xref: /openbmc/linux/drivers/gpu/drm/drm_edid.c (revision 77d84ff8)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/module.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_edid.h>
37 
38 #define version_greater(edid, maj, min) \
39 	(((edid)->version > (maj)) || \
40 	 ((edid)->version == (maj) && (edid)->revision > (min)))
41 
42 #define EDID_EST_TIMINGS 16
43 #define EDID_STD_TIMINGS 8
44 #define EDID_DETAILED_TIMINGS 4
45 
46 /*
47  * EDID blocks out in the wild have a variety of bugs, try to collect
48  * them here (note that userspace may work around broken monitors first,
49  * but fixes should make their way here so that the kernel "just works"
50  * on as many displays as possible).
51  */
52 
53 /* First detailed mode wrong, use largest 60Hz mode */
54 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
55 /* Reported 135MHz pixel clock is too high, needs adjustment */
56 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
57 /* Prefer the largest mode at 75 Hz */
58 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
59 /* Detail timing is in cm not mm */
60 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
61 /* Detailed timing descriptors have bogus size values, so just take the
62  * maximum size and use that.
63  */
64 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
65 /* Monitor forgot to set the first detailed is preferred bit. */
66 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED	(1 << 5)
67 /* use +hsync +vsync for detailed mode */
68 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
69 /* Force reduced-blanking timings for detailed modes */
70 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
71 
72 struct detailed_mode_closure {
73 	struct drm_connector *connector;
74 	struct edid *edid;
75 	bool preferred;
76 	u32 quirks;
77 	int modes;
78 };
79 
80 #define LEVEL_DMT	0
81 #define LEVEL_GTF	1
82 #define LEVEL_GTF2	2
83 #define LEVEL_CVT	3
84 
85 static struct edid_quirk {
86 	char vendor[4];
87 	int product_id;
88 	u32 quirks;
89 } edid_quirk_list[] = {
90 	/* Acer AL1706 */
91 	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
92 	/* Acer F51 */
93 	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
94 	/* Unknown Acer */
95 	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
96 
97 	/* Belinea 10 15 55 */
98 	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
99 	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
100 
101 	/* Envision Peripherals, Inc. EN-7100e */
102 	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
103 	/* Envision EN2028 */
104 	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
105 
106 	/* Funai Electronics PM36B */
107 	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
108 	  EDID_QUIRK_DETAILED_IN_CM },
109 
110 	/* LG Philips LCD LP154W01-A5 */
111 	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
112 	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
113 
114 	/* Philips 107p5 CRT */
115 	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
116 
117 	/* Proview AY765C */
118 	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
119 
120 	/* Samsung SyncMaster 205BW.  Note: irony */
121 	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
122 	/* Samsung SyncMaster 22[5-6]BW */
123 	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
124 	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
125 
126 	/* ViewSonic VA2026w */
127 	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
128 
129 	/* Medion MD 30217 PG */
130 	{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
131 };
132 
133 /*
134  * Autogenerated from the DMT spec.
135  * This table is copied from xfree86/modes/xf86EdidModes.c.
136  */
137 static const struct drm_display_mode drm_dmt_modes[] = {
138 	/* 640x350@85Hz */
139 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
140 		   736, 832, 0, 350, 382, 385, 445, 0,
141 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
142 	/* 640x400@85Hz */
143 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
144 		   736, 832, 0, 400, 401, 404, 445, 0,
145 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
146 	/* 720x400@85Hz */
147 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
148 		   828, 936, 0, 400, 401, 404, 446, 0,
149 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
150 	/* 640x480@60Hz */
151 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
152 		   752, 800, 0, 480, 489, 492, 525, 0,
153 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
154 	/* 640x480@72Hz */
155 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
156 		   704, 832, 0, 480, 489, 492, 520, 0,
157 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
158 	/* 640x480@75Hz */
159 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
160 		   720, 840, 0, 480, 481, 484, 500, 0,
161 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
162 	/* 640x480@85Hz */
163 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
164 		   752, 832, 0, 480, 481, 484, 509, 0,
165 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
166 	/* 800x600@56Hz */
167 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
168 		   896, 1024, 0, 600, 601, 603, 625, 0,
169 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
170 	/* 800x600@60Hz */
171 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
172 		   968, 1056, 0, 600, 601, 605, 628, 0,
173 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
174 	/* 800x600@72Hz */
175 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
176 		   976, 1040, 0, 600, 637, 643, 666, 0,
177 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
178 	/* 800x600@75Hz */
179 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
180 		   896, 1056, 0, 600, 601, 604, 625, 0,
181 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
182 	/* 800x600@85Hz */
183 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
184 		   896, 1048, 0, 600, 601, 604, 631, 0,
185 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
186 	/* 800x600@120Hz RB */
187 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
188 		   880, 960, 0, 600, 603, 607, 636, 0,
189 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
190 	/* 848x480@60Hz */
191 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
192 		   976, 1088, 0, 480, 486, 494, 517, 0,
193 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
194 	/* 1024x768@43Hz, interlace */
195 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
196 		   1208, 1264, 0, 768, 768, 772, 817, 0,
197 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
198 			DRM_MODE_FLAG_INTERLACE) },
199 	/* 1024x768@60Hz */
200 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
201 		   1184, 1344, 0, 768, 771, 777, 806, 0,
202 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
203 	/* 1024x768@70Hz */
204 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
205 		   1184, 1328, 0, 768, 771, 777, 806, 0,
206 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
207 	/* 1024x768@75Hz */
208 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
209 		   1136, 1312, 0, 768, 769, 772, 800, 0,
210 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
211 	/* 1024x768@85Hz */
212 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
213 		   1168, 1376, 0, 768, 769, 772, 808, 0,
214 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
215 	/* 1024x768@120Hz RB */
216 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
217 		   1104, 1184, 0, 768, 771, 775, 813, 0,
218 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
219 	/* 1152x864@75Hz */
220 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
221 		   1344, 1600, 0, 864, 865, 868, 900, 0,
222 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
223 	/* 1280x768@60Hz RB */
224 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
225 		   1360, 1440, 0, 768, 771, 778, 790, 0,
226 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
227 	/* 1280x768@60Hz */
228 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
229 		   1472, 1664, 0, 768, 771, 778, 798, 0,
230 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
231 	/* 1280x768@75Hz */
232 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
233 		   1488, 1696, 0, 768, 771, 778, 805, 0,
234 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
235 	/* 1280x768@85Hz */
236 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
237 		   1496, 1712, 0, 768, 771, 778, 809, 0,
238 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
239 	/* 1280x768@120Hz RB */
240 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
241 		   1360, 1440, 0, 768, 771, 778, 813, 0,
242 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
243 	/* 1280x800@60Hz RB */
244 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
245 		   1360, 1440, 0, 800, 803, 809, 823, 0,
246 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
247 	/* 1280x800@60Hz */
248 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
249 		   1480, 1680, 0, 800, 803, 809, 831, 0,
250 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
251 	/* 1280x800@75Hz */
252 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
253 		   1488, 1696, 0, 800, 803, 809, 838, 0,
254 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
255 	/* 1280x800@85Hz */
256 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
257 		   1496, 1712, 0, 800, 803, 809, 843, 0,
258 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
259 	/* 1280x800@120Hz RB */
260 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
261 		   1360, 1440, 0, 800, 803, 809, 847, 0,
262 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
263 	/* 1280x960@60Hz */
264 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
265 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
266 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
267 	/* 1280x960@85Hz */
268 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
269 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
270 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
271 	/* 1280x960@120Hz RB */
272 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
273 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
274 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
275 	/* 1280x1024@60Hz */
276 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
277 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
278 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
279 	/* 1280x1024@75Hz */
280 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
281 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
282 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
283 	/* 1280x1024@85Hz */
284 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
285 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
286 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
287 	/* 1280x1024@120Hz RB */
288 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
289 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
290 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
291 	/* 1360x768@60Hz */
292 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
293 		   1536, 1792, 0, 768, 771, 777, 795, 0,
294 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
295 	/* 1360x768@120Hz RB */
296 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
297 		   1440, 1520, 0, 768, 771, 776, 813, 0,
298 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
299 	/* 1400x1050@60Hz RB */
300 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
301 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
302 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
303 	/* 1400x1050@60Hz */
304 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
305 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
306 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
307 	/* 1400x1050@75Hz */
308 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
309 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
310 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
311 	/* 1400x1050@85Hz */
312 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
313 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
314 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
315 	/* 1400x1050@120Hz RB */
316 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
317 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
318 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
319 	/* 1440x900@60Hz RB */
320 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
321 		   1520, 1600, 0, 900, 903, 909, 926, 0,
322 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
323 	/* 1440x900@60Hz */
324 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
325 		   1672, 1904, 0, 900, 903, 909, 934, 0,
326 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
327 	/* 1440x900@75Hz */
328 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
329 		   1688, 1936, 0, 900, 903, 909, 942, 0,
330 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
331 	/* 1440x900@85Hz */
332 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
333 		   1696, 1952, 0, 900, 903, 909, 948, 0,
334 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
335 	/* 1440x900@120Hz RB */
336 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
337 		   1520, 1600, 0, 900, 903, 909, 953, 0,
338 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
339 	/* 1600x1200@60Hz */
340 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
341 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
342 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
343 	/* 1600x1200@65Hz */
344 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
345 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
346 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
347 	/* 1600x1200@70Hz */
348 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
349 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
350 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
351 	/* 1600x1200@75Hz */
352 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
353 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
354 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
355 	/* 1600x1200@85Hz */
356 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
357 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
358 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
359 	/* 1600x1200@120Hz RB */
360 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
361 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
362 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
363 	/* 1680x1050@60Hz RB */
364 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
365 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
366 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
367 	/* 1680x1050@60Hz */
368 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
369 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
370 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
371 	/* 1680x1050@75Hz */
372 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
373 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
374 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
375 	/* 1680x1050@85Hz */
376 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
377 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
378 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
379 	/* 1680x1050@120Hz RB */
380 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
381 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
382 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
383 	/* 1792x1344@60Hz */
384 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
385 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
386 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
387 	/* 1792x1344@75Hz */
388 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
389 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
390 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
391 	/* 1792x1344@120Hz RB */
392 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
393 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
394 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
395 	/* 1856x1392@60Hz */
396 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
397 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
398 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
399 	/* 1856x1392@75Hz */
400 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
401 		   2208, 2560, 0, 1392, 1395, 1399, 1500, 0,
402 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
403 	/* 1856x1392@120Hz RB */
404 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
405 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
406 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
407 	/* 1920x1200@60Hz RB */
408 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
409 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
410 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
411 	/* 1920x1200@60Hz */
412 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
413 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
414 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
415 	/* 1920x1200@75Hz */
416 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
417 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
418 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
419 	/* 1920x1200@85Hz */
420 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
421 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
422 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
423 	/* 1920x1200@120Hz RB */
424 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
425 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
426 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
427 	/* 1920x1440@60Hz */
428 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
429 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
430 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
431 	/* 1920x1440@75Hz */
432 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
433 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
434 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
435 	/* 1920x1440@120Hz RB */
436 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
437 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
438 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
439 	/* 2560x1600@60Hz RB */
440 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
441 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
442 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
443 	/* 2560x1600@60Hz */
444 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
445 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
446 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
447 	/* 2560x1600@75HZ */
448 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
449 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
450 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
451 	/* 2560x1600@85HZ */
452 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
453 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
454 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
455 	/* 2560x1600@120Hz RB */
456 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
457 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
458 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
459 };
460 
461 /*
462  * These more or less come from the DMT spec.  The 720x400 modes are
463  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
464  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
465  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
466  * mode.
467  *
468  * The DMT modes have been fact-checked; the rest are mild guesses.
469  */
470 static const struct drm_display_mode edid_est_modes[] = {
471 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
472 		   968, 1056, 0, 600, 601, 605, 628, 0,
473 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
474 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
475 		   896, 1024, 0, 600, 601, 603,  625, 0,
476 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
477 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
478 		   720, 840, 0, 480, 481, 484, 500, 0,
479 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
480 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
481 		   704,  832, 0, 480, 489, 491, 520, 0,
482 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
483 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
484 		   768,  864, 0, 480, 483, 486, 525, 0,
485 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
486 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25200, 640, 656,
487 		   752, 800, 0, 480, 490, 492, 525, 0,
488 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
489 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
490 		   846, 900, 0, 400, 421, 423,  449, 0,
491 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
492 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
493 		   846,  900, 0, 400, 412, 414, 449, 0,
494 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
495 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
496 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
497 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
498 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78800, 1024, 1040,
499 		   1136, 1312, 0,  768, 769, 772, 800, 0,
500 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
501 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
502 		   1184, 1328, 0,  768, 771, 777, 806, 0,
503 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
504 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
505 		   1184, 1344, 0,  768, 771, 777, 806, 0,
506 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
507 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
508 		   1208, 1264, 0, 768, 768, 776, 817, 0,
509 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
510 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
511 		   928, 1152, 0, 624, 625, 628, 667, 0,
512 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
513 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
514 		   896, 1056, 0, 600, 601, 604,  625, 0,
515 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
516 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
517 		   976, 1040, 0, 600, 637, 643, 666, 0,
518 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
519 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
520 		   1344, 1600, 0,  864, 865, 868, 900, 0,
521 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
522 };
523 
524 struct minimode {
525 	short w;
526 	short h;
527 	short r;
528 	short rb;
529 };
530 
531 static const struct minimode est3_modes[] = {
532 	/* byte 6 */
533 	{ 640, 350, 85, 0 },
534 	{ 640, 400, 85, 0 },
535 	{ 720, 400, 85, 0 },
536 	{ 640, 480, 85, 0 },
537 	{ 848, 480, 60, 0 },
538 	{ 800, 600, 85, 0 },
539 	{ 1024, 768, 85, 0 },
540 	{ 1152, 864, 75, 0 },
541 	/* byte 7 */
542 	{ 1280, 768, 60, 1 },
543 	{ 1280, 768, 60, 0 },
544 	{ 1280, 768, 75, 0 },
545 	{ 1280, 768, 85, 0 },
546 	{ 1280, 960, 60, 0 },
547 	{ 1280, 960, 85, 0 },
548 	{ 1280, 1024, 60, 0 },
549 	{ 1280, 1024, 85, 0 },
550 	/* byte 8 */
551 	{ 1360, 768, 60, 0 },
552 	{ 1440, 900, 60, 1 },
553 	{ 1440, 900, 60, 0 },
554 	{ 1440, 900, 75, 0 },
555 	{ 1440, 900, 85, 0 },
556 	{ 1400, 1050, 60, 1 },
557 	{ 1400, 1050, 60, 0 },
558 	{ 1400, 1050, 75, 0 },
559 	/* byte 9 */
560 	{ 1400, 1050, 85, 0 },
561 	{ 1680, 1050, 60, 1 },
562 	{ 1680, 1050, 60, 0 },
563 	{ 1680, 1050, 75, 0 },
564 	{ 1680, 1050, 85, 0 },
565 	{ 1600, 1200, 60, 0 },
566 	{ 1600, 1200, 65, 0 },
567 	{ 1600, 1200, 70, 0 },
568 	/* byte 10 */
569 	{ 1600, 1200, 75, 0 },
570 	{ 1600, 1200, 85, 0 },
571 	{ 1792, 1344, 60, 0 },
572 	{ 1792, 1344, 75, 0 },
573 	{ 1856, 1392, 60, 0 },
574 	{ 1856, 1392, 75, 0 },
575 	{ 1920, 1200, 60, 1 },
576 	{ 1920, 1200, 60, 0 },
577 	/* byte 11 */
578 	{ 1920, 1200, 75, 0 },
579 	{ 1920, 1200, 85, 0 },
580 	{ 1920, 1440, 60, 0 },
581 	{ 1920, 1440, 75, 0 },
582 };
583 
584 static const struct minimode extra_modes[] = {
585 	{ 1024, 576,  60, 0 },
586 	{ 1366, 768,  60, 0 },
587 	{ 1600, 900,  60, 0 },
588 	{ 1680, 945,  60, 0 },
589 	{ 1920, 1080, 60, 0 },
590 	{ 2048, 1152, 60, 0 },
591 	{ 2048, 1536, 60, 0 },
592 };
593 
594 /*
595  * Probably taken from CEA-861 spec.
596  * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
597  */
598 static const struct drm_display_mode edid_cea_modes[] = {
599 	/* 1 - 640x480@60Hz */
600 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
601 		   752, 800, 0, 480, 490, 492, 525, 0,
602 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
603 	  .vrefresh = 60, },
604 	/* 2 - 720x480@60Hz */
605 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
606 		   798, 858, 0, 480, 489, 495, 525, 0,
607 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
608 	  .vrefresh = 60, },
609 	/* 3 - 720x480@60Hz */
610 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
611 		   798, 858, 0, 480, 489, 495, 525, 0,
612 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
613 	  .vrefresh = 60, },
614 	/* 4 - 1280x720@60Hz */
615 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
616 		   1430, 1650, 0, 720, 725, 730, 750, 0,
617 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
618 	  .vrefresh = 60, },
619 	/* 5 - 1920x1080i@60Hz */
620 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
621 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
622 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
623 			DRM_MODE_FLAG_INTERLACE),
624 	  .vrefresh = 60, },
625 	/* 6 - 1440x480i@60Hz */
626 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
627 		   1602, 1716, 0, 480, 488, 494, 525, 0,
628 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
629 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
630 	  .vrefresh = 60, },
631 	/* 7 - 1440x480i@60Hz */
632 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
633 		   1602, 1716, 0, 480, 488, 494, 525, 0,
634 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
635 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
636 	  .vrefresh = 60, },
637 	/* 8 - 1440x240@60Hz */
638 	{ DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
639 		   1602, 1716, 0, 240, 244, 247, 262, 0,
640 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
641 			DRM_MODE_FLAG_DBLCLK),
642 	  .vrefresh = 60, },
643 	/* 9 - 1440x240@60Hz */
644 	{ DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
645 		   1602, 1716, 0, 240, 244, 247, 262, 0,
646 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
647 			DRM_MODE_FLAG_DBLCLK),
648 	  .vrefresh = 60, },
649 	/* 10 - 2880x480i@60Hz */
650 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
651 		   3204, 3432, 0, 480, 488, 494, 525, 0,
652 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
653 			DRM_MODE_FLAG_INTERLACE),
654 	  .vrefresh = 60, },
655 	/* 11 - 2880x480i@60Hz */
656 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
657 		   3204, 3432, 0, 480, 488, 494, 525, 0,
658 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
659 			DRM_MODE_FLAG_INTERLACE),
660 	  .vrefresh = 60, },
661 	/* 12 - 2880x240@60Hz */
662 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
663 		   3204, 3432, 0, 240, 244, 247, 262, 0,
664 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
665 	  .vrefresh = 60, },
666 	/* 13 - 2880x240@60Hz */
667 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
668 		   3204, 3432, 0, 240, 244, 247, 262, 0,
669 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
670 	  .vrefresh = 60, },
671 	/* 14 - 1440x480@60Hz */
672 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
673 		   1596, 1716, 0, 480, 489, 495, 525, 0,
674 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
675 	  .vrefresh = 60, },
676 	/* 15 - 1440x480@60Hz */
677 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
678 		   1596, 1716, 0, 480, 489, 495, 525, 0,
679 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
680 	  .vrefresh = 60, },
681 	/* 16 - 1920x1080@60Hz */
682 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
683 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
684 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
685 	  .vrefresh = 60, },
686 	/* 17 - 720x576@50Hz */
687 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
688 		   796, 864, 0, 576, 581, 586, 625, 0,
689 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
690 	  .vrefresh = 50, },
691 	/* 18 - 720x576@50Hz */
692 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
693 		   796, 864, 0, 576, 581, 586, 625, 0,
694 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
695 	  .vrefresh = 50, },
696 	/* 19 - 1280x720@50Hz */
697 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
698 		   1760, 1980, 0, 720, 725, 730, 750, 0,
699 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
700 	  .vrefresh = 50, },
701 	/* 20 - 1920x1080i@50Hz */
702 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
703 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
704 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
705 			DRM_MODE_FLAG_INTERLACE),
706 	  .vrefresh = 50, },
707 	/* 21 - 1440x576i@50Hz */
708 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
709 		   1590, 1728, 0, 576, 580, 586, 625, 0,
710 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
711 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
712 	  .vrefresh = 50, },
713 	/* 22 - 1440x576i@50Hz */
714 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
715 		   1590, 1728, 0, 576, 580, 586, 625, 0,
716 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
717 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
718 	  .vrefresh = 50, },
719 	/* 23 - 1440x288@50Hz */
720 	{ DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
721 		   1590, 1728, 0, 288, 290, 293, 312, 0,
722 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
723 			DRM_MODE_FLAG_DBLCLK),
724 	  .vrefresh = 50, },
725 	/* 24 - 1440x288@50Hz */
726 	{ DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
727 		   1590, 1728, 0, 288, 290, 293, 312, 0,
728 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
729 			DRM_MODE_FLAG_DBLCLK),
730 	  .vrefresh = 50, },
731 	/* 25 - 2880x576i@50Hz */
732 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
733 		   3180, 3456, 0, 576, 580, 586, 625, 0,
734 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
735 			DRM_MODE_FLAG_INTERLACE),
736 	  .vrefresh = 50, },
737 	/* 26 - 2880x576i@50Hz */
738 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
739 		   3180, 3456, 0, 576, 580, 586, 625, 0,
740 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
741 			DRM_MODE_FLAG_INTERLACE),
742 	  .vrefresh = 50, },
743 	/* 27 - 2880x288@50Hz */
744 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
745 		   3180, 3456, 0, 288, 290, 293, 312, 0,
746 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
747 	  .vrefresh = 50, },
748 	/* 28 - 2880x288@50Hz */
749 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
750 		   3180, 3456, 0, 288, 290, 293, 312, 0,
751 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
752 	  .vrefresh = 50, },
753 	/* 29 - 1440x576@50Hz */
754 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
755 		   1592, 1728, 0, 576, 581, 586, 625, 0,
756 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
757 	  .vrefresh = 50, },
758 	/* 30 - 1440x576@50Hz */
759 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
760 		   1592, 1728, 0, 576, 581, 586, 625, 0,
761 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
762 	  .vrefresh = 50, },
763 	/* 31 - 1920x1080@50Hz */
764 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
765 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
766 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
767 	  .vrefresh = 50, },
768 	/* 32 - 1920x1080@24Hz */
769 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
770 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
771 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
772 	  .vrefresh = 24, },
773 	/* 33 - 1920x1080@25Hz */
774 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
775 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
776 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
777 	  .vrefresh = 25, },
778 	/* 34 - 1920x1080@30Hz */
779 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
780 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
781 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
782 	  .vrefresh = 30, },
783 	/* 35 - 2880x480@60Hz */
784 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
785 		   3192, 3432, 0, 480, 489, 495, 525, 0,
786 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
787 	  .vrefresh = 60, },
788 	/* 36 - 2880x480@60Hz */
789 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
790 		   3192, 3432, 0, 480, 489, 495, 525, 0,
791 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
792 	  .vrefresh = 60, },
793 	/* 37 - 2880x576@50Hz */
794 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
795 		   3184, 3456, 0, 576, 581, 586, 625, 0,
796 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
797 	  .vrefresh = 50, },
798 	/* 38 - 2880x576@50Hz */
799 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
800 		   3184, 3456, 0, 576, 581, 586, 625, 0,
801 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
802 	  .vrefresh = 50, },
803 	/* 39 - 1920x1080i@50Hz */
804 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
805 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
806 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
807 			DRM_MODE_FLAG_INTERLACE),
808 	  .vrefresh = 50, },
809 	/* 40 - 1920x1080i@100Hz */
810 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
811 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
812 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
813 			DRM_MODE_FLAG_INTERLACE),
814 	  .vrefresh = 100, },
815 	/* 41 - 1280x720@100Hz */
816 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
817 		   1760, 1980, 0, 720, 725, 730, 750, 0,
818 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
819 	  .vrefresh = 100, },
820 	/* 42 - 720x576@100Hz */
821 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
822 		   796, 864, 0, 576, 581, 586, 625, 0,
823 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
824 	  .vrefresh = 100, },
825 	/* 43 - 720x576@100Hz */
826 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
827 		   796, 864, 0, 576, 581, 586, 625, 0,
828 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
829 	  .vrefresh = 100, },
830 	/* 44 - 1440x576i@100Hz */
831 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
832 		   1590, 1728, 0, 576, 580, 586, 625, 0,
833 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
834 			DRM_MODE_FLAG_DBLCLK),
835 	  .vrefresh = 100, },
836 	/* 45 - 1440x576i@100Hz */
837 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
838 		   1590, 1728, 0, 576, 580, 586, 625, 0,
839 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
840 			DRM_MODE_FLAG_DBLCLK),
841 	  .vrefresh = 100, },
842 	/* 46 - 1920x1080i@120Hz */
843 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
844 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
845 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
846 			DRM_MODE_FLAG_INTERLACE),
847 	  .vrefresh = 120, },
848 	/* 47 - 1280x720@120Hz */
849 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
850 		   1430, 1650, 0, 720, 725, 730, 750, 0,
851 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
852 	  .vrefresh = 120, },
853 	/* 48 - 720x480@120Hz */
854 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
855 		   798, 858, 0, 480, 489, 495, 525, 0,
856 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
857 	  .vrefresh = 120, },
858 	/* 49 - 720x480@120Hz */
859 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
860 		   798, 858, 0, 480, 489, 495, 525, 0,
861 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
862 	  .vrefresh = 120, },
863 	/* 50 - 1440x480i@120Hz */
864 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
865 		   1602, 1716, 0, 480, 488, 494, 525, 0,
866 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
867 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
868 	  .vrefresh = 120, },
869 	/* 51 - 1440x480i@120Hz */
870 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
871 		   1602, 1716, 0, 480, 488, 494, 525, 0,
872 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
873 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
874 	  .vrefresh = 120, },
875 	/* 52 - 720x576@200Hz */
876 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
877 		   796, 864, 0, 576, 581, 586, 625, 0,
878 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
879 	  .vrefresh = 200, },
880 	/* 53 - 720x576@200Hz */
881 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
882 		   796, 864, 0, 576, 581, 586, 625, 0,
883 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
884 	  .vrefresh = 200, },
885 	/* 54 - 1440x576i@200Hz */
886 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
887 		   1590, 1728, 0, 576, 580, 586, 625, 0,
888 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
889 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
890 	  .vrefresh = 200, },
891 	/* 55 - 1440x576i@200Hz */
892 	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
893 		   1590, 1728, 0, 576, 580, 586, 625, 0,
894 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
895 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
896 	  .vrefresh = 200, },
897 	/* 56 - 720x480@240Hz */
898 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
899 		   798, 858, 0, 480, 489, 495, 525, 0,
900 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
901 	  .vrefresh = 240, },
902 	/* 57 - 720x480@240Hz */
903 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
904 		   798, 858, 0, 480, 489, 495, 525, 0,
905 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
906 	  .vrefresh = 240, },
907 	/* 58 - 1440x480i@240 */
908 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
909 		   1602, 1716, 0, 480, 488, 494, 525, 0,
910 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
911 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
912 	  .vrefresh = 240, },
913 	/* 59 - 1440x480i@240 */
914 	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
915 		   1602, 1716, 0, 480, 488, 494, 525, 0,
916 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
917 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
918 	  .vrefresh = 240, },
919 	/* 60 - 1280x720@24Hz */
920 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
921 		   3080, 3300, 0, 720, 725, 730, 750, 0,
922 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
923 	  .vrefresh = 24, },
924 	/* 61 - 1280x720@25Hz */
925 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
926 		   3740, 3960, 0, 720, 725, 730, 750, 0,
927 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
928 	  .vrefresh = 25, },
929 	/* 62 - 1280x720@30Hz */
930 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
931 		   3080, 3300, 0, 720, 725, 730, 750, 0,
932 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
933 	  .vrefresh = 30, },
934 	/* 63 - 1920x1080@120Hz */
935 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
936 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
937 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
938 	 .vrefresh = 120, },
939 	/* 64 - 1920x1080@100Hz */
940 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
941 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
942 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
943 	 .vrefresh = 100, },
944 };
945 
946 /*
947  * HDMI 1.4 4k modes.
948  */
949 static const struct drm_display_mode edid_4k_modes[] = {
950 	/* 1 - 3840x2160@30Hz */
951 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
952 		   3840, 4016, 4104, 4400, 0,
953 		   2160, 2168, 2178, 2250, 0,
954 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
955 	  .vrefresh = 30, },
956 	/* 2 - 3840x2160@25Hz */
957 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
958 		   3840, 4896, 4984, 5280, 0,
959 		   2160, 2168, 2178, 2250, 0,
960 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
961 	  .vrefresh = 25, },
962 	/* 3 - 3840x2160@24Hz */
963 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
964 		   3840, 5116, 5204, 5500, 0,
965 		   2160, 2168, 2178, 2250, 0,
966 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
967 	  .vrefresh = 24, },
968 	/* 4 - 4096x2160@24Hz (SMPTE) */
969 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
970 		   4096, 5116, 5204, 5500, 0,
971 		   2160, 2168, 2178, 2250, 0,
972 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
973 	  .vrefresh = 24, },
974 };
975 
976 /*** DDC fetch and block validation ***/
977 
978 static const u8 edid_header[] = {
979 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
980 };
981 
982  /*
983  * Sanity check the header of the base EDID block.  Return 8 if the header
984  * is perfect, down to 0 if it's totally wrong.
985  */
986 int drm_edid_header_is_valid(const u8 *raw_edid)
987 {
988 	int i, score = 0;
989 
990 	for (i = 0; i < sizeof(edid_header); i++)
991 		if (raw_edid[i] == edid_header[i])
992 			score++;
993 
994 	return score;
995 }
996 EXPORT_SYMBOL(drm_edid_header_is_valid);
997 
998 static int edid_fixup __read_mostly = 6;
999 module_param_named(edid_fixup, edid_fixup, int, 0400);
1000 MODULE_PARM_DESC(edid_fixup,
1001 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1002 
1003 /*
1004  * Sanity check the EDID block (base or extension).  Return 0 if the block
1005  * doesn't check out, or 1 if it's valid.
1006  */
1007 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid)
1008 {
1009 	int i;
1010 	u8 csum = 0;
1011 	struct edid *edid = (struct edid *)raw_edid;
1012 
1013 	if (WARN_ON(!raw_edid))
1014 		return false;
1015 
1016 	if (edid_fixup > 8 || edid_fixup < 0)
1017 		edid_fixup = 6;
1018 
1019 	if (block == 0) {
1020 		int score = drm_edid_header_is_valid(raw_edid);
1021 		if (score == 8) ;
1022 		else if (score >= edid_fixup) {
1023 			DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1024 			memcpy(raw_edid, edid_header, sizeof(edid_header));
1025 		} else {
1026 			goto bad;
1027 		}
1028 	}
1029 
1030 	for (i = 0; i < EDID_LENGTH; i++)
1031 		csum += raw_edid[i];
1032 	if (csum) {
1033 		if (print_bad_edid) {
1034 			DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
1035 		}
1036 
1037 		/* allow CEA to slide through, switches mangle this */
1038 		if (raw_edid[0] != 0x02)
1039 			goto bad;
1040 	}
1041 
1042 	/* per-block-type checks */
1043 	switch (raw_edid[0]) {
1044 	case 0: /* base */
1045 		if (edid->version != 1) {
1046 			DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
1047 			goto bad;
1048 		}
1049 
1050 		if (edid->revision > 4)
1051 			DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1052 		break;
1053 
1054 	default:
1055 		break;
1056 	}
1057 
1058 	return true;
1059 
1060 bad:
1061 	if (print_bad_edid) {
1062 		printk(KERN_ERR "Raw EDID:\n");
1063 		print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
1064 			       raw_edid, EDID_LENGTH, false);
1065 	}
1066 	return false;
1067 }
1068 EXPORT_SYMBOL(drm_edid_block_valid);
1069 
1070 /**
1071  * drm_edid_is_valid - sanity check EDID data
1072  * @edid: EDID data
1073  *
1074  * Sanity-check an entire EDID record (including extensions)
1075  */
1076 bool drm_edid_is_valid(struct edid *edid)
1077 {
1078 	int i;
1079 	u8 *raw = (u8 *)edid;
1080 
1081 	if (!edid)
1082 		return false;
1083 
1084 	for (i = 0; i <= edid->extensions; i++)
1085 		if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true))
1086 			return false;
1087 
1088 	return true;
1089 }
1090 EXPORT_SYMBOL(drm_edid_is_valid);
1091 
1092 #define DDC_SEGMENT_ADDR 0x30
1093 /**
1094  * Get EDID information via I2C.
1095  *
1096  * \param adapter : i2c device adaptor
1097  * \param buf     : EDID data buffer to be filled
1098  * \param len     : EDID data buffer length
1099  * \return 0 on success or -1 on failure.
1100  *
1101  * Try to fetch EDID information by calling i2c driver function.
1102  */
1103 static int
1104 drm_do_probe_ddc_edid(struct i2c_adapter *adapter, unsigned char *buf,
1105 		      int block, int len)
1106 {
1107 	unsigned char start = block * EDID_LENGTH;
1108 	unsigned char segment = block >> 1;
1109 	unsigned char xfers = segment ? 3 : 2;
1110 	int ret, retries = 5;
1111 
1112 	/* The core i2c driver will automatically retry the transfer if the
1113 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
1114 	 * are susceptible to errors under a heavily loaded machine and
1115 	 * generate spurious NAKs and timeouts. Retrying the transfer
1116 	 * of the individual block a few times seems to overcome this.
1117 	 */
1118 	do {
1119 		struct i2c_msg msgs[] = {
1120 			{
1121 				.addr	= DDC_SEGMENT_ADDR,
1122 				.flags	= 0,
1123 				.len	= 1,
1124 				.buf	= &segment,
1125 			}, {
1126 				.addr	= DDC_ADDR,
1127 				.flags	= 0,
1128 				.len	= 1,
1129 				.buf	= &start,
1130 			}, {
1131 				.addr	= DDC_ADDR,
1132 				.flags	= I2C_M_RD,
1133 				.len	= len,
1134 				.buf	= buf,
1135 			}
1136 		};
1137 
1138 	/*
1139 	 * Avoid sending the segment addr to not upset non-compliant ddc
1140 	 * monitors.
1141 	 */
1142 		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1143 
1144 		if (ret == -ENXIO) {
1145 			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1146 					adapter->name);
1147 			break;
1148 		}
1149 	} while (ret != xfers && --retries);
1150 
1151 	return ret == xfers ? 0 : -1;
1152 }
1153 
1154 static bool drm_edid_is_zero(u8 *in_edid, int length)
1155 {
1156 	if (memchr_inv(in_edid, 0, length))
1157 		return false;
1158 
1159 	return true;
1160 }
1161 
1162 static u8 *
1163 drm_do_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
1164 {
1165 	int i, j = 0, valid_extensions = 0;
1166 	u8 *block, *new;
1167 	bool print_bad_edid = !connector->bad_edid_counter || (drm_debug & DRM_UT_KMS);
1168 
1169 	if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1170 		return NULL;
1171 
1172 	/* base block fetch */
1173 	for (i = 0; i < 4; i++) {
1174 		if (drm_do_probe_ddc_edid(adapter, block, 0, EDID_LENGTH))
1175 			goto out;
1176 		if (drm_edid_block_valid(block, 0, print_bad_edid))
1177 			break;
1178 		if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
1179 			connector->null_edid_counter++;
1180 			goto carp;
1181 		}
1182 	}
1183 	if (i == 4)
1184 		goto carp;
1185 
1186 	/* if there's no extensions, we're done */
1187 	if (block[0x7e] == 0)
1188 		return block;
1189 
1190 	new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
1191 	if (!new)
1192 		goto out;
1193 	block = new;
1194 
1195 	for (j = 1; j <= block[0x7e]; j++) {
1196 		for (i = 0; i < 4; i++) {
1197 			if (drm_do_probe_ddc_edid(adapter,
1198 				  block + (valid_extensions + 1) * EDID_LENGTH,
1199 				  j, EDID_LENGTH))
1200 				goto out;
1201 			if (drm_edid_block_valid(block + (valid_extensions + 1) * EDID_LENGTH, j, print_bad_edid)) {
1202 				valid_extensions++;
1203 				break;
1204 			}
1205 		}
1206 
1207 		if (i == 4 && print_bad_edid) {
1208 			dev_warn(connector->dev->dev,
1209 			 "%s: Ignoring invalid EDID block %d.\n",
1210 			 drm_get_connector_name(connector), j);
1211 
1212 			connector->bad_edid_counter++;
1213 		}
1214 	}
1215 
1216 	if (valid_extensions != block[0x7e]) {
1217 		block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1218 		block[0x7e] = valid_extensions;
1219 		new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1220 		if (!new)
1221 			goto out;
1222 		block = new;
1223 	}
1224 
1225 	return block;
1226 
1227 carp:
1228 	if (print_bad_edid) {
1229 		dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
1230 			 drm_get_connector_name(connector), j);
1231 	}
1232 	connector->bad_edid_counter++;
1233 
1234 out:
1235 	kfree(block);
1236 	return NULL;
1237 }
1238 
1239 /**
1240  * Probe DDC presence.
1241  *
1242  * \param adapter : i2c device adaptor
1243  * \return 1 on success
1244  */
1245 bool
1246 drm_probe_ddc(struct i2c_adapter *adapter)
1247 {
1248 	unsigned char out;
1249 
1250 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1251 }
1252 EXPORT_SYMBOL(drm_probe_ddc);
1253 
1254 /**
1255  * drm_get_edid - get EDID data, if available
1256  * @connector: connector we're probing
1257  * @adapter: i2c adapter to use for DDC
1258  *
1259  * Poke the given i2c channel to grab EDID data if possible.  If found,
1260  * attach it to the connector.
1261  *
1262  * Return edid data or NULL if we couldn't find any.
1263  */
1264 struct edid *drm_get_edid(struct drm_connector *connector,
1265 			  struct i2c_adapter *adapter)
1266 {
1267 	struct edid *edid = NULL;
1268 
1269 	if (drm_probe_ddc(adapter))
1270 		edid = (struct edid *)drm_do_get_edid(connector, adapter);
1271 
1272 	return edid;
1273 }
1274 EXPORT_SYMBOL(drm_get_edid);
1275 
1276 /**
1277  * drm_edid_duplicate - duplicate an EDID and the extensions
1278  * @edid: EDID to duplicate
1279  *
1280  * Return duplicate edid or NULL on allocation failure.
1281  */
1282 struct edid *drm_edid_duplicate(const struct edid *edid)
1283 {
1284 	return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1285 }
1286 EXPORT_SYMBOL(drm_edid_duplicate);
1287 
1288 /*** EDID parsing ***/
1289 
1290 /**
1291  * edid_vendor - match a string against EDID's obfuscated vendor field
1292  * @edid: EDID to match
1293  * @vendor: vendor string
1294  *
1295  * Returns true if @vendor is in @edid, false otherwise
1296  */
1297 static bool edid_vendor(struct edid *edid, char *vendor)
1298 {
1299 	char edid_vendor[3];
1300 
1301 	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1302 	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1303 			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1304 	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1305 
1306 	return !strncmp(edid_vendor, vendor, 3);
1307 }
1308 
1309 /**
1310  * edid_get_quirks - return quirk flags for a given EDID
1311  * @edid: EDID to process
1312  *
1313  * This tells subsequent routines what fixes they need to apply.
1314  */
1315 static u32 edid_get_quirks(struct edid *edid)
1316 {
1317 	struct edid_quirk *quirk;
1318 	int i;
1319 
1320 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1321 		quirk = &edid_quirk_list[i];
1322 
1323 		if (edid_vendor(edid, quirk->vendor) &&
1324 		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
1325 			return quirk->quirks;
1326 	}
1327 
1328 	return 0;
1329 }
1330 
1331 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1332 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1333 
1334 /**
1335  * edid_fixup_preferred - set preferred modes based on quirk list
1336  * @connector: has mode list to fix up
1337  * @quirks: quirks list
1338  *
1339  * Walk the mode list for @connector, clearing the preferred status
1340  * on existing modes and setting it anew for the right mode ala @quirks.
1341  */
1342 static void edid_fixup_preferred(struct drm_connector *connector,
1343 				 u32 quirks)
1344 {
1345 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
1346 	int target_refresh = 0;
1347 	int cur_vrefresh, preferred_vrefresh;
1348 
1349 	if (list_empty(&connector->probed_modes))
1350 		return;
1351 
1352 	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1353 		target_refresh = 60;
1354 	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1355 		target_refresh = 75;
1356 
1357 	preferred_mode = list_first_entry(&connector->probed_modes,
1358 					  struct drm_display_mode, head);
1359 
1360 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1361 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1362 
1363 		if (cur_mode == preferred_mode)
1364 			continue;
1365 
1366 		/* Largest mode is preferred */
1367 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1368 			preferred_mode = cur_mode;
1369 
1370 		cur_vrefresh = cur_mode->vrefresh ?
1371 			cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1372 		preferred_vrefresh = preferred_mode->vrefresh ?
1373 			preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1374 		/* At a given size, try to get closest to target refresh */
1375 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1376 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1377 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1378 			preferred_mode = cur_mode;
1379 		}
1380 	}
1381 
1382 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1383 }
1384 
1385 static bool
1386 mode_is_rb(const struct drm_display_mode *mode)
1387 {
1388 	return (mode->htotal - mode->hdisplay == 160) &&
1389 	       (mode->hsync_end - mode->hdisplay == 80) &&
1390 	       (mode->hsync_end - mode->hsync_start == 32) &&
1391 	       (mode->vsync_start - mode->vdisplay == 3);
1392 }
1393 
1394 /*
1395  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1396  * @dev: Device to duplicate against
1397  * @hsize: Mode width
1398  * @vsize: Mode height
1399  * @fresh: Mode refresh rate
1400  * @rb: Mode reduced-blanking-ness
1401  *
1402  * Walk the DMT mode list looking for a match for the given parameters.
1403  * Return a newly allocated copy of the mode, or NULL if not found.
1404  */
1405 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1406 					   int hsize, int vsize, int fresh,
1407 					   bool rb)
1408 {
1409 	int i;
1410 
1411 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1412 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1413 		if (hsize != ptr->hdisplay)
1414 			continue;
1415 		if (vsize != ptr->vdisplay)
1416 			continue;
1417 		if (fresh != drm_mode_vrefresh(ptr))
1418 			continue;
1419 		if (rb != mode_is_rb(ptr))
1420 			continue;
1421 
1422 		return drm_mode_duplicate(dev, ptr);
1423 	}
1424 
1425 	return NULL;
1426 }
1427 EXPORT_SYMBOL(drm_mode_find_dmt);
1428 
1429 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1430 
1431 static void
1432 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1433 {
1434 	int i, n = 0;
1435 	u8 d = ext[0x02];
1436 	u8 *det_base = ext + d;
1437 
1438 	n = (127 - d) / 18;
1439 	for (i = 0; i < n; i++)
1440 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1441 }
1442 
1443 static void
1444 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1445 {
1446 	unsigned int i, n = min((int)ext[0x02], 6);
1447 	u8 *det_base = ext + 5;
1448 
1449 	if (ext[0x01] != 1)
1450 		return; /* unknown version */
1451 
1452 	for (i = 0; i < n; i++)
1453 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1454 }
1455 
1456 static void
1457 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1458 {
1459 	int i;
1460 	struct edid *edid = (struct edid *)raw_edid;
1461 
1462 	if (edid == NULL)
1463 		return;
1464 
1465 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1466 		cb(&(edid->detailed_timings[i]), closure);
1467 
1468 	for (i = 1; i <= raw_edid[0x7e]; i++) {
1469 		u8 *ext = raw_edid + (i * EDID_LENGTH);
1470 		switch (*ext) {
1471 		case CEA_EXT:
1472 			cea_for_each_detailed_block(ext, cb, closure);
1473 			break;
1474 		case VTB_EXT:
1475 			vtb_for_each_detailed_block(ext, cb, closure);
1476 			break;
1477 		default:
1478 			break;
1479 		}
1480 	}
1481 }
1482 
1483 static void
1484 is_rb(struct detailed_timing *t, void *data)
1485 {
1486 	u8 *r = (u8 *)t;
1487 	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1488 		if (r[15] & 0x10)
1489 			*(bool *)data = true;
1490 }
1491 
1492 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
1493 static bool
1494 drm_monitor_supports_rb(struct edid *edid)
1495 {
1496 	if (edid->revision >= 4) {
1497 		bool ret = false;
1498 		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1499 		return ret;
1500 	}
1501 
1502 	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1503 }
1504 
1505 static void
1506 find_gtf2(struct detailed_timing *t, void *data)
1507 {
1508 	u8 *r = (u8 *)t;
1509 	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1510 		*(u8 **)data = r;
1511 }
1512 
1513 /* Secondary GTF curve kicks in above some break frequency */
1514 static int
1515 drm_gtf2_hbreak(struct edid *edid)
1516 {
1517 	u8 *r = NULL;
1518 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1519 	return r ? (r[12] * 2) : 0;
1520 }
1521 
1522 static int
1523 drm_gtf2_2c(struct edid *edid)
1524 {
1525 	u8 *r = NULL;
1526 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1527 	return r ? r[13] : 0;
1528 }
1529 
1530 static int
1531 drm_gtf2_m(struct edid *edid)
1532 {
1533 	u8 *r = NULL;
1534 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1535 	return r ? (r[15] << 8) + r[14] : 0;
1536 }
1537 
1538 static int
1539 drm_gtf2_k(struct edid *edid)
1540 {
1541 	u8 *r = NULL;
1542 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1543 	return r ? r[16] : 0;
1544 }
1545 
1546 static int
1547 drm_gtf2_2j(struct edid *edid)
1548 {
1549 	u8 *r = NULL;
1550 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1551 	return r ? r[17] : 0;
1552 }
1553 
1554 /**
1555  * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1556  * @edid: EDID block to scan
1557  */
1558 static int standard_timing_level(struct edid *edid)
1559 {
1560 	if (edid->revision >= 2) {
1561 		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1562 			return LEVEL_CVT;
1563 		if (drm_gtf2_hbreak(edid))
1564 			return LEVEL_GTF2;
1565 		return LEVEL_GTF;
1566 	}
1567 	return LEVEL_DMT;
1568 }
1569 
1570 /*
1571  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
1572  * monitors fill with ascii space (0x20) instead.
1573  */
1574 static int
1575 bad_std_timing(u8 a, u8 b)
1576 {
1577 	return (a == 0x00 && b == 0x00) ||
1578 	       (a == 0x01 && b == 0x01) ||
1579 	       (a == 0x20 && b == 0x20);
1580 }
1581 
1582 /**
1583  * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1584  * @t: standard timing params
1585  * @timing_level: standard timing level
1586  *
1587  * Take the standard timing params (in this case width, aspect, and refresh)
1588  * and convert them into a real mode using CVT/GTF/DMT.
1589  */
1590 static struct drm_display_mode *
1591 drm_mode_std(struct drm_connector *connector, struct edid *edid,
1592 	     struct std_timing *t, int revision)
1593 {
1594 	struct drm_device *dev = connector->dev;
1595 	struct drm_display_mode *m, *mode = NULL;
1596 	int hsize, vsize;
1597 	int vrefresh_rate;
1598 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1599 		>> EDID_TIMING_ASPECT_SHIFT;
1600 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1601 		>> EDID_TIMING_VFREQ_SHIFT;
1602 	int timing_level = standard_timing_level(edid);
1603 
1604 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
1605 		return NULL;
1606 
1607 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1608 	hsize = t->hsize * 8 + 248;
1609 	/* vrefresh_rate = vfreq + 60 */
1610 	vrefresh_rate = vfreq + 60;
1611 	/* the vdisplay is calculated based on the aspect ratio */
1612 	if (aspect_ratio == 0) {
1613 		if (revision < 3)
1614 			vsize = hsize;
1615 		else
1616 			vsize = (hsize * 10) / 16;
1617 	} else if (aspect_ratio == 1)
1618 		vsize = (hsize * 3) / 4;
1619 	else if (aspect_ratio == 2)
1620 		vsize = (hsize * 4) / 5;
1621 	else
1622 		vsize = (hsize * 9) / 16;
1623 
1624 	/* HDTV hack, part 1 */
1625 	if (vrefresh_rate == 60 &&
1626 	    ((hsize == 1360 && vsize == 765) ||
1627 	     (hsize == 1368 && vsize == 769))) {
1628 		hsize = 1366;
1629 		vsize = 768;
1630 	}
1631 
1632 	/*
1633 	 * If this connector already has a mode for this size and refresh
1634 	 * rate (because it came from detailed or CVT info), use that
1635 	 * instead.  This way we don't have to guess at interlace or
1636 	 * reduced blanking.
1637 	 */
1638 	list_for_each_entry(m, &connector->probed_modes, head)
1639 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
1640 		    drm_mode_vrefresh(m) == vrefresh_rate)
1641 			return NULL;
1642 
1643 	/* HDTV hack, part 2 */
1644 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1645 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1646 				    false);
1647 		mode->hdisplay = 1366;
1648 		mode->hsync_start = mode->hsync_start - 1;
1649 		mode->hsync_end = mode->hsync_end - 1;
1650 		return mode;
1651 	}
1652 
1653 	/* check whether it can be found in default mode table */
1654 	if (drm_monitor_supports_rb(edid)) {
1655 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1656 					 true);
1657 		if (mode)
1658 			return mode;
1659 	}
1660 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1661 	if (mode)
1662 		return mode;
1663 
1664 	/* okay, generate it */
1665 	switch (timing_level) {
1666 	case LEVEL_DMT:
1667 		break;
1668 	case LEVEL_GTF:
1669 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1670 		break;
1671 	case LEVEL_GTF2:
1672 		/*
1673 		 * This is potentially wrong if there's ever a monitor with
1674 		 * more than one ranges section, each claiming a different
1675 		 * secondary GTF curve.  Please don't do that.
1676 		 */
1677 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1678 		if (!mode)
1679 			return NULL;
1680 		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1681 			drm_mode_destroy(dev, mode);
1682 			mode = drm_gtf_mode_complex(dev, hsize, vsize,
1683 						    vrefresh_rate, 0, 0,
1684 						    drm_gtf2_m(edid),
1685 						    drm_gtf2_2c(edid),
1686 						    drm_gtf2_k(edid),
1687 						    drm_gtf2_2j(edid));
1688 		}
1689 		break;
1690 	case LEVEL_CVT:
1691 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1692 				    false);
1693 		break;
1694 	}
1695 	return mode;
1696 }
1697 
1698 /*
1699  * EDID is delightfully ambiguous about how interlaced modes are to be
1700  * encoded.  Our internal representation is of frame height, but some
1701  * HDTV detailed timings are encoded as field height.
1702  *
1703  * The format list here is from CEA, in frame size.  Technically we
1704  * should be checking refresh rate too.  Whatever.
1705  */
1706 static void
1707 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1708 			    struct detailed_pixel_timing *pt)
1709 {
1710 	int i;
1711 	static const struct {
1712 		int w, h;
1713 	} cea_interlaced[] = {
1714 		{ 1920, 1080 },
1715 		{  720,  480 },
1716 		{ 1440,  480 },
1717 		{ 2880,  480 },
1718 		{  720,  576 },
1719 		{ 1440,  576 },
1720 		{ 2880,  576 },
1721 	};
1722 
1723 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1724 		return;
1725 
1726 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1727 		if ((mode->hdisplay == cea_interlaced[i].w) &&
1728 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
1729 			mode->vdisplay *= 2;
1730 			mode->vsync_start *= 2;
1731 			mode->vsync_end *= 2;
1732 			mode->vtotal *= 2;
1733 			mode->vtotal |= 1;
1734 		}
1735 	}
1736 
1737 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
1738 }
1739 
1740 /**
1741  * drm_mode_detailed - create a new mode from an EDID detailed timing section
1742  * @dev: DRM device (needed to create new mode)
1743  * @edid: EDID block
1744  * @timing: EDID detailed timing info
1745  * @quirks: quirks to apply
1746  *
1747  * An EDID detailed timing block contains enough info for us to create and
1748  * return a new struct drm_display_mode.
1749  */
1750 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1751 						  struct edid *edid,
1752 						  struct detailed_timing *timing,
1753 						  u32 quirks)
1754 {
1755 	struct drm_display_mode *mode;
1756 	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1757 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1758 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1759 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1760 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1761 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1762 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1763 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1764 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1765 
1766 	/* ignore tiny modes */
1767 	if (hactive < 64 || vactive < 64)
1768 		return NULL;
1769 
1770 	if (pt->misc & DRM_EDID_PT_STEREO) {
1771 		DRM_DEBUG_KMS("stereo mode not supported\n");
1772 		return NULL;
1773 	}
1774 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1775 		DRM_DEBUG_KMS("composite sync not supported\n");
1776 	}
1777 
1778 	/* it is incorrect if hsync/vsync width is zero */
1779 	if (!hsync_pulse_width || !vsync_pulse_width) {
1780 		DRM_DEBUG_KMS("Incorrect Detailed timing. "
1781 				"Wrong Hsync/Vsync pulse width\n");
1782 		return NULL;
1783 	}
1784 
1785 	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1786 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1787 		if (!mode)
1788 			return NULL;
1789 
1790 		goto set_size;
1791 	}
1792 
1793 	mode = drm_mode_create(dev);
1794 	if (!mode)
1795 		return NULL;
1796 
1797 	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1798 		timing->pixel_clock = cpu_to_le16(1088);
1799 
1800 	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1801 
1802 	mode->hdisplay = hactive;
1803 	mode->hsync_start = mode->hdisplay + hsync_offset;
1804 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1805 	mode->htotal = mode->hdisplay + hblank;
1806 
1807 	mode->vdisplay = vactive;
1808 	mode->vsync_start = mode->vdisplay + vsync_offset;
1809 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1810 	mode->vtotal = mode->vdisplay + vblank;
1811 
1812 	/* Some EDIDs have bogus h/vtotal values */
1813 	if (mode->hsync_end > mode->htotal)
1814 		mode->htotal = mode->hsync_end + 1;
1815 	if (mode->vsync_end > mode->vtotal)
1816 		mode->vtotal = mode->vsync_end + 1;
1817 
1818 	drm_mode_do_interlace_quirk(mode, pt);
1819 
1820 	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
1821 		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
1822 	}
1823 
1824 	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
1825 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1826 	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
1827 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1828 
1829 set_size:
1830 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
1831 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
1832 
1833 	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
1834 		mode->width_mm *= 10;
1835 		mode->height_mm *= 10;
1836 	}
1837 
1838 	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
1839 		mode->width_mm = edid->width_cm * 10;
1840 		mode->height_mm = edid->height_cm * 10;
1841 	}
1842 
1843 	mode->type = DRM_MODE_TYPE_DRIVER;
1844 	mode->vrefresh = drm_mode_vrefresh(mode);
1845 	drm_mode_set_name(mode);
1846 
1847 	return mode;
1848 }
1849 
1850 static bool
1851 mode_in_hsync_range(const struct drm_display_mode *mode,
1852 		    struct edid *edid, u8 *t)
1853 {
1854 	int hsync, hmin, hmax;
1855 
1856 	hmin = t[7];
1857 	if (edid->revision >= 4)
1858 	    hmin += ((t[4] & 0x04) ? 255 : 0);
1859 	hmax = t[8];
1860 	if (edid->revision >= 4)
1861 	    hmax += ((t[4] & 0x08) ? 255 : 0);
1862 	hsync = drm_mode_hsync(mode);
1863 
1864 	return (hsync <= hmax && hsync >= hmin);
1865 }
1866 
1867 static bool
1868 mode_in_vsync_range(const struct drm_display_mode *mode,
1869 		    struct edid *edid, u8 *t)
1870 {
1871 	int vsync, vmin, vmax;
1872 
1873 	vmin = t[5];
1874 	if (edid->revision >= 4)
1875 	    vmin += ((t[4] & 0x01) ? 255 : 0);
1876 	vmax = t[6];
1877 	if (edid->revision >= 4)
1878 	    vmax += ((t[4] & 0x02) ? 255 : 0);
1879 	vsync = drm_mode_vrefresh(mode);
1880 
1881 	return (vsync <= vmax && vsync >= vmin);
1882 }
1883 
1884 static u32
1885 range_pixel_clock(struct edid *edid, u8 *t)
1886 {
1887 	/* unspecified */
1888 	if (t[9] == 0 || t[9] == 255)
1889 		return 0;
1890 
1891 	/* 1.4 with CVT support gives us real precision, yay */
1892 	if (edid->revision >= 4 && t[10] == 0x04)
1893 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
1894 
1895 	/* 1.3 is pathetic, so fuzz up a bit */
1896 	return t[9] * 10000 + 5001;
1897 }
1898 
1899 static bool
1900 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
1901 	      struct detailed_timing *timing)
1902 {
1903 	u32 max_clock;
1904 	u8 *t = (u8 *)timing;
1905 
1906 	if (!mode_in_hsync_range(mode, edid, t))
1907 		return false;
1908 
1909 	if (!mode_in_vsync_range(mode, edid, t))
1910 		return false;
1911 
1912 	if ((max_clock = range_pixel_clock(edid, t)))
1913 		if (mode->clock > max_clock)
1914 			return false;
1915 
1916 	/* 1.4 max horizontal check */
1917 	if (edid->revision >= 4 && t[10] == 0x04)
1918 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
1919 			return false;
1920 
1921 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
1922 		return false;
1923 
1924 	return true;
1925 }
1926 
1927 static bool valid_inferred_mode(const struct drm_connector *connector,
1928 				const struct drm_display_mode *mode)
1929 {
1930 	struct drm_display_mode *m;
1931 	bool ok = false;
1932 
1933 	list_for_each_entry(m, &connector->probed_modes, head) {
1934 		if (mode->hdisplay == m->hdisplay &&
1935 		    mode->vdisplay == m->vdisplay &&
1936 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
1937 			return false; /* duplicated */
1938 		if (mode->hdisplay <= m->hdisplay &&
1939 		    mode->vdisplay <= m->vdisplay)
1940 			ok = true;
1941 	}
1942 	return ok;
1943 }
1944 
1945 static int
1946 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
1947 			struct detailed_timing *timing)
1948 {
1949 	int i, modes = 0;
1950 	struct drm_display_mode *newmode;
1951 	struct drm_device *dev = connector->dev;
1952 
1953 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1954 		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
1955 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
1956 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
1957 			if (newmode) {
1958 				drm_mode_probed_add(connector, newmode);
1959 				modes++;
1960 			}
1961 		}
1962 	}
1963 
1964 	return modes;
1965 }
1966 
1967 /* fix up 1366x768 mode from 1368x768;
1968  * GFT/CVT can't express 1366 width which isn't dividable by 8
1969  */
1970 static void fixup_mode_1366x768(struct drm_display_mode *mode)
1971 {
1972 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
1973 		mode->hdisplay = 1366;
1974 		mode->hsync_start--;
1975 		mode->hsync_end--;
1976 		drm_mode_set_name(mode);
1977 	}
1978 }
1979 
1980 static int
1981 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
1982 			struct detailed_timing *timing)
1983 {
1984 	int i, modes = 0;
1985 	struct drm_display_mode *newmode;
1986 	struct drm_device *dev = connector->dev;
1987 
1988 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
1989 		const struct minimode *m = &extra_modes[i];
1990 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
1991 		if (!newmode)
1992 			return modes;
1993 
1994 		fixup_mode_1366x768(newmode);
1995 		if (!mode_in_range(newmode, edid, timing) ||
1996 		    !valid_inferred_mode(connector, newmode)) {
1997 			drm_mode_destroy(dev, newmode);
1998 			continue;
1999 		}
2000 
2001 		drm_mode_probed_add(connector, newmode);
2002 		modes++;
2003 	}
2004 
2005 	return modes;
2006 }
2007 
2008 static int
2009 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2010 			struct detailed_timing *timing)
2011 {
2012 	int i, modes = 0;
2013 	struct drm_display_mode *newmode;
2014 	struct drm_device *dev = connector->dev;
2015 	bool rb = drm_monitor_supports_rb(edid);
2016 
2017 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2018 		const struct minimode *m = &extra_modes[i];
2019 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2020 		if (!newmode)
2021 			return modes;
2022 
2023 		fixup_mode_1366x768(newmode);
2024 		if (!mode_in_range(newmode, edid, timing) ||
2025 		    !valid_inferred_mode(connector, newmode)) {
2026 			drm_mode_destroy(dev, newmode);
2027 			continue;
2028 		}
2029 
2030 		drm_mode_probed_add(connector, newmode);
2031 		modes++;
2032 	}
2033 
2034 	return modes;
2035 }
2036 
2037 static void
2038 do_inferred_modes(struct detailed_timing *timing, void *c)
2039 {
2040 	struct detailed_mode_closure *closure = c;
2041 	struct detailed_non_pixel *data = &timing->data.other_data;
2042 	struct detailed_data_monitor_range *range = &data->data.range;
2043 
2044 	if (data->type != EDID_DETAIL_MONITOR_RANGE)
2045 		return;
2046 
2047 	closure->modes += drm_dmt_modes_for_range(closure->connector,
2048 						  closure->edid,
2049 						  timing);
2050 
2051 	if (!version_greater(closure->edid, 1, 1))
2052 		return; /* GTF not defined yet */
2053 
2054 	switch (range->flags) {
2055 	case 0x02: /* secondary gtf, XXX could do more */
2056 	case 0x00: /* default gtf */
2057 		closure->modes += drm_gtf_modes_for_range(closure->connector,
2058 							  closure->edid,
2059 							  timing);
2060 		break;
2061 	case 0x04: /* cvt, only in 1.4+ */
2062 		if (!version_greater(closure->edid, 1, 3))
2063 			break;
2064 
2065 		closure->modes += drm_cvt_modes_for_range(closure->connector,
2066 							  closure->edid,
2067 							  timing);
2068 		break;
2069 	case 0x01: /* just the ranges, no formula */
2070 	default:
2071 		break;
2072 	}
2073 }
2074 
2075 static int
2076 add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2077 {
2078 	struct detailed_mode_closure closure = {
2079 		connector, edid, 0, 0, 0
2080 	};
2081 
2082 	if (version_greater(edid, 1, 0))
2083 		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2084 					    &closure);
2085 
2086 	return closure.modes;
2087 }
2088 
2089 static int
2090 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2091 {
2092 	int i, j, m, modes = 0;
2093 	struct drm_display_mode *mode;
2094 	u8 *est = ((u8 *)timing) + 5;
2095 
2096 	for (i = 0; i < 6; i++) {
2097 		for (j = 7; j >= 0; j--) {
2098 			m = (i * 8) + (7 - j);
2099 			if (m >= ARRAY_SIZE(est3_modes))
2100 				break;
2101 			if (est[i] & (1 << j)) {
2102 				mode = drm_mode_find_dmt(connector->dev,
2103 							 est3_modes[m].w,
2104 							 est3_modes[m].h,
2105 							 est3_modes[m].r,
2106 							 est3_modes[m].rb);
2107 				if (mode) {
2108 					drm_mode_probed_add(connector, mode);
2109 					modes++;
2110 				}
2111 			}
2112 		}
2113 	}
2114 
2115 	return modes;
2116 }
2117 
2118 static void
2119 do_established_modes(struct detailed_timing *timing, void *c)
2120 {
2121 	struct detailed_mode_closure *closure = c;
2122 	struct detailed_non_pixel *data = &timing->data.other_data;
2123 
2124 	if (data->type == EDID_DETAIL_EST_TIMINGS)
2125 		closure->modes += drm_est3_modes(closure->connector, timing);
2126 }
2127 
2128 /**
2129  * add_established_modes - get est. modes from EDID and add them
2130  * @edid: EDID block to scan
2131  *
2132  * Each EDID block contains a bitmap of the supported "established modes" list
2133  * (defined above).  Tease them out and add them to the global modes list.
2134  */
2135 static int
2136 add_established_modes(struct drm_connector *connector, struct edid *edid)
2137 {
2138 	struct drm_device *dev = connector->dev;
2139 	unsigned long est_bits = edid->established_timings.t1 |
2140 		(edid->established_timings.t2 << 8) |
2141 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
2142 	int i, modes = 0;
2143 	struct detailed_mode_closure closure = {
2144 		connector, edid, 0, 0, 0
2145 	};
2146 
2147 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2148 		if (est_bits & (1<<i)) {
2149 			struct drm_display_mode *newmode;
2150 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2151 			if (newmode) {
2152 				drm_mode_probed_add(connector, newmode);
2153 				modes++;
2154 			}
2155 		}
2156 	}
2157 
2158 	if (version_greater(edid, 1, 0))
2159 		    drm_for_each_detailed_block((u8 *)edid,
2160 						do_established_modes, &closure);
2161 
2162 	return modes + closure.modes;
2163 }
2164 
2165 static void
2166 do_standard_modes(struct detailed_timing *timing, void *c)
2167 {
2168 	struct detailed_mode_closure *closure = c;
2169 	struct detailed_non_pixel *data = &timing->data.other_data;
2170 	struct drm_connector *connector = closure->connector;
2171 	struct edid *edid = closure->edid;
2172 
2173 	if (data->type == EDID_DETAIL_STD_MODES) {
2174 		int i;
2175 		for (i = 0; i < 6; i++) {
2176 			struct std_timing *std;
2177 			struct drm_display_mode *newmode;
2178 
2179 			std = &data->data.timings[i];
2180 			newmode = drm_mode_std(connector, edid, std,
2181 					       edid->revision);
2182 			if (newmode) {
2183 				drm_mode_probed_add(connector, newmode);
2184 				closure->modes++;
2185 			}
2186 		}
2187 	}
2188 }
2189 
2190 /**
2191  * add_standard_modes - get std. modes from EDID and add them
2192  * @edid: EDID block to scan
2193  *
2194  * Standard modes can be calculated using the appropriate standard (DMT,
2195  * GTF or CVT. Grab them from @edid and add them to the list.
2196  */
2197 static int
2198 add_standard_modes(struct drm_connector *connector, struct edid *edid)
2199 {
2200 	int i, modes = 0;
2201 	struct detailed_mode_closure closure = {
2202 		connector, edid, 0, 0, 0
2203 	};
2204 
2205 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
2206 		struct drm_display_mode *newmode;
2207 
2208 		newmode = drm_mode_std(connector, edid,
2209 				       &edid->standard_timings[i],
2210 				       edid->revision);
2211 		if (newmode) {
2212 			drm_mode_probed_add(connector, newmode);
2213 			modes++;
2214 		}
2215 	}
2216 
2217 	if (version_greater(edid, 1, 0))
2218 		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2219 					    &closure);
2220 
2221 	/* XXX should also look for standard codes in VTB blocks */
2222 
2223 	return modes + closure.modes;
2224 }
2225 
2226 static int drm_cvt_modes(struct drm_connector *connector,
2227 			 struct detailed_timing *timing)
2228 {
2229 	int i, j, modes = 0;
2230 	struct drm_display_mode *newmode;
2231 	struct drm_device *dev = connector->dev;
2232 	struct cvt_timing *cvt;
2233 	const int rates[] = { 60, 85, 75, 60, 50 };
2234 	const u8 empty[3] = { 0, 0, 0 };
2235 
2236 	for (i = 0; i < 4; i++) {
2237 		int uninitialized_var(width), height;
2238 		cvt = &(timing->data.other_data.data.cvt[i]);
2239 
2240 		if (!memcmp(cvt->code, empty, 3))
2241 			continue;
2242 
2243 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2244 		switch (cvt->code[1] & 0x0c) {
2245 		case 0x00:
2246 			width = height * 4 / 3;
2247 			break;
2248 		case 0x04:
2249 			width = height * 16 / 9;
2250 			break;
2251 		case 0x08:
2252 			width = height * 16 / 10;
2253 			break;
2254 		case 0x0c:
2255 			width = height * 15 / 9;
2256 			break;
2257 		}
2258 
2259 		for (j = 1; j < 5; j++) {
2260 			if (cvt->code[2] & (1 << j)) {
2261 				newmode = drm_cvt_mode(dev, width, height,
2262 						       rates[j], j == 0,
2263 						       false, false);
2264 				if (newmode) {
2265 					drm_mode_probed_add(connector, newmode);
2266 					modes++;
2267 				}
2268 			}
2269 		}
2270 	}
2271 
2272 	return modes;
2273 }
2274 
2275 static void
2276 do_cvt_mode(struct detailed_timing *timing, void *c)
2277 {
2278 	struct detailed_mode_closure *closure = c;
2279 	struct detailed_non_pixel *data = &timing->data.other_data;
2280 
2281 	if (data->type == EDID_DETAIL_CVT_3BYTE)
2282 		closure->modes += drm_cvt_modes(closure->connector, timing);
2283 }
2284 
2285 static int
2286 add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2287 {
2288 	struct detailed_mode_closure closure = {
2289 		connector, edid, 0, 0, 0
2290 	};
2291 
2292 	if (version_greater(edid, 1, 2))
2293 		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2294 
2295 	/* XXX should also look for CVT codes in VTB blocks */
2296 
2297 	return closure.modes;
2298 }
2299 
2300 static void
2301 do_detailed_mode(struct detailed_timing *timing, void *c)
2302 {
2303 	struct detailed_mode_closure *closure = c;
2304 	struct drm_display_mode *newmode;
2305 
2306 	if (timing->pixel_clock) {
2307 		newmode = drm_mode_detailed(closure->connector->dev,
2308 					    closure->edid, timing,
2309 					    closure->quirks);
2310 		if (!newmode)
2311 			return;
2312 
2313 		if (closure->preferred)
2314 			newmode->type |= DRM_MODE_TYPE_PREFERRED;
2315 
2316 		drm_mode_probed_add(closure->connector, newmode);
2317 		closure->modes++;
2318 		closure->preferred = 0;
2319 	}
2320 }
2321 
2322 /*
2323  * add_detailed_modes - Add modes from detailed timings
2324  * @connector: attached connector
2325  * @edid: EDID block to scan
2326  * @quirks: quirks to apply
2327  */
2328 static int
2329 add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2330 		   u32 quirks)
2331 {
2332 	struct detailed_mode_closure closure = {
2333 		connector,
2334 		edid,
2335 		1,
2336 		quirks,
2337 		0
2338 	};
2339 
2340 	if (closure.preferred && !version_greater(edid, 1, 3))
2341 		closure.preferred =
2342 		    (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2343 
2344 	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2345 
2346 	return closure.modes;
2347 }
2348 
2349 #define AUDIO_BLOCK	0x01
2350 #define VIDEO_BLOCK     0x02
2351 #define VENDOR_BLOCK    0x03
2352 #define SPEAKER_BLOCK	0x04
2353 #define VIDEO_CAPABILITY_BLOCK	0x07
2354 #define EDID_BASIC_AUDIO	(1 << 6)
2355 #define EDID_CEA_YCRCB444	(1 << 5)
2356 #define EDID_CEA_YCRCB422	(1 << 4)
2357 #define EDID_CEA_VCDB_QS	(1 << 6)
2358 
2359 /*
2360  * Search EDID for CEA extension block.
2361  */
2362 static u8 *drm_find_cea_extension(struct edid *edid)
2363 {
2364 	u8 *edid_ext = NULL;
2365 	int i;
2366 
2367 	/* No EDID or EDID extensions */
2368 	if (edid == NULL || edid->extensions == 0)
2369 		return NULL;
2370 
2371 	/* Find CEA extension */
2372 	for (i = 0; i < edid->extensions; i++) {
2373 		edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2374 		if (edid_ext[0] == CEA_EXT)
2375 			break;
2376 	}
2377 
2378 	if (i == edid->extensions)
2379 		return NULL;
2380 
2381 	return edid_ext;
2382 }
2383 
2384 /*
2385  * Calculate the alternate clock for the CEA mode
2386  * (60Hz vs. 59.94Hz etc.)
2387  */
2388 static unsigned int
2389 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2390 {
2391 	unsigned int clock = cea_mode->clock;
2392 
2393 	if (cea_mode->vrefresh % 6 != 0)
2394 		return clock;
2395 
2396 	/*
2397 	 * edid_cea_modes contains the 59.94Hz
2398 	 * variant for 240 and 480 line modes,
2399 	 * and the 60Hz variant otherwise.
2400 	 */
2401 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2402 		clock = clock * 1001 / 1000;
2403 	else
2404 		clock = DIV_ROUND_UP(clock * 1000, 1001);
2405 
2406 	return clock;
2407 }
2408 
2409 /**
2410  * drm_match_cea_mode - look for a CEA mode matching given mode
2411  * @to_match: display mode
2412  *
2413  * Returns the CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2414  * mode.
2415  */
2416 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2417 {
2418 	u8 mode;
2419 
2420 	if (!to_match->clock)
2421 		return 0;
2422 
2423 	for (mode = 0; mode < ARRAY_SIZE(edid_cea_modes); mode++) {
2424 		const struct drm_display_mode *cea_mode = &edid_cea_modes[mode];
2425 		unsigned int clock1, clock2;
2426 
2427 		/* Check both 60Hz and 59.94Hz */
2428 		clock1 = cea_mode->clock;
2429 		clock2 = cea_mode_alternate_clock(cea_mode);
2430 
2431 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2432 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2433 		    drm_mode_equal_no_clocks_no_stereo(to_match, cea_mode))
2434 			return mode + 1;
2435 	}
2436 	return 0;
2437 }
2438 EXPORT_SYMBOL(drm_match_cea_mode);
2439 
2440 /*
2441  * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
2442  * specific block).
2443  *
2444  * It's almost like cea_mode_alternate_clock(), we just need to add an
2445  * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
2446  * one.
2447  */
2448 static unsigned int
2449 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
2450 {
2451 	if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
2452 		return hdmi_mode->clock;
2453 
2454 	return cea_mode_alternate_clock(hdmi_mode);
2455 }
2456 
2457 /*
2458  * drm_match_hdmi_mode - look for a HDMI mode matching given mode
2459  * @to_match: display mode
2460  *
2461  * An HDMI mode is one defined in the HDMI vendor specific block.
2462  *
2463  * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
2464  */
2465 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
2466 {
2467 	u8 mode;
2468 
2469 	if (!to_match->clock)
2470 		return 0;
2471 
2472 	for (mode = 0; mode < ARRAY_SIZE(edid_4k_modes); mode++) {
2473 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[mode];
2474 		unsigned int clock1, clock2;
2475 
2476 		/* Make sure to also match alternate clocks */
2477 		clock1 = hdmi_mode->clock;
2478 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2479 
2480 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2481 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2482 		    drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
2483 			return mode + 1;
2484 	}
2485 	return 0;
2486 }
2487 
2488 static int
2489 add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
2490 {
2491 	struct drm_device *dev = connector->dev;
2492 	struct drm_display_mode *mode, *tmp;
2493 	LIST_HEAD(list);
2494 	int modes = 0;
2495 
2496 	/* Don't add CEA modes if the CEA extension block is missing */
2497 	if (!drm_find_cea_extension(edid))
2498 		return 0;
2499 
2500 	/*
2501 	 * Go through all probed modes and create a new mode
2502 	 * with the alternate clock for certain CEA modes.
2503 	 */
2504 	list_for_each_entry(mode, &connector->probed_modes, head) {
2505 		const struct drm_display_mode *cea_mode = NULL;
2506 		struct drm_display_mode *newmode;
2507 		u8 mode_idx = drm_match_cea_mode(mode) - 1;
2508 		unsigned int clock1, clock2;
2509 
2510 		if (mode_idx < ARRAY_SIZE(edid_cea_modes)) {
2511 			cea_mode = &edid_cea_modes[mode_idx];
2512 			clock2 = cea_mode_alternate_clock(cea_mode);
2513 		} else {
2514 			mode_idx = drm_match_hdmi_mode(mode) - 1;
2515 			if (mode_idx < ARRAY_SIZE(edid_4k_modes)) {
2516 				cea_mode = &edid_4k_modes[mode_idx];
2517 				clock2 = hdmi_mode_alternate_clock(cea_mode);
2518 			}
2519 		}
2520 
2521 		if (!cea_mode)
2522 			continue;
2523 
2524 		clock1 = cea_mode->clock;
2525 
2526 		if (clock1 == clock2)
2527 			continue;
2528 
2529 		if (mode->clock != clock1 && mode->clock != clock2)
2530 			continue;
2531 
2532 		newmode = drm_mode_duplicate(dev, cea_mode);
2533 		if (!newmode)
2534 			continue;
2535 
2536 		/* Carry over the stereo flags */
2537 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
2538 
2539 		/*
2540 		 * The current mode could be either variant. Make
2541 		 * sure to pick the "other" clock for the new mode.
2542 		 */
2543 		if (mode->clock != clock1)
2544 			newmode->clock = clock1;
2545 		else
2546 			newmode->clock = clock2;
2547 
2548 		list_add_tail(&newmode->head, &list);
2549 	}
2550 
2551 	list_for_each_entry_safe(mode, tmp, &list, head) {
2552 		list_del(&mode->head);
2553 		drm_mode_probed_add(connector, mode);
2554 		modes++;
2555 	}
2556 
2557 	return modes;
2558 }
2559 
2560 static int
2561 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
2562 {
2563 	struct drm_device *dev = connector->dev;
2564 	const u8 *mode;
2565 	u8 cea_mode;
2566 	int modes = 0;
2567 
2568 	for (mode = db; mode < db + len; mode++) {
2569 		cea_mode = (*mode & 127) - 1; /* CEA modes are numbered 1..127 */
2570 		if (cea_mode < ARRAY_SIZE(edid_cea_modes)) {
2571 			struct drm_display_mode *newmode;
2572 			newmode = drm_mode_duplicate(dev,
2573 						     &edid_cea_modes[cea_mode]);
2574 			if (newmode) {
2575 				newmode->vrefresh = 0;
2576 				drm_mode_probed_add(connector, newmode);
2577 				modes++;
2578 			}
2579 		}
2580 	}
2581 
2582 	return modes;
2583 }
2584 
2585 struct stereo_mandatory_mode {
2586 	int width, height, vrefresh;
2587 	unsigned int flags;
2588 };
2589 
2590 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2591 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2592 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2593 	{ 1920, 1080, 50,
2594 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2595 	{ 1920, 1080, 60,
2596 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2597 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2598 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2599 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2600 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2601 };
2602 
2603 static bool
2604 stereo_match_mandatory(const struct drm_display_mode *mode,
2605 		       const struct stereo_mandatory_mode *stereo_mode)
2606 {
2607 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2608 
2609 	return mode->hdisplay == stereo_mode->width &&
2610 	       mode->vdisplay == stereo_mode->height &&
2611 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2612 	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
2613 }
2614 
2615 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
2616 {
2617 	struct drm_device *dev = connector->dev;
2618 	const struct drm_display_mode *mode;
2619 	struct list_head stereo_modes;
2620 	int modes = 0, i;
2621 
2622 	INIT_LIST_HEAD(&stereo_modes);
2623 
2624 	list_for_each_entry(mode, &connector->probed_modes, head) {
2625 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2626 			const struct stereo_mandatory_mode *mandatory;
2627 			struct drm_display_mode *new_mode;
2628 
2629 			if (!stereo_match_mandatory(mode,
2630 						    &stereo_mandatory_modes[i]))
2631 				continue;
2632 
2633 			mandatory = &stereo_mandatory_modes[i];
2634 			new_mode = drm_mode_duplicate(dev, mode);
2635 			if (!new_mode)
2636 				continue;
2637 
2638 			new_mode->flags |= mandatory->flags;
2639 			list_add_tail(&new_mode->head, &stereo_modes);
2640 			modes++;
2641 		}
2642 	}
2643 
2644 	list_splice_tail(&stereo_modes, &connector->probed_modes);
2645 
2646 	return modes;
2647 }
2648 
2649 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
2650 {
2651 	struct drm_device *dev = connector->dev;
2652 	struct drm_display_mode *newmode;
2653 
2654 	vic--; /* VICs start at 1 */
2655 	if (vic >= ARRAY_SIZE(edid_4k_modes)) {
2656 		DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
2657 		return 0;
2658 	}
2659 
2660 	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
2661 	if (!newmode)
2662 		return 0;
2663 
2664 	drm_mode_probed_add(connector, newmode);
2665 
2666 	return 1;
2667 }
2668 
2669 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
2670 			       const u8 *video_db, u8 video_len, u8 video_index)
2671 {
2672 	struct drm_device *dev = connector->dev;
2673 	struct drm_display_mode *newmode;
2674 	int modes = 0;
2675 	u8 cea_mode;
2676 
2677 	if (video_db == NULL || video_index >= video_len)
2678 		return 0;
2679 
2680 	/* CEA modes are numbered 1..127 */
2681 	cea_mode = (video_db[video_index] & 127) - 1;
2682 	if (cea_mode >= ARRAY_SIZE(edid_cea_modes))
2683 		return 0;
2684 
2685 	if (structure & (1 << 0)) {
2686 		newmode = drm_mode_duplicate(dev, &edid_cea_modes[cea_mode]);
2687 		if (newmode) {
2688 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
2689 			drm_mode_probed_add(connector, newmode);
2690 			modes++;
2691 		}
2692 	}
2693 	if (structure & (1 << 6)) {
2694 		newmode = drm_mode_duplicate(dev, &edid_cea_modes[cea_mode]);
2695 		if (newmode) {
2696 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2697 			drm_mode_probed_add(connector, newmode);
2698 			modes++;
2699 		}
2700 	}
2701 	if (structure & (1 << 8)) {
2702 		newmode = drm_mode_duplicate(dev, &edid_cea_modes[cea_mode]);
2703 		if (newmode) {
2704 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2705 			drm_mode_probed_add(connector, newmode);
2706 			modes++;
2707 		}
2708 	}
2709 
2710 	return modes;
2711 }
2712 
2713 /*
2714  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
2715  * @connector: connector corresponding to the HDMI sink
2716  * @db: start of the CEA vendor specific block
2717  * @len: length of the CEA block payload, ie. one can access up to db[len]
2718  *
2719  * Parses the HDMI VSDB looking for modes to add to @connector. This function
2720  * also adds the stereo 3d modes when applicable.
2721  */
2722 static int
2723 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
2724 		   const u8 *video_db, u8 video_len)
2725 {
2726 	int modes = 0, offset = 0, i, multi_present = 0;
2727 	u8 vic_len, hdmi_3d_len = 0;
2728 	u16 mask;
2729 	u16 structure_all;
2730 
2731 	if (len < 8)
2732 		goto out;
2733 
2734 	/* no HDMI_Video_Present */
2735 	if (!(db[8] & (1 << 5)))
2736 		goto out;
2737 
2738 	/* Latency_Fields_Present */
2739 	if (db[8] & (1 << 7))
2740 		offset += 2;
2741 
2742 	/* I_Latency_Fields_Present */
2743 	if (db[8] & (1 << 6))
2744 		offset += 2;
2745 
2746 	/* the declared length is not long enough for the 2 first bytes
2747 	 * of additional video format capabilities */
2748 	if (len < (8 + offset + 2))
2749 		goto out;
2750 
2751 	/* 3D_Present */
2752 	offset++;
2753 	if (db[8 + offset] & (1 << 7)) {
2754 		modes += add_hdmi_mandatory_stereo_modes(connector);
2755 
2756 		/* 3D_Multi_present */
2757 		multi_present = (db[8 + offset] & 0x60) >> 5;
2758 	}
2759 
2760 	offset++;
2761 	vic_len = db[8 + offset] >> 5;
2762 	hdmi_3d_len = db[8 + offset] & 0x1f;
2763 
2764 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
2765 		u8 vic;
2766 
2767 		vic = db[9 + offset + i];
2768 		modes += add_hdmi_mode(connector, vic);
2769 	}
2770 	offset += 1 + vic_len;
2771 
2772 	if (!(multi_present == 1 || multi_present == 2))
2773 		goto out;
2774 
2775 	if ((multi_present == 1 && len < (9 + offset)) ||
2776 	    (multi_present == 2 && len < (11 + offset)))
2777 		goto out;
2778 
2779 	if ((multi_present == 1 && hdmi_3d_len < 2) ||
2780 	    (multi_present == 2 && hdmi_3d_len < 4))
2781 		goto out;
2782 
2783 	/* 3D_Structure_ALL */
2784 	structure_all = (db[8 + offset] << 8) | db[9 + offset];
2785 
2786 	/* check if 3D_MASK is present */
2787 	if (multi_present == 2)
2788 		mask = (db[10 + offset] << 8) | db[11 + offset];
2789 	else
2790 		mask = 0xffff;
2791 
2792 	for (i = 0; i < 16; i++) {
2793 		if (mask & (1 << i))
2794 			modes += add_3d_struct_modes(connector,
2795 						     structure_all,
2796 						     video_db,
2797 						     video_len, i);
2798 	}
2799 
2800 out:
2801 	return modes;
2802 }
2803 
2804 static int
2805 cea_db_payload_len(const u8 *db)
2806 {
2807 	return db[0] & 0x1f;
2808 }
2809 
2810 static int
2811 cea_db_tag(const u8 *db)
2812 {
2813 	return db[0] >> 5;
2814 }
2815 
2816 static int
2817 cea_revision(const u8 *cea)
2818 {
2819 	return cea[1];
2820 }
2821 
2822 static int
2823 cea_db_offsets(const u8 *cea, int *start, int *end)
2824 {
2825 	/* Data block offset in CEA extension block */
2826 	*start = 4;
2827 	*end = cea[2];
2828 	if (*end == 0)
2829 		*end = 127;
2830 	if (*end < 4 || *end > 127)
2831 		return -ERANGE;
2832 	return 0;
2833 }
2834 
2835 static bool cea_db_is_hdmi_vsdb(const u8 *db)
2836 {
2837 	int hdmi_id;
2838 
2839 	if (cea_db_tag(db) != VENDOR_BLOCK)
2840 		return false;
2841 
2842 	if (cea_db_payload_len(db) < 5)
2843 		return false;
2844 
2845 	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
2846 
2847 	return hdmi_id == HDMI_IEEE_OUI;
2848 }
2849 
2850 #define for_each_cea_db(cea, i, start, end) \
2851 	for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
2852 
2853 static int
2854 add_cea_modes(struct drm_connector *connector, struct edid *edid)
2855 {
2856 	const u8 *cea = drm_find_cea_extension(edid);
2857 	const u8 *db, *hdmi = NULL, *video = NULL;
2858 	u8 dbl, hdmi_len, video_len = 0;
2859 	int modes = 0;
2860 
2861 	if (cea && cea_revision(cea) >= 3) {
2862 		int i, start, end;
2863 
2864 		if (cea_db_offsets(cea, &start, &end))
2865 			return 0;
2866 
2867 		for_each_cea_db(cea, i, start, end) {
2868 			db = &cea[i];
2869 			dbl = cea_db_payload_len(db);
2870 
2871 			if (cea_db_tag(db) == VIDEO_BLOCK) {
2872 				video = db + 1;
2873 				video_len = dbl;
2874 				modes += do_cea_modes(connector, video, dbl);
2875 			}
2876 			else if (cea_db_is_hdmi_vsdb(db)) {
2877 				hdmi = db;
2878 				hdmi_len = dbl;
2879 			}
2880 		}
2881 	}
2882 
2883 	/*
2884 	 * We parse the HDMI VSDB after having added the cea modes as we will
2885 	 * be patching their flags when the sink supports stereo 3D.
2886 	 */
2887 	if (hdmi)
2888 		modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
2889 					    video_len);
2890 
2891 	return modes;
2892 }
2893 
2894 static void
2895 parse_hdmi_vsdb(struct drm_connector *connector, const u8 *db)
2896 {
2897 	u8 len = cea_db_payload_len(db);
2898 
2899 	if (len >= 6) {
2900 		connector->eld[5] |= (db[6] >> 7) << 1;  /* Supports_AI */
2901 		connector->dvi_dual = db[6] & 1;
2902 	}
2903 	if (len >= 7)
2904 		connector->max_tmds_clock = db[7] * 5;
2905 	if (len >= 8) {
2906 		connector->latency_present[0] = db[8] >> 7;
2907 		connector->latency_present[1] = (db[8] >> 6) & 1;
2908 	}
2909 	if (len >= 9)
2910 		connector->video_latency[0] = db[9];
2911 	if (len >= 10)
2912 		connector->audio_latency[0] = db[10];
2913 	if (len >= 11)
2914 		connector->video_latency[1] = db[11];
2915 	if (len >= 12)
2916 		connector->audio_latency[1] = db[12];
2917 
2918 	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
2919 		    "max TMDS clock %d, "
2920 		    "latency present %d %d, "
2921 		    "video latency %d %d, "
2922 		    "audio latency %d %d\n",
2923 		    connector->dvi_dual,
2924 		    connector->max_tmds_clock,
2925 	      (int) connector->latency_present[0],
2926 	      (int) connector->latency_present[1],
2927 		    connector->video_latency[0],
2928 		    connector->video_latency[1],
2929 		    connector->audio_latency[0],
2930 		    connector->audio_latency[1]);
2931 }
2932 
2933 static void
2934 monitor_name(struct detailed_timing *t, void *data)
2935 {
2936 	if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
2937 		*(u8 **)data = t->data.other_data.data.str.str;
2938 }
2939 
2940 /**
2941  * drm_edid_to_eld - build ELD from EDID
2942  * @connector: connector corresponding to the HDMI/DP sink
2943  * @edid: EDID to parse
2944  *
2945  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver.
2946  * Some ELD fields are left to the graphics driver caller:
2947  * - Conn_Type
2948  * - HDCP
2949  * - Port_ID
2950  */
2951 void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
2952 {
2953 	uint8_t *eld = connector->eld;
2954 	u8 *cea;
2955 	u8 *name;
2956 	u8 *db;
2957 	int sad_count = 0;
2958 	int mnl;
2959 	int dbl;
2960 
2961 	memset(eld, 0, sizeof(connector->eld));
2962 
2963 	cea = drm_find_cea_extension(edid);
2964 	if (!cea) {
2965 		DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
2966 		return;
2967 	}
2968 
2969 	name = NULL;
2970 	drm_for_each_detailed_block((u8 *)edid, monitor_name, &name);
2971 	for (mnl = 0; name && mnl < 13; mnl++) {
2972 		if (name[mnl] == 0x0a)
2973 			break;
2974 		eld[20 + mnl] = name[mnl];
2975 	}
2976 	eld[4] = (cea[1] << 5) | mnl;
2977 	DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
2978 
2979 	eld[0] = 2 << 3;		/* ELD version: 2 */
2980 
2981 	eld[16] = edid->mfg_id[0];
2982 	eld[17] = edid->mfg_id[1];
2983 	eld[18] = edid->prod_code[0];
2984 	eld[19] = edid->prod_code[1];
2985 
2986 	if (cea_revision(cea) >= 3) {
2987 		int i, start, end;
2988 
2989 		if (cea_db_offsets(cea, &start, &end)) {
2990 			start = 0;
2991 			end = 0;
2992 		}
2993 
2994 		for_each_cea_db(cea, i, start, end) {
2995 			db = &cea[i];
2996 			dbl = cea_db_payload_len(db);
2997 
2998 			switch (cea_db_tag(db)) {
2999 			case AUDIO_BLOCK:
3000 				/* Audio Data Block, contains SADs */
3001 				sad_count = dbl / 3;
3002 				if (dbl >= 1)
3003 					memcpy(eld + 20 + mnl, &db[1], dbl);
3004 				break;
3005 			case SPEAKER_BLOCK:
3006 				/* Speaker Allocation Data Block */
3007 				if (dbl >= 1)
3008 					eld[7] = db[1];
3009 				break;
3010 			case VENDOR_BLOCK:
3011 				/* HDMI Vendor-Specific Data Block */
3012 				if (cea_db_is_hdmi_vsdb(db))
3013 					parse_hdmi_vsdb(connector, db);
3014 				break;
3015 			default:
3016 				break;
3017 			}
3018 		}
3019 	}
3020 	eld[5] |= sad_count << 4;
3021 	eld[2] = (20 + mnl + sad_count * 3 + 3) / 4;
3022 
3023 	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n", (int)eld[2], sad_count);
3024 }
3025 EXPORT_SYMBOL(drm_edid_to_eld);
3026 
3027 /**
3028  * drm_edid_to_sad - extracts SADs from EDID
3029  * @edid: EDID to parse
3030  * @sads: pointer that will be set to the extracted SADs
3031  *
3032  * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
3033  * Note: returned pointer needs to be kfreed
3034  *
3035  * Return number of found SADs or negative number on error.
3036  */
3037 int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
3038 {
3039 	int count = 0;
3040 	int i, start, end, dbl;
3041 	u8 *cea;
3042 
3043 	cea = drm_find_cea_extension(edid);
3044 	if (!cea) {
3045 		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3046 		return -ENOENT;
3047 	}
3048 
3049 	if (cea_revision(cea) < 3) {
3050 		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3051 		return -ENOTSUPP;
3052 	}
3053 
3054 	if (cea_db_offsets(cea, &start, &end)) {
3055 		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3056 		return -EPROTO;
3057 	}
3058 
3059 	for_each_cea_db(cea, i, start, end) {
3060 		u8 *db = &cea[i];
3061 
3062 		if (cea_db_tag(db) == AUDIO_BLOCK) {
3063 			int j;
3064 			dbl = cea_db_payload_len(db);
3065 
3066 			count = dbl / 3; /* SAD is 3B */
3067 			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
3068 			if (!*sads)
3069 				return -ENOMEM;
3070 			for (j = 0; j < count; j++) {
3071 				u8 *sad = &db[1 + j * 3];
3072 
3073 				(*sads)[j].format = (sad[0] & 0x78) >> 3;
3074 				(*sads)[j].channels = sad[0] & 0x7;
3075 				(*sads)[j].freq = sad[1] & 0x7F;
3076 				(*sads)[j].byte2 = sad[2];
3077 			}
3078 			break;
3079 		}
3080 	}
3081 
3082 	return count;
3083 }
3084 EXPORT_SYMBOL(drm_edid_to_sad);
3085 
3086 /**
3087  * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
3088  * @edid: EDID to parse
3089  * @sadb: pointer to the speaker block
3090  *
3091  * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
3092  * Note: returned pointer needs to be kfreed
3093  *
3094  * Return number of found Speaker Allocation Blocks or negative number on error.
3095  */
3096 int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
3097 {
3098 	int count = 0;
3099 	int i, start, end, dbl;
3100 	const u8 *cea;
3101 
3102 	cea = drm_find_cea_extension(edid);
3103 	if (!cea) {
3104 		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3105 		return -ENOENT;
3106 	}
3107 
3108 	if (cea_revision(cea) < 3) {
3109 		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3110 		return -ENOTSUPP;
3111 	}
3112 
3113 	if (cea_db_offsets(cea, &start, &end)) {
3114 		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3115 		return -EPROTO;
3116 	}
3117 
3118 	for_each_cea_db(cea, i, start, end) {
3119 		const u8 *db = &cea[i];
3120 
3121 		if (cea_db_tag(db) == SPEAKER_BLOCK) {
3122 			dbl = cea_db_payload_len(db);
3123 
3124 			/* Speaker Allocation Data Block */
3125 			if (dbl == 3) {
3126 				*sadb = kmalloc(dbl, GFP_KERNEL);
3127 				if (!*sadb)
3128 					return -ENOMEM;
3129 				memcpy(*sadb, &db[1], dbl);
3130 				count = dbl;
3131 				break;
3132 			}
3133 		}
3134 	}
3135 
3136 	return count;
3137 }
3138 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
3139 
3140 /**
3141  * drm_av_sync_delay - HDMI/DP sink audio-video sync delay in millisecond
3142  * @connector: connector associated with the HDMI/DP sink
3143  * @mode: the display mode
3144  */
3145 int drm_av_sync_delay(struct drm_connector *connector,
3146 		      struct drm_display_mode *mode)
3147 {
3148 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
3149 	int a, v;
3150 
3151 	if (!connector->latency_present[0])
3152 		return 0;
3153 	if (!connector->latency_present[1])
3154 		i = 0;
3155 
3156 	a = connector->audio_latency[i];
3157 	v = connector->video_latency[i];
3158 
3159 	/*
3160 	 * HDMI/DP sink doesn't support audio or video?
3161 	 */
3162 	if (a == 255 || v == 255)
3163 		return 0;
3164 
3165 	/*
3166 	 * Convert raw EDID values to millisecond.
3167 	 * Treat unknown latency as 0ms.
3168 	 */
3169 	if (a)
3170 		a = min(2 * (a - 1), 500);
3171 	if (v)
3172 		v = min(2 * (v - 1), 500);
3173 
3174 	return max(v - a, 0);
3175 }
3176 EXPORT_SYMBOL(drm_av_sync_delay);
3177 
3178 /**
3179  * drm_select_eld - select one ELD from multiple HDMI/DP sinks
3180  * @encoder: the encoder just changed display mode
3181  * @mode: the adjusted display mode
3182  *
3183  * It's possible for one encoder to be associated with multiple HDMI/DP sinks.
3184  * The policy is now hard coded to simply use the first HDMI/DP sink's ELD.
3185  */
3186 struct drm_connector *drm_select_eld(struct drm_encoder *encoder,
3187 				     struct drm_display_mode *mode)
3188 {
3189 	struct drm_connector *connector;
3190 	struct drm_device *dev = encoder->dev;
3191 
3192 	list_for_each_entry(connector, &dev->mode_config.connector_list, head)
3193 		if (connector->encoder == encoder && connector->eld[0])
3194 			return connector;
3195 
3196 	return NULL;
3197 }
3198 EXPORT_SYMBOL(drm_select_eld);
3199 
3200 /**
3201  * drm_detect_hdmi_monitor - detect whether monitor is hdmi.
3202  * @edid: monitor EDID information
3203  *
3204  * Parse the CEA extension according to CEA-861-B.
3205  * Return true if HDMI, false if not or unknown.
3206  */
3207 bool drm_detect_hdmi_monitor(struct edid *edid)
3208 {
3209 	u8 *edid_ext;
3210 	int i;
3211 	int start_offset, end_offset;
3212 
3213 	edid_ext = drm_find_cea_extension(edid);
3214 	if (!edid_ext)
3215 		return false;
3216 
3217 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3218 		return false;
3219 
3220 	/*
3221 	 * Because HDMI identifier is in Vendor Specific Block,
3222 	 * search it from all data blocks of CEA extension.
3223 	 */
3224 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3225 		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3226 			return true;
3227 	}
3228 
3229 	return false;
3230 }
3231 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
3232 
3233 /**
3234  * drm_detect_monitor_audio - check monitor audio capability
3235  *
3236  * Monitor should have CEA extension block.
3237  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3238  * audio' only. If there is any audio extension block and supported
3239  * audio format, assume at least 'basic audio' support, even if 'basic
3240  * audio' is not defined in EDID.
3241  *
3242  */
3243 bool drm_detect_monitor_audio(struct edid *edid)
3244 {
3245 	u8 *edid_ext;
3246 	int i, j;
3247 	bool has_audio = false;
3248 	int start_offset, end_offset;
3249 
3250 	edid_ext = drm_find_cea_extension(edid);
3251 	if (!edid_ext)
3252 		goto end;
3253 
3254 	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3255 
3256 	if (has_audio) {
3257 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
3258 		goto end;
3259 	}
3260 
3261 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3262 		goto end;
3263 
3264 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3265 		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3266 			has_audio = true;
3267 			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
3268 				DRM_DEBUG_KMS("CEA audio format %d\n",
3269 					      (edid_ext[i + j] >> 3) & 0xf);
3270 			goto end;
3271 		}
3272 	}
3273 end:
3274 	return has_audio;
3275 }
3276 EXPORT_SYMBOL(drm_detect_monitor_audio);
3277 
3278 /**
3279  * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
3280  *
3281  * Check whether the monitor reports the RGB quantization range selection
3282  * as supported. The AVI infoframe can then be used to inform the monitor
3283  * which quantization range (full or limited) is used.
3284  */
3285 bool drm_rgb_quant_range_selectable(struct edid *edid)
3286 {
3287 	u8 *edid_ext;
3288 	int i, start, end;
3289 
3290 	edid_ext = drm_find_cea_extension(edid);
3291 	if (!edid_ext)
3292 		return false;
3293 
3294 	if (cea_db_offsets(edid_ext, &start, &end))
3295 		return false;
3296 
3297 	for_each_cea_db(edid_ext, i, start, end) {
3298 		if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
3299 		    cea_db_payload_len(&edid_ext[i]) == 2) {
3300 			DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
3301 			return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
3302 		}
3303 	}
3304 
3305 	return false;
3306 }
3307 EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
3308 
3309 /**
3310  * drm_add_display_info - pull display info out if present
3311  * @edid: EDID data
3312  * @info: display info (attached to connector)
3313  *
3314  * Grab any available display info and stuff it into the drm_display_info
3315  * structure that's part of the connector.  Useful for tracking bpp and
3316  * color spaces.
3317  */
3318 static void drm_add_display_info(struct edid *edid,
3319 				 struct drm_display_info *info)
3320 {
3321 	u8 *edid_ext;
3322 
3323 	info->width_mm = edid->width_cm * 10;
3324 	info->height_mm = edid->height_cm * 10;
3325 
3326 	/* driver figures it out in this case */
3327 	info->bpc = 0;
3328 	info->color_formats = 0;
3329 
3330 	if (edid->revision < 3)
3331 		return;
3332 
3333 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
3334 		return;
3335 
3336 	/* Get data from CEA blocks if present */
3337 	edid_ext = drm_find_cea_extension(edid);
3338 	if (edid_ext) {
3339 		info->cea_rev = edid_ext[1];
3340 
3341 		/* The existence of a CEA block should imply RGB support */
3342 		info->color_formats = DRM_COLOR_FORMAT_RGB444;
3343 		if (edid_ext[3] & EDID_CEA_YCRCB444)
3344 			info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3345 		if (edid_ext[3] & EDID_CEA_YCRCB422)
3346 			info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3347 	}
3348 
3349 	/* Only defined for 1.4 with digital displays */
3350 	if (edid->revision < 4)
3351 		return;
3352 
3353 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3354 	case DRM_EDID_DIGITAL_DEPTH_6:
3355 		info->bpc = 6;
3356 		break;
3357 	case DRM_EDID_DIGITAL_DEPTH_8:
3358 		info->bpc = 8;
3359 		break;
3360 	case DRM_EDID_DIGITAL_DEPTH_10:
3361 		info->bpc = 10;
3362 		break;
3363 	case DRM_EDID_DIGITAL_DEPTH_12:
3364 		info->bpc = 12;
3365 		break;
3366 	case DRM_EDID_DIGITAL_DEPTH_14:
3367 		info->bpc = 14;
3368 		break;
3369 	case DRM_EDID_DIGITAL_DEPTH_16:
3370 		info->bpc = 16;
3371 		break;
3372 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3373 	default:
3374 		info->bpc = 0;
3375 		break;
3376 	}
3377 
3378 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3379 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3380 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3381 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3382 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3383 }
3384 
3385 /**
3386  * drm_add_edid_modes - add modes from EDID data, if available
3387  * @connector: connector we're probing
3388  * @edid: edid data
3389  *
3390  * Add the specified modes to the connector's mode list.
3391  *
3392  * Return number of modes added or 0 if we couldn't find any.
3393  */
3394 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
3395 {
3396 	int num_modes = 0;
3397 	u32 quirks;
3398 
3399 	if (edid == NULL) {
3400 		return 0;
3401 	}
3402 	if (!drm_edid_is_valid(edid)) {
3403 		dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
3404 			 drm_get_connector_name(connector));
3405 		return 0;
3406 	}
3407 
3408 	quirks = edid_get_quirks(edid);
3409 
3410 	/*
3411 	 * EDID spec says modes should be preferred in this order:
3412 	 * - preferred detailed mode
3413 	 * - other detailed modes from base block
3414 	 * - detailed modes from extension blocks
3415 	 * - CVT 3-byte code modes
3416 	 * - standard timing codes
3417 	 * - established timing codes
3418 	 * - modes inferred from GTF or CVT range information
3419 	 *
3420 	 * We get this pretty much right.
3421 	 *
3422 	 * XXX order for additional mode types in extension blocks?
3423 	 */
3424 	num_modes += add_detailed_modes(connector, edid, quirks);
3425 	num_modes += add_cvt_modes(connector, edid);
3426 	num_modes += add_standard_modes(connector, edid);
3427 	num_modes += add_established_modes(connector, edid);
3428 	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
3429 		num_modes += add_inferred_modes(connector, edid);
3430 	num_modes += add_cea_modes(connector, edid);
3431 	num_modes += add_alternate_cea_modes(connector, edid);
3432 
3433 	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
3434 		edid_fixup_preferred(connector, quirks);
3435 
3436 	drm_add_display_info(edid, &connector->display_info);
3437 
3438 	return num_modes;
3439 }
3440 EXPORT_SYMBOL(drm_add_edid_modes);
3441 
3442 /**
3443  * drm_add_modes_noedid - add modes for the connectors without EDID
3444  * @connector: connector we're probing
3445  * @hdisplay: the horizontal display limit
3446  * @vdisplay: the vertical display limit
3447  *
3448  * Add the specified modes to the connector's mode list. Only when the
3449  * hdisplay/vdisplay is not beyond the given limit, it will be added.
3450  *
3451  * Return number of modes added or 0 if we couldn't find any.
3452  */
3453 int drm_add_modes_noedid(struct drm_connector *connector,
3454 			int hdisplay, int vdisplay)
3455 {
3456 	int i, count, num_modes = 0;
3457 	struct drm_display_mode *mode;
3458 	struct drm_device *dev = connector->dev;
3459 
3460 	count = sizeof(drm_dmt_modes) / sizeof(struct drm_display_mode);
3461 	if (hdisplay < 0)
3462 		hdisplay = 0;
3463 	if (vdisplay < 0)
3464 		vdisplay = 0;
3465 
3466 	for (i = 0; i < count; i++) {
3467 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
3468 		if (hdisplay && vdisplay) {
3469 			/*
3470 			 * Only when two are valid, they will be used to check
3471 			 * whether the mode should be added to the mode list of
3472 			 * the connector.
3473 			 */
3474 			if (ptr->hdisplay > hdisplay ||
3475 					ptr->vdisplay > vdisplay)
3476 				continue;
3477 		}
3478 		if (drm_mode_vrefresh(ptr) > 61)
3479 			continue;
3480 		mode = drm_mode_duplicate(dev, ptr);
3481 		if (mode) {
3482 			drm_mode_probed_add(connector, mode);
3483 			num_modes++;
3484 		}
3485 	}
3486 	return num_modes;
3487 }
3488 EXPORT_SYMBOL(drm_add_modes_noedid);
3489 
3490 void drm_set_preferred_mode(struct drm_connector *connector,
3491 			   int hpref, int vpref)
3492 {
3493 	struct drm_display_mode *mode;
3494 
3495 	list_for_each_entry(mode, &connector->probed_modes, head) {
3496 		if (drm_mode_width(mode)  == hpref &&
3497 		    drm_mode_height(mode) == vpref)
3498 			mode->type |= DRM_MODE_TYPE_PREFERRED;
3499 	}
3500 }
3501 EXPORT_SYMBOL(drm_set_preferred_mode);
3502 
3503 /**
3504  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
3505  *                                              data from a DRM display mode
3506  * @frame: HDMI AVI infoframe
3507  * @mode: DRM display mode
3508  *
3509  * Returns 0 on success or a negative error code on failure.
3510  */
3511 int
3512 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
3513 					 const struct drm_display_mode *mode)
3514 {
3515 	int err;
3516 
3517 	if (!frame || !mode)
3518 		return -EINVAL;
3519 
3520 	err = hdmi_avi_infoframe_init(frame);
3521 	if (err < 0)
3522 		return err;
3523 
3524 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
3525 		frame->pixel_repeat = 1;
3526 
3527 	frame->video_code = drm_match_cea_mode(mode);
3528 
3529 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
3530 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
3531 
3532 	return 0;
3533 }
3534 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
3535 
3536 static enum hdmi_3d_structure
3537 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
3538 {
3539 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
3540 
3541 	switch (layout) {
3542 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
3543 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
3544 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
3545 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
3546 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
3547 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
3548 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
3549 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
3550 	case DRM_MODE_FLAG_3D_L_DEPTH:
3551 		return HDMI_3D_STRUCTURE_L_DEPTH;
3552 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
3553 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
3554 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
3555 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
3556 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
3557 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
3558 	default:
3559 		return HDMI_3D_STRUCTURE_INVALID;
3560 	}
3561 }
3562 
3563 /**
3564  * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
3565  * data from a DRM display mode
3566  * @frame: HDMI vendor infoframe
3567  * @mode: DRM display mode
3568  *
3569  * Note that there's is a need to send HDMI vendor infoframes only when using a
3570  * 4k or stereoscopic 3D mode. So when giving any other mode as input this
3571  * function will return -EINVAL, error that can be safely ignored.
3572  *
3573  * Returns 0 on success or a negative error code on failure.
3574  */
3575 int
3576 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
3577 					    const struct drm_display_mode *mode)
3578 {
3579 	int err;
3580 	u32 s3d_flags;
3581 	u8 vic;
3582 
3583 	if (!frame || !mode)
3584 		return -EINVAL;
3585 
3586 	vic = drm_match_hdmi_mode(mode);
3587 	s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
3588 
3589 	if (!vic && !s3d_flags)
3590 		return -EINVAL;
3591 
3592 	if (vic && s3d_flags)
3593 		return -EINVAL;
3594 
3595 	err = hdmi_vendor_infoframe_init(frame);
3596 	if (err < 0)
3597 		return err;
3598 
3599 	if (vic)
3600 		frame->vic = vic;
3601 	else
3602 		frame->s3d_struct = s3d_structure_from_display_mode(mode);
3603 
3604 	return 0;
3605 }
3606 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
3607