interface to read EDID blocks this function can be used
1535  * to get EDID data using a custom block read function.
1536  *
1537  * As in the general case the DDC bus is accessible by the kernel at the I2C
1538  * level, drivers must make all reasonable efforts to expose it as an I2C
1539  * adapter and use drm_get_edid() instead of abusing this function.
1540  *
1541  * The EDID may be overridden using debugfs override_edid or firmare EDID
1542  * (drm_load_edid_firmware() and drm.edid_firmware parameter), in this priority
1543  * order. Having either of them bypasses actual EDID reads.
1544  *
1545  * Return: Pointer to valid EDID or NULL if we couldn't find any.
1546  */
1547 struct edid *drm_do_get_edid(struct drm_connector *connector,
1548 	int (*get_edid_block)(void *data, u8 *buf, unsigned int block,
1549 			      size_t len),
1550 	void *data)
1551 {
1552 	int i, j = 0, valid_extensions = 0;
1553 	u8 *edid, *new;
1554 	struct edid *override = NULL;
1555 
1556 	if (connector->override_edid)
1557 		override = drm_edid_duplicate((const struct edid *)
1558 					      connector->edid_blob_ptr->data);
1559 
1560 	if (!override)
1561 		override = drm_load_edid_firmware(connector);
1562 
1563 	if (!IS_ERR_OR_NULL(override))
1564 		return override;
1565 
1566 	if ((edid = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1567 		return NULL;
1568 
1569 	/* base block fetch */
1570 	for (i = 0; i < 4; i++) {
1571 		if (get_edid_block(data, edid, 0, EDID_LENGTH))
1572 			goto out;
1573 		if (drm_edid_block_valid(edid, 0, false,
1574 					 &connector->edid_corrupt))
1575 			break;
1576 		if (i == 0 && drm_edid_is_zero(edid, EDID_LENGTH)) {
1577 			connector->null_edid_counter++;
1578 			goto carp;
1579 		}
1580 	}
1581 	if (i == 4)
1582 		goto carp;
1583 
1584 	/* if there's no extensions, we're done */
1585 	valid_extensions = edid[0x7e];
1586 	if (valid_extensions == 0)
1587 		return (struct edid *)edid;
1588 
1589 	new = krealloc(edid, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1590 	if (!new)
1591 		goto out;
1592 	edid = new;
1593 
1594 	for (j = 1; j <= edid[0x7e]; j++) {
1595 		u8 *block = edid + j * EDID_LENGTH;
1596 
1597 		for (i = 0; i < 4; i++) {
1598 			if (get_edid_block(data, block, j, EDID_LENGTH))
1599 				goto out;
1600 			if (drm_edid_block_valid(block, j, false, NULL))
1601 				break;
1602 		}
1603 
1604 		if (i == 4)
1605 			valid_extensions--;
1606 	}
1607 
1608 	if (valid_extensions != edid[0x7e]) {
1609 		u8 *base;
1610 
1611 		connector_bad_edid(connector, edid, edid[0x7e] + 1);
1612 
1613 		edid[EDID_LENGTH-1] += edid[0x7e] - valid_extensions;
1614 		edid[0x7e] = valid_extensions;
1615 
1616 		new = kmalloc((valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1617 		if (!new)
1618 			goto out;
1619 
1620 		base = new;
1621 		for (i = 0; i <= edid[0x7e]; i++) {
1622 			u8 *block = edid + i * EDID_LENGTH;
1623 
1624 			if (!drm_edid_block_valid(block, i, false, NULL))
1625 				continue;
1626 
1627 			memcpy(base, block, EDID_LENGTH);
1628 			base += EDID_LENGTH;
1629 		}
1630 
1631 		kfree(edid);
1632 		edid = new;
1633 	}
1634 
1635 	return (struct edid *)edid;
1636 
1637 carp:
1638 	connector_bad_edid(connector, edid, 1);
1639 out:
1640 	kfree(edid);
1641 	return NULL;
1642 }
1643 EXPORT_SYMBOL_GPL(drm_do_get_edid);
1644 
1645 /**
1646  * drm_probe_ddc() - probe DDC presence
1647  * @adapter: I2C adapter to probe
1648  *
1649  * Return: True on success, false on failure.
1650  */
1651 bool
1652 drm_probe_ddc(struct i2c_adapter *adapter)
1653 {
1654 	unsigned char out;
1655 
1656 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1657 }
1658 EXPORT_SYMBOL(drm_probe_ddc);
1659 
1660 /**
1661  * drm_get_edid - get EDID data, if available
1662  * @connector: connector we're probing
1663  * @adapter: I2C adapter to use for DDC
1664  *
1665  * Poke the given I2C channel to grab EDID data if possible.  If found,
1666  * attach it to the connector.
1667  *
1668  * Return: Pointer to valid EDID or NULL if we couldn't find any.
1669  */
1670 struct edid *drm_get_edid(struct drm_connector *connector,
1671 			  struct i2c_adapter *adapter)
1672 {
1673 	struct edid *edid;
1674 
1675 	if (connector->force == DRM_FORCE_OFF)
1676 		return NULL;
1677 
1678 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
1679 		return NULL;
1680 
1681 	edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter);
1682 	if (edid)
1683 		drm_get_displayid(connector, edid);
1684 	return edid;
1685 }
1686 EXPORT_SYMBOL(drm_get_edid);
1687 
1688 /**
1689  * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
1690  * @connector: connector we're probing
1691  * @adapter: I2C adapter to use for DDC
1692  *
1693  * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
1694  * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
1695  * switch DDC to the GPU which is retrieving EDID.
1696  *
1697  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
1698  */
1699 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
1700 				     struct i2c_adapter *adapter)
1701 {
1702 	struct pci_dev *pdev = connector->dev->pdev;
1703 	struct edid *edid;
1704 
1705 	vga_switcheroo_lock_ddc(pdev);
1706 	edid = drm_get_edid(connector, adapter);
1707 	vga_switcheroo_unlock_ddc(pdev);
1708 
1709 	return edid;
1710 }
1711 EXPORT_SYMBOL(drm_get_edid_switcheroo);
1712 
1713 /**
1714  * drm_edid_duplicate - duplicate an EDID and the extensions
1715  * @edid: EDID to duplicate
1716  *
1717  * Return: Pointer to duplicated EDID or NULL on allocation failure.
1718  */
1719 struct edid *drm_edid_duplicate(const struct edid *edid)
1720 {
1721 	return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1722 }
1723 EXPORT_SYMBOL(drm_edid_duplicate);
1724 
1725 /*** EDID parsing ***/
1726 
1727 /**
1728  * edid_vendor - match a string against EDID's obfuscated vendor field
1729  * @edid: EDID to match
1730  * @vendor: vendor string
1731  *
1732  * Returns true if @vendor is in @edid, false otherwise
1733  */
1734 static bool edid_vendor(const struct edid *edid, const char *vendor)
1735 {
1736 	char edid_vendor[3];
1737 
1738 	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1739 	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1740 			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1741 	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1742 
1743 	return !strncmp(edid_vendor, vendor, 3);
1744 }
1745 
1746 /**
1747  * edid_get_quirks - return quirk flags for a given EDID
1748  * @edid: EDID to process
1749  *
1750  * This tells subsequent routines what fixes they need to apply.
1751  */
1752 static u32 edid_get_quirks(const struct edid *edid)
1753 {
1754 	const struct edid_quirk *quirk;
1755 	int i;
1756 
1757 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1758 		quirk = &edid_quirk_list[i];
1759 
1760 		if (edid_vendor(edid, quirk->vendor) &&
1761 		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
1762 			return quirk->quirks;
1763 	}
1764 
1765 	return 0;
1766 }
1767 
1768 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1769 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1770 
1771 /**
1772  * edid_fixup_preferred - set preferred modes based on quirk list
1773  * @connector: has mode list to fix up
1774  * @quirks: quirks list
1775  *
1776  * Walk the mode list for @connector, clearing the preferred status
1777  * on existing modes and setting it anew for the right mode ala @quirks.
1778  */
1779 static void edid_fixup_preferred(struct drm_connector *connector,
1780 				 u32 quirks)
1781 {
1782 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
1783 	int target_refresh = 0;
1784 	int cur_vrefresh, preferred_vrefresh;
1785 
1786 	if (list_empty(&connector->probed_modes))
1787 		return;
1788 
1789 	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1790 		target_refresh = 60;
1791 	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1792 		target_refresh = 75;
1793 
1794 	preferred_mode = list_first_entry(&connector->probed_modes,
1795 					  struct drm_display_mode, head);
1796 
1797 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1798 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1799 
1800 		if (cur_mode == preferred_mode)
1801 			continue;
1802 
1803 		/* Largest mode is preferred */
1804 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1805 			preferred_mode = cur_mode;
1806 
1807 		cur_vrefresh = cur_mode->vrefresh ?
1808 			cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1809 		preferred_vrefresh = preferred_mode->vrefresh ?
1810 			preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1811 		/* At a given size, try to get closest to target refresh */
1812 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1813 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1814 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1815 			preferred_mode = cur_mode;
1816 		}
1817 	}
1818 
1819 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1820 }
1821 
1822 static bool
1823 mode_is_rb(const struct drm_display_mode *mode)
1824 {
1825 	return (mode->htotal - mode->hdisplay == 160) &&
1826 	       (mode->hsync_end - mode->hdisplay == 80) &&
1827 	       (mode->hsync_end - mode->hsync_start == 32) &&
1828 	       (mode->vsync_start - mode->vdisplay == 3);
1829 }
1830 
1831 /*
1832  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1833  * @dev: Device to duplicate against
1834  * @hsize: Mode width
1835  * @vsize: Mode height
1836  * @fresh: Mode refresh rate
1837  * @rb: Mode reduced-blanking-ness
1838  *
1839  * Walk the DMT mode list looking for a match for the given parameters.
1840  *
1841  * Return: A newly allocated copy of the mode, or NULL if not found.
1842  */
1843 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1844 					   int hsize, int vsize, int fresh,
1845 					   bool rb)
1846 {
1847 	int i;
1848 
1849 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1850 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1851 		if (hsize != ptr->hdisplay)
1852 			continue;
1853 		if (vsize != ptr->vdisplay)
1854 			continue;
1855 		if (fresh != drm_mode_vrefresh(ptr))
1856 			continue;
1857 		if (rb != mode_is_rb(ptr))
1858 			continue;
1859 
1860 		return drm_mode_duplicate(dev, ptr);
1861 	}
1862 
1863 	return NULL;
1864 }
1865 EXPORT_SYMBOL(drm_mode_find_dmt);
1866 
1867 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1868 
1869 static void
1870 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1871 {
1872 	int i, n = 0;
1873 	u8 d = ext[0x02];
1874 	u8 *det_base = ext + d;
1875 
1876 	n = (127 - d) / 18;
1877 	for (i = 0; i < n; i++)
1878 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1879 }
1880 
1881 static void
1882 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1883 {
1884 	unsigned int i, n = min((int)ext[0x02], 6);
1885 	u8 *det_base = ext + 5;
1886 
1887 	if (ext[0x01] != 1)
1888 		return; /* unknown version */
1889 
1890 	for (i = 0; i < n; i++)
1891 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1892 }
1893 
1894 static void
1895 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1896 {
1897 	int i;
1898 	struct edid *edid = (struct edid *)raw_edid;
1899 
1900 	if (edid == NULL)
1901 		return;
1902 
1903 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1904 		cb(&(edid->detailed_timings[i]), closure);
1905 
1906 	for (i = 1; i <= raw_edid[0x7e]; i++) {
1907 		u8 *ext = raw_edid + (i * EDID_LENGTH);
1908 		switch (*ext) {
1909 		case CEA_EXT:
1910 			cea_for_each_detailed_block(ext, cb, closure);
1911 			break;
1912 		case VTB_EXT:
1913 			vtb_for_each_detailed_block(ext, cb, closure);
1914 			break;
1915 		default:
1916 			break;
1917 		}
1918 	}
1919 }
1920 
1921 static void
1922 is_rb(struct detailed_timing *t, void *data)
1923 {
1924 	u8 *r = (u8 *)t;
1925 	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1926 		if (r[15] & 0x10)
1927 			*(bool *)data = true;
1928 }
1929 
1930 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
1931 static bool
1932 drm_monitor_supports_rb(struct edid *edid)
1933 {
1934 	if (edid->revision >= 4) {
1935 		bool ret = false;
1936 		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1937 		return ret;
1938 	}
1939 
1940 	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1941 }
1942 
1943 static void
1944 find_gtf2(struct detailed_timing *t, void *data)
1945 {
1946 	u8 *r = (u8 *)t;
1947 	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1948 		*(u8 **)data = r;
1949 }
1950 
1951 /* Secondary GTF curve kicks in above some break frequency */
1952 static int
1953 drm_gtf2_hbreak(struct edid *edid)
1954 {
1955 	u8 *r = NULL;
1956 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1957 	return r ? (r[12] * 2) : 0;
1958 }
1959 
1960 static int
1961 drm_gtf2_2c(struct edid *edid)
1962 {
1963 	u8 *r = NULL;
1964 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1965 	return r ? r[13] : 0;
1966 }
1967 
1968 static int
1969 drm_gtf2_m(struct edid *edid)
1970 {
1971 	u8 *r = NULL;
1972 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1973 	return r ? (r[15] << 8) + r[14] : 0;
1974 }
1975 
1976 static int
1977 drm_gtf2_k(struct edid *edid)
1978 {
1979 	u8 *r = NULL;
1980 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1981 	return r ? r[16] : 0;
1982 }
1983 
1984 static int
1985 drm_gtf2_2j(struct edid *edid)
1986 {
1987 	u8 *r = NULL;
1988 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1989 	return r ? r[17] : 0;
1990 }
1991 
1992 /**
1993  * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1994  * @edid: EDID block to scan
1995  */
1996 static int standard_timing_level(struct edid *edid)
1997 {
1998 	if (edid->revision >= 2) {
1999 		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
2000 			return LEVEL_CVT;
2001 		if (drm_gtf2_hbreak(edid))
2002 			return LEVEL_GTF2;
2003 		return LEVEL_GTF;
2004 	}
2005 	return LEVEL_DMT;
2006 }
2007 
2008 /*
2009  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
2010  * monitors fill with ascii space (0x20) instead.
2011  */
2012 static int
2013 bad_std_timing(u8 a, u8 b)
2014 {
2015 	return (a == 0x00 && b == 0x00) ||
2016 	       (a == 0x01 && b == 0x01) ||
2017 	       (a == 0x20 && b == 0x20);
2018 }
2019 
2020 /**
2021  * drm_mode_std - convert standard mode info (width, height, refresh) into mode
2022  * @connector: connector of for the EDID block
2023  * @edid: EDID block to scan
2024  * @t: standard timing params
2025  *
2026  * Take the standard timing params (in this case width, aspect, and refresh)
2027  * and convert them into a real mode using CVT/GTF/DMT.
2028  */
2029 static struct drm_display_mode *
2030 drm_mode_std(struct drm_connector *connector, struct edid *edid,
2031 	     struct std_timing *t)
2032 {
2033 	struct drm_device *dev = connector->dev;
2034 	struct drm_display_mode *m, *mode = NULL;
2035 	int hsize, vsize;
2036 	int vrefresh_rate;
2037 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
2038 		>> EDID_TIMING_ASPECT_SHIFT;
2039 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
2040 		>> EDID_TIMING_VFREQ_SHIFT;
2041 	int timing_level = standard_timing_level(edid);
2042 
2043 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
2044 		return NULL;
2045 
2046 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
2047 	hsize = t->hsize * 8 + 248;
2048 	/* vrefresh_rate = vfreq + 60 */
2049 	vrefresh_rate = vfreq + 60;
2050 	/* the vdisplay is calculated based on the aspect ratio */
2051 	if (aspect_ratio == 0) {
2052 		if (edid->revision < 3)
2053 			vsize = hsize;
2054 		else
2055 			vsize = (hsize * 10) / 16;
2056 	} else if (aspect_ratio == 1)
2057 		vsize = (hsize * 3) / 4;
2058 	else if (aspect_ratio == 2)
2059 		vsize = (hsize * 4) / 5;
2060 	else
2061 		vsize = (hsize * 9) / 16;
2062 
2063 	/* HDTV hack, part 1 */
2064 	if (vrefresh_rate == 60 &&
2065 	    ((hsize == 1360 && vsize == 765) ||
2066 	     (hsize == 1368 && vsize == 769))) {
2067 		hsize = 1366;
2068 		vsize = 768;
2069 	}
2070 
2071 	/*
2072 	 * If this connector already has a mode for this size and refresh
2073 	 * rate (because it came from detailed or CVT info), use that
2074 	 * instead.  This way we don't have to guess at interlace or
2075 	 * reduced blanking.
2076 	 */
2077 	list_for_each_entry(m, &connector->probed_modes, head)
2078 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
2079 		    drm_mode_vrefresh(m) == vrefresh_rate)
2080 			return NULL;
2081 
2082 	/* HDTV hack, part 2 */
2083 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
2084 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
2085 				    false);
2086 		mode->hdisplay = 1366;
2087 		mode->hsync_start = mode->hsync_start - 1;
2088 		mode->hsync_end = mode->hsync_end - 1;
2089 		return mode;
2090 	}
2091 
2092 	/* check whether it can be found in default mode table */
2093 	if (drm_monitor_supports_rb(edid)) {
2094 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
2095 					 true);
2096 		if (mode)
2097 			return mode;
2098 	}
2099 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
2100 	if (mode)
2101 		return mode;
2102 
2103 	/* okay, generate it */
2104 	switch (timing_level) {
2105 	case LEVEL_DMT:
2106 		break;
2107 	case LEVEL_GTF:
2108 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
2109 		break;
2110 	case LEVEL_GTF2:
2111 		/*
2112 		 * This is potentially wrong if there's ever a monitor with
2113 		 * more than one ranges section, each claiming a different
2114 		 * secondary GTF curve.  Please don't do that.
2115 		 */
2116 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
2117 		if (!mode)
2118 			return NULL;
2119 		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
2120 			drm_mode_destroy(dev, mode);
2121 			mode = drm_gtf_mode_complex(dev, hsize, vsize,
2122 						    vrefresh_rate, 0, 0,
2123 						    drm_gtf2_m(edid),
2124 						    drm_gtf2_2c(edid),
2125 						    drm_gtf2_k(edid),
2126 						    drm_gtf2_2j(edid));
2127 		}
2128 		break;
2129 	case LEVEL_CVT:
2130 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
2131 				    false);
2132 		break;
2133 	}
2134 	return mode;
2135 }
2136 
2137 /*
2138  * EDID is delightfully ambiguous about how interlaced modes are to be
2139  * encoded.  Our internal representation is of frame height, but some
2140  * HDTV detailed timings are encoded as field height.
2141  *
2142  * The format list here is from CEA, in frame size.  Technically we
2143  * should be checking refresh rate too.  Whatever.
2144  */
2145 static void
2146 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
2147 			    struct detailed_pixel_timing *pt)
2148 {
2149 	int i;
2150 	static const struct {
2151 		int w, h;
2152 	} cea_interlaced[] = {
2153 		{ 1920, 1080 },
2154 		{  720,  480 },
2155 		{ 1440,  480 },
2156 		{ 2880,  480 },
2157 		{  720,  576 },
2158 		{ 1440,  576 },
2159 		{ 2880,  576 },
2160 	};
2161 
2162 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
2163 		return;
2164 
2165 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
2166 		if ((mode->hdisplay == cea_interlaced[i].w) &&
2167 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
2168 			mode->vdisplay *= 2;
2169 			mode->vsync_start *= 2;
2170 			mode->vsync_end *= 2;
2171 			mode->vtotal *= 2;
2172 			mode->vtotal |= 1;
2173 		}
2174 	}
2175 
2176 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
2177 }
2178 
2179 /**
2180  * drm_mode_detailed - create a new mode from an EDID detailed timing section
2181  * @dev: DRM device (needed to create new mode)
2182  * @edid: EDID block
2183  * @timing: EDID detailed timing info
2184  * @quirks: quirks to apply
2185  *
2186  * An EDID detailed timing block contains enough info for us to create and
2187  * return a new struct drm_display_mode.
2188  */
2189 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
2190 						  struct edid *edid,
2191 						  struct detailed_timing *timing,
2192 						  u32 quirks)
2193 {
2194 	struct drm_display_mode *mode;
2195 	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
2196 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
2197 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
2198 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
2199 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
2200 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
2201 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
2202 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
2203 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
2204 
2205 	/* ignore tiny modes */
2206 	if (hactive < 64 || vactive < 64)
2207 		return NULL;
2208 
2209 	if (pt->misc & DRM_EDID_PT_STEREO) {
2210 		DRM_DEBUG_KMS("stereo mode not supported\n");
2211 		return NULL;
2212 	}
2213 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
2214 		DRM_DEBUG_KMS("composite sync not supported\n");
2215 	}
2216 
2217 	/* it is incorrect if hsync/vsync width is zero */
2218 	if (!hsync_pulse_width || !vsync_pulse_width) {
2219 		DRM_DEBUG_KMS("Incorrect Detailed timing. "
2220 				"Wrong Hsync/Vsync pulse width\n");
2221 		return NULL;
2222 	}
2223 
2224 	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
2225 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
2226 		if (!mode)
2227 			return NULL;
2228 
2229 		goto set_size;
2230 	}
2231 
2232 	mode = drm_mode_create(dev);
2233 	if (!mode)
2234 		return NULL;
2235 
2236 	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
2237 		timing->pixel_clock = cpu_to_le16(1088);
2238 
2239 	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
2240 
2241 	mode->hdisplay = hactive;
2242 	mode->hsync_start = mode->hdisplay + hsync_offset;
2243 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
2244 	mode->htotal = mode->hdisplay + hblank;
2245 
2246 	mode->vdisplay = vactive;
2247 	mode->vsync_start = mode->vdisplay + vsync_offset;
2248 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
2249 	mode->vtotal = mode->vdisplay + vblank;
2250 
2251 	/* Some EDIDs have bogus h/vtotal values */
2252 	if (mode->hsync_end > mode->htotal)
2253 		mode->htotal = mode->hsync_end + 1;
2254 	if (mode->vsync_end > mode->vtotal)
2255 		mode->vtotal = mode->vsync_end + 1;
2256 
2257 	drm_mode_do_interlace_quirk(mode, pt);
2258 
2259 	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
2260 		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
2261 	}
2262 
2263 	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
2264 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
2265 	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
2266 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
2267 
2268 set_size:
2269 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
2270 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
2271 
2272 	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
2273 		mode->width_mm *= 10;
2274 		mode->height_mm *= 10;
2275 	}
2276 
2277 	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
2278 		mode->width_mm = edid->width_cm * 10;
2279 		mode->height_mm = edid->height_cm * 10;
2280 	}
2281 
2282 	mode->type = DRM_MODE_TYPE_DRIVER;
2283 	mode->vrefresh = drm_mode_vrefresh(mode);
2284 	drm_mode_set_name(mode);
2285 
2286 	return mode;
2287 }
2288 
2289 static bool
2290 mode_in_hsync_range(const struct drm_display_mode *mode,
2291 		    struct edid *edid, u8 *t)
2292 {
2293 	int hsync, hmin, hmax;
2294 
2295 	hmin = t[7];
2296 	if (edid->revision >= 4)
2297 	    hmin += ((t[4] & 0x04) ? 255 : 0);
2298 	hmax = t[8];
2299 	if (edid->revision >= 4)
2300 	    hmax += ((t[4] & 0x08) ? 255 : 0);
2301 	hsync = drm_mode_hsync(mode);
2302 
2303 	return (hsync <= hmax && hsync >= hmin);
2304 }
2305 
2306 static bool
2307 mode_in_vsync_range(const struct drm_display_mode *mode,
2308 		    struct edid *edid, u8 *t)
2309 {
2310 	int vsync, vmin, vmax;
2311 
2312 	vmin = t[5];
2313 	if (edid->revision >= 4)
2314 	    vmin += ((t[4] & 0x01) ? 255 : 0);
2315 	vmax = t[6];
2316 	if (edid->revision >= 4)
2317 	    vmax += ((t[4] & 0x02) ? 255 : 0);
2318 	vsync = drm_mode_vrefresh(mode);
2319 
2320 	return (vsync <= vmax && vsync >= vmin);
2321 }
2322 
2323 static u32
2324 range_pixel_clock(struct edid *edid, u8 *t)
2325 {
2326 	/* unspecified */
2327 	if (t[9] == 0 || t[9] == 255)
2328 		return 0;
2329 
2330 	/* 1.4 with CVT support gives us real precision, yay */
2331 	if (edid->revision >= 4 && t[10] == 0x04)
2332 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
2333 
2334 	/* 1.3 is pathetic, so fuzz up a bit */
2335 	return t[9] * 10000 + 5001;
2336 }
2337 
2338 static bool
2339 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
2340 	      struct detailed_timing *timing)
2341 {
2342 	u32 max_clock;
2343 	u8 *t = (u8 *)timing;
2344 
2345 	if (!mode_in_hsync_range(mode, edid, t))
2346 		return false;
2347 
2348 	if (!mode_in_vsync_range(mode, edid, t))
2349 		return false;
2350 
2351 	if ((max_clock = range_pixel_clock(edid, t)))
2352 		if (mode->clock > max_clock)
2353 			return false;
2354 
2355 	/* 1.4 max horizontal check */
2356 	if (edid->revision >= 4 && t[10] == 0x04)
2357 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
2358 			return false;
2359 
2360 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
2361 		return false;
2362 
2363 	return true;
2364 }
2365 
2366 static bool valid_inferred_mode(const struct drm_connector *connector,
2367 				const struct drm_display_mode *mode)
2368 {
2369 	const struct drm_display_mode *m;
2370 	bool ok = false;
2371 
2372 	list_for_each_entry(m, &connector->probed_modes, head) {
2373 		if (mode->hdisplay == m->hdisplay &&
2374 		    mode->vdisplay == m->vdisplay &&
2375 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
2376 			return false; /* duplicated */
2377 		if (mode->hdisplay <= m->hdisplay &&
2378 		    mode->vdisplay <= m->vdisplay)
2379 			ok = true;
2380 	}
2381 	return ok;
2382 }
2383 
2384 static int
2385 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2386 			struct detailed_timing *timing)
2387 {
2388 	int i, modes = 0;
2389 	struct drm_display_mode *newmode;
2390 	struct drm_device *dev = connector->dev;
2391 
2392 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2393 		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
2394 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
2395 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
2396 			if (newmode) {
2397 				drm_mode_probed_add(connector, newmode);
2398 				modes++;
2399 			}
2400 		}
2401 	}
2402 
2403 	return modes;
2404 }
2405 
2406 /* fix up 1366x768 mode from 1368x768;
2407  * GFT/CVT can't express 1366 width which isn't dividable by 8
2408  */
2409 void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
2410 {
2411 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
2412 		mode->hdisplay = 1366;
2413 		mode->hsync_start--;
2414 		mode->hsync_end--;
2415 		drm_mode_set_name(mode);
2416 	}
2417 }
2418 
2419 static int
2420 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
2421 			struct detailed_timing *timing)
2422 {
2423 	int i, modes = 0;
2424 	struct drm_display_mode *newmode;
2425 	struct drm_device *dev = connector->dev;
2426 
2427 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2428 		const struct minimode *m = &extra_modes[i];
2429 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2430 		if (!newmode)
2431 			return modes;
2432 
2433 		drm_mode_fixup_1366x768(newmode);
2434 		if (!mode_in_range(newmode, edid, timing) ||
2435 		    !valid_inferred_mode(connector, newmode)) {
2436 			drm_mode_destroy(dev, newmode);
2437 			continue;
2438 		}
2439 
2440 		drm_mode_probed_add(connector, newmode);
2441 		modes++;
2442 	}
2443 
2444 	return modes;
2445 }
2446 
2447 static int
2448 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2449 			struct detailed_timing *timing)
2450 {
2451 	int i, modes = 0;
2452 	struct drm_display_mode *newmode;
2453 	struct drm_device *dev = connector->dev;
2454 	bool rb = drm_monitor_supports_rb(edid);
2455 
2456 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2457 		const struct minimode *m = &extra_modes[i];
2458 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2459 		if (!newmode)
2460 			return modes;
2461 
2462 		drm_mode_fixup_1366x768(newmode);
2463 		if (!mode_in_range(newmode, edid, timing) ||
2464 		    !valid_inferred_mode(connector, newmode)) {
2465 			drm_mode_destroy(dev, newmode);
2466 			continue;
2467 		}
2468 
2469 		drm_mode_probed_add(connector, newmode);
2470 		modes++;
2471 	}
2472 
2473 	return modes;
2474 }
2475 
2476 static void
2477 do_inferred_modes(struct detailed_timing *timing, void *c)
2478 {
2479 	struct detailed_mode_closure *closure = c;
2480 	struct detailed_non_pixel *data = &timing->data.other_data;
2481 	struct detailed_data_monitor_range *range = &data->data.range;
2482 
2483 	if (data->type != EDID_DETAIL_MONITOR_RANGE)
2484 		return;
2485 
2486 	closure->modes += drm_dmt_modes_for_range(closure->connector,
2487 						  closure->edid,
2488 						  timing);
2489 
2490 	if (!version_greater(closure->edid, 1, 1))
2491 		return; /* GTF not defined yet */
2492 
2493 	switch (range->flags) {
2494 	case 0x02: /* secondary gtf, XXX could do more */
2495 	case 0x00: /* default gtf */
2496 		closure->modes += drm_gtf_modes_for_range(closure->connector,
2497 							  closure->edid,
2498 							  timing);
2499 		break;
2500 	case 0x04: /* cvt, only in 1.4+ */
2501 		if (!version_greater(closure->edid, 1, 3))
2502 			break;
2503 
2504 		closure->modes += drm_cvt_modes_for_range(closure->connector,
2505 							  closure->edid,
2506 							  timing);
2507 		break;
2508 	case 0x01: /* just the ranges, no formula */
2509 	default:
2510 		break;
2511 	}
2512 }
2513 
2514 static int
2515 add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2516 {
2517 	struct detailed_mode_closure closure = {
2518 		.connector = connector,
2519 		.edid = edid,
2520 	};
2521 
2522 	if (version_greater(edid, 1, 0))
2523 		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2524 					    &closure);
2525 
2526 	return closure.modes;
2527 }
2528 
2529 static int
2530 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2531 {
2532 	int i, j, m, modes = 0;
2533 	struct drm_display_mode *mode;
2534 	u8 *est = ((u8 *)timing) + 6;
2535 
2536 	for (i = 0; i < 6; i++) {
2537 		for (j = 7; j >= 0; j--) {
2538 			m = (i * 8) + (7 - j);
2539 			if (m >= ARRAY_SIZE(est3_modes))
2540 				break;
2541 			if (est[i] & (1 << j)) {
2542 				mode = drm_mode_find_dmt(connector->dev,
2543 							 est3_modes[m].w,
2544 							 est3_modes[m].h,
2545 							 est3_modes[m].r,
2546 							 est3_modes[m].rb);
2547 				if (mode) {
2548 					drm_mode_probed_add(connector, mode);
2549 					modes++;
2550 				}
2551 			}
2552 		}
2553 	}
2554 
2555 	return modes;
2556 }
2557 
2558 static void
2559 do_established_modes(struct detailed_timing *timing, void *c)
2560 {
2561 	struct detailed_mode_closure *closure = c;
2562 	struct detailed_non_pixel *data = &timing->data.other_data;
2563 
2564 	if (data->type == EDID_DETAIL_EST_TIMINGS)
2565 		closure->modes += drm_est3_modes(closure->connector, timing);
2566 }
2567 
2568 /**
2569  * add_established_modes - get est. modes from EDID and add them
2570  * @connector: connector to add mode(s) to
2571  * @edid: EDID block to scan
2572  *
2573  * Each EDID block contains a bitmap of the supported "established modes" list
2574  * (defined above).  Tease them out and add them to the global modes list.
2575  */
2576 static int
2577 add_established_modes(struct drm_connector *connector, struct edid *edid)
2578 {
2579 	struct drm_device *dev = connector->dev;
2580 	unsigned long est_bits = edid->established_timings.t1 |
2581 		(edid->established_timings.t2 << 8) |
2582 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
2583 	int i, modes = 0;
2584 	struct detailed_mode_closure closure = {
2585 		.connector = connector,
2586 		.edid = edid,
2587 	};
2588 
2589 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2590 		if (est_bits & (1<<i)) {
2591 			struct drm_display_mode *newmode;
2592 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2593 			if (newmode) {
2594 				drm_mode_probed_add(connector, newmode);
2595 				modes++;
2596 			}
2597 		}
2598 	}
2599 
2600 	if (version_greater(edid, 1, 0))
2601 		    drm_for_each_detailed_block((u8 *)edid,
2602 						do_established_modes, &closure);
2603 
2604 	return modes + closure.modes;
2605 }
2606 
2607 static void
2608 do_standard_modes(struct detailed_timing *timing, void *c)
2609 {
2610 	struct detailed_mode_closure *closure = c;
2611 	struct detailed_non_pixel *data = &timing->data.other_data;
2612 	struct drm_connector *connector = closure->connector;
2613 	struct edid *edid = closure->edid;
2614 
2615 	if (data->type == EDID_DETAIL_STD_MODES) {
2616 		int i;
2617 		for (i = 0; i < 6; i++) {
2618 			struct std_timing *std;
2619 			struct drm_display_mode *newmode;
2620 
2621 			std = &data->data.timings[i];
2622 			newmode = drm_mode_std(connector, edid, std);
2623 			if (newmode) {
2624 				drm_mode_probed_add(connector, newmode);
2625 				closure->modes++;
2626 			}
2627 		}
2628 	}
2629 }
2630 
2631 /**
2632  * add_standard_modes - get std. modes from EDID and add them
2633  * @connector: connector to add mode(s) to
2634  * @edid: EDID block to scan
2635  *
2636  * Standard modes can be calculated using the appropriate standard (DMT,
2637  * GTF or CVT. Grab them from @edid and add them to the list.
2638  */
2639 static int
2640 add_standard_modes(struct drm_connector *connector, struct edid *edid)
2641 {
2642 	int i, modes = 0;
2643 	struct detailed_mode_closure closure = {
2644 		.connector = connector,
2645 		.edid = edid,
2646 	};
2647 
2648 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
2649 		struct drm_display_mode *newmode;
2650 
2651 		newmode = drm_mode_std(connector, edid,
2652 				       &edid->standard_timings[i]);
2653 		if (newmode) {
2654 			drm_mode_probed_add(connector, newmode);
2655 			modes++;
2656 		}
2657 	}
2658 
2659 	if (version_greater(edid, 1, 0))
2660 		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2661 					    &closure);
2662 
2663 	/* XXX should also look for standard codes in VTB blocks */
2664 
2665 	return modes + closure.modes;
2666 }
2667 
2668 static int drm_cvt_modes(struct drm_connector *connector,
2669 			 struct detailed_timing *timing)
2670 {
2671 	int i, j, modes = 0;
2672 	struct drm_display_mode *newmode;
2673 	struct drm_device *dev = connector->dev;
2674 	struct cvt_timing *cvt;
2675 	const int rates[] = { 60, 85, 75, 60, 50 };
2676 	const u8 empty[3] = { 0, 0, 0 };
2677 
2678 	for (i = 0; i < 4; i++) {
2679 		int uninitialized_var(width), height;
2680 		cvt = &(timing->data.other_data.data.cvt[i]);
2681 
2682 		if (!memcmp(cvt->code, empty, 3))
2683 			continue;
2684 
2685 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2686 		switch (cvt->code[1] & 0x0c) {
2687 		case 0x00:
2688 			width = height * 4 / 3;
2689 			break;
2690 		case 0x04:
2691 			width = height * 16 / 9;
2692 			break;
2693 		case 0x08:
2694 			width = height * 16 / 10;
2695 			break;
2696 		case 0x0c:
2697 			width = height * 15 / 9;
2698 			break;
2699 		}
2700 
2701 		for (j = 1; j < 5; j++) {
2702 			if (cvt->code[2] & (1 << j)) {
2703 				newmode = drm_cvt_mode(dev, width, height,
2704 						       rates[j], j == 0,
2705 						       false, false);
2706 				if (newmode) {
2707 					drm_mode_probed_add(connector, newmode);
2708 					modes++;
2709 				}
2710 			}
2711 		}
2712 	}
2713 
2714 	return modes;
2715 }
2716 
2717 static void
2718 do_cvt_mode(struct detailed_timing *timing, void *c)
2719 {
2720 	struct detailed_mode_closure *closure = c;
2721 	struct detailed_non_pixel *data = &timing->data.other_data;
2722 
2723 	if (data->type == EDID_DETAIL_CVT_3BYTE)
2724 		closure->modes += drm_cvt_modes(closure->connector, timing);
2725 }
2726 
2727 static int
2728 add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2729 {
2730 	struct detailed_mode_closure closure = {
2731 		.connector = connector,
2732 		.edid = edid,
2733 	};
2734 
2735 	if (version_greater(edid, 1, 2))
2736 		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2737 
2738 	/* XXX should also look for CVT codes in VTB blocks */
2739 
2740 	return closure.modes;
2741 }
2742 
2743 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode);
2744 
2745 static void
2746 do_detailed_mode(struct detailed_timing *timing, void *c)
2747 {
2748 	struct detailed_mode_closure *closure = c;
2749 	struct drm_display_mode *newmode;
2750 
2751 	if (timing->pixel_clock) {
2752 		newmode = drm_mode_detailed(closure->connector->dev,
2753 					    closure->edid, timing,
2754 					    closure->quirks);
2755 		if (!newmode)
2756 			return;
2757 
2758 		if (closure->preferred)
2759 			newmode->type |= DRM_MODE_TYPE_PREFERRED;
2760 
2761 		/*
2762 		 * Detailed modes are limited to 10kHz pixel clock resolution,
2763 		 * so fix up anything that looks like CEA/HDMI mode, but the clock
2764 		 * is just slightly off.
2765 		 */
2766 		fixup_detailed_cea_mode_clock(newmode);
2767 
2768 		drm_mode_probed_add(closure->connector, newmode);
2769 		closure->modes++;
2770 		closure->preferred = 0;
2771 	}
2772 }
2773 
2774 /*
2775  * add_detailed_modes - Add modes from detailed timings
2776  * @connector: attached connector
2777  * @edid: EDID block to scan
2778  * @quirks: quirks to apply
2779  */
2780 static int
2781 add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2782 		   u32 quirks)
2783 {
2784 	struct detailed_mode_closure closure = {
2785 		.connector = connector,
2786 		.edid = edid,
2787 		.preferred = 1,
2788 		.quirks = quirks,
2789 	};
2790 
2791 	if (closure.preferred && !version_greater(edid, 1, 3))
2792 		closure.preferred =
2793 		    (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2794 
2795 	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2796 
2797 	return closure.modes;
2798 }
2799 
2800 #define AUDIO_BLOCK	0x01
2801 #define VIDEO_BLOCK     0x02
2802 #define VENDOR_BLOCK    0x03
2803 #define SPEAKER_BLOCK	0x04
2804 #define USE_EXTENDED_TAG 0x07
2805 #define EXT_VIDEO_CAPABILITY_BLOCK 0x00
2806 #define EXT_VIDEO_DATA_BLOCK_420	0x0E
2807 #define EXT_VIDEO_CAP_BLOCK_Y420CMDB 0x0F
2808 #define EDID_BASIC_AUDIO	(1 << 6)
2809 #define EDID_CEA_YCRCB444	(1 << 5)
2810 #define EDID_CEA_YCRCB422	(1 << 4)
2811 #define EDID_CEA_VCDB_QS	(1 << 6)
2812 
2813 /*
2814  * Search EDID for CEA extension block.
2815  */
2816 static u8 *drm_find_edid_extension(const struct edid *edid, int ext_id)
2817 {
2818 	u8 *edid_ext = NULL;
2819 	int i;
2820 
2821 	/* No EDID or EDID extensions */
2822 	if (edid == NULL || edid->extensions == 0)
2823 		return NULL;
2824 
2825 	/* Find CEA extension */
2826 	for (i = 0; i < edid->extensions; i++) {
2827 		edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2828 		if (edid_ext[0] == ext_id)
2829 			break;
2830 	}
2831 
2832 	if (i == edid->extensions)
2833 		return NULL;
2834 
2835 	return edid_ext;
2836 }
2837 
2838 static u8 *drm_find_cea_extension(const struct edid *edid)
2839 {
2840 	return drm_find_edid_extension(edid, CEA_EXT);
2841 }
2842 
2843 static u8 *drm_find_displayid_extension(const struct edid *edid)
2844 {
2845 	return drm_find_edid_extension(edid, DISPLAYID_EXT);
2846 }
2847 
2848 /*
2849  * Calculate the alternate clock for the CEA mode
2850  * (60Hz vs. 59.94Hz etc.)
2851  */
2852 static unsigned int
2853 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2854 {
2855 	unsigned int clock = cea_mode->clock;
2856 
2857 	if (cea_mode->vrefresh % 6 != 0)
2858 		return clock;
2859 
2860 	/*
2861 	 * edid_cea_modes contains the 59.94Hz
2862 	 * variant for 240 and 480 line modes,
2863 	 * and the 60Hz variant otherwise.
2864 	 */
2865 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2866 		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
2867 	else
2868 		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
2869 
2870 	return clock;
2871 }
2872 
2873 static bool
2874 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
2875 {
2876 	/*
2877 	 * For certain VICs the spec allows the vertical
2878 	 * front porch to vary by one or two lines.
2879 	 *
2880 	 * cea_modes[] stores the variant with the shortest
2881 	 * vertical front porch. We can adjust the mode to
2882 	 * get the other variants by simply increasing the
2883 	 * vertical front porch length.
2884 	 */
2885 	BUILD_BUG_ON(edid_cea_modes[8].vtotal != 262 ||
2886 		     edid_cea_modes[9].vtotal != 262 ||
2887 		     edid_cea_modes[12].vtotal != 262 ||
2888 		     edid_cea_modes[13].vtotal != 262 ||
2889 		     edid_cea_modes[23].vtotal != 312 ||
2890 		     edid_cea_modes[24].vtotal != 312 ||
2891 		     edid_cea_modes[27].vtotal != 312 ||
2892 		     edid_cea_modes[28].vtotal != 312);
2893 
2894 	if (((vic == 8 || vic == 9 ||
2895 	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
2896 	    ((vic == 23 || vic == 24 ||
2897 	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
2898 		mode->vsync_start++;
2899 		mode->vsync_end++;
2900 		mode->vtotal++;
2901 
2902 		return true;
2903 	}
2904 
2905 	return false;
2906 }
2907 
2908 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
2909 					     unsigned int clock_tolerance)
2910 {
2911 	u8 vic;
2912 
2913 	if (!to_match->clock)
2914 		return 0;
2915 
2916 	for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
2917 		struct drm_display_mode cea_mode = edid_cea_modes[vic];
2918 		unsigned int clock1, clock2;
2919 
2920 		/* Check both 60Hz and 59.94Hz */
2921 		clock1 = cea_mode.clock;
2922 		clock2 = cea_mode_alternate_clock(&cea_mode);
2923 
2924 		if (abs(to_match->clock - clock1) > clock_tolerance &&
2925 		    abs(to_match->clock - clock2) > clock_tolerance)
2926 			continue;
2927 
2928 		do {
2929 			if (drm_mode_equal_no_clocks_no_stereo(to_match, &cea_mode))
2930 				return vic;
2931 		} while (cea_mode_alternate_timings(vic, &cea_mode));
2932 	}
2933 
2934 	return 0;
2935 }
2936 
2937 /**
2938  * drm_match_cea_mode - look for a CEA mode matching given mode
2939  * @to_match: display mode
2940  *
2941  * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2942  * mode.
2943  */
2944 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2945 {
2946 	u8 vic;
2947 
2948 	if (!to_match->clock)
2949 		return 0;
2950 
2951 	for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
2952 		struct drm_display_mode cea_mode = edid_cea_modes[vic];
2953 		unsigned int clock1, clock2;
2954 
2955 		/* Check both 60Hz and 59.94Hz */
2956 		clock1 = cea_mode.clock;
2957 		clock2 = cea_mode_alternate_clock(&cea_mode);
2958 
2959 		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
2960 		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
2961 			continue;
2962 
2963 		do {
2964 			if (drm_mode_equal_no_clocks_no_stereo(to_match, &cea_mode))
2965 				return vic;
2966 		} while (cea_mode_alternate_timings(vic, &cea_mode));
2967 	}
2968 
2969 	return 0;
2970 }
2971 EXPORT_SYMBOL(drm_match_cea_mode);
2972 
2973 static bool drm_valid_cea_vic(u8 vic)
2974 {
2975 	return vic > 0 && vic < ARRAY_SIZE(edid_cea_modes);
2976 }
2977 
2978 /**
2979  * drm_get_cea_aspect_ratio - get the picture aspect ratio corresponding to
2980  * the input VIC from the CEA mode list
2981  * @video_code: ID given to each of the CEA modes
2982  *
2983  * Returns picture aspect ratio
2984  */
2985 enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
2986 {
2987 	return edid_cea_modes[video_code].picture_aspect_ratio;
2988 }
2989 EXPORT_SYMBOL(drm_get_cea_aspect_ratio);
2990 
2991 /*
2992  * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
2993  * specific block).
2994  *
2995  * It's almost like cea_mode_alternate_clock(), we just need to add an
2996  * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
2997  * one.
2998  */
2999 static unsigned int
3000 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
3001 {
3002 	if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
3003 		return hdmi_mode->clock;
3004 
3005 	return cea_mode_alternate_clock(hdmi_mode);
3006 }
3007 
3008 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
3009 					      unsigned int clock_tolerance)
3010 {
3011 	u8 vic;
3012 
3013 	if (!to_match->clock)
3014 		return 0;
3015 
3016 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3017 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3018 		unsigned int clock1, clock2;
3019 
3020 		/* Make sure to also match alternate clocks */
3021 		clock1 = hdmi_mode->clock;
3022 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3023 
3024 		if (abs(to_match->clock - clock1) > clock_tolerance &&
3025 		    abs(to_match->clock - clock2) > clock_tolerance)
3026 			continue;
3027 
3028 		if (drm_mode_equal_no_clocks(to_match, hdmi_mode))
3029 			return vic;
3030 	}
3031 
3032 	return 0;
3033 }
3034 
3035 /*
3036  * drm_match_hdmi_mode - look for a HDMI mode matching given mode
3037  * @to_match: display mode
3038  *
3039  * An HDMI mode is one defined in the HDMI vendor specific block.
3040  *
3041  * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
3042  */
3043 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
3044 {
3045 	u8 vic;
3046 
3047 	if (!to_match->clock)
3048 		return 0;
3049 
3050 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3051 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3052 		unsigned int clock1, clock2;
3053 
3054 		/* Make sure to also match alternate clocks */
3055 		clock1 = hdmi_mode->clock;
3056 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3057 
3058 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
3059 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
3060 		    drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
3061 			return vic;
3062 	}
3063 	return 0;
3064 }
3065 
3066 static bool drm_valid_hdmi_vic(u8 vic)
3067 {
3068 	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
3069 }
3070 
3071 static int
3072 add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
3073 {
3074 	struct drm_device *dev = connector->dev;
3075 	struct drm_display_mode *mode, *tmp;
3076 	LIST_HEAD(list);
3077 	int modes = 0;
3078 
3079 	/* Don't add CEA modes if the CEA extension block is missing */
3080 	if (!drm_find_cea_extension(edid))
3081 		return 0;
3082 
3083 	/*
3084 	 * Go through all probed modes and create a new mode
3085 	 * with the alternate clock for certain CEA modes.
3086 	 */
3087 	list_for_each_entry(mode, &connector->probed_modes, head) {
3088 		const struct drm_display_mode *cea_mode = NULL;
3089 		struct drm_display_mode *newmode;
3090 		u8 vic = drm_match_cea_mode(mode);
3091 		unsigned int clock1, clock2;
3092 
3093 		if (drm_valid_cea_vic(vic)) {
3094 			cea_mode = &edid_cea_modes[vic];
3095 			clock2 = cea_mode_alternate_clock(cea_mode);
3096 		} else {
3097 			vic = drm_match_hdmi_mode(mode);
3098 			if (drm_valid_hdmi_vic(vic)) {
3099 				cea_mode = &edid_4k_modes[vic];
3100 				clock2 = hdmi_mode_alternate_clock(cea_mode);
3101 			}
3102 		}
3103 
3104 		if (!cea_mode)
3105 			continue;
3106 
3107 		clock1 = cea_mode->clock;
3108 
3109 		if (clock1 == clock2)
3110 			continue;
3111 
3112 		if (mode->clock != clock1 && mode->clock != clock2)
3113 			continue;
3114 
3115 		newmode = drm_mode_duplicate(dev, cea_mode);
3116 		if (!newmode)
3117 			continue;
3118 
3119 		/* Carry over the stereo flags */
3120 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
3121 
3122 		/*
3123 		 * The current mode could be either variant. Make
3124 		 * sure to pick the "other" clock for the new mode.
3125 		 */
3126 		if (mode->clock != clock1)
3127 			newmode->clock = clock1;
3128 		else
3129 			newmode->clock = clock2;
3130 
3131 		list_add_tail(&newmode->head, &list);
3132 	}
3133 
3134 	list_for_each_entry_safe(mode, tmp, &list, head) {
3135 		list_del(&mode->head);
3136 		drm_mode_probed_add(connector, mode);
3137 		modes++;
3138 	}
3139 
3140 	return modes;
3141 }
3142 
3143 static u8 svd_to_vic(u8 svd)
3144 {
3145 	/* 0-6 bit vic, 7th bit native mode indicator */
3146 	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
3147 		return svd & 127;
3148 
3149 	return svd;
3150 }
3151 
3152 static struct drm_display_mode *
3153 drm_display_mode_from_vic_index(struct drm_connector *connector,
3154 				const u8 *video_db, u8 video_len,
3155 				u8 video_index)
3156 {
3157 	struct drm_device *dev = connector->dev;
3158 	struct drm_display_mode *newmode;
3159 	u8 vic;
3160 
3161 	if (video_db == NULL || video_index >= video_len)
3162 		return NULL;
3163 
3164 	/* CEA modes are numbered 1..127 */
3165 	vic = svd_to_vic(video_db[video_index]);
3166 	if (!drm_valid_cea_vic(vic))
3167 		return NULL;
3168 
3169 	newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]);
3170 	if (!newmode)
3171 		return NULL;
3172 
3173 	newmode->vrefresh = 0;
3174 
3175 	return newmode;
3176 }
3177 
3178 /*
3179  * do_y420vdb_modes - Parse YCBCR 420 only modes
3180  * @connector: connector corresponding to the HDMI sink
3181  * @svds: start of the data block of CEA YCBCR 420 VDB
3182  * @len: length of the CEA YCBCR 420 VDB
3183  *
3184  * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
3185  * which contains modes which can be supported in YCBCR 420
3186  * output format only.
3187  */
3188 static int do_y420vdb_modes(struct drm_connector *connector,
3189 			    const u8 *svds, u8 svds_len)
3190 {
3191 	int modes = 0, i;
3192 	struct drm_device *dev = connector->dev;
3193 	struct drm_display_info *info = &connector->display_info;
3194 	struct drm_hdmi_info *hdmi = &info->hdmi;
3195 
3196 	for (i = 0; i < svds_len; i++) {
3197 		u8 vic = svd_to_vic(svds[i]);
3198 		struct drm_display_mode *newmode;
3199 
3200 		if (!drm_valid_cea_vic(vic))
3201 			continue;
3202 
3203 		newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]);
3204 		if (!newmode)
3205 			break;
3206 		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
3207 		drm_mode_probed_add(connector, newmode);
3208 		modes++;
3209 	}
3210 
3211 	if (modes > 0)
3212 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3213 	return modes;
3214 }
3215 
3216 /*
3217  * drm_add_cmdb_modes - Add a YCBCR 420 mode into bitmap
3218  * @connector: connector corresponding to the HDMI sink
3219  * @vic: CEA vic for the video mode to be added in the map
3220  *
3221  * Makes an entry for a videomode in the YCBCR 420 bitmap
3222  */
3223 static void
3224 drm_add_cmdb_modes(struct drm_connector *connector, u8 svd)
3225 {
3226 	u8 vic = svd_to_vic(svd);
3227 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3228 
3229 	if (!drm_valid_cea_vic(vic))
3230 		return;
3231 
3232 	bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
3233 }
3234 
3235 static int
3236 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
3237 {
3238 	int i, modes = 0;
3239 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3240 
3241 	for (i = 0; i < len; i++) {
3242 		struct drm_display_mode *mode;
3243 		mode = drm_display_mode_from_vic_index(connector, db, len, i);
3244 		if (mode) {
3245 			/*
3246 			 * YCBCR420 capability block contains a bitmap which
3247 			 * gives the index of CEA modes from CEA VDB, which
3248 			 * can support YCBCR 420 sampling output also (apart
3249 			 * from RGB/YCBCR444 etc).
3250 			 * For example, if the bit 0 in bitmap is set,
3251 			 * first mode in VDB can support YCBCR420 output too.
3252 			 * Add YCBCR420 modes only if sink is HDMI 2.0 capable.
3253 			 */
3254 			if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
3255 				drm_add_cmdb_modes(connector, db[i]);
3256 
3257 			drm_mode_probed_add(connector, mode);
3258 			modes++;
3259 		}
3260 	}
3261 
3262 	return modes;
3263 }
3264 
3265 struct stereo_mandatory_mode {
3266 	int width, height, vrefresh;
3267 	unsigned int flags;
3268 };
3269 
3270 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
3271 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3272 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
3273 	{ 1920, 1080, 50,
3274 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
3275 	{ 1920, 1080, 60,
3276 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
3277 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3278 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
3279 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3280 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
3281 };
3282 
3283 static bool
3284 stereo_match_mandatory(const struct drm_display_mode *mode,
3285 		       const struct stereo_mandatory_mode *stereo_mode)
3286 {
3287 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
3288 
3289 	return mode->hdisplay == stereo_mode->width &&
3290 	       mode->vdisplay == stereo_mode->height &&
3291 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
3292 	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
3293 }
3294 
3295 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
3296 {
3297 	struct drm_device *dev = connector->dev;
3298 	const struct drm_display_mode *mode;
3299 	struct list_head stereo_modes;
3300 	int modes = 0, i;
3301 
3302 	INIT_LIST_HEAD(&stereo_modes);
3303 
3304 	list_for_each_entry(mode, &connector->probed_modes, head) {
3305 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
3306 			const struct stereo_mandatory_mode *mandatory;
3307 			struct drm_display_mode *new_mode;
3308 
3309 			if (!stereo_match_mandatory(mode,
3310 						    &stereo_mandatory_modes[i]))
3311 				continue;
3312 
3313 			mandatory = &stereo_mandatory_modes[i];
3314 			new_mode = drm_mode_duplicate(dev, mode);
3315 			if (!new_mode)
3316 				continue;
3317 
3318 			new_mode->flags |= mandatory->flags;
3319 			list_add_tail(&new_mode->head, &stereo_modes);
3320 			modes++;
3321 		}
3322 	}
3323 
3324 	list_splice_tail(&stereo_modes, &connector->probed_modes);
3325 
3326 	return modes;
3327 }
3328 
3329 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
3330 {
3331 	struct drm_device *dev = connector->dev;
3332 	struct drm_display_mode *newmode;
3333 
3334 	if (!drm_valid_hdmi_vic(vic)) {
3335 		DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
3336 		return 0;
3337 	}
3338 
3339 	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
3340 	if (!newmode)
3341 		return 0;
3342 
3343 	drm_mode_probed_add(connector, newmode);
3344 
3345 	return 1;
3346 }
3347 
3348 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
3349 			       const u8 *video_db, u8 video_len, u8 video_index)
3350 {
3351 	struct drm_display_mode *newmode;
3352 	int modes = 0;
3353 
3354 	if (structure & (1 << 0)) {
3355 		newmode = drm_display_mode_from_vic_index(connector, video_db,
3356 							  video_len,
3357 							  video_index);
3358 		if (newmode) {
3359 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
3360 			drm_mode_probed_add(connector, newmode);
3361 			modes++;
3362 		}
3363 	}
3364 	if (structure & (1 << 6)) {
3365 		newmode = drm_display_mode_from_vic_index(connector, video_db,
3366 							  video_len,
3367 							  video_index);
3368 		if (newmode) {
3369 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3370 			drm_mode_probed_add(connector, newmode);
3371 			modes++;
3372 		}
3373 	}
3374 	if (structure & (1 << 8)) {
3375 		newmode = drm_display_mode_from_vic_index(connector, video_db,
3376 							  video_len,
3377 							  video_index);
3378 		if (newmode) {
3379 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3380 			drm_mode_probed_add(connector, newmode);
3381 			modes++;
3382 		}
3383 	}
3384 
3385 	return modes;
3386 }
3387 
3388 /*
3389  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
3390  * @connector: connector corresponding to the HDMI sink
3391  * @db: start of the CEA vendor specific block
3392  * @len: length of the CEA block payload, ie. one can access up to db[len]
3393  *
3394  * Parses the HDMI VSDB looking for modes to add to @connector. This function
3395  * also adds the stereo 3d modes when applicable.
3396  */
3397 static int
3398 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
3399 		   const u8 *video_db, u8 video_len)
3400 {
3401 	struct drm_display_info *info = &connector->display_info;
3402 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
3403 	u8 vic_len, hdmi_3d_len = 0;
3404 	u16 mask;
3405 	u16 structure_all;
3406 
3407 	if (len < 8)
3408 		goto out;
3409 
3410 	/* no HDMI_Video_Present */
3411 	if (!(db[8] & (1 << 5)))
3412 		goto out;
3413 
3414 	/* Latency_Fields_Present */
3415 	if (db[8] & (1 << 7))
3416 		offset += 2;
3417 
3418 	/* I_Latency_Fields_Present */
3419 	if (db[8] & (1 << 6))
3420 		offset += 2;
3421 
3422 	/* the declared length is not long enough for the 2 first bytes
3423 	 * of additional video format capabilities */
3424 	if (len < (8 + offset + 2))
3425 		goto out;
3426 
3427 	/* 3D_Present */
3428 	offset++;
3429 	if (db[8 + offset] & (1 << 7)) {
3430 		modes += add_hdmi_mandatory_stereo_modes(connector);
3431 
3432 		/* 3D_Multi_present */
3433 		multi_present = (db[8 + offset] & 0x60) >> 5;
3434 	}
3435 
3436 	offset++;
3437 	vic_len = db[8 + offset] >> 5;
3438 	hdmi_3d_len = db[8 + offset] & 0x1f;
3439 
3440 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
3441 		u8 vic;
3442 
3443 		vic = db[9 + offset + i];
3444 		modes += add_hdmi_mode(connector, vic);
3445 	}
3446 	offset += 1 + vic_len;
3447 
3448 	if (multi_present == 1)
3449 		multi_len = 2;
3450 	else if (multi_present == 2)
3451 		multi_len = 4;
3452 	else
3453 		multi_len = 0;
3454 
3455 	if (len < (8 + offset + hdmi_3d_len - 1))
3456 		goto out;
3457 
3458 	if (hdmi_3d_len < multi_len)
3459 		goto out;
3460 
3461 	if (multi_present == 1 || multi_present == 2) {
3462 		/* 3D_Structure_ALL */
3463 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
3464 
3465 		/* check if 3D_MASK is present */
3466 		if (multi_present == 2)
3467 			mask = (db[10 + offset] << 8) | db[11 + offset];
3468 		else
3469 			mask = 0xffff;
3470 
3471 		for (i = 0; i < 16; i++) {
3472 			if (mask & (1 << i))
3473 				modes += add_3d_struct_modes(connector,
3474 						structure_all,
3475 						video_db,
3476 						video_len, i);
3477 		}
3478 	}
3479 
3480 	offset += multi_len;
3481 
3482 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
3483 		int vic_index;
3484 		struct drm_display_mode *newmode = NULL;
3485 		unsigned int newflag = 0;
3486 		bool detail_present;
3487 
3488 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
3489 
3490 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
3491 			break;
3492 
3493 		/* 2D_VIC_order_X */
3494 		vic_index = db[8 + offset + i] >> 4;
3495 
3496 		/* 3D_Structure_X */
3497 		switch (db[8 + offset + i] & 0x0f) {
3498 		case 0:
3499 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
3500 			break;
3501 		case 6:
3502 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3503 			break;
3504 		case 8:
3505 			/* 3D_Detail_X */
3506 			if ((db[9 + offset + i] >> 4) == 1)
3507 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3508 			break;
3509 		}
3510 
3511 		if (newflag != 0) {
3512 			newmode = drm_display_mode_from_vic_index(connector,
3513 								  video_db,
3514 								  video_len,
3515 								  vic_index);
3516 
3517 			if (newmode) {
3518 				newmode->flags |= newflag;
3519 				drm_mode_probed_add(connector, newmode);
3520 				modes++;
3521 			}
3522 		}
3523 
3524 		if (detail_present)
3525 			i++;
3526 	}
3527 
3528 out:
3529 	if (modes > 0)
3530 		info->has_hdmi_infoframe = true;
3531 	return modes;
3532 }
3533 
3534 static int
3535 cea_db_payload_len(const u8 *db)
3536 {
3537 	return db[0] & 0x1f;
3538 }
3539 
3540 static int
3541 cea_db_extended_tag(const u8 *db)
3542 {
3543 	return db[1];
3544 }
3545 
3546 static int
3547 cea_db_tag(const u8 *db)
3548 {
3549 	return db[0] >> 5;
3550 }
3551 
3552 static int
3553 cea_revision(const u8 *cea)
3554 {
3555 	return cea[1];
3556 }
3557 
3558 static int
3559 cea_db_offsets(const u8 *cea, int *start, int *end)
3560 {
3561 	/* Data block offset in CEA extension block */
3562 	*start = 4;
3563 	*end = cea[2];
3564 	if (*end == 0)
3565 		*end = 127;
3566 	if (*end < 4 || *end > 127)
3567 		return -ERANGE;
3568 	return 0;
3569 }
3570 
3571 static bool cea_db_is_hdmi_vsdb(const u8 *db)
3572 {
3573 	int hdmi_id;
3574 
3575 	if (cea_db_tag(db) != VENDOR_BLOCK)
3576 		return false;
3577 
3578 	if (cea_db_payload_len(db) < 5)
3579 		return false;
3580 
3581 	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
3582 
3583 	return hdmi_id == HDMI_IEEE_OUI;
3584 }
3585 
3586 static bool cea_db_is_hdmi_forum_vsdb(const u8 *db)
3587 {
3588 	unsigned int oui;
3589 
3590 	if (cea_db_tag(db) != VENDOR_BLOCK)
3591 		return false;
3592 
3593 	if (cea_db_payload_len(db) < 7)
3594 		return false;
3595 
3596 	oui = db[3] << 16 | db[2] << 8 | db[1];
3597 
3598 	return oui == HDMI_FORUM_IEEE_OUI;
3599 }
3600 
3601 static bool cea_db_is_y420cmdb(const u8 *db)
3602 {
3603 	if (cea_db_tag(db) != USE_EXTENDED_TAG)
3604 		return false;
3605 
3606 	if (!cea_db_payload_len(db))
3607 		return false;
3608 
3609 	if (cea_db_extended_tag(db) != EXT_VIDEO_CAP_BLOCK_Y420CMDB)
3610 		return false;
3611 
3612 	return true;
3613 }
3614 
3615 static bool cea_db_is_y420vdb(const u8 *db)
3616 {
3617 	if (cea_db_tag(db) != USE_EXTENDED_TAG)
3618 		return false;
3619 
3620 	if (!cea_db_payload_len(db))
3621 		return false;
3622 
3623 	if (cea_db_extended_tag(db) != EXT_VIDEO_DATA_BLOCK_420)
3624 		return false;
3625 
3626 	return true;
3627 }
3628 
3629 #define for_each_cea_db(cea, i, start, end) \
3630 	for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
3631 
3632 static void drm_parse_y420cmdb_bitmap(struct drm_connector *connector,
3633 				      const u8 *db)
3634 {
3635 	struct drm_display_info *info = &connector->display_info;
3636 	struct drm_hdmi_info *hdmi = &info->hdmi;
3637 	u8 map_len = cea_db_payload_len(db) - 1;
3638 	u8 count;
3639 	u64 map = 0;
3640 
3641 	if (map_len == 0) {
3642 		/* All CEA modes support ycbcr420 sampling also.*/
3643 		hdmi->y420_cmdb_map = U64_MAX;
3644 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3645 		return;
3646 	}
3647 
3648 	/*
3649 	 * This map indicates which of the existing CEA block modes
3650 	 * from VDB can support YCBCR420 output too. So if bit=0 is
3651 	 * set, first mode from VDB can support YCBCR420 output too.
3652 	 * We will parse and keep this map, before parsing VDB itself
3653 	 * to avoid going through the same block again and again.
3654 	 *
3655 	 * Spec is not clear about max possible size of this block.
3656 	 * Clamping max bitmap block size at 8 bytes. Every byte can
3657 	 * address 8 CEA modes, in this way this map can address
3658 	 * 8*8 = first 64 SVDs.
3659 	 */
3660 	if (WARN_ON_ONCE(map_len > 8))
3661 		map_len = 8;
3662 
3663 	for (count = 0; count < map_len; count++)
3664 		map |= (u64)db[2 + count] << (8 * count);
3665 
3666 	if (map)
3667 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3668 
3669 	hdmi->y420_cmdb_map = map;
3670 }
3671 
3672 static int
3673 add_cea_modes(struct drm_connector *connector, struct edid *edid)
3674 {
3675 	const u8 *cea = drm_find_cea_extension(edid);
3676 	const u8 *db, *hdmi = NULL, *video = NULL;
3677 	u8 dbl, hdmi_len, video_len = 0;
3678 	int modes = 0;
3679 
3680 	if (cea && cea_revision(cea) >= 3) {
3681 		int i, start, end;
3682 
3683 		if (cea_db_offsets(cea, &start, &end))
3684 			return 0;
3685 
3686 		for_each_cea_db(cea, i, start, end) {
3687 			db = &cea[i];
3688 			dbl = cea_db_payload_len(db);
3689 
3690 			if (cea_db_tag(db) == VIDEO_BLOCK) {
3691 				video = db + 1;
3692 				video_len = dbl;
3693 				modes += do_cea_modes(connector, video, dbl);
3694 			} else if (cea_db_is_hdmi_vsdb(db)) {
3695 				hdmi = db;
3696 				hdmi_len = dbl;
3697 			} else if (cea_db_is_y420vdb(db)) {
3698 				const u8 *vdb420 = &db[2];
3699 
3700 				/* Add 4:2:0(only) modes present in EDID */
3701 				modes += do_y420vdb_modes(connector,
3702 							  vdb420,
3703 							  dbl - 1);
3704 			}
3705 		}
3706 	}
3707 
3708 	/*
3709 	 * We parse the HDMI VSDB after having added the cea modes as we will
3710 	 * be patching their flags when the sink supports stereo 3D.
3711 	 */
3712 	if (hdmi)
3713 		modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
3714 					    video_len);
3715 
3716 	return modes;
3717 }
3718 
3719 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
3720 {
3721 	const struct drm_display_mode *cea_mode;
3722 	int clock1, clock2, clock;
3723 	u8 vic;
3724 	const char *type;
3725 
3726 	/*
3727 	 * allow 5kHz clock difference either way to account for
3728 	 * the 10kHz clock resolution limit of detailed timings.
3729 	 */
3730 	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
3731 	if (drm_valid_cea_vic(vic)) {
3732 		type = "CEA";
3733 		cea_mode = &edid_cea_modes[vic];
3734 		clock1 = cea_mode->clock;
3735 		clock2 = cea_mode_alternate_clock(cea_mode);
3736 	} else {
3737 		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
3738 		if (drm_valid_hdmi_vic(vic)) {
3739 			type = "HDMI";
3740 			cea_mode = &edid_4k_modes[vic];
3741 			clock1 = cea_mode->clock;
3742 			clock2 = hdmi_mode_alternate_clock(cea_mode);
3743 		} else {
3744 			return;
3745 		}
3746 	}
3747 
3748 	/* pick whichever is closest */
3749 	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
3750 		clock = clock1;
3751 	else
3752 		clock = clock2;
3753 
3754 	if (mode->clock == clock)
3755 		return;
3756 
3757 	DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
3758 		  type, vic, mode->clock, clock);
3759 	mode->clock = clock;
3760 }
3761 
3762 static void
3763 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
3764 {
3765 	u8 len = cea_db_payload_len(db);
3766 
3767 	if (len >= 6 && (db[6] & (1 << 7)))
3768 		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
3769 	if (len >= 8) {
3770 		connector->latency_present[0] = db[8] >> 7;
3771 		connector->latency_present[1] = (db[8] >> 6) & 1;
3772 	}
3773 	if (len >= 9)
3774 		connector->video_latency[0] = db[9];
3775 	if (len >= 10)
3776 		connector->audio_latency[0] = db[10];
3777 	if (len >= 11)
3778 		connector->video_latency[1] = db[11];
3779 	if (len >= 12)
3780 		connector->audio_latency[1] = db[12];
3781 
3782 	DRM_DEBUG_KMS("HDMI: latency present %d %d, "
3783 		      "video latency %d %d, "
3784 		      "audio latency %d %d\n",
3785 		      connector->latency_present[0],
3786 		      connector->latency_present[1],
3787 		      connector->video_latency[0],
3788 		      connector->video_latency[1],
3789 		      connector->audio_latency[0],
3790 		      connector->audio_latency[1]);
3791 }
3792 
3793 static void
3794 monitor_name(struct detailed_timing *t, void *data)
3795 {
3796 	if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
3797 		*(u8 **)data = t->data.other_data.data.str.str;
3798 }
3799 
3800 static int get_monitor_name(struct edid *edid, char name[13])
3801 {
3802 	char *edid_name = NULL;
3803 	int mnl;
3804 
3805 	if (!edid || !name)
3806 		return 0;
3807 
3808 	drm_for_each_detailed_block((u8 *)edid, monitor_name, &edid_name);
3809 	for (mnl = 0; edid_name && mnl < 13; mnl++) {
3810 		if (edid_name[mnl] == 0x0a)
3811 			break;
3812 
3813 		name[mnl] = edid_name[mnl];
3814 	}
3815 
3816 	return mnl;
3817 }
3818 
3819 /**
3820  * drm_edid_get_monitor_name - fetch the monitor name from the edid
3821  * @edid: monitor EDID information
3822  * @name: pointer to a character array to hold the name of the monitor
3823  * @bufsize: The size of the name buffer (should be at least 14 chars.)
3824  *
3825  */
3826 void drm_edid_get_monitor_name(struct edid *edid, char *name, int bufsize)
3827 {
3828 	int name_length;
3829 	char buf[13];
3830 
3831 	if (bufsize <= 0)
3832 		return;
3833 
3834 	name_length = min(get_monitor_name(edid, buf), bufsize - 1);
3835 	memcpy(name, buf, name_length);
3836 	name[name_length] = '\0';
3837 }
3838 EXPORT_SYMBOL(drm_edid_get_monitor_name);
3839 
3840 static void clear_eld(struct drm_connector *connector)
3841 {
3842 	memset(connector->eld, 0, sizeof(connector->eld));
3843 
3844 	connector->latency_present[0] = false;
3845 	connector->latency_present[1] = false;
3846 	connector->video_latency[0] = 0;
3847 	connector->audio_latency[0] = 0;
3848 	connector->video_latency[1] = 0;
3849 	connector->audio_latency[1] = 0;
3850 }
3851 
3852 /*
3853  * drm_edid_to_eld - build ELD from EDID
3854  * @connector: connector corresponding to the HDMI/DP sink
3855  * @edid: EDID to parse
3856  *
3857  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
3858  * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
3859  */
3860 static void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
3861 {
3862 	uint8_t *eld = connector->eld;
3863 	u8 *cea;
3864 	u8 *db;
3865 	int total_sad_count = 0;
3866 	int mnl;
3867 	int dbl;
3868 
3869 	clear_eld(connector);
3870 
3871 	if (!edid)
3872 		return;
3873 
3874 	cea = drm_find_cea_extension(edid);
3875 	if (!cea) {
3876 		DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
3877 		return;
3878 	}
3879 
3880 	mnl = get_monitor_name(edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
3881 	DRM_DEBUG_KMS("ELD monitor %s\n", &eld[DRM_ELD_MONITOR_NAME_STRING]);
3882 
3883 	eld[DRM_ELD_CEA_EDID_VER_MNL] = cea[1] << DRM_ELD_CEA_EDID_VER_SHIFT;
3884 	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
3885 
3886 	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
3887 
3888 	eld[DRM_ELD_MANUFACTURER_NAME0] = edid->mfg_id[0];
3889 	eld[DRM_ELD_MANUFACTURER_NAME1] = edid->mfg_id[1];
3890 	eld[DRM_ELD_PRODUCT_CODE0] = edid->prod_code[0];
3891 	eld[DRM_ELD_PRODUCT_CODE1] = edid->prod_code[1];
3892 
3893 	if (cea_revision(cea) >= 3) {
3894 		int i, start, end;
3895 
3896 		if (cea_db_offsets(cea, &start, &end)) {
3897 			start = 0;
3898 			end = 0;
3899 		}
3900 
3901 		for_each_cea_db(cea, i, start, end) {
3902 			db = &cea[i];
3903 			dbl = cea_db_payload_len(db);
3904 
3905 			switch (cea_db_tag(db)) {
3906 				int sad_count;
3907 
3908 			case AUDIO_BLOCK:
3909 				/* Audio Data Block, contains SADs */
3910 				sad_count = min(dbl / 3, 15 - total_sad_count);
3911 				if (sad_count >= 1)
3912 					memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
3913 					       &db[1], sad_count * 3);
3914 				total_sad_count += sad_count;
3915 				break;
3916 			case SPEAKER_BLOCK:
3917 				/* Speaker Allocation Data Block */
3918 				if (dbl >= 1)
3919 					eld[DRM_ELD_SPEAKER] = db[1];
3920 				break;
3921 			case VENDOR_BLOCK:
3922 				/* HDMI Vendor-Specific Data Block */
3923 				if (cea_db_is_hdmi_vsdb(db))
3924 					drm_parse_hdmi_vsdb_audio(connector, db);
3925 				break;
3926 			default:
3927 				break;
3928 			}
3929 		}
3930 	}
3931 	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
3932 
3933 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
3934 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3935 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
3936 	else
3937 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
3938 
3939 	eld[DRM_ELD_BASELINE_ELD_LEN] =
3940 		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
3941 
3942 	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n",
3943 		      drm_eld_size(eld), total_sad_count);
3944 }
3945 
3946 /**
3947  * drm_edid_to_sad - extracts SADs from EDID
3948  * @edid: EDID to parse
3949  * @sads: pointer that will be set to the extracted SADs
3950  *
3951  * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
3952  *
3953  * Note: The returned pointer needs to be freed using kfree().
3954  *
3955  * Return: The number of found SADs or negative number on error.
3956  */
3957 int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
3958 {
3959 	int count = 0;
3960 	int i, start, end, dbl;
3961 	u8 *cea;
3962 
3963 	cea = drm_find_cea_extension(edid);
3964 	if (!cea) {
3965 		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3966 		return -ENOENT;
3967 	}
3968 
3969 	if (cea_revision(cea) < 3) {
3970 		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3971 		return -ENOTSUPP;
3972 	}
3973 
3974 	if (cea_db_offsets(cea, &start, &end)) {
3975 		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3976 		return -EPROTO;
3977 	}
3978 
3979 	for_each_cea_db(cea, i, start, end) {
3980 		u8 *db = &cea[i];
3981 
3982 		if (cea_db_tag(db) == AUDIO_BLOCK) {
3983 			int j;
3984 			dbl = cea_db_payload_len(db);
3985 
3986 			count = dbl / 3; /* SAD is 3B */
3987 			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
3988 			if (!*sads)
3989 				return -ENOMEM;
3990 			for (j = 0; j < count; j++) {
3991 				u8 *sad = &db[1 + j * 3];
3992 
3993 				(*sads)[j].format = (sad[0] & 0x78) >> 3;
3994 				(*sads)[j].channels = sad[0] & 0x7;
3995 				(*sads)[j].freq = sad[1] & 0x7F;
3996 				(*sads)[j].byte2 = sad[2];
3997 			}
3998 			break;
3999 		}
4000 	}
4001 
4002 	return count;
4003 }
4004 EXPORT_SYMBOL(drm_edid_to_sad);
4005 
4006 /**
4007  * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
4008  * @edid: EDID to parse
4009  * @sadb: pointer to the speaker block
4010  *
4011  * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
4012  *
4013  * Note: The returned pointer needs to be freed using kfree().
4014  *
4015  * Return: The number of found Speaker Allocation Blocks or negative number on
4016  * error.
4017  */
4018 int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
4019 {
4020 	int count = 0;
4021 	int i, start, end, dbl;
4022 	const u8 *cea;
4023 
4024 	cea = drm_find_cea_extension(edid);
4025 	if (!cea) {
4026 		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
4027 		return -ENOENT;
4028 	}
4029 
4030 	if (cea_revision(cea) < 3) {
4031 		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
4032 		return -ENOTSUPP;
4033 	}
4034 
4035 	if (cea_db_offsets(cea, &start, &end)) {
4036 		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
4037 		return -EPROTO;
4038 	}
4039 
4040 	for_each_cea_db(cea, i, start, end) {
4041 		const u8 *db = &cea[i];
4042 
4043 		if (cea_db_tag(db) == SPEAKER_BLOCK) {
4044 			dbl = cea_db_payload_len(db);
4045 
4046 			/* Speaker Allocation Data Block */
4047 			if (dbl == 3) {
4048 				*sadb = kmemdup(&db[1], dbl, GFP_KERNEL);
4049 				if (!*sadb)
4050 					return -ENOMEM;
4051 				count = dbl;
4052 				break;
4053 			}
4054 		}
4055 	}
4056 
4057 	return count;
4058 }
4059 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
4060 
4061 /**
4062  * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
4063  * @connector: connector associated with the HDMI/DP sink
4064  * @mode: the display mode
4065  *
4066  * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
4067  * the sink doesn't support audio or video.
4068  */
4069 int drm_av_sync_delay(struct drm_connector *connector,
4070 		      const struct drm_display_mode *mode)
4071 {
4072 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
4073 	int a, v;
4074 
4075 	if (!connector->latency_present[0])
4076 		return 0;
4077 	if (!connector->latency_present[1])
4078 		i = 0;
4079 
4080 	a = connector->audio_latency[i];
4081 	v = connector->video_latency[i];
4082 
4083 	/*
4084 	 * HDMI/DP sink doesn't support audio or video?
4085 	 */
4086 	if (a == 255 || v == 255)
4087 		return 0;
4088 
4089 	/*
4090 	 * Convert raw EDID values to millisecond.
4091 	 * Treat unknown latency as 0ms.
4092 	 */
4093 	if (a)
4094 		a = min(2 * (a - 1), 500);
4095 	if (v)
4096 		v = min(2 * (v - 1), 500);
4097 
4098 	return max(v - a, 0);
4099 }
4100 EXPORT_SYMBOL(drm_av_sync_delay);
4101 
4102 /**
4103  * drm_detect_hdmi_monitor - detect whether monitor is HDMI
4104  * @edid: monitor EDID information
4105  *
4106  * Parse the CEA extension according to CEA-861-B.
4107  *
4108  * Return: True if the monitor is HDMI, false if not or unknown.
4109  */
4110 bool drm_detect_hdmi_monitor(struct edid *edid)
4111 {
4112 	u8 *edid_ext;
4113 	int i;
4114 	int start_offset, end_offset;
4115 
4116 	edid_ext = drm_find_cea_extension(edid);
4117 	if (!edid_ext)
4118 		return false;
4119 
4120 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
4121 		return false;
4122 
4123 	/*
4124 	 * Because HDMI identifier is in Vendor Specific Block,
4125 	 * search it from all data blocks of CEA extension.
4126 	 */
4127 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
4128 		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
4129 			return true;
4130 	}
4131 
4132 	return false;
4133 }
4134 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
4135 
4136 /**
4137  * drm_detect_monitor_audio - check monitor audio capability
4138  * @edid: EDID block to scan
4139  *
4140  * Monitor should have CEA extension block.
4141  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
4142  * audio' only. If there is any audio extension block and supported
4143  * audio format, assume at least 'basic audio' support, even if 'basic
4144  * audio' is not defined in EDID.
4145  *
4146  * Return: True if the monitor supports audio, false otherwise.
4147  */
4148 bool drm_detect_monitor_audio(struct edid *edid)
4149 {
4150 	u8 *edid_ext;
4151 	int i, j;
4152 	bool has_audio = false;
4153 	int start_offset, end_offset;
4154 
4155 	edid_ext = drm_find_cea_extension(edid);
4156 	if (!edid_ext)
4157 		goto end;
4158 
4159 	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
4160 
4161 	if (has_audio) {
4162 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
4163 		goto end;
4164 	}
4165 
4166 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
4167 		goto end;
4168 
4169 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
4170 		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
4171 			has_audio = true;
4172 			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
4173 				DRM_DEBUG_KMS("CEA audio format %d\n",
4174 					      (edid_ext[i + j] >> 3) & 0xf);
4175 			goto end;
4176 		}
4177 	}
4178 end:
4179 	return has_audio;
4180 }
4181 EXPORT_SYMBOL(drm_detect_monitor_audio);
4182 
4183 /**
4184  * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
4185  * @edid: EDID block to scan
4186  *
4187  * Check whether the monitor reports the RGB quantization range selection
4188  * as supported. The AVI infoframe can then be used to inform the monitor
4189  * which quantization range (full or limited) is used.
4190  *
4191  * Return: True if the RGB quantization range is selectable, false otherwise.
4192  */
4193 bool drm_rgb_quant_range_selectable(struct edid *edid)
4194 {
4195 	u8 *edid_ext;
4196 	int i, start, end;
4197 
4198 	edid_ext = drm_find_cea_extension(edid);
4199 	if (!edid_ext)
4200 		return false;
4201 
4202 	if (cea_db_offsets(edid_ext, &start, &end))
4203 		return false;
4204 
4205 	for_each_cea_db(edid_ext, i, start, end) {
4206 		if (cea_db_tag(&edid_ext[i]) == USE_EXTENDED_TAG &&
4207 		    cea_db_payload_len(&edid_ext[i]) == 2 &&
4208 		    cea_db_extended_tag(&edid_ext[i]) ==
4209 			EXT_VIDEO_CAPABILITY_BLOCK) {
4210 			DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
4211 			return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
4212 		}
4213 	}
4214 
4215 	return false;
4216 }
4217 EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
4218 
4219 /**
4220  * drm_default_rgb_quant_range - default RGB quantization range
4221  * @mode: display mode
4222  *
4223  * Determine the default RGB quantization range for the mode,
4224  * as specified in CEA-861.
4225  *
4226  * Return: The default RGB quantization range for the mode
4227  */
4228 enum hdmi_quantization_range
4229 drm_default_rgb_quant_range(const struct drm_display_mode *mode)
4230 {
4231 	/* All CEA modes other than VIC 1 use limited quantization range. */
4232 	return drm_match_cea_mode(mode) > 1 ?
4233 		HDMI_QUANTIZATION_RANGE_LIMITED :
4234 		HDMI_QUANTIZATION_RANGE_FULL;
4235 }
4236 EXPORT_SYMBOL(drm_default_rgb_quant_range);
4237 
4238 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
4239 					       const u8 *db)
4240 {
4241 	u8 dc_mask;
4242 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
4243 
4244 	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
4245 	hdmi->y420_dc_modes |= dc_mask;
4246 }
4247 
4248 static void drm_parse_hdmi_forum_vsdb(struct drm_connector *connector,
4249 				 const u8 *hf_vsdb)
4250 {
4251 	struct drm_display_info *display = &connector->display_info;
4252 	struct drm_hdmi_info *hdmi = &display->hdmi;
4253 
4254 	display->has_hdmi_infoframe = true;
4255 
4256 	if (hf_vsdb[6] & 0x80) {
4257 		hdmi->scdc.supported = true;
4258 		if (hf_vsdb[6] & 0x40)
4259 			hdmi->scdc.read_request = true;
4260 	}
4261 
4262 	/*
4263 	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
4264 	 * And as per the spec, three factors confirm this:
4265 	 * * Availability of a HF-VSDB block in EDID (check)
4266 	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
4267 	 * * SCDC support available (let's check)
4268 	 * Lets check it out.
4269 	 */
4270 
4271 	if (hf_vsdb[5]) {
4272 		/* max clock is 5000 KHz times block value */
4273 		u32 max_tmds_clock = hf_vsdb[5] * 5000;
4274 		struct drm_scdc *scdc = &hdmi->scdc;
4275 
4276 		if (max_tmds_clock > 340000) {
4277 			display->max_tmds_clock = max_tmds_clock;
4278 			DRM_DEBUG_KMS("HF-VSDB: max TMDS clock %d kHz\n",
4279 				display->max_tmds_clock);
4280 		}
4281 
4282 		if (scdc->supported) {
4283 			scdc->scrambling.supported = true;
4284 
4285 			/* Few sinks support scrambling for cloks < 340M */
4286 			if ((hf_vsdb[6] & 0x8))
4287 				scdc->scrambling.low_rates = true;
4288 		}
4289 	}
4290 
4291 	drm_parse_ycbcr420_deep_color_info(connector, hf_vsdb);
4292 }
4293 
4294 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
4295 					   const u8 *hdmi)
4296 {
4297 	struct drm_display_info *info = &connector->display_info;
4298 	unsigned int dc_bpc = 0;
4299 
4300 	/* HDMI supports at least 8 bpc */
4301 	info->bpc = 8;
4302 
4303 	if (cea_db_payload_len(hdmi) < 6)
4304 		return;
4305 
4306 	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
4307 		dc_bpc = 10;
4308 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
4309 		DRM_DEBUG("%s: HDMI sink does deep color 30.\n",
4310 			  connector->name);
4311 	}
4312 
4313 	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
4314 		dc_bpc = 12;
4315 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
4316 		DRM_DEBUG("%s: HDMI sink does deep color 36.\n",
4317 			  connector->name);
4318 	}
4319 
4320 	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
4321 		dc_bpc = 16;
4322 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
4323 		DRM_DEBUG("%s: HDMI sink does deep color 48.\n",
4324 			  connector->name);
4325 	}
4326 
4327 	if (dc_bpc == 0) {
4328 		DRM_DEBUG("%s: No deep color support on this HDMI sink.\n",
4329 			  connector->name);
4330 		return;
4331 	}
4332 
4333 	DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n",
4334 		  connector->name, dc_bpc);
4335 	info->bpc = dc_bpc;
4336 
4337 	/*
4338 	 * Deep color support mandates RGB444 support for all video
4339 	 * modes and forbids YCRCB422 support for all video modes per
4340 	 * HDMI 1.3 spec.
4341 	 */
4342 	info->color_formats = DRM_COLOR_FORMAT_RGB444;
4343 
4344 	/* YCRCB444 is optional according to spec. */
4345 	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
4346 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4347 		DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n",
4348 			  connector->name);
4349 	}
4350 
4351 	/*
4352 	 * Spec says that if any deep color mode is supported at all,
4353 	 * then deep color 36 bit must be supported.
4354 	 */
4355 	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
4356 		DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n",
4357 			  connector->name);
4358 	}
4359 }
4360 
4361 static void
4362 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
4363 {
4364 	struct drm_display_info *info = &connector->display_info;
4365 	u8 len = cea_db_payload_len(db);
4366 
4367 	if (len >= 6)
4368 		info->dvi_dual = db[6] & 1;
4369 	if (len >= 7)
4370 		info->max_tmds_clock = db[7] * 5000;
4371 
4372 	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
4373 		      "max TMDS clock %d kHz\n",
4374 		      info->dvi_dual,
4375 		      info->max_tmds_clock);
4376 
4377 	drm_parse_hdmi_deep_color_info(connector, db);
4378 }
4379 
4380 static void drm_parse_cea_ext(struct drm_connector *connector,
4381 			      const struct edid *edid)
4382 {
4383 	struct drm_display_info *info = &connector->display_info;
4384 	const u8 *edid_ext;
4385 	int i, start, end;
4386 
4387 	edid_ext = drm_find_cea_extension(edid);
4388 	if (!edid_ext)
4389 		return;
4390 
4391 	info->cea_rev = edid_ext[1];
4392 
4393 	/* The existence of a CEA block should imply RGB support */
4394 	info->color_formats = DRM_COLOR_FORMAT_RGB444;
4395 	if (edid_ext[3] & EDID_CEA_YCRCB444)
4396 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4397 	if (edid_ext[3] & EDID_CEA_YCRCB422)
4398 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
4399 
4400 	if (cea_db_offsets(edid_ext, &start, &end))
4401 		return;
4402 
4403 	for_each_cea_db(edid_ext, i, start, end) {
4404 		const u8 *db = &edid_ext[i];
4405 
4406 		if (cea_db_is_hdmi_vsdb(db))
4407 			drm_parse_hdmi_vsdb_video(connector, db);
4408 		if (cea_db_is_hdmi_forum_vsdb(db))
4409 			drm_parse_hdmi_forum_vsdb(connector, db);
4410 		if (cea_db_is_y420cmdb(db))
4411 			drm_parse_y420cmdb_bitmap(connector, db);
4412 	}
4413 }
4414 
4415 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
4416  * all of the values which would have been set from EDID
4417  */
4418 void
4419 drm_reset_display_info(struct drm_connector *connector)
4420 {
4421 	struct drm_display_info *info = &connector->display_info;
4422 
4423 	info->width_mm = 0;
4424 	info->height_mm = 0;
4425 
4426 	info->bpc = 0;
4427 	info->color_formats = 0;
4428 	info->cea_rev = 0;
4429 	info->max_tmds_clock = 0;
4430 	info->dvi_dual = false;
4431 	info->has_hdmi_infoframe = false;
4432 
4433 	info->non_desktop = 0;
4434 }
4435 EXPORT_SYMBOL_GPL(drm_reset_display_info);
4436 
4437 u32 drm_add_display_info(struct drm_connector *connector, const struct edid *edid)
4438 {
4439 	struct drm_display_info *info = &connector->display_info;
4440 
4441 	u32 quirks = edid_get_quirks(edid);
4442 
4443 	info->width_mm = edid->width_cm * 10;
4444 	info->height_mm = edid->height_cm * 10;
4445 
4446 	/* driver figures it out in this case */
4447 	info->bpc = 0;
4448 	info->color_formats = 0;
4449 	info->cea_rev = 0;
4450 	info->max_tmds_clock = 0;
4451 	info->dvi_dual = false;
4452 	info->has_hdmi_infoframe = false;
4453 
4454 	info->non_desktop = !!(quirks & EDID_QUIRK_NON_DESKTOP);
4455 
4456 	DRM_DEBUG_KMS("non_desktop set to %d\n", info->non_desktop);
4457 
4458 	if (edid->revision < 3)
4459 		return quirks;
4460 
4461 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
4462 		return quirks;
4463 
4464 	drm_parse_cea_ext(connector, edid);
4465 
4466 	/*
4467 	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
4468 	 *
4469 	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
4470 	 * tells us to assume 8 bpc color depth if the EDID doesn't have
4471 	 * extensions which tell otherwise.
4472 	 */
4473 	if ((info->bpc == 0) && (edid->revision < 4) &&
4474 	    (edid->input & DRM_EDID_DIGITAL_TYPE_DVI)) {
4475 		info->bpc = 8;
4476 		DRM_DEBUG("%s: Assigning DFP sink color depth as %d bpc.\n",
4477 			  connector->name, info->bpc);
4478 	}
4479 
4480 	/* Only defined for 1.4 with digital displays */
4481 	if (edid->revision < 4)
4482 		return quirks;
4483 
4484 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
4485 	case DRM_EDID_DIGITAL_DEPTH_6:
4486 		info->bpc = 6;
4487 		break;
4488 	case DRM_EDID_DIGITAL_DEPTH_8:
4489 		info->bpc = 8;
4490 		break;
4491 	case DRM_EDID_DIGITAL_DEPTH_10:
4492 		info->bpc = 10;
4493 		break;
4494 	case DRM_EDID_DIGITAL_DEPTH_12:
4495 		info->bpc = 12;
4496 		break;
4497 	case DRM_EDID_DIGITAL_DEPTH_14:
4498 		info->bpc = 14;
4499 		break;
4500 	case DRM_EDID_DIGITAL_DEPTH_16:
4501 		info->bpc = 16;
4502 		break;
4503 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
4504 	default:
4505 		info->bpc = 0;
4506 		break;
4507 	}
4508 
4509 	DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
4510 			  connector->name, info->bpc);
4511 
4512 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
4513 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
4514 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4515 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
4516 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
4517 	return quirks;
4518 }
4519 EXPORT_SYMBOL_GPL(drm_add_display_info);
4520 
4521 static int validate_displayid(u8 *displayid, int length, int idx)
4522 {
4523 	int i;
4524 	u8 csum = 0;
4525 	struct displayid_hdr *base;
4526 
4527 	base = (struct displayid_hdr *)&displayid[idx];
4528 
4529 	DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n",
4530 		      base->rev, base->bytes, base->prod_id, base->ext_count);
4531 
4532 	if (base->bytes + 5 > length - idx)
4533 		return -EINVAL;
4534 	for (i = idx; i <= base->bytes + 5; i++) {
4535 		csum += displayid[i];
4536 	}
4537 	if (csum) {
4538 		DRM_NOTE("DisplayID checksum invalid, remainder is %d\n", csum);
4539 		return -EINVAL;
4540 	}
4541 	return 0;
4542 }
4543 
4544 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
4545 							    struct displayid_detailed_timings_1 *timings)
4546 {
4547 	struct drm_display_mode *mode;
4548 	unsigned pixel_clock = (timings->pixel_clock[0] |
4549 				(timings->pixel_clock[1] << 8) |
4550 				(timings->pixel_clock[2] << 16));
4551 	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
4552 	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
4553 	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
4554 	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
4555 	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
4556 	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
4557 	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
4558 	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
4559 	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
4560 	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
4561 	mode = drm_mode_create(dev);
4562 	if (!mode)
4563 		return NULL;
4564 
4565 	mode->clock = pixel_clock * 10;
4566 	mode->hdisplay = hactive;
4567 	mode->hsync_start = mode->hdisplay + hsync;
4568 	mode->hsync_end = mode->hsync_start + hsync_width;
4569 	mode->htotal = mode->hdisplay + hblank;
4570 
4571 	mode->vdisplay = vactive;
4572 	mode->vsync_start = mode->vdisplay + vsync;
4573 	mode->vsync_end = mode->vsync_start + vsync_width;
4574 	mode->vtotal = mode->vdisplay + vblank;
4575 
4576 	mode->flags = 0;
4577 	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
4578 	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
4579 	mode->type = DRM_MODE_TYPE_DRIVER;
4580 
4581 	if (timings->flags & 0x80)
4582 		mode->type |= DRM_MODE_TYPE_PREFERRED;
4583 	mode->vrefresh = drm_mode_vrefresh(mode);
4584 	drm_mode_set_name(mode);
4585 
4586 	return mode;
4587 }
4588 
4589 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
4590 					  struct displayid_block *block)
4591 {
4592 	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
4593 	int i;
4594 	int num_timings;
4595 	struct drm_display_mode *newmode;
4596 	int num_modes = 0;
4597 	/* blocks must be multiple of 20 bytes length */
4598 	if (block->num_bytes % 20)
4599 		return 0;
4600 
4601 	num_timings = block->num_bytes / 20;
4602 	for (i = 0; i < num_timings; i++) {
4603 		struct displayid_detailed_timings_1 *timings = &det->timings[i];
4604 
4605 		newmode = drm_mode_displayid_detailed(connector->dev, timings);
4606 		if (!newmode)
4607 			continue;
4608 
4609 		drm_mode_probed_add(connector, newmode);
4610 		num_modes++;
4611 	}
4612 	return num_modes;
4613 }
4614 
4615 static int add_displayid_detailed_modes(struct drm_connector *connector,
4616 					struct edid *edid)
4617 {
4618 	u8 *displayid;
4619 	int ret;
4620 	int idx = 1;
4621 	int length = EDID_LENGTH;
4622 	struct displayid_block *block;
4623 	int num_modes = 0;
4624 
4625 	displayid = drm_find_displayid_extension(edid);
4626 	if (!displayid)
4627 		return 0;
4628 
4629 	ret = validate_displayid(displayid, length, idx);
4630 	if (ret)
4631 		return 0;
4632 
4633 	idx += sizeof(struct displayid_hdr);
4634 	while (block = (struct displayid_block *)&displayid[idx],
4635 	       idx + sizeof(struct displayid_block) <= length &&
4636 	       idx + sizeof(struct displayid_block) + block->num_bytes <= length &&
4637 	       block->num_bytes > 0) {
4638 		idx += block->num_bytes + sizeof(struct displayid_block);
4639 		switch (block->tag) {
4640 		case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
4641 			num_modes += add_displayid_detailed_1_modes(connector, block);
4642 			break;
4643 		}
4644 	}
4645 	return num_modes;
4646 }
4647 
4648 /**
4649  * drm_add_edid_modes - add modes from EDID data, if available
4650  * @connector: connector we're probing
4651  * @edid: EDID data
4652  *
4653  * Add the specified modes to the connector's mode list. Also fills out the
4654  * &drm_display_info structure and ELD in @connector with any information which
4655  * can be derived from the edid.
4656  *
4657  * Return: The number of modes added or 0 if we couldn't find any.
4658  */
4659 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
4660 {
4661 	int num_modes = 0;
4662 	u32 quirks;
4663 
4664 	if (edid == NULL) {
4665 		clear_eld(connector);
4666 		return 0;
4667 	}
4668 	if (!drm_edid_is_valid(edid)) {
4669 		clear_eld(connector);
4670 		dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
4671 			 connector->name);
4672 		return 0;
4673 	}
4674 
4675 	drm_edid_to_eld(connector, edid);
4676 
4677 	/*
4678 	 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
4679 	 * To avoid multiple parsing of same block, lets parse that map
4680 	 * from sink info, before parsing CEA modes.
4681 	 */
4682 	quirks = drm_add_display_info(connector, edid);
4683 
4684 	/*
4685 	 * EDID spec says modes should be preferred in this order:
4686 	 * - preferred detailed mode
4687 	 * - other detailed modes from base block
4688 	 * - detailed modes from extension blocks
4689 	 * - CVT 3-byte code modes
4690 	 * - standard timing codes
4691 	 * - established timing codes
4692 	 * - modes inferred from GTF or CVT range information
4693 	 *
4694 	 * We get this pretty much right.
4695 	 *
4696 	 * XXX order for additional mode types in extension blocks?
4697 	 */
4698 	num_modes += add_detailed_modes(connector, edid, quirks);
4699 	num_modes += add_cvt_modes(connector, edid);
4700 	num_modes += add_standard_modes(connector, edid);
4701 	num_modes += add_established_modes(connector, edid);
4702 	num_modes += add_cea_modes(connector, edid);
4703 	num_modes += add_alternate_cea_modes(connector, edid);
4704 	num_modes += add_displayid_detailed_modes(connector, edid);
4705 	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
4706 		num_modes += add_inferred_modes(connector, edid);
4707 
4708 	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
4709 		edid_fixup_preferred(connector, quirks);
4710 
4711 	if (quirks & EDID_QUIRK_FORCE_6BPC)
4712 		connector->display_info.bpc = 6;
4713 
4714 	if (quirks & EDID_QUIRK_FORCE_8BPC)
4715 		connector->display_info.bpc = 8;
4716 
4717 	if (quirks & EDID_QUIRK_FORCE_10BPC)
4718 		connector->display_info.bpc = 10;
4719 
4720 	if (quirks & EDID_QUIRK_FORCE_12BPC)
4721 		connector->display_info.bpc = 12;
4722 
4723 	return num_modes;
4724 }
4725 EXPORT_SYMBOL(drm_add_edid_modes);
4726 
4727 /**
4728  * drm_add_modes_noedid - add modes for the connectors without EDID
4729  * @connector: connector we're probing
4730  * @hdisplay: the horizontal display limit
4731  * @vdisplay: the vertical display limit
4732  *
4733  * Add the specified modes to the connector's mode list. Only when the
4734  * hdisplay/vdisplay is not beyond the given limit, it will be added.
4735  *
4736  * Return: The number of modes added or 0 if we couldn't find any.
4737  */
4738 int drm_add_modes_noedid(struct drm_connector *connector,
4739 			int hdisplay, int vdisplay)
4740 {
4741 	int i, count, num_modes = 0;
4742 	struct drm_display_mode *mode;
4743 	struct drm_device *dev = connector->dev;
4744 
4745 	count = ARRAY_SIZE(drm_dmt_modes);
4746 	if (hdisplay < 0)
4747 		hdisplay = 0;
4748 	if (vdisplay < 0)
4749 		vdisplay = 0;
4750 
4751 	for (i = 0; i < count; i++) {
4752 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
4753 		if (hdisplay && vdisplay) {
4754 			/*
4755 			 * Only when two are valid, they will be used to check
4756 			 * whether the mode should be added to the mode list of
4757 			 * the connector.
4758 			 */
4759 			if (ptr->hdisplay > hdisplay ||
4760 					ptr->vdisplay > vdisplay)
4761 				continue;
4762 		}
4763 		if (drm_mode_vrefresh(ptr) > 61)
4764 			continue;
4765 		mode = drm_mode_duplicate(dev, ptr);
4766 		if (mode) {
4767 			drm_mode_probed_add(connector, mode);
4768 			num_modes++;
4769 		}
4770 	}
4771 	return num_modes;
4772 }
4773 EXPORT_SYMBOL(drm_add_modes_noedid);
4774 
4775 /**
4776  * drm_set_preferred_mode - Sets the preferred mode of a connector
4777  * @connector: connector whose mode list should be processed
4778  * @hpref: horizontal resolution of preferred mode
4779  * @vpref: vertical resolution of preferred mode
4780  *
4781  * Marks a mode as preferred if it matches the resolution specified by @hpref
4782  * and @vpref.
4783  */
4784 void drm_set_preferred_mode(struct drm_connector *connector,
4785 			   int hpref, int vpref)
4786 {
4787 	struct drm_display_mode *mode;
4788 
4789 	list_for_each_entry(mode, &connector->probed_modes, head) {
4790 		if (mode->hdisplay == hpref &&
4791 		    mode->vdisplay == vpref)
4792 			mode->type |= DRM_MODE_TYPE_PREFERRED;
4793 	}
4794 }
4795 EXPORT_SYMBOL(drm_set_preferred_mode);
4796 
4797 /**
4798  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
4799  *                                              data from a DRM display mode
4800  * @frame: HDMI AVI infoframe
4801  * @mode: DRM display mode
4802  * @is_hdmi2_sink: Sink is HDMI 2.0 compliant
4803  *
4804  * Return: 0 on success or a negative error code on failure.
4805  */
4806 int
4807 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
4808 					 const struct drm_display_mode *mode,
4809 					 bool is_hdmi2_sink)
4810 {
4811 	int err;
4812 
4813 	if (!frame || !mode)
4814 		return -EINVAL;
4815 
4816 	err = hdmi_avi_infoframe_init(frame);
4817 	if (err < 0)
4818 		return err;
4819 
4820 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
4821 		frame->pixel_repeat = 1;
4822 
4823 	frame->video_code = drm_match_cea_mode(mode);
4824 
4825 	/*
4826 	 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
4827 	 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
4828 	 * have to make sure we dont break HDMI 1.4 sinks.
4829 	 */
4830 	if (!is_hdmi2_sink && frame->video_code > 64)
4831 		frame->video_code = 0;
4832 
4833 	/*
4834 	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
4835 	 * we should send its VIC in vendor infoframes, else send the
4836 	 * VIC in AVI infoframes. Lets check if this mode is present in
4837 	 * HDMI 1.4b 4K modes
4838 	 */
4839 	if (frame->video_code) {
4840 		u8 vendor_if_vic = drm_match_hdmi_mode(mode);
4841 		bool is_s3d = mode->flags & DRM_MODE_FLAG_3D_MASK;
4842 
4843 		if (drm_valid_hdmi_vic(vendor_if_vic) && !is_s3d)
4844 			frame->video_code = 0;
4845 	}
4846 
4847 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
4848 
4849 	/*
4850 	 * Populate picture aspect ratio from either
4851 	 * user input (if specified) or from the CEA mode list.
4852 	 */
4853 	if (mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_4_3 ||
4854 		mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_16_9)
4855 		frame->picture_aspect = mode->picture_aspect_ratio;
4856 	else if (frame->video_code > 0)
4857 		frame->picture_aspect = drm_get_cea_aspect_ratio(
4858 						frame->video_code);
4859 
4860 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
4861 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
4862 
4863 	return 0;
4864 }
4865 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
4866 
4867 /**
4868  * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
4869  *                                        quantization range information
4870  * @frame: HDMI AVI infoframe
4871  * @mode: DRM display mode
4872  * @rgb_quant_range: RGB quantization range (Q)
4873  * @rgb_quant_range_selectable: Sink support selectable RGB quantization range (QS)
4874  * @is_hdmi2_sink: HDMI 2.0 sink, which has different default recommendations
4875  *
4876  * Note that @is_hdmi2_sink can be derived by looking at the
4877  * &drm_scdc.supported flag stored in &drm_hdmi_info.scdc,
4878  * &drm_display_info.hdmi, which can be found in &drm_connector.display_info.
4879  */
4880 void
4881 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
4882 				   const struct drm_display_mode *mode,
4883 				   enum hdmi_quantization_range rgb_quant_range,
4884 				   bool rgb_quant_range_selectable,
4885 				   bool is_hdmi2_sink)
4886 {
4887 	/*
4888 	 * CEA-861:
4889 	 * "A Source shall not send a non-zero Q value that does not correspond
4890 	 *  to the default RGB Quantization Range for the transmitted Picture
4891 	 *  unless the Sink indicates support for the Q bit in a Video
4892 	 *  Capabilities Data Block."
4893 	 *
4894 	 * HDMI 2.0 recommends sending non-zero Q when it does match the
4895 	 * default RGB quantization range for the mode, even when QS=0.
4896 	 */
4897 	if (rgb_quant_range_selectable ||
4898 	    rgb_quant_range == drm_default_rgb_quant_range(mode))
4899 		frame->quantization_range = rgb_quant_range;
4900 	else
4901 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
4902 
4903 	/*
4904 	 * CEA-861-F:
4905 	 * "When transmitting any RGB colorimetry, the Source should set the
4906 	 *  YQ-field to match the RGB Quantization Range being transmitted
4907 	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
4908 	 *  set YQ=1) and the Sink shall ignore the YQ-field."
4909 	 *
4910 	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
4911 	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
4912 	 * good way to tell which version of CEA-861 the sink supports, so
4913 	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
4914 	 * on on CEA-861-F.
4915 	 */
4916 	if (!is_hdmi2_sink ||
4917 	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
4918 		frame->ycc_quantization_range =
4919 			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
4920 	else
4921 		frame->ycc_quantization_range =
4922 			HDMI_YCC_QUANTIZATION_RANGE_FULL;
4923 }
4924 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
4925 
4926 static enum hdmi_3d_structure
4927 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
4928 {
4929 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
4930 
4931 	switch (layout) {
4932 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
4933 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
4934 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
4935 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
4936 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
4937 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
4938 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
4939 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
4940 	case DRM_MODE_FLAG_3D_L_DEPTH:
4941 		return HDMI_3D_STRUCTURE_L_DEPTH;
4942 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
4943 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
4944 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
4945 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
4946 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
4947 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
4948 	default:
4949 		return HDMI_3D_STRUCTURE_INVALID;
4950 	}
4951 }
4952 
4953 /**
4954  * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
4955  * data from a DRM display mode
4956  * @frame: HDMI vendor infoframe
4957  * @connector: the connector
4958  * @mode: DRM display mode
4959  *
4960  * Note that there's is a need to send HDMI vendor infoframes only when using a
4961  * 4k or stereoscopic 3D mode. So when giving any other mode as input this
4962  * function will return -EINVAL, error that can be safely ignored.
4963  *
4964  * Return: 0 on success or a negative error code on failure.
4965  */
4966 int
4967 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
4968 					    struct drm_connector *connector,
4969 					    const struct drm_display_mode *mode)
4970 {
4971 	/*
4972 	 * FIXME: sil-sii8620 doesn't have a connector around when
4973 	 * we need one, so we have to be prepared for a NULL connector.
4974 	 */
4975 	bool has_hdmi_infoframe = connector ?
4976 		connector->display_info.has_hdmi_infoframe : false;
4977 	int err;
4978 	u32 s3d_flags;
4979 	u8 vic;
4980 
4981 	if (!frame || !mode)
4982 		return -EINVAL;
4983 
4984 	if (!has_hdmi_infoframe)
4985 		return -EINVAL;
4986 
4987 	vic = drm_match_hdmi_mode(mode);
4988 	s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
4989 
4990 	/*
4991 	 * Even if it's not absolutely necessary to send the infoframe
4992 	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
4993 	 * know that the sink can handle it. This is based on a
4994 	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
4995 	 * have trouble realizing that they shuld switch from 3D to 2D
4996 	 * mode if the source simply stops sending the infoframe when
4997 	 * it wants to switch from 3D to 2D.
4998 	 */
4999 
5000 	if (vic && s3d_flags)
5001 		return -EINVAL;
5002 
5003 	err = hdmi_vendor_infoframe_init(frame);
5004 	if (err < 0)
5005 		return err;
5006 
5007 	frame->vic = vic;
5008 	frame->s3d_struct = s3d_structure_from_display_mode(mode);
5009 
5010 	return 0;
5011 }
5012 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
5013 
5014 static int drm_parse_tiled_block(struct drm_connector *connector,
5015 				 struct displayid_block *block)
5016 {
5017 	struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
5018 	u16 w, h;
5019 	u8 tile_v_loc, tile_h_loc;
5020 	u8 num_v_tile, num_h_tile;
5021 	struct drm_tile_group *tg;
5022 
5023 	w = tile->tile_size[0] | tile->tile_size[1] << 8;
5024 	h = tile->tile_size[2] | tile->tile_size[3] << 8;
5025 
5026 	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
5027 	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
5028 	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
5029 	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
5030 
5031 	connector->has_tile = true;
5032 	if (tile->tile_cap & 0x80)
5033 		connector->tile_is_single_monitor = true;
5034 
5035 	connector->num_h_tile = num_h_tile + 1;
5036 	connector->num_v_tile = num_v_tile + 1;
5037 	connector->tile_h_loc = tile_h_loc;
5038 	connector->tile_v_loc = tile_v_loc;
5039 	connector->tile_h_size = w + 1;
5040 	connector->tile_v_size = h + 1;
5041 
5042 	DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap);
5043 	DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1);
5044 	DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n",
5045 		      num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc);
5046 	DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
5047 
5048 	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
5049 	if (!tg) {
5050 		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
5051 	}
5052 	if (!tg)
5053 		return -ENOMEM;
5054 
5055 	if (connector->tile_group != tg) {
5056 		/* if we haven't got a pointer,
5057 		   take the reference, drop ref to old tile group */
5058 		if (connector->tile_group) {
5059 			drm_mode_put_tile_group(connector->dev, connector->tile_group);
5060 		}
5061 		connector->tile_group = tg;
5062 	} else
5063 		/* if same tile group, then release the ref we just took. */
5064 		drm_mode_put_tile_group(connector->dev, tg);
5065 	return 0;
5066 }
5067 
5068 static int drm_parse_display_id(struct drm_connector *connector,
5069 				u8 *displayid, int length,
5070 				bool is_edid_extension)
5071 {
5072 	/* if this is an EDID extension the first byte will be 0x70 */
5073 	int idx = 0;
5074 	struct displayid_block *block;
5075 	int ret;
5076 
5077 	if (is_edid_extension)
5078 		idx = 1;
5079 
5080 	ret = validate_displayid(displayid, length, idx);
5081 	if (ret)
5082 		return ret;
5083 
5084 	idx += sizeof(struct displayid_hdr);
5085 	while (block = (struct displayid_block *)&displayid[idx],
5086 	       idx + sizeof(struct displayid_block) <= length &&
5087 	       idx + sizeof(struct displayid_block) + block->num_bytes <= length &&
5088 	       block->num_bytes > 0) {
5089 		idx += block->num_bytes + sizeof(struct displayid_block);
5090 		DRM_DEBUG_KMS("block id 0x%x, rev %d, len %d\n",
5091 			      block->tag, block->rev, block->num_bytes);
5092 
5093 		switch (block->tag) {
5094 		case DATA_BLOCK_TILED_DISPLAY:
5095 			ret = drm_parse_tiled_block(connector, block);
5096 			if (ret)
5097 				return ret;
5098 			break;
5099 		case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
5100 			/* handled in mode gathering code. */
5101 			break;
5102 		default:
5103 			DRM_DEBUG_KMS("found DisplayID tag 0x%x, unhandled\n", block->tag);
5104 			break;
5105 		}
5106 	}
5107 	return 0;
5108 }
5109 
5110 static void drm_get_displayid(struct drm_connector *connector,
5111 			      struct edid *edid)
5112 {
5113 	void *displayid = NULL;
5114 	int ret;
5115 	connector->has_tile = false;
5116 	displayid = drm_find_displayid_extension(edid);
5117 	if (!displayid) {
5118 		/* drop reference to any tile group we had */
5119 		goto out_drop_ref;
5120 	}
5121 
5122 	ret = drm_parse_display_id(connector, displayid, EDID_LENGTH, true);
5123 	if (ret < 0)
5124 		goto out_drop_ref;
5125 	if (!connector->has_tile)
5126 		goto out_drop_ref;
5127 	return;
5128 out_drop_ref:
5129 	if (connector->tile_group) {
5130 		drm_mode_put_tile_group(connector->dev, connector->tile_group);
5131 		connector->tile_group = NULL;
5132 	}
5133 	return;
5134 }
5135