xref: /openbmc/linux/drivers/gpu/drm/drm_edid.c (revision 70151949)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 
31 #include <linux/bitfield.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/slab.h>
38 #include <linux/vga_switcheroo.h>
39 
40 #include <drm/drm_displayid.h>
41 #include <drm/drm_drv.h>
42 #include <drm/drm_edid.h>
43 #include <drm/drm_encoder.h>
44 #include <drm/drm_print.h>
45 
46 #include "drm_crtc_internal.h"
47 
48 static int oui(u8 first, u8 second, u8 third)
49 {
50 	return (first << 16) | (second << 8) | third;
51 }
52 
53 #define EDID_EST_TIMINGS 16
54 #define EDID_STD_TIMINGS 8
55 #define EDID_DETAILED_TIMINGS 4
56 
57 /*
58  * EDID blocks out in the wild have a variety of bugs, try to collect
59  * them here (note that userspace may work around broken monitors first,
60  * but fixes should make their way here so that the kernel "just works"
61  * on as many displays as possible).
62  */
63 
64 /* First detailed mode wrong, use largest 60Hz mode */
65 #define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
66 /* Reported 135MHz pixel clock is too high, needs adjustment */
67 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
68 /* Prefer the largest mode at 75 Hz */
69 #define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
70 /* Detail timing is in cm not mm */
71 #define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
72 /* Detailed timing descriptors have bogus size values, so just take the
73  * maximum size and use that.
74  */
75 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
76 /* use +hsync +vsync for detailed mode */
77 #define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
78 /* Force reduced-blanking timings for detailed modes */
79 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
80 /* Force 8bpc */
81 #define EDID_QUIRK_FORCE_8BPC			(1 << 8)
82 /* Force 12bpc */
83 #define EDID_QUIRK_FORCE_12BPC			(1 << 9)
84 /* Force 6bpc */
85 #define EDID_QUIRK_FORCE_6BPC			(1 << 10)
86 /* Force 10bpc */
87 #define EDID_QUIRK_FORCE_10BPC			(1 << 11)
88 /* Non desktop display (i.e. HMD) */
89 #define EDID_QUIRK_NON_DESKTOP			(1 << 12)
90 /* Cap the DSC target bitrate to 15bpp */
91 #define EDID_QUIRK_CAP_DSC_15BPP		(1 << 13)
92 
93 #define MICROSOFT_IEEE_OUI	0xca125c
94 
95 struct detailed_mode_closure {
96 	struct drm_connector *connector;
97 	const struct drm_edid *drm_edid;
98 	bool preferred;
99 	int modes;
100 };
101 
102 #define LEVEL_DMT	0
103 #define LEVEL_GTF	1
104 #define LEVEL_GTF2	2
105 #define LEVEL_CVT	3
106 
107 #define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
108 { \
109 	.panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
110 					     product_id), \
111 	.quirks = _quirks \
112 }
113 
114 static const struct edid_quirk {
115 	u32 panel_id;
116 	u32 quirks;
117 } edid_quirk_list[] = {
118 	/* Acer AL1706 */
119 	EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
120 	/* Acer F51 */
121 	EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
122 
123 	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
124 	EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
125 
126 	/* BenQ GW2765 */
127 	EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC),
128 
129 	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
130 	EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
131 
132 	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
133 	EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
134 
135 	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
136 	EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
137 
138 	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
139 	EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
140 
141 	/* Belinea 10 15 55 */
142 	EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
143 	EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
144 
145 	/* Envision Peripherals, Inc. EN-7100e */
146 	EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
147 	/* Envision EN2028 */
148 	EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
149 
150 	/* Funai Electronics PM36B */
151 	EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
152 				       EDID_QUIRK_DETAILED_IN_CM),
153 
154 	/* LG 27GP950 */
155 	EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
156 
157 	/* LG 27GN950 */
158 	EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
159 
160 	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
161 	EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
162 
163 	/* LG Philips LCD LP154W01-A5 */
164 	EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
165 	EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
166 
167 	/* Samsung SyncMaster 205BW.  Note: irony */
168 	EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
169 	/* Samsung SyncMaster 22[5-6]BW */
170 	EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
171 	EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
172 
173 	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
174 	EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
175 
176 	/* ViewSonic VA2026w */
177 	EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
178 
179 	/* Medion MD 30217 PG */
180 	EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
181 
182 	/* Lenovo G50 */
183 	EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
184 
185 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
186 	EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
187 
188 	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
189 	EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
190 
191 	/* Valve Index Headset */
192 	EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
193 	EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
194 	EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
195 	EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
196 	EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
197 	EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
198 	EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
199 	EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
200 	EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
201 	EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
202 	EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
203 	EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
204 	EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
205 	EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
206 	EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
207 	EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
208 	EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
209 
210 	/* HTC Vive and Vive Pro VR Headsets */
211 	EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
212 	EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
213 
214 	/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
215 	EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
216 	EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
217 	EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
218 	EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
219 
220 	/* Windows Mixed Reality Headsets */
221 	EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
222 	EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
223 	EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
224 	EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
225 	EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
226 	EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
227 
228 	/* Sony PlayStation VR Headset */
229 	EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
230 
231 	/* Sensics VR Headsets */
232 	EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
233 
234 	/* OSVR HDK and HDK2 VR Headsets */
235 	EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
236 	EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP),
237 };
238 
239 /*
240  * Autogenerated from the DMT spec.
241  * This table is copied from xfree86/modes/xf86EdidModes.c.
242  */
243 static const struct drm_display_mode drm_dmt_modes[] = {
244 	/* 0x01 - 640x350@85Hz */
245 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
246 		   736, 832, 0, 350, 382, 385, 445, 0,
247 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
248 	/* 0x02 - 640x400@85Hz */
249 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
250 		   736, 832, 0, 400, 401, 404, 445, 0,
251 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
252 	/* 0x03 - 720x400@85Hz */
253 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
254 		   828, 936, 0, 400, 401, 404, 446, 0,
255 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
256 	/* 0x04 - 640x480@60Hz */
257 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
258 		   752, 800, 0, 480, 490, 492, 525, 0,
259 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
260 	/* 0x05 - 640x480@72Hz */
261 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
262 		   704, 832, 0, 480, 489, 492, 520, 0,
263 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
264 	/* 0x06 - 640x480@75Hz */
265 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
266 		   720, 840, 0, 480, 481, 484, 500, 0,
267 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
268 	/* 0x07 - 640x480@85Hz */
269 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
270 		   752, 832, 0, 480, 481, 484, 509, 0,
271 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
272 	/* 0x08 - 800x600@56Hz */
273 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
274 		   896, 1024, 0, 600, 601, 603, 625, 0,
275 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
276 	/* 0x09 - 800x600@60Hz */
277 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
278 		   968, 1056, 0, 600, 601, 605, 628, 0,
279 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
280 	/* 0x0a - 800x600@72Hz */
281 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
282 		   976, 1040, 0, 600, 637, 643, 666, 0,
283 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
284 	/* 0x0b - 800x600@75Hz */
285 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
286 		   896, 1056, 0, 600, 601, 604, 625, 0,
287 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
288 	/* 0x0c - 800x600@85Hz */
289 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
290 		   896, 1048, 0, 600, 601, 604, 631, 0,
291 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
292 	/* 0x0d - 800x600@120Hz RB */
293 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
294 		   880, 960, 0, 600, 603, 607, 636, 0,
295 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
296 	/* 0x0e - 848x480@60Hz */
297 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
298 		   976, 1088, 0, 480, 486, 494, 517, 0,
299 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
300 	/* 0x0f - 1024x768@43Hz, interlace */
301 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
302 		   1208, 1264, 0, 768, 768, 776, 817, 0,
303 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
304 		   DRM_MODE_FLAG_INTERLACE) },
305 	/* 0x10 - 1024x768@60Hz */
306 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
307 		   1184, 1344, 0, 768, 771, 777, 806, 0,
308 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
309 	/* 0x11 - 1024x768@70Hz */
310 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
311 		   1184, 1328, 0, 768, 771, 777, 806, 0,
312 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
313 	/* 0x12 - 1024x768@75Hz */
314 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
315 		   1136, 1312, 0, 768, 769, 772, 800, 0,
316 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
317 	/* 0x13 - 1024x768@85Hz */
318 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
319 		   1168, 1376, 0, 768, 769, 772, 808, 0,
320 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
321 	/* 0x14 - 1024x768@120Hz RB */
322 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
323 		   1104, 1184, 0, 768, 771, 775, 813, 0,
324 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
325 	/* 0x15 - 1152x864@75Hz */
326 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
327 		   1344, 1600, 0, 864, 865, 868, 900, 0,
328 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
329 	/* 0x55 - 1280x720@60Hz */
330 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
331 		   1430, 1650, 0, 720, 725, 730, 750, 0,
332 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
333 	/* 0x16 - 1280x768@60Hz RB */
334 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
335 		   1360, 1440, 0, 768, 771, 778, 790, 0,
336 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
337 	/* 0x17 - 1280x768@60Hz */
338 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
339 		   1472, 1664, 0, 768, 771, 778, 798, 0,
340 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
341 	/* 0x18 - 1280x768@75Hz */
342 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
343 		   1488, 1696, 0, 768, 771, 778, 805, 0,
344 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
345 	/* 0x19 - 1280x768@85Hz */
346 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
347 		   1496, 1712, 0, 768, 771, 778, 809, 0,
348 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
349 	/* 0x1a - 1280x768@120Hz RB */
350 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
351 		   1360, 1440, 0, 768, 771, 778, 813, 0,
352 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
353 	/* 0x1b - 1280x800@60Hz RB */
354 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
355 		   1360, 1440, 0, 800, 803, 809, 823, 0,
356 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
357 	/* 0x1c - 1280x800@60Hz */
358 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
359 		   1480, 1680, 0, 800, 803, 809, 831, 0,
360 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
361 	/* 0x1d - 1280x800@75Hz */
362 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
363 		   1488, 1696, 0, 800, 803, 809, 838, 0,
364 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
365 	/* 0x1e - 1280x800@85Hz */
366 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
367 		   1496, 1712, 0, 800, 803, 809, 843, 0,
368 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
369 	/* 0x1f - 1280x800@120Hz RB */
370 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
371 		   1360, 1440, 0, 800, 803, 809, 847, 0,
372 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
373 	/* 0x20 - 1280x960@60Hz */
374 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
375 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
376 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
377 	/* 0x21 - 1280x960@85Hz */
378 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
379 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
380 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
381 	/* 0x22 - 1280x960@120Hz RB */
382 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
383 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
384 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
385 	/* 0x23 - 1280x1024@60Hz */
386 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
387 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
388 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
389 	/* 0x24 - 1280x1024@75Hz */
390 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
391 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
392 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
393 	/* 0x25 - 1280x1024@85Hz */
394 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
395 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
396 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
397 	/* 0x26 - 1280x1024@120Hz RB */
398 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
399 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
400 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
401 	/* 0x27 - 1360x768@60Hz */
402 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
403 		   1536, 1792, 0, 768, 771, 777, 795, 0,
404 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
405 	/* 0x28 - 1360x768@120Hz RB */
406 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
407 		   1440, 1520, 0, 768, 771, 776, 813, 0,
408 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
409 	/* 0x51 - 1366x768@60Hz */
410 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
411 		   1579, 1792, 0, 768, 771, 774, 798, 0,
412 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
413 	/* 0x56 - 1366x768@60Hz */
414 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
415 		   1436, 1500, 0, 768, 769, 772, 800, 0,
416 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
417 	/* 0x29 - 1400x1050@60Hz RB */
418 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
419 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
420 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
421 	/* 0x2a - 1400x1050@60Hz */
422 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
423 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
424 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
425 	/* 0x2b - 1400x1050@75Hz */
426 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
427 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
428 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
429 	/* 0x2c - 1400x1050@85Hz */
430 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
431 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
432 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
433 	/* 0x2d - 1400x1050@120Hz RB */
434 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
435 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
436 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
437 	/* 0x2e - 1440x900@60Hz RB */
438 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
439 		   1520, 1600, 0, 900, 903, 909, 926, 0,
440 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
441 	/* 0x2f - 1440x900@60Hz */
442 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
443 		   1672, 1904, 0, 900, 903, 909, 934, 0,
444 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
445 	/* 0x30 - 1440x900@75Hz */
446 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
447 		   1688, 1936, 0, 900, 903, 909, 942, 0,
448 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
449 	/* 0x31 - 1440x900@85Hz */
450 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
451 		   1696, 1952, 0, 900, 903, 909, 948, 0,
452 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
453 	/* 0x32 - 1440x900@120Hz RB */
454 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
455 		   1520, 1600, 0, 900, 903, 909, 953, 0,
456 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
457 	/* 0x53 - 1600x900@60Hz */
458 	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
459 		   1704, 1800, 0, 900, 901, 904, 1000, 0,
460 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
461 	/* 0x33 - 1600x1200@60Hz */
462 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
463 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
464 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
465 	/* 0x34 - 1600x1200@65Hz */
466 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
467 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
468 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
469 	/* 0x35 - 1600x1200@70Hz */
470 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
471 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
472 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
473 	/* 0x36 - 1600x1200@75Hz */
474 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
475 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
476 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
477 	/* 0x37 - 1600x1200@85Hz */
478 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
479 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
480 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
481 	/* 0x38 - 1600x1200@120Hz RB */
482 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
483 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
484 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
485 	/* 0x39 - 1680x1050@60Hz RB */
486 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
487 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
488 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
489 	/* 0x3a - 1680x1050@60Hz */
490 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
491 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
492 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
493 	/* 0x3b - 1680x1050@75Hz */
494 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
495 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
496 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
497 	/* 0x3c - 1680x1050@85Hz */
498 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
499 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
500 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
501 	/* 0x3d - 1680x1050@120Hz RB */
502 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
503 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
504 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
505 	/* 0x3e - 1792x1344@60Hz */
506 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
507 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
508 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
509 	/* 0x3f - 1792x1344@75Hz */
510 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
511 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
512 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
513 	/* 0x40 - 1792x1344@120Hz RB */
514 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
515 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
516 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
517 	/* 0x41 - 1856x1392@60Hz */
518 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
519 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
520 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
521 	/* 0x42 - 1856x1392@75Hz */
522 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
523 		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
524 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
525 	/* 0x43 - 1856x1392@120Hz RB */
526 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
527 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
528 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
529 	/* 0x52 - 1920x1080@60Hz */
530 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
531 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
532 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
533 	/* 0x44 - 1920x1200@60Hz RB */
534 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
535 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
536 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
537 	/* 0x45 - 1920x1200@60Hz */
538 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
539 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
540 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
541 	/* 0x46 - 1920x1200@75Hz */
542 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
543 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
544 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
545 	/* 0x47 - 1920x1200@85Hz */
546 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
547 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
548 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
549 	/* 0x48 - 1920x1200@120Hz RB */
550 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
551 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
552 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
553 	/* 0x49 - 1920x1440@60Hz */
554 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
555 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
556 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
557 	/* 0x4a - 1920x1440@75Hz */
558 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
559 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
560 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
561 	/* 0x4b - 1920x1440@120Hz RB */
562 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
563 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
564 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
565 	/* 0x54 - 2048x1152@60Hz */
566 	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
567 		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
568 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
569 	/* 0x4c - 2560x1600@60Hz RB */
570 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
571 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
572 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
573 	/* 0x4d - 2560x1600@60Hz */
574 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
575 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
576 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
577 	/* 0x4e - 2560x1600@75Hz */
578 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
579 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
580 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
581 	/* 0x4f - 2560x1600@85Hz */
582 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
583 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
584 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
585 	/* 0x50 - 2560x1600@120Hz RB */
586 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
587 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
588 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
589 	/* 0x57 - 4096x2160@60Hz RB */
590 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
591 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
592 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
593 	/* 0x58 - 4096x2160@59.94Hz RB */
594 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
595 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
596 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
597 };
598 
599 /*
600  * These more or less come from the DMT spec.  The 720x400 modes are
601  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
602  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
603  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
604  * mode.
605  *
606  * The DMT modes have been fact-checked; the rest are mild guesses.
607  */
608 static const struct drm_display_mode edid_est_modes[] = {
609 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
610 		   968, 1056, 0, 600, 601, 605, 628, 0,
611 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
612 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
613 		   896, 1024, 0, 600, 601, 603,  625, 0,
614 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
615 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
616 		   720, 840, 0, 480, 481, 484, 500, 0,
617 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
618 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
619 		   704,  832, 0, 480, 489, 492, 520, 0,
620 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
621 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
622 		   768,  864, 0, 480, 483, 486, 525, 0,
623 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
624 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
625 		   752, 800, 0, 480, 490, 492, 525, 0,
626 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
627 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
628 		   846, 900, 0, 400, 421, 423,  449, 0,
629 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
630 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
631 		   846,  900, 0, 400, 412, 414, 449, 0,
632 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
633 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
634 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
635 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
636 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
637 		   1136, 1312, 0,  768, 769, 772, 800, 0,
638 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
639 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
640 		   1184, 1328, 0,  768, 771, 777, 806, 0,
641 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
642 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
643 		   1184, 1344, 0,  768, 771, 777, 806, 0,
644 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
645 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
646 		   1208, 1264, 0, 768, 768, 776, 817, 0,
647 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
648 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
649 		   928, 1152, 0, 624, 625, 628, 667, 0,
650 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
651 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
652 		   896, 1056, 0, 600, 601, 604,  625, 0,
653 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
654 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
655 		   976, 1040, 0, 600, 637, 643, 666, 0,
656 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
657 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
658 		   1344, 1600, 0,  864, 865, 868, 900, 0,
659 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
660 };
661 
662 struct minimode {
663 	short w;
664 	short h;
665 	short r;
666 	short rb;
667 };
668 
669 static const struct minimode est3_modes[] = {
670 	/* byte 6 */
671 	{ 640, 350, 85, 0 },
672 	{ 640, 400, 85, 0 },
673 	{ 720, 400, 85, 0 },
674 	{ 640, 480, 85, 0 },
675 	{ 848, 480, 60, 0 },
676 	{ 800, 600, 85, 0 },
677 	{ 1024, 768, 85, 0 },
678 	{ 1152, 864, 75, 0 },
679 	/* byte 7 */
680 	{ 1280, 768, 60, 1 },
681 	{ 1280, 768, 60, 0 },
682 	{ 1280, 768, 75, 0 },
683 	{ 1280, 768, 85, 0 },
684 	{ 1280, 960, 60, 0 },
685 	{ 1280, 960, 85, 0 },
686 	{ 1280, 1024, 60, 0 },
687 	{ 1280, 1024, 85, 0 },
688 	/* byte 8 */
689 	{ 1360, 768, 60, 0 },
690 	{ 1440, 900, 60, 1 },
691 	{ 1440, 900, 60, 0 },
692 	{ 1440, 900, 75, 0 },
693 	{ 1440, 900, 85, 0 },
694 	{ 1400, 1050, 60, 1 },
695 	{ 1400, 1050, 60, 0 },
696 	{ 1400, 1050, 75, 0 },
697 	/* byte 9 */
698 	{ 1400, 1050, 85, 0 },
699 	{ 1680, 1050, 60, 1 },
700 	{ 1680, 1050, 60, 0 },
701 	{ 1680, 1050, 75, 0 },
702 	{ 1680, 1050, 85, 0 },
703 	{ 1600, 1200, 60, 0 },
704 	{ 1600, 1200, 65, 0 },
705 	{ 1600, 1200, 70, 0 },
706 	/* byte 10 */
707 	{ 1600, 1200, 75, 0 },
708 	{ 1600, 1200, 85, 0 },
709 	{ 1792, 1344, 60, 0 },
710 	{ 1792, 1344, 75, 0 },
711 	{ 1856, 1392, 60, 0 },
712 	{ 1856, 1392, 75, 0 },
713 	{ 1920, 1200, 60, 1 },
714 	{ 1920, 1200, 60, 0 },
715 	/* byte 11 */
716 	{ 1920, 1200, 75, 0 },
717 	{ 1920, 1200, 85, 0 },
718 	{ 1920, 1440, 60, 0 },
719 	{ 1920, 1440, 75, 0 },
720 };
721 
722 static const struct minimode extra_modes[] = {
723 	{ 1024, 576,  60, 0 },
724 	{ 1366, 768,  60, 0 },
725 	{ 1600, 900,  60, 0 },
726 	{ 1680, 945,  60, 0 },
727 	{ 1920, 1080, 60, 0 },
728 	{ 2048, 1152, 60, 0 },
729 	{ 2048, 1536, 60, 0 },
730 };
731 
732 /*
733  * From CEA/CTA-861 spec.
734  *
735  * Do not access directly, instead always use cea_mode_for_vic().
736  */
737 static const struct drm_display_mode edid_cea_modes_1[] = {
738 	/* 1 - 640x480@60Hz 4:3 */
739 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
740 		   752, 800, 0, 480, 490, 492, 525, 0,
741 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
742 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
743 	/* 2 - 720x480@60Hz 4:3 */
744 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
745 		   798, 858, 0, 480, 489, 495, 525, 0,
746 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
747 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
748 	/* 3 - 720x480@60Hz 16:9 */
749 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
750 		   798, 858, 0, 480, 489, 495, 525, 0,
751 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
752 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
753 	/* 4 - 1280x720@60Hz 16:9 */
754 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
755 		   1430, 1650, 0, 720, 725, 730, 750, 0,
756 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
757 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
758 	/* 5 - 1920x1080i@60Hz 16:9 */
759 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
760 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
761 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
762 		   DRM_MODE_FLAG_INTERLACE),
763 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
764 	/* 6 - 720(1440)x480i@60Hz 4:3 */
765 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
766 		   801, 858, 0, 480, 488, 494, 525, 0,
767 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
768 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
769 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
770 	/* 7 - 720(1440)x480i@60Hz 16:9 */
771 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
772 		   801, 858, 0, 480, 488, 494, 525, 0,
773 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
774 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
775 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
776 	/* 8 - 720(1440)x240@60Hz 4:3 */
777 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
778 		   801, 858, 0, 240, 244, 247, 262, 0,
779 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
780 		   DRM_MODE_FLAG_DBLCLK),
781 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
782 	/* 9 - 720(1440)x240@60Hz 16:9 */
783 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
784 		   801, 858, 0, 240, 244, 247, 262, 0,
785 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
786 		   DRM_MODE_FLAG_DBLCLK),
787 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
788 	/* 10 - 2880x480i@60Hz 4:3 */
789 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
790 		   3204, 3432, 0, 480, 488, 494, 525, 0,
791 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
792 		   DRM_MODE_FLAG_INTERLACE),
793 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
794 	/* 11 - 2880x480i@60Hz 16:9 */
795 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
796 		   3204, 3432, 0, 480, 488, 494, 525, 0,
797 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
798 		   DRM_MODE_FLAG_INTERLACE),
799 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
800 	/* 12 - 2880x240@60Hz 4:3 */
801 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
802 		   3204, 3432, 0, 240, 244, 247, 262, 0,
803 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
804 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
805 	/* 13 - 2880x240@60Hz 16:9 */
806 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
807 		   3204, 3432, 0, 240, 244, 247, 262, 0,
808 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
809 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
810 	/* 14 - 1440x480@60Hz 4:3 */
811 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
812 		   1596, 1716, 0, 480, 489, 495, 525, 0,
813 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
814 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
815 	/* 15 - 1440x480@60Hz 16:9 */
816 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
817 		   1596, 1716, 0, 480, 489, 495, 525, 0,
818 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
819 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
820 	/* 16 - 1920x1080@60Hz 16:9 */
821 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
822 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
823 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
824 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
825 	/* 17 - 720x576@50Hz 4:3 */
826 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
827 		   796, 864, 0, 576, 581, 586, 625, 0,
828 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
829 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
830 	/* 18 - 720x576@50Hz 16:9 */
831 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
832 		   796, 864, 0, 576, 581, 586, 625, 0,
833 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
834 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
835 	/* 19 - 1280x720@50Hz 16:9 */
836 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
837 		   1760, 1980, 0, 720, 725, 730, 750, 0,
838 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
839 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
840 	/* 20 - 1920x1080i@50Hz 16:9 */
841 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
842 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
843 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
844 		   DRM_MODE_FLAG_INTERLACE),
845 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
846 	/* 21 - 720(1440)x576i@50Hz 4:3 */
847 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
848 		   795, 864, 0, 576, 580, 586, 625, 0,
849 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
850 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
851 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
852 	/* 22 - 720(1440)x576i@50Hz 16:9 */
853 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
854 		   795, 864, 0, 576, 580, 586, 625, 0,
855 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
856 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
857 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
858 	/* 23 - 720(1440)x288@50Hz 4:3 */
859 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
860 		   795, 864, 0, 288, 290, 293, 312, 0,
861 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
862 		   DRM_MODE_FLAG_DBLCLK),
863 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
864 	/* 24 - 720(1440)x288@50Hz 16:9 */
865 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
866 		   795, 864, 0, 288, 290, 293, 312, 0,
867 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
868 		   DRM_MODE_FLAG_DBLCLK),
869 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
870 	/* 25 - 2880x576i@50Hz 4:3 */
871 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
872 		   3180, 3456, 0, 576, 580, 586, 625, 0,
873 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
874 		   DRM_MODE_FLAG_INTERLACE),
875 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
876 	/* 26 - 2880x576i@50Hz 16:9 */
877 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
878 		   3180, 3456, 0, 576, 580, 586, 625, 0,
879 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
880 		   DRM_MODE_FLAG_INTERLACE),
881 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
882 	/* 27 - 2880x288@50Hz 4:3 */
883 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
884 		   3180, 3456, 0, 288, 290, 293, 312, 0,
885 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
886 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
887 	/* 28 - 2880x288@50Hz 16:9 */
888 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
889 		   3180, 3456, 0, 288, 290, 293, 312, 0,
890 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
891 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
892 	/* 29 - 1440x576@50Hz 4:3 */
893 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
894 		   1592, 1728, 0, 576, 581, 586, 625, 0,
895 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
896 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
897 	/* 30 - 1440x576@50Hz 16:9 */
898 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
899 		   1592, 1728, 0, 576, 581, 586, 625, 0,
900 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
901 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
902 	/* 31 - 1920x1080@50Hz 16:9 */
903 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
904 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
905 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
906 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
907 	/* 32 - 1920x1080@24Hz 16:9 */
908 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
909 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
910 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
911 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
912 	/* 33 - 1920x1080@25Hz 16:9 */
913 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
914 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
915 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
916 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
917 	/* 34 - 1920x1080@30Hz 16:9 */
918 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
919 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
920 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
921 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
922 	/* 35 - 2880x480@60Hz 4:3 */
923 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
924 		   3192, 3432, 0, 480, 489, 495, 525, 0,
925 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
926 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
927 	/* 36 - 2880x480@60Hz 16:9 */
928 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
929 		   3192, 3432, 0, 480, 489, 495, 525, 0,
930 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
931 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
932 	/* 37 - 2880x576@50Hz 4:3 */
933 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
934 		   3184, 3456, 0, 576, 581, 586, 625, 0,
935 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
936 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
937 	/* 38 - 2880x576@50Hz 16:9 */
938 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
939 		   3184, 3456, 0, 576, 581, 586, 625, 0,
940 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
941 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
942 	/* 39 - 1920x1080i@50Hz 16:9 */
943 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
944 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
945 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
946 		   DRM_MODE_FLAG_INTERLACE),
947 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
948 	/* 40 - 1920x1080i@100Hz 16:9 */
949 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
950 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
951 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
952 		   DRM_MODE_FLAG_INTERLACE),
953 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
954 	/* 41 - 1280x720@100Hz 16:9 */
955 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
956 		   1760, 1980, 0, 720, 725, 730, 750, 0,
957 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
958 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
959 	/* 42 - 720x576@100Hz 4:3 */
960 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
961 		   796, 864, 0, 576, 581, 586, 625, 0,
962 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
963 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
964 	/* 43 - 720x576@100Hz 16:9 */
965 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
966 		   796, 864, 0, 576, 581, 586, 625, 0,
967 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
968 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
969 	/* 44 - 720(1440)x576i@100Hz 4:3 */
970 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
971 		   795, 864, 0, 576, 580, 586, 625, 0,
972 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
973 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
974 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
975 	/* 45 - 720(1440)x576i@100Hz 16:9 */
976 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
977 		   795, 864, 0, 576, 580, 586, 625, 0,
978 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
979 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
980 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
981 	/* 46 - 1920x1080i@120Hz 16:9 */
982 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
983 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
984 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
985 		   DRM_MODE_FLAG_INTERLACE),
986 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
987 	/* 47 - 1280x720@120Hz 16:9 */
988 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
989 		   1430, 1650, 0, 720, 725, 730, 750, 0,
990 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
991 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
992 	/* 48 - 720x480@120Hz 4:3 */
993 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
994 		   798, 858, 0, 480, 489, 495, 525, 0,
995 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
996 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
997 	/* 49 - 720x480@120Hz 16:9 */
998 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
999 		   798, 858, 0, 480, 489, 495, 525, 0,
1000 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1001 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1002 	/* 50 - 720(1440)x480i@120Hz 4:3 */
1003 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1004 		   801, 858, 0, 480, 488, 494, 525, 0,
1005 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1006 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1007 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1008 	/* 51 - 720(1440)x480i@120Hz 16:9 */
1009 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1010 		   801, 858, 0, 480, 488, 494, 525, 0,
1011 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1012 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1013 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1014 	/* 52 - 720x576@200Hz 4:3 */
1015 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1016 		   796, 864, 0, 576, 581, 586, 625, 0,
1017 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1018 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1019 	/* 53 - 720x576@200Hz 16:9 */
1020 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1021 		   796, 864, 0, 576, 581, 586, 625, 0,
1022 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1023 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1024 	/* 54 - 720(1440)x576i@200Hz 4:3 */
1025 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1026 		   795, 864, 0, 576, 580, 586, 625, 0,
1027 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1028 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1029 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1030 	/* 55 - 720(1440)x576i@200Hz 16:9 */
1031 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1032 		   795, 864, 0, 576, 580, 586, 625, 0,
1033 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1034 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1035 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1036 	/* 56 - 720x480@240Hz 4:3 */
1037 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1038 		   798, 858, 0, 480, 489, 495, 525, 0,
1039 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1040 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1041 	/* 57 - 720x480@240Hz 16:9 */
1042 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1043 		   798, 858, 0, 480, 489, 495, 525, 0,
1044 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1045 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1046 	/* 58 - 720(1440)x480i@240Hz 4:3 */
1047 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1048 		   801, 858, 0, 480, 488, 494, 525, 0,
1049 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1050 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1051 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1052 	/* 59 - 720(1440)x480i@240Hz 16:9 */
1053 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1054 		   801, 858, 0, 480, 488, 494, 525, 0,
1055 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1056 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1057 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1058 	/* 60 - 1280x720@24Hz 16:9 */
1059 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1060 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1061 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1062 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1063 	/* 61 - 1280x720@25Hz 16:9 */
1064 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1065 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1066 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1067 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1068 	/* 62 - 1280x720@30Hz 16:9 */
1069 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1070 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1071 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1072 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1073 	/* 63 - 1920x1080@120Hz 16:9 */
1074 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1075 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1076 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1077 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1078 	/* 64 - 1920x1080@100Hz 16:9 */
1079 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1080 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1081 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1082 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1083 	/* 65 - 1280x720@24Hz 64:27 */
1084 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1085 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1086 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1087 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1088 	/* 66 - 1280x720@25Hz 64:27 */
1089 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1090 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1091 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1092 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1093 	/* 67 - 1280x720@30Hz 64:27 */
1094 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1095 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1096 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1097 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1098 	/* 68 - 1280x720@50Hz 64:27 */
1099 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1100 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1101 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1102 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1103 	/* 69 - 1280x720@60Hz 64:27 */
1104 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1105 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1106 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1107 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1108 	/* 70 - 1280x720@100Hz 64:27 */
1109 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1110 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1111 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1112 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1113 	/* 71 - 1280x720@120Hz 64:27 */
1114 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1115 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1116 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1117 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1118 	/* 72 - 1920x1080@24Hz 64:27 */
1119 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1120 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1121 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1122 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1123 	/* 73 - 1920x1080@25Hz 64:27 */
1124 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1125 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1126 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1127 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1128 	/* 74 - 1920x1080@30Hz 64:27 */
1129 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1130 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1131 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1132 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1133 	/* 75 - 1920x1080@50Hz 64:27 */
1134 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1135 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1136 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1137 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1138 	/* 76 - 1920x1080@60Hz 64:27 */
1139 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1140 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1141 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1142 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1143 	/* 77 - 1920x1080@100Hz 64:27 */
1144 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1145 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1146 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1147 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1148 	/* 78 - 1920x1080@120Hz 64:27 */
1149 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1150 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1151 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1152 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1153 	/* 79 - 1680x720@24Hz 64:27 */
1154 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1155 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1156 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1157 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1158 	/* 80 - 1680x720@25Hz 64:27 */
1159 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1160 		   2948, 3168, 0, 720, 725, 730, 750, 0,
1161 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1162 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1163 	/* 81 - 1680x720@30Hz 64:27 */
1164 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1165 		   2420, 2640, 0, 720, 725, 730, 750, 0,
1166 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1167 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1168 	/* 82 - 1680x720@50Hz 64:27 */
1169 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1170 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1171 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1172 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1173 	/* 83 - 1680x720@60Hz 64:27 */
1174 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1175 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1176 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1177 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1178 	/* 84 - 1680x720@100Hz 64:27 */
1179 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1180 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1181 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1182 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1183 	/* 85 - 1680x720@120Hz 64:27 */
1184 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1185 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1186 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1187 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1188 	/* 86 - 2560x1080@24Hz 64:27 */
1189 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1190 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1191 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1192 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1193 	/* 87 - 2560x1080@25Hz 64:27 */
1194 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1195 		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1196 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1197 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1198 	/* 88 - 2560x1080@30Hz 64:27 */
1199 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1200 		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1201 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1202 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1203 	/* 89 - 2560x1080@50Hz 64:27 */
1204 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1205 		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1206 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1207 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1208 	/* 90 - 2560x1080@60Hz 64:27 */
1209 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1210 		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1211 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1212 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1213 	/* 91 - 2560x1080@100Hz 64:27 */
1214 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1215 		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1216 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1217 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1218 	/* 92 - 2560x1080@120Hz 64:27 */
1219 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1220 		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1221 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1222 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1223 	/* 93 - 3840x2160@24Hz 16:9 */
1224 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1225 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1226 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1227 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1228 	/* 94 - 3840x2160@25Hz 16:9 */
1229 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1230 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1231 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1232 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1233 	/* 95 - 3840x2160@30Hz 16:9 */
1234 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1235 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1236 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1237 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1238 	/* 96 - 3840x2160@50Hz 16:9 */
1239 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1240 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1241 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1242 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1243 	/* 97 - 3840x2160@60Hz 16:9 */
1244 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1245 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1246 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1247 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1248 	/* 98 - 4096x2160@24Hz 256:135 */
1249 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1250 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1251 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1252 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1253 	/* 99 - 4096x2160@25Hz 256:135 */
1254 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1255 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1256 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1257 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1258 	/* 100 - 4096x2160@30Hz 256:135 */
1259 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1260 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1261 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1262 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1263 	/* 101 - 4096x2160@50Hz 256:135 */
1264 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1265 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1266 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1267 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1268 	/* 102 - 4096x2160@60Hz 256:135 */
1269 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1270 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1271 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1272 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1273 	/* 103 - 3840x2160@24Hz 64:27 */
1274 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1275 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1276 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1277 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1278 	/* 104 - 3840x2160@25Hz 64:27 */
1279 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1280 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1281 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1282 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1283 	/* 105 - 3840x2160@30Hz 64:27 */
1284 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1285 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1286 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1287 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1288 	/* 106 - 3840x2160@50Hz 64:27 */
1289 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1290 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1291 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1292 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1293 	/* 107 - 3840x2160@60Hz 64:27 */
1294 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1295 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1296 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1297 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1298 	/* 108 - 1280x720@48Hz 16:9 */
1299 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1300 		   2280, 2500, 0, 720, 725, 730, 750, 0,
1301 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1302 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1303 	/* 109 - 1280x720@48Hz 64:27 */
1304 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1305 		   2280, 2500, 0, 720, 725, 730, 750, 0,
1306 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1307 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1308 	/* 110 - 1680x720@48Hz 64:27 */
1309 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1310 		   2530, 2750, 0, 720, 725, 730, 750, 0,
1311 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1312 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1313 	/* 111 - 1920x1080@48Hz 16:9 */
1314 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1315 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1316 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1317 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1318 	/* 112 - 1920x1080@48Hz 64:27 */
1319 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1320 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1321 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1322 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1323 	/* 113 - 2560x1080@48Hz 64:27 */
1324 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1325 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1326 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1327 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1328 	/* 114 - 3840x2160@48Hz 16:9 */
1329 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1330 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1331 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1332 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1333 	/* 115 - 4096x2160@48Hz 256:135 */
1334 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1335 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1336 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1337 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1338 	/* 116 - 3840x2160@48Hz 64:27 */
1339 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1340 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1341 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1342 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1343 	/* 117 - 3840x2160@100Hz 16:9 */
1344 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1345 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1346 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1347 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1348 	/* 118 - 3840x2160@120Hz 16:9 */
1349 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1350 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1351 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1352 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1353 	/* 119 - 3840x2160@100Hz 64:27 */
1354 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1355 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1356 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1357 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1358 	/* 120 - 3840x2160@120Hz 64:27 */
1359 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1360 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1361 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1362 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1363 	/* 121 - 5120x2160@24Hz 64:27 */
1364 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1365 		   7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1366 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1367 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1368 	/* 122 - 5120x2160@25Hz 64:27 */
1369 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1370 		   6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1371 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1372 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1373 	/* 123 - 5120x2160@30Hz 64:27 */
1374 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1375 		   5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1376 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1377 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1378 	/* 124 - 5120x2160@48Hz 64:27 */
1379 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1380 		   5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1381 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1382 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1383 	/* 125 - 5120x2160@50Hz 64:27 */
1384 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1385 		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1386 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1387 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1388 	/* 126 - 5120x2160@60Hz 64:27 */
1389 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1390 		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1391 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1392 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1393 	/* 127 - 5120x2160@100Hz 64:27 */
1394 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1395 		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1396 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1397 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1398 };
1399 
1400 /*
1401  * From CEA/CTA-861 spec.
1402  *
1403  * Do not access directly, instead always use cea_mode_for_vic().
1404  */
1405 static const struct drm_display_mode edid_cea_modes_193[] = {
1406 	/* 193 - 5120x2160@120Hz 64:27 */
1407 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1408 		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1409 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1410 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1411 	/* 194 - 7680x4320@24Hz 16:9 */
1412 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1413 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1414 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1415 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1416 	/* 195 - 7680x4320@25Hz 16:9 */
1417 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1418 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1419 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1420 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1421 	/* 196 - 7680x4320@30Hz 16:9 */
1422 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1423 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1424 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1425 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1426 	/* 197 - 7680x4320@48Hz 16:9 */
1427 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1428 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1429 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1430 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1431 	/* 198 - 7680x4320@50Hz 16:9 */
1432 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1433 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1434 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1435 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1436 	/* 199 - 7680x4320@60Hz 16:9 */
1437 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1438 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1439 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1440 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1441 	/* 200 - 7680x4320@100Hz 16:9 */
1442 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1443 		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1444 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1445 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1446 	/* 201 - 7680x4320@120Hz 16:9 */
1447 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1448 		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1449 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1450 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1451 	/* 202 - 7680x4320@24Hz 64:27 */
1452 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1453 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1454 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1455 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1456 	/* 203 - 7680x4320@25Hz 64:27 */
1457 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1458 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1459 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1460 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1461 	/* 204 - 7680x4320@30Hz 64:27 */
1462 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1463 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1464 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1465 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1466 	/* 205 - 7680x4320@48Hz 64:27 */
1467 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1468 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1469 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1470 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1471 	/* 206 - 7680x4320@50Hz 64:27 */
1472 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1473 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1474 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1475 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1476 	/* 207 - 7680x4320@60Hz 64:27 */
1477 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1478 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1479 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1480 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1481 	/* 208 - 7680x4320@100Hz 64:27 */
1482 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1483 		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1484 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1485 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1486 	/* 209 - 7680x4320@120Hz 64:27 */
1487 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1488 		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1489 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1490 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1491 	/* 210 - 10240x4320@24Hz 64:27 */
1492 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1493 		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1494 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1495 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1496 	/* 211 - 10240x4320@25Hz 64:27 */
1497 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1498 		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1499 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1500 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1501 	/* 212 - 10240x4320@30Hz 64:27 */
1502 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1503 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1504 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1505 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1506 	/* 213 - 10240x4320@48Hz 64:27 */
1507 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1508 		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1509 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1510 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1511 	/* 214 - 10240x4320@50Hz 64:27 */
1512 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1513 		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1514 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1515 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1516 	/* 215 - 10240x4320@60Hz 64:27 */
1517 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1518 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1519 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1520 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1521 	/* 216 - 10240x4320@100Hz 64:27 */
1522 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1523 		   12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1524 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1525 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1526 	/* 217 - 10240x4320@120Hz 64:27 */
1527 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1528 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1529 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1530 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1531 	/* 218 - 4096x2160@100Hz 256:135 */
1532 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1533 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1534 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1535 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1536 	/* 219 - 4096x2160@120Hz 256:135 */
1537 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1538 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1539 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1540 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1541 };
1542 
1543 /*
1544  * HDMI 1.4 4k modes. Index using the VIC.
1545  */
1546 static const struct drm_display_mode edid_4k_modes[] = {
1547 	/* 0 - dummy, VICs start at 1 */
1548 	{ },
1549 	/* 1 - 3840x2160@30Hz */
1550 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1551 		   3840, 4016, 4104, 4400, 0,
1552 		   2160, 2168, 2178, 2250, 0,
1553 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1554 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1555 	/* 2 - 3840x2160@25Hz */
1556 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1557 		   3840, 4896, 4984, 5280, 0,
1558 		   2160, 2168, 2178, 2250, 0,
1559 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1560 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1561 	/* 3 - 3840x2160@24Hz */
1562 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1563 		   3840, 5116, 5204, 5500, 0,
1564 		   2160, 2168, 2178, 2250, 0,
1565 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1566 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1567 	/* 4 - 4096x2160@24Hz (SMPTE) */
1568 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1569 		   4096, 5116, 5204, 5500, 0,
1570 		   2160, 2168, 2178, 2250, 0,
1571 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1572 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1573 };
1574 
1575 /*** DDC fetch and block validation ***/
1576 
1577 /*
1578  * The opaque EDID type, internal to drm_edid.c.
1579  */
1580 struct drm_edid {
1581 	/* Size allocated for edid */
1582 	size_t size;
1583 	const struct edid *edid;
1584 };
1585 
1586 static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1587 
1588 static int edid_hfeeodb_block_count(const struct edid *edid)
1589 {
1590 	int eeodb = edid_hfeeodb_extension_block_count(edid);
1591 
1592 	return eeodb ? eeodb + 1 : 0;
1593 }
1594 
1595 static int edid_extension_block_count(const struct edid *edid)
1596 {
1597 	return edid->extensions;
1598 }
1599 
1600 static int edid_block_count(const struct edid *edid)
1601 {
1602 	return edid_extension_block_count(edid) + 1;
1603 }
1604 
1605 static int edid_size_by_blocks(int num_blocks)
1606 {
1607 	return num_blocks * EDID_LENGTH;
1608 }
1609 
1610 static int edid_size(const struct edid *edid)
1611 {
1612 	return edid_size_by_blocks(edid_block_count(edid));
1613 }
1614 
1615 static const void *edid_block_data(const struct edid *edid, int index)
1616 {
1617 	BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1618 
1619 	return edid + index;
1620 }
1621 
1622 static const void *edid_extension_block_data(const struct edid *edid, int index)
1623 {
1624 	return edid_block_data(edid, index + 1);
1625 }
1626 
1627 /* EDID block count indicated in EDID, may exceed allocated size */
1628 static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1629 {
1630 	int num_blocks;
1631 
1632 	/* Starting point */
1633 	num_blocks = edid_block_count(drm_edid->edid);
1634 
1635 	/* HF-EEODB override */
1636 	if (drm_edid->size >= edid_size_by_blocks(2)) {
1637 		int eeodb;
1638 
1639 		/*
1640 		 * Note: HF-EEODB may specify a smaller extension count than the
1641 		 * regular one. Unlike in buffer allocation, here we can use it.
1642 		 */
1643 		eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1644 		if (eeodb)
1645 			num_blocks = eeodb;
1646 	}
1647 
1648 	return num_blocks;
1649 }
1650 
1651 /* EDID block count, limited by allocated size */
1652 static int drm_edid_block_count(const struct drm_edid *drm_edid)
1653 {
1654 	/* Limit by allocated size */
1655 	return min(__drm_edid_block_count(drm_edid),
1656 		   (int)drm_edid->size / EDID_LENGTH);
1657 }
1658 
1659 /* EDID extension block count, limited by allocated size */
1660 static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1661 {
1662 	return drm_edid_block_count(drm_edid) - 1;
1663 }
1664 
1665 static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1666 {
1667 	return edid_block_data(drm_edid->edid, index);
1668 }
1669 
1670 static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1671 						 int index)
1672 {
1673 	return edid_extension_block_data(drm_edid->edid, index);
1674 }
1675 
1676 /*
1677  * Initializer helper for legacy interfaces, where we have no choice but to
1678  * trust edid size. Not for general purpose use.
1679  */
1680 static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1681 						   const struct edid *edid)
1682 {
1683 	if (!edid)
1684 		return NULL;
1685 
1686 	memset(drm_edid, 0, sizeof(*drm_edid));
1687 
1688 	drm_edid->edid = edid;
1689 	drm_edid->size = edid_size(edid);
1690 
1691 	return drm_edid;
1692 }
1693 
1694 /*
1695  * EDID base and extension block iterator.
1696  *
1697  * struct drm_edid_iter iter;
1698  * const u8 *block;
1699  *
1700  * drm_edid_iter_begin(drm_edid, &iter);
1701  * drm_edid_iter_for_each(block, &iter) {
1702  *         // do stuff with block
1703  * }
1704  * drm_edid_iter_end(&iter);
1705  */
1706 struct drm_edid_iter {
1707 	const struct drm_edid *drm_edid;
1708 
1709 	/* Current block index. */
1710 	int index;
1711 };
1712 
1713 static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1714 				struct drm_edid_iter *iter)
1715 {
1716 	memset(iter, 0, sizeof(*iter));
1717 
1718 	iter->drm_edid = drm_edid;
1719 }
1720 
1721 static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1722 {
1723 	const void *block = NULL;
1724 
1725 	if (!iter->drm_edid)
1726 		return NULL;
1727 
1728 	if (iter->index < drm_edid_block_count(iter->drm_edid))
1729 		block = drm_edid_block_data(iter->drm_edid, iter->index++);
1730 
1731 	return block;
1732 }
1733 
1734 #define drm_edid_iter_for_each(__block, __iter)			\
1735 	while (((__block) = __drm_edid_iter_next(__iter)))
1736 
1737 static void drm_edid_iter_end(struct drm_edid_iter *iter)
1738 {
1739 	memset(iter, 0, sizeof(*iter));
1740 }
1741 
1742 static const u8 edid_header[] = {
1743 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1744 };
1745 
1746 static void edid_header_fix(void *edid)
1747 {
1748 	memcpy(edid, edid_header, sizeof(edid_header));
1749 }
1750 
1751 /**
1752  * drm_edid_header_is_valid - sanity check the header of the base EDID block
1753  * @_edid: pointer to raw base EDID block
1754  *
1755  * Sanity check the header of the base EDID block.
1756  *
1757  * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1758  */
1759 int drm_edid_header_is_valid(const void *_edid)
1760 {
1761 	const struct edid *edid = _edid;
1762 	int i, score = 0;
1763 
1764 	for (i = 0; i < sizeof(edid_header); i++) {
1765 		if (edid->header[i] == edid_header[i])
1766 			score++;
1767 	}
1768 
1769 	return score;
1770 }
1771 EXPORT_SYMBOL(drm_edid_header_is_valid);
1772 
1773 static int edid_fixup __read_mostly = 6;
1774 module_param_named(edid_fixup, edid_fixup, int, 0400);
1775 MODULE_PARM_DESC(edid_fixup,
1776 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1777 
1778 static int edid_block_compute_checksum(const void *_block)
1779 {
1780 	const u8 *block = _block;
1781 	int i;
1782 	u8 csum = 0, crc = 0;
1783 
1784 	for (i = 0; i < EDID_LENGTH - 1; i++)
1785 		csum += block[i];
1786 
1787 	crc = 0x100 - csum;
1788 
1789 	return crc;
1790 }
1791 
1792 static int edid_block_get_checksum(const void *_block)
1793 {
1794 	const struct edid *block = _block;
1795 
1796 	return block->checksum;
1797 }
1798 
1799 static int edid_block_tag(const void *_block)
1800 {
1801 	const u8 *block = _block;
1802 
1803 	return block[0];
1804 }
1805 
1806 static bool edid_block_is_zero(const void *edid)
1807 {
1808 	return !memchr_inv(edid, 0, EDID_LENGTH);
1809 }
1810 
1811 /**
1812  * drm_edid_are_equal - compare two edid blobs.
1813  * @edid1: pointer to first blob
1814  * @edid2: pointer to second blob
1815  * This helper can be used during probing to determine if
1816  * edid had changed.
1817  */
1818 bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1819 {
1820 	int edid1_len, edid2_len;
1821 	bool edid1_present = edid1 != NULL;
1822 	bool edid2_present = edid2 != NULL;
1823 
1824 	if (edid1_present != edid2_present)
1825 		return false;
1826 
1827 	if (edid1) {
1828 		edid1_len = edid_size(edid1);
1829 		edid2_len = edid_size(edid2);
1830 
1831 		if (edid1_len != edid2_len)
1832 			return false;
1833 
1834 		if (memcmp(edid1, edid2, edid1_len))
1835 			return false;
1836 	}
1837 
1838 	return true;
1839 }
1840 EXPORT_SYMBOL(drm_edid_are_equal);
1841 
1842 enum edid_block_status {
1843 	EDID_BLOCK_OK = 0,
1844 	EDID_BLOCK_READ_FAIL,
1845 	EDID_BLOCK_NULL,
1846 	EDID_BLOCK_ZERO,
1847 	EDID_BLOCK_HEADER_CORRUPT,
1848 	EDID_BLOCK_HEADER_REPAIR,
1849 	EDID_BLOCK_HEADER_FIXED,
1850 	EDID_BLOCK_CHECKSUM,
1851 	EDID_BLOCK_VERSION,
1852 };
1853 
1854 static enum edid_block_status edid_block_check(const void *_block,
1855 					       bool is_base_block)
1856 {
1857 	const struct edid *block = _block;
1858 
1859 	if (!block)
1860 		return EDID_BLOCK_NULL;
1861 
1862 	if (is_base_block) {
1863 		int score = drm_edid_header_is_valid(block);
1864 
1865 		if (score < clamp(edid_fixup, 0, 8)) {
1866 			if (edid_block_is_zero(block))
1867 				return EDID_BLOCK_ZERO;
1868 			else
1869 				return EDID_BLOCK_HEADER_CORRUPT;
1870 		}
1871 
1872 		if (score < 8)
1873 			return EDID_BLOCK_HEADER_REPAIR;
1874 	}
1875 
1876 	if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1877 		if (edid_block_is_zero(block))
1878 			return EDID_BLOCK_ZERO;
1879 		else
1880 			return EDID_BLOCK_CHECKSUM;
1881 	}
1882 
1883 	if (is_base_block) {
1884 		if (block->version != 1)
1885 			return EDID_BLOCK_VERSION;
1886 	}
1887 
1888 	return EDID_BLOCK_OK;
1889 }
1890 
1891 static bool edid_block_status_valid(enum edid_block_status status, int tag)
1892 {
1893 	return status == EDID_BLOCK_OK ||
1894 		status == EDID_BLOCK_HEADER_FIXED ||
1895 		(status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1896 }
1897 
1898 static bool edid_block_valid(const void *block, bool base)
1899 {
1900 	return edid_block_status_valid(edid_block_check(block, base),
1901 				       edid_block_tag(block));
1902 }
1903 
1904 static void edid_block_status_print(enum edid_block_status status,
1905 				    const struct edid *block,
1906 				    int block_num)
1907 {
1908 	switch (status) {
1909 	case EDID_BLOCK_OK:
1910 		break;
1911 	case EDID_BLOCK_READ_FAIL:
1912 		pr_debug("EDID block %d read failed\n", block_num);
1913 		break;
1914 	case EDID_BLOCK_NULL:
1915 		pr_debug("EDID block %d pointer is NULL\n", block_num);
1916 		break;
1917 	case EDID_BLOCK_ZERO:
1918 		pr_notice("EDID block %d is all zeroes\n", block_num);
1919 		break;
1920 	case EDID_BLOCK_HEADER_CORRUPT:
1921 		pr_notice("EDID has corrupt header\n");
1922 		break;
1923 	case EDID_BLOCK_HEADER_REPAIR:
1924 		pr_debug("EDID corrupt header needs repair\n");
1925 		break;
1926 	case EDID_BLOCK_HEADER_FIXED:
1927 		pr_debug("EDID corrupt header fixed\n");
1928 		break;
1929 	case EDID_BLOCK_CHECKSUM:
1930 		if (edid_block_status_valid(status, edid_block_tag(block))) {
1931 			pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1932 				 block_num, edid_block_tag(block),
1933 				 edid_block_compute_checksum(block));
1934 		} else {
1935 			pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1936 				  block_num, edid_block_tag(block),
1937 				  edid_block_compute_checksum(block));
1938 		}
1939 		break;
1940 	case EDID_BLOCK_VERSION:
1941 		pr_notice("EDID has major version %d, instead of 1\n",
1942 			  block->version);
1943 		break;
1944 	default:
1945 		WARN(1, "EDID block %d unknown edid block status code %d\n",
1946 		     block_num, status);
1947 		break;
1948 	}
1949 }
1950 
1951 static void edid_block_dump(const char *level, const void *block, int block_num)
1952 {
1953 	enum edid_block_status status;
1954 	char prefix[20];
1955 
1956 	status = edid_block_check(block, block_num == 0);
1957 	if (status == EDID_BLOCK_ZERO)
1958 		sprintf(prefix, "\t[%02x] ZERO ", block_num);
1959 	else if (!edid_block_status_valid(status, edid_block_tag(block)))
1960 		sprintf(prefix, "\t[%02x] BAD  ", block_num);
1961 	else
1962 		sprintf(prefix, "\t[%02x] GOOD ", block_num);
1963 
1964 	print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1965 		       block, EDID_LENGTH, false);
1966 }
1967 
1968 /**
1969  * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1970  * @_block: pointer to raw EDID block
1971  * @block_num: type of block to validate (0 for base, extension otherwise)
1972  * @print_bad_edid: if true, dump bad EDID blocks to the console
1973  * @edid_corrupt: if true, the header or checksum is invalid
1974  *
1975  * Validate a base or extension EDID block and optionally dump bad blocks to
1976  * the console.
1977  *
1978  * Return: True if the block is valid, false otherwise.
1979  */
1980 bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1981 			  bool *edid_corrupt)
1982 {
1983 	struct edid *block = (struct edid *)_block;
1984 	enum edid_block_status status;
1985 	bool is_base_block = block_num == 0;
1986 	bool valid;
1987 
1988 	if (WARN_ON(!block))
1989 		return false;
1990 
1991 	status = edid_block_check(block, is_base_block);
1992 	if (status == EDID_BLOCK_HEADER_REPAIR) {
1993 		DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1994 		edid_header_fix(block);
1995 
1996 		/* Retry with fixed header, update status if that worked. */
1997 		status = edid_block_check(block, is_base_block);
1998 		if (status == EDID_BLOCK_OK)
1999 			status = EDID_BLOCK_HEADER_FIXED;
2000 	}
2001 
2002 	if (edid_corrupt) {
2003 		/*
2004 		 * Unknown major version isn't corrupt but we can't use it. Only
2005 		 * the base block can reset edid_corrupt to false.
2006 		 */
2007 		if (is_base_block &&
2008 		    (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2009 			*edid_corrupt = false;
2010 		else if (status != EDID_BLOCK_OK)
2011 			*edid_corrupt = true;
2012 	}
2013 
2014 	edid_block_status_print(status, block, block_num);
2015 
2016 	/* Determine whether we can use this block with this status. */
2017 	valid = edid_block_status_valid(status, edid_block_tag(block));
2018 
2019 	if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2020 		pr_notice("Raw EDID:\n");
2021 		edid_block_dump(KERN_NOTICE, block, block_num);
2022 	}
2023 
2024 	return valid;
2025 }
2026 EXPORT_SYMBOL(drm_edid_block_valid);
2027 
2028 /**
2029  * drm_edid_is_valid - sanity check EDID data
2030  * @edid: EDID data
2031  *
2032  * Sanity-check an entire EDID record (including extensions)
2033  *
2034  * Return: True if the EDID data is valid, false otherwise.
2035  */
2036 bool drm_edid_is_valid(struct edid *edid)
2037 {
2038 	int i;
2039 
2040 	if (!edid)
2041 		return false;
2042 
2043 	for (i = 0; i < edid_block_count(edid); i++) {
2044 		void *block = (void *)edid_block_data(edid, i);
2045 
2046 		if (!drm_edid_block_valid(block, i, true, NULL))
2047 			return false;
2048 	}
2049 
2050 	return true;
2051 }
2052 EXPORT_SYMBOL(drm_edid_is_valid);
2053 
2054 /**
2055  * drm_edid_valid - sanity check EDID data
2056  * @drm_edid: EDID data
2057  *
2058  * Sanity check an EDID. Cross check block count against allocated size and
2059  * checksum the blocks.
2060  *
2061  * Return: True if the EDID data is valid, false otherwise.
2062  */
2063 bool drm_edid_valid(const struct drm_edid *drm_edid)
2064 {
2065 	int i;
2066 
2067 	if (!drm_edid)
2068 		return false;
2069 
2070 	if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2071 		return false;
2072 
2073 	for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2074 		const void *block = drm_edid_block_data(drm_edid, i);
2075 
2076 		if (!edid_block_valid(block, i == 0))
2077 			return false;
2078 	}
2079 
2080 	return true;
2081 }
2082 EXPORT_SYMBOL(drm_edid_valid);
2083 
2084 static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2085 					       size_t *alloc_size)
2086 {
2087 	struct edid *new;
2088 	int i, valid_blocks = 0;
2089 
2090 	/*
2091 	 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2092 	 * back to regular extension count here. We don't want to start
2093 	 * modifying the HF-EEODB extension too.
2094 	 */
2095 	for (i = 0; i < edid_block_count(edid); i++) {
2096 		const void *src_block = edid_block_data(edid, i);
2097 
2098 		if (edid_block_valid(src_block, i == 0)) {
2099 			void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2100 
2101 			memmove(dst_block, src_block, EDID_LENGTH);
2102 			valid_blocks++;
2103 		}
2104 	}
2105 
2106 	/* We already trusted the base block to be valid here... */
2107 	if (WARN_ON(!valid_blocks)) {
2108 		kfree(edid);
2109 		return NULL;
2110 	}
2111 
2112 	edid->extensions = valid_blocks - 1;
2113 	edid->checksum = edid_block_compute_checksum(edid);
2114 
2115 	*alloc_size = edid_size_by_blocks(valid_blocks);
2116 
2117 	new = krealloc(edid, *alloc_size, GFP_KERNEL);
2118 	if (!new)
2119 		kfree(edid);
2120 
2121 	return new;
2122 }
2123 
2124 #define DDC_SEGMENT_ADDR 0x30
2125 /**
2126  * drm_do_probe_ddc_edid() - get EDID information via I2C
2127  * @data: I2C device adapter
2128  * @buf: EDID data buffer to be filled
2129  * @block: 128 byte EDID block to start fetching from
2130  * @len: EDID data buffer length to fetch
2131  *
2132  * Try to fetch EDID information by calling I2C driver functions.
2133  *
2134  * Return: 0 on success or -1 on failure.
2135  */
2136 static int
2137 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2138 {
2139 	struct i2c_adapter *adapter = data;
2140 	unsigned char start = block * EDID_LENGTH;
2141 	unsigned char segment = block >> 1;
2142 	unsigned char xfers = segment ? 3 : 2;
2143 	int ret, retries = 5;
2144 
2145 	/*
2146 	 * The core I2C driver will automatically retry the transfer if the
2147 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
2148 	 * are susceptible to errors under a heavily loaded machine and
2149 	 * generate spurious NAKs and timeouts. Retrying the transfer
2150 	 * of the individual block a few times seems to overcome this.
2151 	 */
2152 	do {
2153 		struct i2c_msg msgs[] = {
2154 			{
2155 				.addr	= DDC_SEGMENT_ADDR,
2156 				.flags	= 0,
2157 				.len	= 1,
2158 				.buf	= &segment,
2159 			}, {
2160 				.addr	= DDC_ADDR,
2161 				.flags	= 0,
2162 				.len	= 1,
2163 				.buf	= &start,
2164 			}, {
2165 				.addr	= DDC_ADDR,
2166 				.flags	= I2C_M_RD,
2167 				.len	= len,
2168 				.buf	= buf,
2169 			}
2170 		};
2171 
2172 		/*
2173 		 * Avoid sending the segment addr to not upset non-compliant
2174 		 * DDC monitors.
2175 		 */
2176 		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2177 
2178 		if (ret == -ENXIO) {
2179 			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2180 					adapter->name);
2181 			break;
2182 		}
2183 	} while (ret != xfers && --retries);
2184 
2185 	return ret == xfers ? 0 : -1;
2186 }
2187 
2188 static void connector_bad_edid(struct drm_connector *connector,
2189 			       const struct edid *edid, int num_blocks)
2190 {
2191 	int i;
2192 	u8 last_block;
2193 
2194 	/*
2195 	 * 0x7e in the EDID is the number of extension blocks. The EDID
2196 	 * is 1 (base block) + num_ext_blocks big. That means we can think
2197 	 * of 0x7e in the EDID of the _index_ of the last block in the
2198 	 * combined chunk of memory.
2199 	 */
2200 	last_block = edid->extensions;
2201 
2202 	/* Calculate real checksum for the last edid extension block data */
2203 	if (last_block < num_blocks)
2204 		connector->real_edid_checksum =
2205 			edid_block_compute_checksum(edid + last_block);
2206 
2207 	if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2208 		return;
2209 
2210 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2211 		    connector->base.id, connector->name);
2212 	for (i = 0; i < num_blocks; i++)
2213 		edid_block_dump(KERN_DEBUG, edid + i, i);
2214 }
2215 
2216 /* Get override or firmware EDID */
2217 static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2218 {
2219 	const struct drm_edid *override = NULL;
2220 
2221 	mutex_lock(&connector->edid_override_mutex);
2222 
2223 	if (connector->edid_override)
2224 		override = drm_edid_dup(connector->edid_override);
2225 
2226 	mutex_unlock(&connector->edid_override_mutex);
2227 
2228 	if (!override)
2229 		override = drm_edid_load_firmware(connector);
2230 
2231 	return IS_ERR(override) ? NULL : override;
2232 }
2233 
2234 /* For debugfs edid_override implementation */
2235 int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2236 {
2237 	const struct drm_edid *drm_edid;
2238 
2239 	mutex_lock(&connector->edid_override_mutex);
2240 
2241 	drm_edid = connector->edid_override;
2242 	if (drm_edid)
2243 		seq_write(m, drm_edid->edid, drm_edid->size);
2244 
2245 	mutex_unlock(&connector->edid_override_mutex);
2246 
2247 	return 0;
2248 }
2249 
2250 /* For debugfs edid_override implementation */
2251 int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2252 			  size_t size)
2253 {
2254 	const struct drm_edid *drm_edid;
2255 
2256 	drm_edid = drm_edid_alloc(edid, size);
2257 	if (!drm_edid_valid(drm_edid)) {
2258 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2259 			    connector->base.id, connector->name);
2260 		drm_edid_free(drm_edid);
2261 		return -EINVAL;
2262 	}
2263 
2264 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2265 		    connector->base.id, connector->name);
2266 
2267 	mutex_lock(&connector->edid_override_mutex);
2268 
2269 	drm_edid_free(connector->edid_override);
2270 	connector->edid_override = drm_edid;
2271 
2272 	mutex_unlock(&connector->edid_override_mutex);
2273 
2274 	return 0;
2275 }
2276 
2277 /* For debugfs edid_override implementation */
2278 int drm_edid_override_reset(struct drm_connector *connector)
2279 {
2280 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2281 		    connector->base.id, connector->name);
2282 
2283 	mutex_lock(&connector->edid_override_mutex);
2284 
2285 	drm_edid_free(connector->edid_override);
2286 	connector->edid_override = NULL;
2287 
2288 	mutex_unlock(&connector->edid_override_mutex);
2289 
2290 	return 0;
2291 }
2292 
2293 /**
2294  * drm_edid_override_connector_update - add modes from override/firmware EDID
2295  * @connector: connector we're probing
2296  *
2297  * Add modes from the override/firmware EDID, if available. Only to be used from
2298  * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2299  * failed during drm_get_edid() and caused the override/firmware EDID to be
2300  * skipped.
2301  *
2302  * Return: The number of modes added or 0 if we couldn't find any.
2303  */
2304 int drm_edid_override_connector_update(struct drm_connector *connector)
2305 {
2306 	const struct drm_edid *override;
2307 	int num_modes = 0;
2308 
2309 	override = drm_edid_override_get(connector);
2310 	if (override) {
2311 		num_modes = drm_edid_connector_update(connector, override);
2312 
2313 		drm_edid_free(override);
2314 
2315 		drm_dbg_kms(connector->dev,
2316 			    "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2317 			    connector->base.id, connector->name, num_modes);
2318 	}
2319 
2320 	return num_modes;
2321 }
2322 EXPORT_SYMBOL(drm_edid_override_connector_update);
2323 
2324 typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2325 
2326 static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2327 					      read_block_fn read_block,
2328 					      void *context)
2329 {
2330 	enum edid_block_status status;
2331 	bool is_base_block = block_num == 0;
2332 	int try;
2333 
2334 	for (try = 0; try < 4; try++) {
2335 		if (read_block(context, block, block_num, EDID_LENGTH))
2336 			return EDID_BLOCK_READ_FAIL;
2337 
2338 		status = edid_block_check(block, is_base_block);
2339 		if (status == EDID_BLOCK_HEADER_REPAIR) {
2340 			edid_header_fix(block);
2341 
2342 			/* Retry with fixed header, update status if that worked. */
2343 			status = edid_block_check(block, is_base_block);
2344 			if (status == EDID_BLOCK_OK)
2345 				status = EDID_BLOCK_HEADER_FIXED;
2346 		}
2347 
2348 		if (edid_block_status_valid(status, edid_block_tag(block)))
2349 			break;
2350 
2351 		/* Fail early for unrepairable base block all zeros. */
2352 		if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2353 			break;
2354 	}
2355 
2356 	return status;
2357 }
2358 
2359 static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2360 				     read_block_fn read_block, void *context,
2361 				     size_t *size)
2362 {
2363 	enum edid_block_status status;
2364 	int i, num_blocks, invalid_blocks = 0;
2365 	const struct drm_edid *override;
2366 	struct edid *edid, *new;
2367 	size_t alloc_size = EDID_LENGTH;
2368 
2369 	override = drm_edid_override_get(connector);
2370 	if (override) {
2371 		alloc_size = override->size;
2372 		edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2373 		drm_edid_free(override);
2374 		if (!edid)
2375 			return NULL;
2376 		goto ok;
2377 	}
2378 
2379 	edid = kmalloc(alloc_size, GFP_KERNEL);
2380 	if (!edid)
2381 		return NULL;
2382 
2383 	status = edid_block_read(edid, 0, read_block, context);
2384 
2385 	edid_block_status_print(status, edid, 0);
2386 
2387 	if (status == EDID_BLOCK_READ_FAIL)
2388 		goto fail;
2389 
2390 	/* FIXME: Clarify what a corrupt EDID actually means. */
2391 	if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2392 		connector->edid_corrupt = false;
2393 	else
2394 		connector->edid_corrupt = true;
2395 
2396 	if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2397 		if (status == EDID_BLOCK_ZERO)
2398 			connector->null_edid_counter++;
2399 
2400 		connector_bad_edid(connector, edid, 1);
2401 		goto fail;
2402 	}
2403 
2404 	if (!edid_extension_block_count(edid))
2405 		goto ok;
2406 
2407 	alloc_size = edid_size(edid);
2408 	new = krealloc(edid, alloc_size, GFP_KERNEL);
2409 	if (!new)
2410 		goto fail;
2411 	edid = new;
2412 
2413 	num_blocks = edid_block_count(edid);
2414 	for (i = 1; i < num_blocks; i++) {
2415 		void *block = (void *)edid_block_data(edid, i);
2416 
2417 		status = edid_block_read(block, i, read_block, context);
2418 
2419 		edid_block_status_print(status, block, i);
2420 
2421 		if (!edid_block_status_valid(status, edid_block_tag(block))) {
2422 			if (status == EDID_BLOCK_READ_FAIL)
2423 				goto fail;
2424 			invalid_blocks++;
2425 		} else if (i == 1) {
2426 			/*
2427 			 * If the first EDID extension is a CTA extension, and
2428 			 * the first Data Block is HF-EEODB, override the
2429 			 * extension block count.
2430 			 *
2431 			 * Note: HF-EEODB could specify a smaller extension
2432 			 * count too, but we can't risk allocating a smaller
2433 			 * amount.
2434 			 */
2435 			int eeodb = edid_hfeeodb_block_count(edid);
2436 
2437 			if (eeodb > num_blocks) {
2438 				num_blocks = eeodb;
2439 				alloc_size = edid_size_by_blocks(num_blocks);
2440 				new = krealloc(edid, alloc_size, GFP_KERNEL);
2441 				if (!new)
2442 					goto fail;
2443 				edid = new;
2444 			}
2445 		}
2446 	}
2447 
2448 	if (invalid_blocks) {
2449 		connector_bad_edid(connector, edid, num_blocks);
2450 
2451 		edid = edid_filter_invalid_blocks(edid, &alloc_size);
2452 	}
2453 
2454 ok:
2455 	if (size)
2456 		*size = alloc_size;
2457 
2458 	return edid;
2459 
2460 fail:
2461 	kfree(edid);
2462 	return NULL;
2463 }
2464 
2465 /**
2466  * drm_do_get_edid - get EDID data using a custom EDID block read function
2467  * @connector: connector we're probing
2468  * @read_block: EDID block read function
2469  * @context: private data passed to the block read function
2470  *
2471  * When the I2C adapter connected to the DDC bus is hidden behind a device that
2472  * exposes a different interface to read EDID blocks this function can be used
2473  * to get EDID data using a custom block read function.
2474  *
2475  * As in the general case the DDC bus is accessible by the kernel at the I2C
2476  * level, drivers must make all reasonable efforts to expose it as an I2C
2477  * adapter and use drm_get_edid() instead of abusing this function.
2478  *
2479  * The EDID may be overridden using debugfs override_edid or firmware EDID
2480  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2481  * order. Having either of them bypasses actual EDID reads.
2482  *
2483  * Return: Pointer to valid EDID or NULL if we couldn't find any.
2484  */
2485 struct edid *drm_do_get_edid(struct drm_connector *connector,
2486 			     read_block_fn read_block,
2487 			     void *context)
2488 {
2489 	return _drm_do_get_edid(connector, read_block, context, NULL);
2490 }
2491 EXPORT_SYMBOL_GPL(drm_do_get_edid);
2492 
2493 /**
2494  * drm_edid_raw - Get a pointer to the raw EDID data.
2495  * @drm_edid: drm_edid container
2496  *
2497  * Get a pointer to the raw EDID data.
2498  *
2499  * This is for transition only. Avoid using this like the plague.
2500  *
2501  * Return: Pointer to raw EDID data.
2502  */
2503 const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2504 {
2505 	if (!drm_edid || !drm_edid->size)
2506 		return NULL;
2507 
2508 	/*
2509 	 * Do not return pointers where relying on EDID extension count would
2510 	 * lead to buffer overflow.
2511 	 */
2512 	if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2513 		return NULL;
2514 
2515 	return drm_edid->edid;
2516 }
2517 EXPORT_SYMBOL(drm_edid_raw);
2518 
2519 /* Allocate struct drm_edid container *without* duplicating the edid data */
2520 static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2521 {
2522 	struct drm_edid *drm_edid;
2523 
2524 	if (!edid || !size || size < EDID_LENGTH)
2525 		return NULL;
2526 
2527 	drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2528 	if (drm_edid) {
2529 		drm_edid->edid = edid;
2530 		drm_edid->size = size;
2531 	}
2532 
2533 	return drm_edid;
2534 }
2535 
2536 /**
2537  * drm_edid_alloc - Allocate a new drm_edid container
2538  * @edid: Pointer to raw EDID data
2539  * @size: Size of memory allocated for EDID
2540  *
2541  * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2542  * the actual size that has been allocated for the data. There is no validation
2543  * of the raw EDID data against the size, but at least the EDID base block must
2544  * fit in the buffer.
2545  *
2546  * The returned pointer must be freed using drm_edid_free().
2547  *
2548  * Return: drm_edid container, or NULL on errors
2549  */
2550 const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2551 {
2552 	const struct drm_edid *drm_edid;
2553 
2554 	if (!edid || !size || size < EDID_LENGTH)
2555 		return NULL;
2556 
2557 	edid = kmemdup(edid, size, GFP_KERNEL);
2558 	if (!edid)
2559 		return NULL;
2560 
2561 	drm_edid = _drm_edid_alloc(edid, size);
2562 	if (!drm_edid)
2563 		kfree(edid);
2564 
2565 	return drm_edid;
2566 }
2567 EXPORT_SYMBOL(drm_edid_alloc);
2568 
2569 /**
2570  * drm_edid_dup - Duplicate a drm_edid container
2571  * @drm_edid: EDID to duplicate
2572  *
2573  * The returned pointer must be freed using drm_edid_free().
2574  *
2575  * Returns: drm_edid container copy, or NULL on errors
2576  */
2577 const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2578 {
2579 	if (!drm_edid)
2580 		return NULL;
2581 
2582 	return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2583 }
2584 EXPORT_SYMBOL(drm_edid_dup);
2585 
2586 /**
2587  * drm_edid_free - Free the drm_edid container
2588  * @drm_edid: EDID to free
2589  */
2590 void drm_edid_free(const struct drm_edid *drm_edid)
2591 {
2592 	if (!drm_edid)
2593 		return;
2594 
2595 	kfree(drm_edid->edid);
2596 	kfree(drm_edid);
2597 }
2598 EXPORT_SYMBOL(drm_edid_free);
2599 
2600 /**
2601  * drm_probe_ddc() - probe DDC presence
2602  * @adapter: I2C adapter to probe
2603  *
2604  * Return: True on success, false on failure.
2605  */
2606 bool
2607 drm_probe_ddc(struct i2c_adapter *adapter)
2608 {
2609 	unsigned char out;
2610 
2611 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2612 }
2613 EXPORT_SYMBOL(drm_probe_ddc);
2614 
2615 /**
2616  * drm_get_edid - get EDID data, if available
2617  * @connector: connector we're probing
2618  * @adapter: I2C adapter to use for DDC
2619  *
2620  * Poke the given I2C channel to grab EDID data if possible.  If found,
2621  * attach it to the connector.
2622  *
2623  * Return: Pointer to valid EDID or NULL if we couldn't find any.
2624  */
2625 struct edid *drm_get_edid(struct drm_connector *connector,
2626 			  struct i2c_adapter *adapter)
2627 {
2628 	struct edid *edid;
2629 
2630 	if (connector->force == DRM_FORCE_OFF)
2631 		return NULL;
2632 
2633 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2634 		return NULL;
2635 
2636 	edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2637 	drm_connector_update_edid_property(connector, edid);
2638 	return edid;
2639 }
2640 EXPORT_SYMBOL(drm_get_edid);
2641 
2642 /**
2643  * drm_edid_read_custom - Read EDID data using given EDID block read function
2644  * @connector: Connector to use
2645  * @read_block: EDID block read function
2646  * @context: Private data passed to the block read function
2647  *
2648  * When the I2C adapter connected to the DDC bus is hidden behind a device that
2649  * exposes a different interface to read EDID blocks this function can be used
2650  * to get EDID data using a custom block read function.
2651  *
2652  * As in the general case the DDC bus is accessible by the kernel at the I2C
2653  * level, drivers must make all reasonable efforts to expose it as an I2C
2654  * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2655  * this function.
2656  *
2657  * The EDID may be overridden using debugfs override_edid or firmware EDID
2658  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2659  * order. Having either of them bypasses actual EDID reads.
2660  *
2661  * The returned pointer must be freed using drm_edid_free().
2662  *
2663  * Return: Pointer to EDID, or NULL if probe/read failed.
2664  */
2665 const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2666 					    read_block_fn read_block,
2667 					    void *context)
2668 {
2669 	const struct drm_edid *drm_edid;
2670 	struct edid *edid;
2671 	size_t size = 0;
2672 
2673 	edid = _drm_do_get_edid(connector, read_block, context, &size);
2674 	if (!edid)
2675 		return NULL;
2676 
2677 	/* Sanity check for now */
2678 	drm_WARN_ON(connector->dev, !size);
2679 
2680 	drm_edid = _drm_edid_alloc(edid, size);
2681 	if (!drm_edid)
2682 		kfree(edid);
2683 
2684 	return drm_edid;
2685 }
2686 EXPORT_SYMBOL(drm_edid_read_custom);
2687 
2688 /**
2689  * drm_edid_read_ddc - Read EDID data using given I2C adapter
2690  * @connector: Connector to use
2691  * @adapter: I2C adapter to use for DDC
2692  *
2693  * Read EDID using the given I2C adapter.
2694  *
2695  * The EDID may be overridden using debugfs override_edid or firmware EDID
2696  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2697  * order. Having either of them bypasses actual EDID reads.
2698  *
2699  * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2700  * using drm_edid_read() instead of this function.
2701  *
2702  * The returned pointer must be freed using drm_edid_free().
2703  *
2704  * Return: Pointer to EDID, or NULL if probe/read failed.
2705  */
2706 const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2707 					 struct i2c_adapter *adapter)
2708 {
2709 	const struct drm_edid *drm_edid;
2710 
2711 	if (connector->force == DRM_FORCE_OFF)
2712 		return NULL;
2713 
2714 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2715 		return NULL;
2716 
2717 	drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2718 
2719 	/* Note: Do *not* call connector updates here. */
2720 
2721 	return drm_edid;
2722 }
2723 EXPORT_SYMBOL(drm_edid_read_ddc);
2724 
2725 /**
2726  * drm_edid_read - Read EDID data using connector's I2C adapter
2727  * @connector: Connector to use
2728  *
2729  * Read EDID using the connector's I2C adapter.
2730  *
2731  * The EDID may be overridden using debugfs override_edid or firmware EDID
2732  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2733  * order. Having either of them bypasses actual EDID reads.
2734  *
2735  * The returned pointer must be freed using drm_edid_free().
2736  *
2737  * Return: Pointer to EDID, or NULL if probe/read failed.
2738  */
2739 const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2740 {
2741 	if (drm_WARN_ON(connector->dev, !connector->ddc))
2742 		return NULL;
2743 
2744 	return drm_edid_read_ddc(connector, connector->ddc);
2745 }
2746 EXPORT_SYMBOL(drm_edid_read);
2747 
2748 static u32 edid_extract_panel_id(const struct edid *edid)
2749 {
2750 	/*
2751 	 * We represent the ID as a 32-bit number so it can easily be compared
2752 	 * with "==".
2753 	 *
2754 	 * NOTE that we deal with endianness differently for the top half
2755 	 * of this ID than for the bottom half. The bottom half (the product
2756 	 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2757 	 * that's how everyone seems to interpret it. The top half (the mfg_id)
2758 	 * gets stored as big endian because that makes
2759 	 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2760 	 * to write (it's easier to extract the ASCII). It doesn't really
2761 	 * matter, though, as long as the number here is unique.
2762 	 */
2763 	return (u32)edid->mfg_id[0] << 24   |
2764 	       (u32)edid->mfg_id[1] << 16   |
2765 	       (u32)EDID_PRODUCT_ID(edid);
2766 }
2767 
2768 /**
2769  * drm_edid_get_panel_id - Get a panel's ID through DDC
2770  * @adapter: I2C adapter to use for DDC
2771  *
2772  * This function reads the first block of the EDID of a panel and (assuming
2773  * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2774  * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2775  * supposed to be different for each different modem of panel.
2776  *
2777  * This function is intended to be used during early probing on devices where
2778  * more than one panel might be present. Because of its intended use it must
2779  * assume that the EDID of the panel is correct, at least as far as the ID
2780  * is concerned (in other words, we don't process any overrides here).
2781  *
2782  * NOTE: it's expected that this function and drm_do_get_edid() will both
2783  * be read the EDID, but there is no caching between them. Since we're only
2784  * reading the first block, hopefully this extra overhead won't be too big.
2785  *
2786  * Return: A 32-bit ID that should be different for each make/model of panel.
2787  *         See the functions drm_edid_encode_panel_id() and
2788  *         drm_edid_decode_panel_id() for some details on the structure of this
2789  *         ID.
2790  */
2791 
2792 u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2793 {
2794 	enum edid_block_status status;
2795 	void *base_block;
2796 	u32 panel_id = 0;
2797 
2798 	/*
2799 	 * There are no manufacturer IDs of 0, so if there is a problem reading
2800 	 * the EDID then we'll just return 0.
2801 	 */
2802 
2803 	base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2804 	if (!base_block)
2805 		return 0;
2806 
2807 	status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2808 
2809 	edid_block_status_print(status, base_block, 0);
2810 
2811 	if (edid_block_status_valid(status, edid_block_tag(base_block)))
2812 		panel_id = edid_extract_panel_id(base_block);
2813 	else
2814 		edid_block_dump(KERN_NOTICE, base_block, 0);
2815 
2816 	kfree(base_block);
2817 
2818 	return panel_id;
2819 }
2820 EXPORT_SYMBOL(drm_edid_get_panel_id);
2821 
2822 /**
2823  * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2824  * @connector: connector we're probing
2825  * @adapter: I2C adapter to use for DDC
2826  *
2827  * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2828  * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2829  * switch DDC to the GPU which is retrieving EDID.
2830  *
2831  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2832  */
2833 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2834 				     struct i2c_adapter *adapter)
2835 {
2836 	struct drm_device *dev = connector->dev;
2837 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2838 	struct edid *edid;
2839 
2840 	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2841 		return NULL;
2842 
2843 	vga_switcheroo_lock_ddc(pdev);
2844 	edid = drm_get_edid(connector, adapter);
2845 	vga_switcheroo_unlock_ddc(pdev);
2846 
2847 	return edid;
2848 }
2849 EXPORT_SYMBOL(drm_get_edid_switcheroo);
2850 
2851 /**
2852  * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2853  * @connector: connector we're probing
2854  * @adapter: I2C adapter to use for DDC
2855  *
2856  * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2857  * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2858  * temporarily switch DDC to the GPU which is retrieving EDID.
2859  *
2860  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2861  */
2862 const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2863 						struct i2c_adapter *adapter)
2864 {
2865 	struct drm_device *dev = connector->dev;
2866 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2867 	const struct drm_edid *drm_edid;
2868 
2869 	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2870 		return NULL;
2871 
2872 	vga_switcheroo_lock_ddc(pdev);
2873 	drm_edid = drm_edid_read_ddc(connector, adapter);
2874 	vga_switcheroo_unlock_ddc(pdev);
2875 
2876 	return drm_edid;
2877 }
2878 EXPORT_SYMBOL(drm_edid_read_switcheroo);
2879 
2880 /**
2881  * drm_edid_duplicate - duplicate an EDID and the extensions
2882  * @edid: EDID to duplicate
2883  *
2884  * Return: Pointer to duplicated EDID or NULL on allocation failure.
2885  */
2886 struct edid *drm_edid_duplicate(const struct edid *edid)
2887 {
2888 	if (!edid)
2889 		return NULL;
2890 
2891 	return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2892 }
2893 EXPORT_SYMBOL(drm_edid_duplicate);
2894 
2895 /*** EDID parsing ***/
2896 
2897 /**
2898  * edid_get_quirks - return quirk flags for a given EDID
2899  * @drm_edid: EDID to process
2900  *
2901  * This tells subsequent routines what fixes they need to apply.
2902  */
2903 static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2904 {
2905 	u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2906 	const struct edid_quirk *quirk;
2907 	int i;
2908 
2909 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2910 		quirk = &edid_quirk_list[i];
2911 		if (quirk->panel_id == panel_id)
2912 			return quirk->quirks;
2913 	}
2914 
2915 	return 0;
2916 }
2917 
2918 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2919 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2920 
2921 /*
2922  * Walk the mode list for connector, clearing the preferred status on existing
2923  * modes and setting it anew for the right mode ala quirks.
2924  */
2925 static void edid_fixup_preferred(struct drm_connector *connector)
2926 {
2927 	const struct drm_display_info *info = &connector->display_info;
2928 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
2929 	int target_refresh = 0;
2930 	int cur_vrefresh, preferred_vrefresh;
2931 
2932 	if (list_empty(&connector->probed_modes))
2933 		return;
2934 
2935 	if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
2936 		target_refresh = 60;
2937 	if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
2938 		target_refresh = 75;
2939 
2940 	preferred_mode = list_first_entry(&connector->probed_modes,
2941 					  struct drm_display_mode, head);
2942 
2943 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2944 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2945 
2946 		if (cur_mode == preferred_mode)
2947 			continue;
2948 
2949 		/* Largest mode is preferred */
2950 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2951 			preferred_mode = cur_mode;
2952 
2953 		cur_vrefresh = drm_mode_vrefresh(cur_mode);
2954 		preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2955 		/* At a given size, try to get closest to target refresh */
2956 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2957 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2958 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2959 			preferred_mode = cur_mode;
2960 		}
2961 	}
2962 
2963 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2964 }
2965 
2966 static bool
2967 mode_is_rb(const struct drm_display_mode *mode)
2968 {
2969 	return (mode->htotal - mode->hdisplay == 160) &&
2970 	       (mode->hsync_end - mode->hdisplay == 80) &&
2971 	       (mode->hsync_end - mode->hsync_start == 32) &&
2972 	       (mode->vsync_start - mode->vdisplay == 3);
2973 }
2974 
2975 /*
2976  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2977  * @dev: Device to duplicate against
2978  * @hsize: Mode width
2979  * @vsize: Mode height
2980  * @fresh: Mode refresh rate
2981  * @rb: Mode reduced-blanking-ness
2982  *
2983  * Walk the DMT mode list looking for a match for the given parameters.
2984  *
2985  * Return: A newly allocated copy of the mode, or NULL if not found.
2986  */
2987 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2988 					   int hsize, int vsize, int fresh,
2989 					   bool rb)
2990 {
2991 	int i;
2992 
2993 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2994 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2995 
2996 		if (hsize != ptr->hdisplay)
2997 			continue;
2998 		if (vsize != ptr->vdisplay)
2999 			continue;
3000 		if (fresh != drm_mode_vrefresh(ptr))
3001 			continue;
3002 		if (rb != mode_is_rb(ptr))
3003 			continue;
3004 
3005 		return drm_mode_duplicate(dev, ptr);
3006 	}
3007 
3008 	return NULL;
3009 }
3010 EXPORT_SYMBOL(drm_mode_find_dmt);
3011 
3012 static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3013 {
3014 	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3015 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3016 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3017 
3018 	return descriptor->pixel_clock == 0 &&
3019 		descriptor->data.other_data.pad1 == 0 &&
3020 		descriptor->data.other_data.type == type;
3021 }
3022 
3023 static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3024 {
3025 	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3026 
3027 	return descriptor->pixel_clock != 0;
3028 }
3029 
3030 typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3031 
3032 static void
3033 cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3034 {
3035 	int i, n;
3036 	u8 d = ext[0x02];
3037 	const u8 *det_base = ext + d;
3038 
3039 	if (d < 4 || d > 127)
3040 		return;
3041 
3042 	n = (127 - d) / 18;
3043 	for (i = 0; i < n; i++)
3044 		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3045 }
3046 
3047 static void
3048 vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3049 {
3050 	unsigned int i, n = min((int)ext[0x02], 6);
3051 	const u8 *det_base = ext + 5;
3052 
3053 	if (ext[0x01] != 1)
3054 		return; /* unknown version */
3055 
3056 	for (i = 0; i < n; i++)
3057 		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3058 }
3059 
3060 static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3061 					detailed_cb *cb, void *closure)
3062 {
3063 	struct drm_edid_iter edid_iter;
3064 	const u8 *ext;
3065 	int i;
3066 
3067 	if (!drm_edid)
3068 		return;
3069 
3070 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3071 		cb(&drm_edid->edid->detailed_timings[i], closure);
3072 
3073 	drm_edid_iter_begin(drm_edid, &edid_iter);
3074 	drm_edid_iter_for_each(ext, &edid_iter) {
3075 		switch (*ext) {
3076 		case CEA_EXT:
3077 			cea_for_each_detailed_block(ext, cb, closure);
3078 			break;
3079 		case VTB_EXT:
3080 			vtb_for_each_detailed_block(ext, cb, closure);
3081 			break;
3082 		default:
3083 			break;
3084 		}
3085 	}
3086 	drm_edid_iter_end(&edid_iter);
3087 }
3088 
3089 static void
3090 is_rb(const struct detailed_timing *descriptor, void *data)
3091 {
3092 	bool *res = data;
3093 
3094 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3095 		return;
3096 
3097 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3098 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3099 
3100 	if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3101 	    descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3102 		*res = true;
3103 }
3104 
3105 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
3106 static bool
3107 drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3108 {
3109 	if (drm_edid->edid->revision >= 4) {
3110 		bool ret = false;
3111 
3112 		drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3113 		return ret;
3114 	}
3115 
3116 	return ((drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
3117 }
3118 
3119 static void
3120 find_gtf2(const struct detailed_timing *descriptor, void *data)
3121 {
3122 	const struct detailed_timing **res = data;
3123 
3124 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3125 		return;
3126 
3127 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3128 
3129 	if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3130 		*res = descriptor;
3131 }
3132 
3133 /* Secondary GTF curve kicks in above some break frequency */
3134 static int
3135 drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3136 {
3137 	const struct detailed_timing *descriptor = NULL;
3138 
3139 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3140 
3141 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3142 
3143 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3144 }
3145 
3146 static int
3147 drm_gtf2_2c(const struct drm_edid *drm_edid)
3148 {
3149 	const struct detailed_timing *descriptor = NULL;
3150 
3151 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3152 
3153 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3154 
3155 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3156 }
3157 
3158 static int
3159 drm_gtf2_m(const struct drm_edid *drm_edid)
3160 {
3161 	const struct detailed_timing *descriptor = NULL;
3162 
3163 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3164 
3165 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3166 
3167 	return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3168 }
3169 
3170 static int
3171 drm_gtf2_k(const struct drm_edid *drm_edid)
3172 {
3173 	const struct detailed_timing *descriptor = NULL;
3174 
3175 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3176 
3177 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3178 
3179 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3180 }
3181 
3182 static int
3183 drm_gtf2_2j(const struct drm_edid *drm_edid)
3184 {
3185 	const struct detailed_timing *descriptor = NULL;
3186 
3187 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3188 
3189 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3190 
3191 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3192 }
3193 
3194 static void
3195 get_timing_level(const struct detailed_timing *descriptor, void *data)
3196 {
3197 	int *res = data;
3198 
3199 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3200 		return;
3201 
3202 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3203 
3204 	switch (descriptor->data.other_data.data.range.flags) {
3205 	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3206 		*res = LEVEL_GTF;
3207 		break;
3208 	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3209 		*res = LEVEL_GTF2;
3210 		break;
3211 	case DRM_EDID_CVT_SUPPORT_FLAG:
3212 		*res = LEVEL_CVT;
3213 		break;
3214 	default:
3215 		break;
3216 	}
3217 }
3218 
3219 /* Get standard timing level (CVT/GTF/DMT). */
3220 static int standard_timing_level(const struct drm_edid *drm_edid)
3221 {
3222 	const struct edid *edid = drm_edid->edid;
3223 
3224 	if (edid->revision >= 4) {
3225 		/*
3226 		 * If the range descriptor doesn't
3227 		 * indicate otherwise default to CVT
3228 		 */
3229 		int ret = LEVEL_CVT;
3230 
3231 		drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3232 
3233 		return ret;
3234 	} else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3235 		return LEVEL_GTF2;
3236 	} else if (edid->revision >= 2) {
3237 		return LEVEL_GTF;
3238 	} else {
3239 		return LEVEL_DMT;
3240 	}
3241 }
3242 
3243 /*
3244  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
3245  * monitors fill with ascii space (0x20) instead.
3246  */
3247 static int
3248 bad_std_timing(u8 a, u8 b)
3249 {
3250 	return (a == 0x00 && b == 0x00) ||
3251 	       (a == 0x01 && b == 0x01) ||
3252 	       (a == 0x20 && b == 0x20);
3253 }
3254 
3255 static int drm_mode_hsync(const struct drm_display_mode *mode)
3256 {
3257 	if (mode->htotal <= 0)
3258 		return 0;
3259 
3260 	return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3261 }
3262 
3263 static struct drm_display_mode *
3264 drm_gtf2_mode(struct drm_device *dev,
3265 	      const struct drm_edid *drm_edid,
3266 	      int hsize, int vsize, int vrefresh_rate)
3267 {
3268 	struct drm_display_mode *mode;
3269 
3270 	/*
3271 	 * This is potentially wrong if there's ever a monitor with
3272 	 * more than one ranges section, each claiming a different
3273 	 * secondary GTF curve.  Please don't do that.
3274 	 */
3275 	mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3276 	if (!mode)
3277 		return NULL;
3278 
3279 	if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3280 		drm_mode_destroy(dev, mode);
3281 		mode = drm_gtf_mode_complex(dev, hsize, vsize,
3282 					    vrefresh_rate, 0, 0,
3283 					    drm_gtf2_m(drm_edid),
3284 					    drm_gtf2_2c(drm_edid),
3285 					    drm_gtf2_k(drm_edid),
3286 					    drm_gtf2_2j(drm_edid));
3287 	}
3288 
3289 	return mode;
3290 }
3291 
3292 /*
3293  * Take the standard timing params (in this case width, aspect, and refresh)
3294  * and convert them into a real mode using CVT/GTF/DMT.
3295  */
3296 static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3297 					     const struct drm_edid *drm_edid,
3298 					     const struct std_timing *t)
3299 {
3300 	struct drm_device *dev = connector->dev;
3301 	struct drm_display_mode *m, *mode = NULL;
3302 	int hsize, vsize;
3303 	int vrefresh_rate;
3304 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3305 		>> EDID_TIMING_ASPECT_SHIFT;
3306 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3307 		>> EDID_TIMING_VFREQ_SHIFT;
3308 	int timing_level = standard_timing_level(drm_edid);
3309 
3310 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
3311 		return NULL;
3312 
3313 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3314 	hsize = t->hsize * 8 + 248;
3315 	/* vrefresh_rate = vfreq + 60 */
3316 	vrefresh_rate = vfreq + 60;
3317 	/* the vdisplay is calculated based on the aspect ratio */
3318 	if (aspect_ratio == 0) {
3319 		if (drm_edid->edid->revision < 3)
3320 			vsize = hsize;
3321 		else
3322 			vsize = (hsize * 10) / 16;
3323 	} else if (aspect_ratio == 1)
3324 		vsize = (hsize * 3) / 4;
3325 	else if (aspect_ratio == 2)
3326 		vsize = (hsize * 4) / 5;
3327 	else
3328 		vsize = (hsize * 9) / 16;
3329 
3330 	/* HDTV hack, part 1 */
3331 	if (vrefresh_rate == 60 &&
3332 	    ((hsize == 1360 && vsize == 765) ||
3333 	     (hsize == 1368 && vsize == 769))) {
3334 		hsize = 1366;
3335 		vsize = 768;
3336 	}
3337 
3338 	/*
3339 	 * If this connector already has a mode for this size and refresh
3340 	 * rate (because it came from detailed or CVT info), use that
3341 	 * instead.  This way we don't have to guess at interlace or
3342 	 * reduced blanking.
3343 	 */
3344 	list_for_each_entry(m, &connector->probed_modes, head)
3345 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
3346 		    drm_mode_vrefresh(m) == vrefresh_rate)
3347 			return NULL;
3348 
3349 	/* HDTV hack, part 2 */
3350 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3351 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3352 				    false);
3353 		if (!mode)
3354 			return NULL;
3355 		mode->hdisplay = 1366;
3356 		mode->hsync_start = mode->hsync_start - 1;
3357 		mode->hsync_end = mode->hsync_end - 1;
3358 		return mode;
3359 	}
3360 
3361 	/* check whether it can be found in default mode table */
3362 	if (drm_monitor_supports_rb(drm_edid)) {
3363 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3364 					 true);
3365 		if (mode)
3366 			return mode;
3367 	}
3368 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3369 	if (mode)
3370 		return mode;
3371 
3372 	/* okay, generate it */
3373 	switch (timing_level) {
3374 	case LEVEL_DMT:
3375 		break;
3376 	case LEVEL_GTF:
3377 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3378 		break;
3379 	case LEVEL_GTF2:
3380 		mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3381 		break;
3382 	case LEVEL_CVT:
3383 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3384 				    false);
3385 		break;
3386 	}
3387 	return mode;
3388 }
3389 
3390 /*
3391  * EDID is delightfully ambiguous about how interlaced modes are to be
3392  * encoded.  Our internal representation is of frame height, but some
3393  * HDTV detailed timings are encoded as field height.
3394  *
3395  * The format list here is from CEA, in frame size.  Technically we
3396  * should be checking refresh rate too.  Whatever.
3397  */
3398 static void
3399 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3400 			    const struct detailed_pixel_timing *pt)
3401 {
3402 	int i;
3403 	static const struct {
3404 		int w, h;
3405 	} cea_interlaced[] = {
3406 		{ 1920, 1080 },
3407 		{  720,  480 },
3408 		{ 1440,  480 },
3409 		{ 2880,  480 },
3410 		{  720,  576 },
3411 		{ 1440,  576 },
3412 		{ 2880,  576 },
3413 	};
3414 
3415 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3416 		return;
3417 
3418 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3419 		if ((mode->hdisplay == cea_interlaced[i].w) &&
3420 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3421 			mode->vdisplay *= 2;
3422 			mode->vsync_start *= 2;
3423 			mode->vsync_end *= 2;
3424 			mode->vtotal *= 2;
3425 			mode->vtotal |= 1;
3426 		}
3427 	}
3428 
3429 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3430 }
3431 
3432 /*
3433  * Create a new mode from an EDID detailed timing section. An EDID detailed
3434  * timing block contains enough info for us to create and return a new struct
3435  * drm_display_mode.
3436  */
3437 static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3438 						  const struct drm_edid *drm_edid,
3439 						  const struct detailed_timing *timing)
3440 {
3441 	const struct drm_display_info *info = &connector->display_info;
3442 	struct drm_device *dev = connector->dev;
3443 	struct drm_display_mode *mode;
3444 	const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3445 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3446 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3447 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3448 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3449 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3450 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3451 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3452 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3453 
3454 	/* ignore tiny modes */
3455 	if (hactive < 64 || vactive < 64)
3456 		return NULL;
3457 
3458 	if (pt->misc & DRM_EDID_PT_STEREO) {
3459 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3460 			    connector->base.id, connector->name);
3461 		return NULL;
3462 	}
3463 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3464 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3465 			    connector->base.id, connector->name);
3466 	}
3467 
3468 	/* it is incorrect if hsync/vsync width is zero */
3469 	if (!hsync_pulse_width || !vsync_pulse_width) {
3470 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3471 			    connector->base.id, connector->name);
3472 		return NULL;
3473 	}
3474 
3475 	if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3476 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3477 		if (!mode)
3478 			return NULL;
3479 
3480 		goto set_size;
3481 	}
3482 
3483 	mode = drm_mode_create(dev);
3484 	if (!mode)
3485 		return NULL;
3486 
3487 	if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3488 		mode->clock = 1088 * 10;
3489 	else
3490 		mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3491 
3492 	mode->hdisplay = hactive;
3493 	mode->hsync_start = mode->hdisplay + hsync_offset;
3494 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3495 	mode->htotal = mode->hdisplay + hblank;
3496 
3497 	mode->vdisplay = vactive;
3498 	mode->vsync_start = mode->vdisplay + vsync_offset;
3499 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3500 	mode->vtotal = mode->vdisplay + vblank;
3501 
3502 	/* Some EDIDs have bogus h/vsync_end values */
3503 	if (mode->hsync_end > mode->htotal) {
3504 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n",
3505 			    connector->base.id, connector->name,
3506 			    mode->hsync_end, mode->htotal);
3507 		mode->hsync_end = mode->htotal;
3508 	}
3509 	if (mode->vsync_end > mode->vtotal) {
3510 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n",
3511 			    connector->base.id, connector->name,
3512 			    mode->vsync_end, mode->vtotal);
3513 		mode->vsync_end = mode->vtotal;
3514 	}
3515 
3516 	drm_mode_do_interlace_quirk(mode, pt);
3517 
3518 	if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3519 		mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3520 	} else {
3521 		mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3522 			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3523 		mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3524 			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3525 	}
3526 
3527 set_size:
3528 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3529 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3530 
3531 	if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
3532 		mode->width_mm *= 10;
3533 		mode->height_mm *= 10;
3534 	}
3535 
3536 	if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3537 		mode->width_mm = drm_edid->edid->width_cm * 10;
3538 		mode->height_mm = drm_edid->edid->height_cm * 10;
3539 	}
3540 
3541 	mode->type = DRM_MODE_TYPE_DRIVER;
3542 	drm_mode_set_name(mode);
3543 
3544 	return mode;
3545 }
3546 
3547 static bool
3548 mode_in_hsync_range(const struct drm_display_mode *mode,
3549 		    const struct edid *edid, const u8 *t)
3550 {
3551 	int hsync, hmin, hmax;
3552 
3553 	hmin = t[7];
3554 	if (edid->revision >= 4)
3555 	    hmin += ((t[4] & 0x04) ? 255 : 0);
3556 	hmax = t[8];
3557 	if (edid->revision >= 4)
3558 	    hmax += ((t[4] & 0x08) ? 255 : 0);
3559 	hsync = drm_mode_hsync(mode);
3560 
3561 	return (hsync <= hmax && hsync >= hmin);
3562 }
3563 
3564 static bool
3565 mode_in_vsync_range(const struct drm_display_mode *mode,
3566 		    const struct edid *edid, const u8 *t)
3567 {
3568 	int vsync, vmin, vmax;
3569 
3570 	vmin = t[5];
3571 	if (edid->revision >= 4)
3572 	    vmin += ((t[4] & 0x01) ? 255 : 0);
3573 	vmax = t[6];
3574 	if (edid->revision >= 4)
3575 	    vmax += ((t[4] & 0x02) ? 255 : 0);
3576 	vsync = drm_mode_vrefresh(mode);
3577 
3578 	return (vsync <= vmax && vsync >= vmin);
3579 }
3580 
3581 static u32
3582 range_pixel_clock(const struct edid *edid, const u8 *t)
3583 {
3584 	/* unspecified */
3585 	if (t[9] == 0 || t[9] == 255)
3586 		return 0;
3587 
3588 	/* 1.4 with CVT support gives us real precision, yay */
3589 	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3590 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
3591 
3592 	/* 1.3 is pathetic, so fuzz up a bit */
3593 	return t[9] * 10000 + 5001;
3594 }
3595 
3596 static bool mode_in_range(const struct drm_display_mode *mode,
3597 			  const struct drm_edid *drm_edid,
3598 			  const struct detailed_timing *timing)
3599 {
3600 	const struct edid *edid = drm_edid->edid;
3601 	u32 max_clock;
3602 	const u8 *t = (const u8 *)timing;
3603 
3604 	if (!mode_in_hsync_range(mode, edid, t))
3605 		return false;
3606 
3607 	if (!mode_in_vsync_range(mode, edid, t))
3608 		return false;
3609 
3610 	if ((max_clock = range_pixel_clock(edid, t)))
3611 		if (mode->clock > max_clock)
3612 			return false;
3613 
3614 	/* 1.4 max horizontal check */
3615 	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3616 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3617 			return false;
3618 
3619 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3620 		return false;
3621 
3622 	return true;
3623 }
3624 
3625 static bool valid_inferred_mode(const struct drm_connector *connector,
3626 				const struct drm_display_mode *mode)
3627 {
3628 	const struct drm_display_mode *m;
3629 	bool ok = false;
3630 
3631 	list_for_each_entry(m, &connector->probed_modes, head) {
3632 		if (mode->hdisplay == m->hdisplay &&
3633 		    mode->vdisplay == m->vdisplay &&
3634 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3635 			return false; /* duplicated */
3636 		if (mode->hdisplay <= m->hdisplay &&
3637 		    mode->vdisplay <= m->vdisplay)
3638 			ok = true;
3639 	}
3640 	return ok;
3641 }
3642 
3643 static int drm_dmt_modes_for_range(struct drm_connector *connector,
3644 				   const struct drm_edid *drm_edid,
3645 				   const struct detailed_timing *timing)
3646 {
3647 	int i, modes = 0;
3648 	struct drm_display_mode *newmode;
3649 	struct drm_device *dev = connector->dev;
3650 
3651 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3652 		if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3653 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
3654 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3655 			if (newmode) {
3656 				drm_mode_probed_add(connector, newmode);
3657 				modes++;
3658 			}
3659 		}
3660 	}
3661 
3662 	return modes;
3663 }
3664 
3665 /* fix up 1366x768 mode from 1368x768;
3666  * GFT/CVT can't express 1366 width which isn't dividable by 8
3667  */
3668 void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3669 {
3670 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3671 		mode->hdisplay = 1366;
3672 		mode->hsync_start--;
3673 		mode->hsync_end--;
3674 		drm_mode_set_name(mode);
3675 	}
3676 }
3677 
3678 static int drm_gtf_modes_for_range(struct drm_connector *connector,
3679 				   const struct drm_edid *drm_edid,
3680 				   const struct detailed_timing *timing)
3681 {
3682 	int i, modes = 0;
3683 	struct drm_display_mode *newmode;
3684 	struct drm_device *dev = connector->dev;
3685 
3686 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3687 		const struct minimode *m = &extra_modes[i];
3688 
3689 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3690 		if (!newmode)
3691 			return modes;
3692 
3693 		drm_mode_fixup_1366x768(newmode);
3694 		if (!mode_in_range(newmode, drm_edid, timing) ||
3695 		    !valid_inferred_mode(connector, newmode)) {
3696 			drm_mode_destroy(dev, newmode);
3697 			continue;
3698 		}
3699 
3700 		drm_mode_probed_add(connector, newmode);
3701 		modes++;
3702 	}
3703 
3704 	return modes;
3705 }
3706 
3707 static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3708 				    const struct drm_edid *drm_edid,
3709 				    const struct detailed_timing *timing)
3710 {
3711 	int i, modes = 0;
3712 	struct drm_display_mode *newmode;
3713 	struct drm_device *dev = connector->dev;
3714 
3715 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3716 		const struct minimode *m = &extra_modes[i];
3717 
3718 		newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3719 		if (!newmode)
3720 			return modes;
3721 
3722 		drm_mode_fixup_1366x768(newmode);
3723 		if (!mode_in_range(newmode, drm_edid, timing) ||
3724 		    !valid_inferred_mode(connector, newmode)) {
3725 			drm_mode_destroy(dev, newmode);
3726 			continue;
3727 		}
3728 
3729 		drm_mode_probed_add(connector, newmode);
3730 		modes++;
3731 	}
3732 
3733 	return modes;
3734 }
3735 
3736 static int drm_cvt_modes_for_range(struct drm_connector *connector,
3737 				   const struct drm_edid *drm_edid,
3738 				   const struct detailed_timing *timing)
3739 {
3740 	int i, modes = 0;
3741 	struct drm_display_mode *newmode;
3742 	struct drm_device *dev = connector->dev;
3743 	bool rb = drm_monitor_supports_rb(drm_edid);
3744 
3745 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3746 		const struct minimode *m = &extra_modes[i];
3747 
3748 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3749 		if (!newmode)
3750 			return modes;
3751 
3752 		drm_mode_fixup_1366x768(newmode);
3753 		if (!mode_in_range(newmode, drm_edid, timing) ||
3754 		    !valid_inferred_mode(connector, newmode)) {
3755 			drm_mode_destroy(dev, newmode);
3756 			continue;
3757 		}
3758 
3759 		drm_mode_probed_add(connector, newmode);
3760 		modes++;
3761 	}
3762 
3763 	return modes;
3764 }
3765 
3766 static void
3767 do_inferred_modes(const struct detailed_timing *timing, void *c)
3768 {
3769 	struct detailed_mode_closure *closure = c;
3770 	const struct detailed_non_pixel *data = &timing->data.other_data;
3771 	const struct detailed_data_monitor_range *range = &data->data.range;
3772 
3773 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3774 		return;
3775 
3776 	closure->modes += drm_dmt_modes_for_range(closure->connector,
3777 						  closure->drm_edid,
3778 						  timing);
3779 
3780 	if (closure->drm_edid->edid->revision < 2)
3781 		return; /* GTF not defined yet */
3782 
3783 	switch (range->flags) {
3784 	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3785 		closure->modes += drm_gtf2_modes_for_range(closure->connector,
3786 							   closure->drm_edid,
3787 							   timing);
3788 		break;
3789 	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3790 		closure->modes += drm_gtf_modes_for_range(closure->connector,
3791 							  closure->drm_edid,
3792 							  timing);
3793 		break;
3794 	case DRM_EDID_CVT_SUPPORT_FLAG:
3795 		if (closure->drm_edid->edid->revision < 4)
3796 			break;
3797 
3798 		closure->modes += drm_cvt_modes_for_range(closure->connector,
3799 							  closure->drm_edid,
3800 							  timing);
3801 		break;
3802 	case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3803 	default:
3804 		break;
3805 	}
3806 }
3807 
3808 static int add_inferred_modes(struct drm_connector *connector,
3809 			      const struct drm_edid *drm_edid)
3810 {
3811 	struct detailed_mode_closure closure = {
3812 		.connector = connector,
3813 		.drm_edid = drm_edid,
3814 	};
3815 
3816 	if (drm_edid->edid->revision >= 1)
3817 		drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3818 
3819 	return closure.modes;
3820 }
3821 
3822 static int
3823 drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3824 {
3825 	int i, j, m, modes = 0;
3826 	struct drm_display_mode *mode;
3827 	const u8 *est = ((const u8 *)timing) + 6;
3828 
3829 	for (i = 0; i < 6; i++) {
3830 		for (j = 7; j >= 0; j--) {
3831 			m = (i * 8) + (7 - j);
3832 			if (m >= ARRAY_SIZE(est3_modes))
3833 				break;
3834 			if (est[i] & (1 << j)) {
3835 				mode = drm_mode_find_dmt(connector->dev,
3836 							 est3_modes[m].w,
3837 							 est3_modes[m].h,
3838 							 est3_modes[m].r,
3839 							 est3_modes[m].rb);
3840 				if (mode) {
3841 					drm_mode_probed_add(connector, mode);
3842 					modes++;
3843 				}
3844 			}
3845 		}
3846 	}
3847 
3848 	return modes;
3849 }
3850 
3851 static void
3852 do_established_modes(const struct detailed_timing *timing, void *c)
3853 {
3854 	struct detailed_mode_closure *closure = c;
3855 
3856 	if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3857 		return;
3858 
3859 	closure->modes += drm_est3_modes(closure->connector, timing);
3860 }
3861 
3862 /*
3863  * Get established modes from EDID and add them. Each EDID block contains a
3864  * bitmap of the supported "established modes" list (defined above). Tease them
3865  * out and add them to the global modes list.
3866  */
3867 static int add_established_modes(struct drm_connector *connector,
3868 				 const struct drm_edid *drm_edid)
3869 {
3870 	struct drm_device *dev = connector->dev;
3871 	const struct edid *edid = drm_edid->edid;
3872 	unsigned long est_bits = edid->established_timings.t1 |
3873 		(edid->established_timings.t2 << 8) |
3874 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
3875 	int i, modes = 0;
3876 	struct detailed_mode_closure closure = {
3877 		.connector = connector,
3878 		.drm_edid = drm_edid,
3879 	};
3880 
3881 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3882 		if (est_bits & (1<<i)) {
3883 			struct drm_display_mode *newmode;
3884 
3885 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3886 			if (newmode) {
3887 				drm_mode_probed_add(connector, newmode);
3888 				modes++;
3889 			}
3890 		}
3891 	}
3892 
3893 	if (edid->revision >= 1)
3894 		drm_for_each_detailed_block(drm_edid, do_established_modes,
3895 					    &closure);
3896 
3897 	return modes + closure.modes;
3898 }
3899 
3900 static void
3901 do_standard_modes(const struct detailed_timing *timing, void *c)
3902 {
3903 	struct detailed_mode_closure *closure = c;
3904 	const struct detailed_non_pixel *data = &timing->data.other_data;
3905 	struct drm_connector *connector = closure->connector;
3906 	int i;
3907 
3908 	if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3909 		return;
3910 
3911 	for (i = 0; i < 6; i++) {
3912 		const struct std_timing *std = &data->data.timings[i];
3913 		struct drm_display_mode *newmode;
3914 
3915 		newmode = drm_mode_std(connector, closure->drm_edid, std);
3916 		if (newmode) {
3917 			drm_mode_probed_add(connector, newmode);
3918 			closure->modes++;
3919 		}
3920 	}
3921 }
3922 
3923 /*
3924  * Get standard modes from EDID and add them. Standard modes can be calculated
3925  * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3926  * add them to the list.
3927  */
3928 static int add_standard_modes(struct drm_connector *connector,
3929 			      const struct drm_edid *drm_edid)
3930 {
3931 	int i, modes = 0;
3932 	struct detailed_mode_closure closure = {
3933 		.connector = connector,
3934 		.drm_edid = drm_edid,
3935 	};
3936 
3937 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
3938 		struct drm_display_mode *newmode;
3939 
3940 		newmode = drm_mode_std(connector, drm_edid,
3941 				       &drm_edid->edid->standard_timings[i]);
3942 		if (newmode) {
3943 			drm_mode_probed_add(connector, newmode);
3944 			modes++;
3945 		}
3946 	}
3947 
3948 	if (drm_edid->edid->revision >= 1)
3949 		drm_for_each_detailed_block(drm_edid, do_standard_modes,
3950 					    &closure);
3951 
3952 	/* XXX should also look for standard codes in VTB blocks */
3953 
3954 	return modes + closure.modes;
3955 }
3956 
3957 static int drm_cvt_modes(struct drm_connector *connector,
3958 			 const struct detailed_timing *timing)
3959 {
3960 	int i, j, modes = 0;
3961 	struct drm_display_mode *newmode;
3962 	struct drm_device *dev = connector->dev;
3963 	const struct cvt_timing *cvt;
3964 	static const int rates[] = { 60, 85, 75, 60, 50 };
3965 	const u8 empty[3] = { 0, 0, 0 };
3966 
3967 	for (i = 0; i < 4; i++) {
3968 		int width, height;
3969 
3970 		cvt = &(timing->data.other_data.data.cvt[i]);
3971 
3972 		if (!memcmp(cvt->code, empty, 3))
3973 			continue;
3974 
3975 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3976 		switch (cvt->code[1] & 0x0c) {
3977 		/* default - because compiler doesn't see that we've enumerated all cases */
3978 		default:
3979 		case 0x00:
3980 			width = height * 4 / 3;
3981 			break;
3982 		case 0x04:
3983 			width = height * 16 / 9;
3984 			break;
3985 		case 0x08:
3986 			width = height * 16 / 10;
3987 			break;
3988 		case 0x0c:
3989 			width = height * 15 / 9;
3990 			break;
3991 		}
3992 
3993 		for (j = 1; j < 5; j++) {
3994 			if (cvt->code[2] & (1 << j)) {
3995 				newmode = drm_cvt_mode(dev, width, height,
3996 						       rates[j], j == 0,
3997 						       false, false);
3998 				if (newmode) {
3999 					drm_mode_probed_add(connector, newmode);
4000 					modes++;
4001 				}
4002 			}
4003 		}
4004 	}
4005 
4006 	return modes;
4007 }
4008 
4009 static void
4010 do_cvt_mode(const struct detailed_timing *timing, void *c)
4011 {
4012 	struct detailed_mode_closure *closure = c;
4013 
4014 	if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4015 		return;
4016 
4017 	closure->modes += drm_cvt_modes(closure->connector, timing);
4018 }
4019 
4020 static int
4021 add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4022 {
4023 	struct detailed_mode_closure closure = {
4024 		.connector = connector,
4025 		.drm_edid = drm_edid,
4026 	};
4027 
4028 	if (drm_edid->edid->revision >= 3)
4029 		drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4030 
4031 	/* XXX should also look for CVT codes in VTB blocks */
4032 
4033 	return closure.modes;
4034 }
4035 
4036 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4037 					  struct drm_display_mode *mode);
4038 
4039 static void
4040 do_detailed_mode(const struct detailed_timing *timing, void *c)
4041 {
4042 	struct detailed_mode_closure *closure = c;
4043 	struct drm_display_mode *newmode;
4044 
4045 	if (!is_detailed_timing_descriptor(timing))
4046 		return;
4047 
4048 	newmode = drm_mode_detailed(closure->connector,
4049 				    closure->drm_edid, timing);
4050 	if (!newmode)
4051 		return;
4052 
4053 	if (closure->preferred)
4054 		newmode->type |= DRM_MODE_TYPE_PREFERRED;
4055 
4056 	/*
4057 	 * Detailed modes are limited to 10kHz pixel clock resolution,
4058 	 * so fix up anything that looks like CEA/HDMI mode, but the clock
4059 	 * is just slightly off.
4060 	 */
4061 	fixup_detailed_cea_mode_clock(closure->connector, newmode);
4062 
4063 	drm_mode_probed_add(closure->connector, newmode);
4064 	closure->modes++;
4065 	closure->preferred = false;
4066 }
4067 
4068 /*
4069  * add_detailed_modes - Add modes from detailed timings
4070  * @connector: attached connector
4071  * @drm_edid: EDID block to scan
4072  */
4073 static int add_detailed_modes(struct drm_connector *connector,
4074 			      const struct drm_edid *drm_edid)
4075 {
4076 	struct detailed_mode_closure closure = {
4077 		.connector = connector,
4078 		.drm_edid = drm_edid,
4079 	};
4080 
4081 	if (drm_edid->edid->revision >= 4)
4082 		closure.preferred = true; /* first detailed timing is always preferred */
4083 	else
4084 		closure.preferred =
4085 			drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4086 
4087 	drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4088 
4089 	return closure.modes;
4090 }
4091 
4092 /* CTA-861-H Table 60 - CTA Tag Codes */
4093 #define CTA_DB_AUDIO			1
4094 #define CTA_DB_VIDEO			2
4095 #define CTA_DB_VENDOR			3
4096 #define CTA_DB_SPEAKER			4
4097 #define CTA_DB_EXTENDED_TAG		7
4098 
4099 /* CTA-861-H Table 62 - CTA Extended Tag Codes */
4100 #define CTA_EXT_DB_VIDEO_CAP		0
4101 #define CTA_EXT_DB_VENDOR		1
4102 #define CTA_EXT_DB_HDR_STATIC_METADATA	6
4103 #define CTA_EXT_DB_420_VIDEO_DATA	14
4104 #define CTA_EXT_DB_420_VIDEO_CAP_MAP	15
4105 #define CTA_EXT_DB_HF_EEODB		0x78
4106 #define CTA_EXT_DB_HF_SCDB		0x79
4107 
4108 #define EDID_BASIC_AUDIO	(1 << 6)
4109 #define EDID_CEA_YCRCB444	(1 << 5)
4110 #define EDID_CEA_YCRCB422	(1 << 4)
4111 #define EDID_CEA_VCDB_QS	(1 << 6)
4112 
4113 /*
4114  * Search EDID for CEA extension block.
4115  *
4116  * FIXME: Prefer not returning pointers to raw EDID data.
4117  */
4118 const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4119 				  int ext_id, int *ext_index)
4120 {
4121 	const u8 *edid_ext = NULL;
4122 	int i;
4123 
4124 	/* No EDID or EDID extensions */
4125 	if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4126 		return NULL;
4127 
4128 	/* Find CEA extension */
4129 	for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4130 		edid_ext = drm_edid_extension_block_data(drm_edid, i);
4131 		if (edid_block_tag(edid_ext) == ext_id)
4132 			break;
4133 	}
4134 
4135 	if (i >= drm_edid_extension_block_count(drm_edid))
4136 		return NULL;
4137 
4138 	*ext_index = i + 1;
4139 
4140 	return edid_ext;
4141 }
4142 
4143 /* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4144 static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4145 {
4146 	const struct displayid_block *block;
4147 	struct displayid_iter iter;
4148 	int ext_index = 0;
4149 	bool found = false;
4150 
4151 	/* Look for a top level CEA extension block */
4152 	if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
4153 		return true;
4154 
4155 	/* CEA blocks can also be found embedded in a DisplayID block */
4156 	displayid_iter_edid_begin(drm_edid, &iter);
4157 	displayid_iter_for_each(block, &iter) {
4158 		if (block->tag == DATA_BLOCK_CTA) {
4159 			found = true;
4160 			break;
4161 		}
4162 	}
4163 	displayid_iter_end(&iter);
4164 
4165 	return found;
4166 }
4167 
4168 static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4169 {
4170 	BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4171 	BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4172 
4173 	if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4174 		return &edid_cea_modes_1[vic - 1];
4175 	if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4176 		return &edid_cea_modes_193[vic - 193];
4177 	return NULL;
4178 }
4179 
4180 static u8 cea_num_vics(void)
4181 {
4182 	return 193 + ARRAY_SIZE(edid_cea_modes_193);
4183 }
4184 
4185 static u8 cea_next_vic(u8 vic)
4186 {
4187 	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4188 		vic = 193;
4189 	return vic;
4190 }
4191 
4192 /*
4193  * Calculate the alternate clock for the CEA mode
4194  * (60Hz vs. 59.94Hz etc.)
4195  */
4196 static unsigned int
4197 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4198 {
4199 	unsigned int clock = cea_mode->clock;
4200 
4201 	if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4202 		return clock;
4203 
4204 	/*
4205 	 * edid_cea_modes contains the 59.94Hz
4206 	 * variant for 240 and 480 line modes,
4207 	 * and the 60Hz variant otherwise.
4208 	 */
4209 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4210 		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4211 	else
4212 		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4213 
4214 	return clock;
4215 }
4216 
4217 static bool
4218 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4219 {
4220 	/*
4221 	 * For certain VICs the spec allows the vertical
4222 	 * front porch to vary by one or two lines.
4223 	 *
4224 	 * cea_modes[] stores the variant with the shortest
4225 	 * vertical front porch. We can adjust the mode to
4226 	 * get the other variants by simply increasing the
4227 	 * vertical front porch length.
4228 	 */
4229 	BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4230 		     cea_mode_for_vic(9)->vtotal != 262 ||
4231 		     cea_mode_for_vic(12)->vtotal != 262 ||
4232 		     cea_mode_for_vic(13)->vtotal != 262 ||
4233 		     cea_mode_for_vic(23)->vtotal != 312 ||
4234 		     cea_mode_for_vic(24)->vtotal != 312 ||
4235 		     cea_mode_for_vic(27)->vtotal != 312 ||
4236 		     cea_mode_for_vic(28)->vtotal != 312);
4237 
4238 	if (((vic == 8 || vic == 9 ||
4239 	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
4240 	    ((vic == 23 || vic == 24 ||
4241 	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
4242 		mode->vsync_start++;
4243 		mode->vsync_end++;
4244 		mode->vtotal++;
4245 
4246 		return true;
4247 	}
4248 
4249 	return false;
4250 }
4251 
4252 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4253 					     unsigned int clock_tolerance)
4254 {
4255 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4256 	u8 vic;
4257 
4258 	if (!to_match->clock)
4259 		return 0;
4260 
4261 	if (to_match->picture_aspect_ratio)
4262 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4263 
4264 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4265 		struct drm_display_mode cea_mode;
4266 		unsigned int clock1, clock2;
4267 
4268 		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4269 
4270 		/* Check both 60Hz and 59.94Hz */
4271 		clock1 = cea_mode.clock;
4272 		clock2 = cea_mode_alternate_clock(&cea_mode);
4273 
4274 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4275 		    abs(to_match->clock - clock2) > clock_tolerance)
4276 			continue;
4277 
4278 		do {
4279 			if (drm_mode_match(to_match, &cea_mode, match_flags))
4280 				return vic;
4281 		} while (cea_mode_alternate_timings(vic, &cea_mode));
4282 	}
4283 
4284 	return 0;
4285 }
4286 
4287 /**
4288  * drm_match_cea_mode - look for a CEA mode matching given mode
4289  * @to_match: display mode
4290  *
4291  * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4292  * mode.
4293  */
4294 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4295 {
4296 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4297 	u8 vic;
4298 
4299 	if (!to_match->clock)
4300 		return 0;
4301 
4302 	if (to_match->picture_aspect_ratio)
4303 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4304 
4305 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4306 		struct drm_display_mode cea_mode;
4307 		unsigned int clock1, clock2;
4308 
4309 		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4310 
4311 		/* Check both 60Hz and 59.94Hz */
4312 		clock1 = cea_mode.clock;
4313 		clock2 = cea_mode_alternate_clock(&cea_mode);
4314 
4315 		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4316 		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4317 			continue;
4318 
4319 		do {
4320 			if (drm_mode_match(to_match, &cea_mode, match_flags))
4321 				return vic;
4322 		} while (cea_mode_alternate_timings(vic, &cea_mode));
4323 	}
4324 
4325 	return 0;
4326 }
4327 EXPORT_SYMBOL(drm_match_cea_mode);
4328 
4329 static bool drm_valid_cea_vic(u8 vic)
4330 {
4331 	return cea_mode_for_vic(vic) != NULL;
4332 }
4333 
4334 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4335 {
4336 	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4337 
4338 	if (mode)
4339 		return mode->picture_aspect_ratio;
4340 
4341 	return HDMI_PICTURE_ASPECT_NONE;
4342 }
4343 
4344 static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4345 {
4346 	return edid_4k_modes[video_code].picture_aspect_ratio;
4347 }
4348 
4349 /*
4350  * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4351  * specific block).
4352  */
4353 static unsigned int
4354 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4355 {
4356 	return cea_mode_alternate_clock(hdmi_mode);
4357 }
4358 
4359 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4360 					      unsigned int clock_tolerance)
4361 {
4362 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4363 	u8 vic;
4364 
4365 	if (!to_match->clock)
4366 		return 0;
4367 
4368 	if (to_match->picture_aspect_ratio)
4369 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4370 
4371 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4372 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4373 		unsigned int clock1, clock2;
4374 
4375 		/* Make sure to also match alternate clocks */
4376 		clock1 = hdmi_mode->clock;
4377 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4378 
4379 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4380 		    abs(to_match->clock - clock2) > clock_tolerance)
4381 			continue;
4382 
4383 		if (drm_mode_match(to_match, hdmi_mode, match_flags))
4384 			return vic;
4385 	}
4386 
4387 	return 0;
4388 }
4389 
4390 /*
4391  * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4392  * @to_match: display mode
4393  *
4394  * An HDMI mode is one defined in the HDMI vendor specific block.
4395  *
4396  * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4397  */
4398 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4399 {
4400 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4401 	u8 vic;
4402 
4403 	if (!to_match->clock)
4404 		return 0;
4405 
4406 	if (to_match->picture_aspect_ratio)
4407 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4408 
4409 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4410 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4411 		unsigned int clock1, clock2;
4412 
4413 		/* Make sure to also match alternate clocks */
4414 		clock1 = hdmi_mode->clock;
4415 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4416 
4417 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4418 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4419 		    drm_mode_match(to_match, hdmi_mode, match_flags))
4420 			return vic;
4421 	}
4422 	return 0;
4423 }
4424 
4425 static bool drm_valid_hdmi_vic(u8 vic)
4426 {
4427 	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4428 }
4429 
4430 static int add_alternate_cea_modes(struct drm_connector *connector,
4431 				   const struct drm_edid *drm_edid)
4432 {
4433 	struct drm_device *dev = connector->dev;
4434 	struct drm_display_mode *mode, *tmp;
4435 	LIST_HEAD(list);
4436 	int modes = 0;
4437 
4438 	/* Don't add CTA modes if the CTA extension block is missing */
4439 	if (!drm_edid_has_cta_extension(drm_edid))
4440 		return 0;
4441 
4442 	/*
4443 	 * Go through all probed modes and create a new mode
4444 	 * with the alternate clock for certain CEA modes.
4445 	 */
4446 	list_for_each_entry(mode, &connector->probed_modes, head) {
4447 		const struct drm_display_mode *cea_mode = NULL;
4448 		struct drm_display_mode *newmode;
4449 		u8 vic = drm_match_cea_mode(mode);
4450 		unsigned int clock1, clock2;
4451 
4452 		if (drm_valid_cea_vic(vic)) {
4453 			cea_mode = cea_mode_for_vic(vic);
4454 			clock2 = cea_mode_alternate_clock(cea_mode);
4455 		} else {
4456 			vic = drm_match_hdmi_mode(mode);
4457 			if (drm_valid_hdmi_vic(vic)) {
4458 				cea_mode = &edid_4k_modes[vic];
4459 				clock2 = hdmi_mode_alternate_clock(cea_mode);
4460 			}
4461 		}
4462 
4463 		if (!cea_mode)
4464 			continue;
4465 
4466 		clock1 = cea_mode->clock;
4467 
4468 		if (clock1 == clock2)
4469 			continue;
4470 
4471 		if (mode->clock != clock1 && mode->clock != clock2)
4472 			continue;
4473 
4474 		newmode = drm_mode_duplicate(dev, cea_mode);
4475 		if (!newmode)
4476 			continue;
4477 
4478 		/* Carry over the stereo flags */
4479 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4480 
4481 		/*
4482 		 * The current mode could be either variant. Make
4483 		 * sure to pick the "other" clock for the new mode.
4484 		 */
4485 		if (mode->clock != clock1)
4486 			newmode->clock = clock1;
4487 		else
4488 			newmode->clock = clock2;
4489 
4490 		list_add_tail(&newmode->head, &list);
4491 	}
4492 
4493 	list_for_each_entry_safe(mode, tmp, &list, head) {
4494 		list_del(&mode->head);
4495 		drm_mode_probed_add(connector, mode);
4496 		modes++;
4497 	}
4498 
4499 	return modes;
4500 }
4501 
4502 static u8 svd_to_vic(u8 svd)
4503 {
4504 	/* 0-6 bit vic, 7th bit native mode indicator */
4505 	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
4506 		return svd & 127;
4507 
4508 	return svd;
4509 }
4510 
4511 /*
4512  * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4513  * the EDID, or NULL on errors.
4514  */
4515 static struct drm_display_mode *
4516 drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
4517 {
4518 	const struct drm_display_info *info = &connector->display_info;
4519 	struct drm_device *dev = connector->dev;
4520 
4521 	if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
4522 		return NULL;
4523 
4524 	return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
4525 }
4526 
4527 /*
4528  * do_y420vdb_modes - Parse YCBCR 420 only modes
4529  * @connector: connector corresponding to the HDMI sink
4530  * @svds: start of the data block of CEA YCBCR 420 VDB
4531  * @len: length of the CEA YCBCR 420 VDB
4532  *
4533  * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4534  * which contains modes which can be supported in YCBCR 420
4535  * output format only.
4536  */
4537 static int do_y420vdb_modes(struct drm_connector *connector,
4538 			    const u8 *svds, u8 svds_len)
4539 {
4540 	struct drm_device *dev = connector->dev;
4541 	int modes = 0, i;
4542 
4543 	for (i = 0; i < svds_len; i++) {
4544 		u8 vic = svd_to_vic(svds[i]);
4545 		struct drm_display_mode *newmode;
4546 
4547 		if (!drm_valid_cea_vic(vic))
4548 			continue;
4549 
4550 		newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4551 		if (!newmode)
4552 			break;
4553 		drm_mode_probed_add(connector, newmode);
4554 		modes++;
4555 	}
4556 
4557 	return modes;
4558 }
4559 
4560 /**
4561  * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4562  * @dev: DRM device
4563  * @video_code: CEA VIC of the mode
4564  *
4565  * Creates a new mode matching the specified CEA VIC.
4566  *
4567  * Returns: A new drm_display_mode on success or NULL on failure
4568  */
4569 struct drm_display_mode *
4570 drm_display_mode_from_cea_vic(struct drm_device *dev,
4571 			      u8 video_code)
4572 {
4573 	const struct drm_display_mode *cea_mode;
4574 	struct drm_display_mode *newmode;
4575 
4576 	cea_mode = cea_mode_for_vic(video_code);
4577 	if (!cea_mode)
4578 		return NULL;
4579 
4580 	newmode = drm_mode_duplicate(dev, cea_mode);
4581 	if (!newmode)
4582 		return NULL;
4583 
4584 	return newmode;
4585 }
4586 EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4587 
4588 /* Add modes based on VICs parsed in parse_cta_vdb() */
4589 static int add_cta_vdb_modes(struct drm_connector *connector)
4590 {
4591 	const struct drm_display_info *info = &connector->display_info;
4592 	int i, modes = 0;
4593 
4594 	if (!info->vics)
4595 		return 0;
4596 
4597 	for (i = 0; i < info->vics_len; i++) {
4598 		struct drm_display_mode *mode;
4599 
4600 		mode = drm_display_mode_from_vic_index(connector, i);
4601 		if (mode) {
4602 			drm_mode_probed_add(connector, mode);
4603 			modes++;
4604 		}
4605 	}
4606 
4607 	return modes;
4608 }
4609 
4610 struct stereo_mandatory_mode {
4611 	int width, height, vrefresh;
4612 	unsigned int flags;
4613 };
4614 
4615 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4616 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4617 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4618 	{ 1920, 1080, 50,
4619 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4620 	{ 1920, 1080, 60,
4621 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4622 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4623 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4624 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4625 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4626 };
4627 
4628 static bool
4629 stereo_match_mandatory(const struct drm_display_mode *mode,
4630 		       const struct stereo_mandatory_mode *stereo_mode)
4631 {
4632 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4633 
4634 	return mode->hdisplay == stereo_mode->width &&
4635 	       mode->vdisplay == stereo_mode->height &&
4636 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4637 	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4638 }
4639 
4640 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4641 {
4642 	struct drm_device *dev = connector->dev;
4643 	const struct drm_display_mode *mode;
4644 	struct list_head stereo_modes;
4645 	int modes = 0, i;
4646 
4647 	INIT_LIST_HEAD(&stereo_modes);
4648 
4649 	list_for_each_entry(mode, &connector->probed_modes, head) {
4650 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4651 			const struct stereo_mandatory_mode *mandatory;
4652 			struct drm_display_mode *new_mode;
4653 
4654 			if (!stereo_match_mandatory(mode,
4655 						    &stereo_mandatory_modes[i]))
4656 				continue;
4657 
4658 			mandatory = &stereo_mandatory_modes[i];
4659 			new_mode = drm_mode_duplicate(dev, mode);
4660 			if (!new_mode)
4661 				continue;
4662 
4663 			new_mode->flags |= mandatory->flags;
4664 			list_add_tail(&new_mode->head, &stereo_modes);
4665 			modes++;
4666 		}
4667 	}
4668 
4669 	list_splice_tail(&stereo_modes, &connector->probed_modes);
4670 
4671 	return modes;
4672 }
4673 
4674 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4675 {
4676 	struct drm_device *dev = connector->dev;
4677 	struct drm_display_mode *newmode;
4678 
4679 	if (!drm_valid_hdmi_vic(vic)) {
4680 		drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4681 			connector->base.id, connector->name, vic);
4682 		return 0;
4683 	}
4684 
4685 	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4686 	if (!newmode)
4687 		return 0;
4688 
4689 	drm_mode_probed_add(connector, newmode);
4690 
4691 	return 1;
4692 }
4693 
4694 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4695 			       int vic_index)
4696 {
4697 	struct drm_display_mode *newmode;
4698 	int modes = 0;
4699 
4700 	if (structure & (1 << 0)) {
4701 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4702 		if (newmode) {
4703 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4704 			drm_mode_probed_add(connector, newmode);
4705 			modes++;
4706 		}
4707 	}
4708 	if (structure & (1 << 6)) {
4709 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4710 		if (newmode) {
4711 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4712 			drm_mode_probed_add(connector, newmode);
4713 			modes++;
4714 		}
4715 	}
4716 	if (structure & (1 << 8)) {
4717 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4718 		if (newmode) {
4719 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4720 			drm_mode_probed_add(connector, newmode);
4721 			modes++;
4722 		}
4723 	}
4724 
4725 	return modes;
4726 }
4727 
4728 static bool hdmi_vsdb_latency_present(const u8 *db)
4729 {
4730 	return db[8] & BIT(7);
4731 }
4732 
4733 static bool hdmi_vsdb_i_latency_present(const u8 *db)
4734 {
4735 	return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4736 }
4737 
4738 static int hdmi_vsdb_latency_length(const u8 *db)
4739 {
4740 	if (hdmi_vsdb_i_latency_present(db))
4741 		return 4;
4742 	else if (hdmi_vsdb_latency_present(db))
4743 		return 2;
4744 	else
4745 		return 0;
4746 }
4747 
4748 /*
4749  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4750  * @connector: connector corresponding to the HDMI sink
4751  * @db: start of the CEA vendor specific block
4752  * @len: length of the CEA block payload, ie. one can access up to db[len]
4753  *
4754  * Parses the HDMI VSDB looking for modes to add to @connector. This function
4755  * also adds the stereo 3d modes when applicable.
4756  */
4757 static int
4758 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
4759 {
4760 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4761 	u8 vic_len, hdmi_3d_len = 0;
4762 	u16 mask;
4763 	u16 structure_all;
4764 
4765 	if (len < 8)
4766 		goto out;
4767 
4768 	/* no HDMI_Video_Present */
4769 	if (!(db[8] & (1 << 5)))
4770 		goto out;
4771 
4772 	offset += hdmi_vsdb_latency_length(db);
4773 
4774 	/* the declared length is not long enough for the 2 first bytes
4775 	 * of additional video format capabilities */
4776 	if (len < (8 + offset + 2))
4777 		goto out;
4778 
4779 	/* 3D_Present */
4780 	offset++;
4781 	if (db[8 + offset] & (1 << 7)) {
4782 		modes += add_hdmi_mandatory_stereo_modes(connector);
4783 
4784 		/* 3D_Multi_present */
4785 		multi_present = (db[8 + offset] & 0x60) >> 5;
4786 	}
4787 
4788 	offset++;
4789 	vic_len = db[8 + offset] >> 5;
4790 	hdmi_3d_len = db[8 + offset] & 0x1f;
4791 
4792 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4793 		u8 vic;
4794 
4795 		vic = db[9 + offset + i];
4796 		modes += add_hdmi_mode(connector, vic);
4797 	}
4798 	offset += 1 + vic_len;
4799 
4800 	if (multi_present == 1)
4801 		multi_len = 2;
4802 	else if (multi_present == 2)
4803 		multi_len = 4;
4804 	else
4805 		multi_len = 0;
4806 
4807 	if (len < (8 + offset + hdmi_3d_len - 1))
4808 		goto out;
4809 
4810 	if (hdmi_3d_len < multi_len)
4811 		goto out;
4812 
4813 	if (multi_present == 1 || multi_present == 2) {
4814 		/* 3D_Structure_ALL */
4815 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
4816 
4817 		/* check if 3D_MASK is present */
4818 		if (multi_present == 2)
4819 			mask = (db[10 + offset] << 8) | db[11 + offset];
4820 		else
4821 			mask = 0xffff;
4822 
4823 		for (i = 0; i < 16; i++) {
4824 			if (mask & (1 << i))
4825 				modes += add_3d_struct_modes(connector,
4826 							     structure_all, i);
4827 		}
4828 	}
4829 
4830 	offset += multi_len;
4831 
4832 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4833 		int vic_index;
4834 		struct drm_display_mode *newmode = NULL;
4835 		unsigned int newflag = 0;
4836 		bool detail_present;
4837 
4838 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4839 
4840 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4841 			break;
4842 
4843 		/* 2D_VIC_order_X */
4844 		vic_index = db[8 + offset + i] >> 4;
4845 
4846 		/* 3D_Structure_X */
4847 		switch (db[8 + offset + i] & 0x0f) {
4848 		case 0:
4849 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4850 			break;
4851 		case 6:
4852 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4853 			break;
4854 		case 8:
4855 			/* 3D_Detail_X */
4856 			if ((db[9 + offset + i] >> 4) == 1)
4857 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4858 			break;
4859 		}
4860 
4861 		if (newflag != 0) {
4862 			newmode = drm_display_mode_from_vic_index(connector,
4863 								  vic_index);
4864 
4865 			if (newmode) {
4866 				newmode->flags |= newflag;
4867 				drm_mode_probed_add(connector, newmode);
4868 				modes++;
4869 			}
4870 		}
4871 
4872 		if (detail_present)
4873 			i++;
4874 	}
4875 
4876 out:
4877 	return modes;
4878 }
4879 
4880 static int
4881 cea_revision(const u8 *cea)
4882 {
4883 	/*
4884 	 * FIXME is this correct for the DispID variant?
4885 	 * The DispID spec doesn't really specify whether
4886 	 * this is the revision of the CEA extension or
4887 	 * the DispID CEA data block. And the only value
4888 	 * given as an example is 0.
4889 	 */
4890 	return cea[1];
4891 }
4892 
4893 /*
4894  * CTA Data Block iterator.
4895  *
4896  * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4897  * CTA Data Blocks.
4898  *
4899  * struct cea_db *db:
4900  * struct cea_db_iter iter;
4901  *
4902  * cea_db_iter_edid_begin(edid, &iter);
4903  * cea_db_iter_for_each(db, &iter) {
4904  *         // do stuff with db
4905  * }
4906  * cea_db_iter_end(&iter);
4907  */
4908 struct cea_db_iter {
4909 	struct drm_edid_iter edid_iter;
4910 	struct displayid_iter displayid_iter;
4911 
4912 	/* Current Data Block Collection. */
4913 	const u8 *collection;
4914 
4915 	/* Current Data Block index in current collection. */
4916 	int index;
4917 
4918 	/* End index in current collection. */
4919 	int end;
4920 };
4921 
4922 /* CTA-861-H section 7.4 CTA Data BLock Collection */
4923 struct cea_db {
4924 	u8 tag_length;
4925 	u8 data[];
4926 } __packed;
4927 
4928 static int cea_db_tag(const struct cea_db *db)
4929 {
4930 	return db->tag_length >> 5;
4931 }
4932 
4933 static int cea_db_payload_len(const void *_db)
4934 {
4935 	/* FIXME: Transition to passing struct cea_db * everywhere. */
4936 	const struct cea_db *db = _db;
4937 
4938 	return db->tag_length & 0x1f;
4939 }
4940 
4941 static const void *cea_db_data(const struct cea_db *db)
4942 {
4943 	return db->data;
4944 }
4945 
4946 static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4947 {
4948 	return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4949 		cea_db_payload_len(db) >= 1 &&
4950 		db->data[0] == tag;
4951 }
4952 
4953 static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4954 {
4955 	const u8 *data = cea_db_data(db);
4956 
4957 	return cea_db_tag(db) == CTA_DB_VENDOR &&
4958 		cea_db_payload_len(db) >= 3 &&
4959 		oui(data[2], data[1], data[0]) == vendor_oui;
4960 }
4961 
4962 static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4963 				   struct cea_db_iter *iter)
4964 {
4965 	memset(iter, 0, sizeof(*iter));
4966 
4967 	drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4968 	displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4969 }
4970 
4971 static const struct cea_db *
4972 __cea_db_iter_current_block(const struct cea_db_iter *iter)
4973 {
4974 	const struct cea_db *db;
4975 
4976 	if (!iter->collection)
4977 		return NULL;
4978 
4979 	db = (const struct cea_db *)&iter->collection[iter->index];
4980 
4981 	if (iter->index + sizeof(*db) <= iter->end &&
4982 	    iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4983 		return db;
4984 
4985 	return NULL;
4986 }
4987 
4988 /*
4989  * References:
4990  * - CTA-861-H section 7.3.3 CTA Extension Version 3
4991  */
4992 static int cea_db_collection_size(const u8 *cta)
4993 {
4994 	u8 d = cta[2];
4995 
4996 	if (d < 4 || d > 127)
4997 		return 0;
4998 
4999 	return d - 4;
5000 }
5001 
5002 /*
5003  * References:
5004  * - VESA E-EDID v1.4
5005  * - CTA-861-H section 7.3.3 CTA Extension Version 3
5006  */
5007 static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5008 {
5009 	const u8 *ext;
5010 
5011 	drm_edid_iter_for_each(ext, &iter->edid_iter) {
5012 		int size;
5013 
5014 		/* Only support CTA Extension revision 3+ */
5015 		if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5016 			continue;
5017 
5018 		size = cea_db_collection_size(ext);
5019 		if (!size)
5020 			continue;
5021 
5022 		iter->index = 4;
5023 		iter->end = iter->index + size;
5024 
5025 		return ext;
5026 	}
5027 
5028 	return NULL;
5029 }
5030 
5031 /*
5032  * References:
5033  * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5034  * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5035  *
5036  * Note that the above do not specify any connection between DisplayID Data
5037  * Block revision and CTA Extension versions.
5038  */
5039 static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5040 {
5041 	const struct displayid_block *block;
5042 
5043 	displayid_iter_for_each(block, &iter->displayid_iter) {
5044 		if (block->tag != DATA_BLOCK_CTA)
5045 			continue;
5046 
5047 		/*
5048 		 * The displayid iterator has already verified the block bounds
5049 		 * in displayid_iter_block().
5050 		 */
5051 		iter->index = sizeof(*block);
5052 		iter->end = iter->index + block->num_bytes;
5053 
5054 		return block;
5055 	}
5056 
5057 	return NULL;
5058 }
5059 
5060 static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5061 {
5062 	const struct cea_db *db;
5063 
5064 	if (iter->collection) {
5065 		/* Current collection should always be valid. */
5066 		db = __cea_db_iter_current_block(iter);
5067 		if (WARN_ON(!db)) {
5068 			iter->collection = NULL;
5069 			return NULL;
5070 		}
5071 
5072 		/* Next block in CTA Data Block Collection */
5073 		iter->index += sizeof(*db) + cea_db_payload_len(db);
5074 
5075 		db = __cea_db_iter_current_block(iter);
5076 		if (db)
5077 			return db;
5078 	}
5079 
5080 	for (;;) {
5081 		/*
5082 		 * Find the next CTA Data Block Collection. First iterate all
5083 		 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5084 		 *
5085 		 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5086 		 * Extension, it's recommended that DisplayID extensions are
5087 		 * exposed after all of the CTA Extensions.
5088 		 */
5089 		iter->collection = __cea_db_iter_edid_next(iter);
5090 		if (!iter->collection)
5091 			iter->collection = __cea_db_iter_displayid_next(iter);
5092 
5093 		if (!iter->collection)
5094 			return NULL;
5095 
5096 		db = __cea_db_iter_current_block(iter);
5097 		if (db)
5098 			return db;
5099 	}
5100 }
5101 
5102 #define cea_db_iter_for_each(__db, __iter) \
5103 	while (((__db) = __cea_db_iter_next(__iter)))
5104 
5105 static void cea_db_iter_end(struct cea_db_iter *iter)
5106 {
5107 	displayid_iter_end(&iter->displayid_iter);
5108 	drm_edid_iter_end(&iter->edid_iter);
5109 
5110 	memset(iter, 0, sizeof(*iter));
5111 }
5112 
5113 static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5114 {
5115 	return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5116 		cea_db_payload_len(db) >= 5;
5117 }
5118 
5119 static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5120 {
5121 	return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5122 		cea_db_payload_len(db) >= 7;
5123 }
5124 
5125 static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5126 {
5127 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5128 		cea_db_payload_len(db) >= 2;
5129 }
5130 
5131 static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5132 {
5133 	return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5134 		cea_db_payload_len(db) == 21;
5135 }
5136 
5137 static bool cea_db_is_vcdb(const struct cea_db *db)
5138 {
5139 	return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5140 		cea_db_payload_len(db) == 2;
5141 }
5142 
5143 static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5144 {
5145 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5146 		cea_db_payload_len(db) >= 7;
5147 }
5148 
5149 static bool cea_db_is_y420cmdb(const struct cea_db *db)
5150 {
5151 	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5152 }
5153 
5154 static bool cea_db_is_y420vdb(const struct cea_db *db)
5155 {
5156 	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5157 }
5158 
5159 static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5160 {
5161 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5162 		cea_db_payload_len(db) >= 3;
5163 }
5164 
5165 /*
5166  * Get the HF-EEODB override extension block count from EDID.
5167  *
5168  * The passed in EDID may be partially read, as long as it has at least two
5169  * blocks (base block and one extension block) if EDID extension count is > 0.
5170  *
5171  * Note that this is *not* how you should parse CTA Data Blocks in general; this
5172  * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5173  * iterators instead.
5174  *
5175  * References:
5176  * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5177  */
5178 static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5179 {
5180 	const u8 *cta;
5181 
5182 	/* No extensions according to base block, no HF-EEODB. */
5183 	if (!edid_extension_block_count(edid))
5184 		return 0;
5185 
5186 	/* HF-EEODB is always in the first EDID extension block only */
5187 	cta = edid_extension_block_data(edid, 0);
5188 	if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5189 		return 0;
5190 
5191 	/* Need to have the data block collection, and at least 3 bytes. */
5192 	if (cea_db_collection_size(cta) < 3)
5193 		return 0;
5194 
5195 	/*
5196 	 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5197 	 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5198 	 * through 6 of Block 1 of the E-EDID.
5199 	 */
5200 	if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5201 		return 0;
5202 
5203 	return cta[4 + 2];
5204 }
5205 
5206 /*
5207  * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5208  *
5209  * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5210  * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5211  * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5212  * support YCBCR420 output too.
5213  */
5214 static void parse_cta_y420cmdb(struct drm_connector *connector,
5215 			       const struct cea_db *db, u64 *y420cmdb_map)
5216 {
5217 	struct drm_display_info *info = &connector->display_info;
5218 	int i, map_len = cea_db_payload_len(db) - 1;
5219 	const u8 *data = cea_db_data(db) + 1;
5220 	u64 map = 0;
5221 
5222 	if (map_len == 0) {
5223 		/* All CEA modes support ycbcr420 sampling also.*/
5224 		map = U64_MAX;
5225 		goto out;
5226 	}
5227 
5228 	/*
5229 	 * This map indicates which of the existing CEA block modes
5230 	 * from VDB can support YCBCR420 output too. So if bit=0 is
5231 	 * set, first mode from VDB can support YCBCR420 output too.
5232 	 * We will parse and keep this map, before parsing VDB itself
5233 	 * to avoid going through the same block again and again.
5234 	 *
5235 	 * Spec is not clear about max possible size of this block.
5236 	 * Clamping max bitmap block size at 8 bytes. Every byte can
5237 	 * address 8 CEA modes, in this way this map can address
5238 	 * 8*8 = first 64 SVDs.
5239 	 */
5240 	if (WARN_ON_ONCE(map_len > 8))
5241 		map_len = 8;
5242 
5243 	for (i = 0; i < map_len; i++)
5244 		map |= (u64)data[i] << (8 * i);
5245 
5246 out:
5247 	if (map)
5248 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5249 
5250 	*y420cmdb_map = map;
5251 }
5252 
5253 static int add_cea_modes(struct drm_connector *connector,
5254 			 const struct drm_edid *drm_edid)
5255 {
5256 	const struct cea_db *db;
5257 	struct cea_db_iter iter;
5258 	int modes;
5259 
5260 	/* CTA VDB block VICs parsed earlier */
5261 	modes = add_cta_vdb_modes(connector);
5262 
5263 	cea_db_iter_edid_begin(drm_edid, &iter);
5264 	cea_db_iter_for_each(db, &iter) {
5265 		if (cea_db_is_hdmi_vsdb(db)) {
5266 			modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5267 						    cea_db_payload_len(db));
5268 		} else if (cea_db_is_y420vdb(db)) {
5269 			const u8 *vdb420 = cea_db_data(db) + 1;
5270 
5271 			/* Add 4:2:0(only) modes present in EDID */
5272 			modes += do_y420vdb_modes(connector, vdb420,
5273 						  cea_db_payload_len(db) - 1);
5274 		}
5275 	}
5276 	cea_db_iter_end(&iter);
5277 
5278 	return modes;
5279 }
5280 
5281 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5282 					  struct drm_display_mode *mode)
5283 {
5284 	const struct drm_display_mode *cea_mode;
5285 	int clock1, clock2, clock;
5286 	u8 vic;
5287 	const char *type;
5288 
5289 	/*
5290 	 * allow 5kHz clock difference either way to account for
5291 	 * the 10kHz clock resolution limit of detailed timings.
5292 	 */
5293 	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5294 	if (drm_valid_cea_vic(vic)) {
5295 		type = "CEA";
5296 		cea_mode = cea_mode_for_vic(vic);
5297 		clock1 = cea_mode->clock;
5298 		clock2 = cea_mode_alternate_clock(cea_mode);
5299 	} else {
5300 		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5301 		if (drm_valid_hdmi_vic(vic)) {
5302 			type = "HDMI";
5303 			cea_mode = &edid_4k_modes[vic];
5304 			clock1 = cea_mode->clock;
5305 			clock2 = hdmi_mode_alternate_clock(cea_mode);
5306 		} else {
5307 			return;
5308 		}
5309 	}
5310 
5311 	/* pick whichever is closest */
5312 	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5313 		clock = clock1;
5314 	else
5315 		clock = clock2;
5316 
5317 	if (mode->clock == clock)
5318 		return;
5319 
5320 	drm_dbg_kms(connector->dev,
5321 		    "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5322 		    connector->base.id, connector->name,
5323 		    type, vic, mode->clock, clock);
5324 	mode->clock = clock;
5325 }
5326 
5327 static void drm_calculate_luminance_range(struct drm_connector *connector)
5328 {
5329 	struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5330 	struct drm_luminance_range_info *luminance_range =
5331 		&connector->display_info.luminance_range;
5332 	static const u8 pre_computed_values[] = {
5333 		50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5334 		71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5335 	};
5336 	u32 max_avg, min_cll, max, min, q, r;
5337 
5338 	if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5339 		return;
5340 
5341 	max_avg = hdr_metadata->max_fall;
5342 	min_cll = hdr_metadata->min_cll;
5343 
5344 	/*
5345 	 * From the specification (CTA-861-G), for calculating the maximum
5346 	 * luminance we need to use:
5347 	 *	Luminance = 50*2**(CV/32)
5348 	 * Where CV is a one-byte value.
5349 	 * For calculating this expression we may need float point precision;
5350 	 * to avoid this complexity level, we take advantage that CV is divided
5351 	 * by a constant. From the Euclids division algorithm, we know that CV
5352 	 * can be written as: CV = 32*q + r. Next, we replace CV in the
5353 	 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5354 	 * need to pre-compute the value of r/32. For pre-computing the values
5355 	 * We just used the following Ruby line:
5356 	 *	(0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5357 	 * The results of the above expressions can be verified at
5358 	 * pre_computed_values.
5359 	 */
5360 	q = max_avg >> 5;
5361 	r = max_avg % 32;
5362 	max = (1 << q) * pre_computed_values[r];
5363 
5364 	/* min luminance: maxLum * (CV/255)^2 / 100 */
5365 	q = DIV_ROUND_CLOSEST(min_cll, 255);
5366 	min = max * DIV_ROUND_CLOSEST((q * q), 100);
5367 
5368 	luminance_range->min_luminance = min;
5369 	luminance_range->max_luminance = max;
5370 }
5371 
5372 static uint8_t eotf_supported(const u8 *edid_ext)
5373 {
5374 	return edid_ext[2] &
5375 		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5376 		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5377 		 BIT(HDMI_EOTF_SMPTE_ST2084) |
5378 		 BIT(HDMI_EOTF_BT_2100_HLG));
5379 }
5380 
5381 static uint8_t hdr_metadata_type(const u8 *edid_ext)
5382 {
5383 	return edid_ext[3] &
5384 		BIT(HDMI_STATIC_METADATA_TYPE1);
5385 }
5386 
5387 static void
5388 drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5389 {
5390 	u16 len;
5391 
5392 	len = cea_db_payload_len(db);
5393 
5394 	connector->hdr_sink_metadata.hdmi_type1.eotf =
5395 						eotf_supported(db);
5396 	connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5397 						hdr_metadata_type(db);
5398 
5399 	if (len >= 4)
5400 		connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5401 	if (len >= 5)
5402 		connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5403 	if (len >= 6) {
5404 		connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5405 
5406 		/* Calculate only when all values are available */
5407 		drm_calculate_luminance_range(connector);
5408 	}
5409 }
5410 
5411 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5412 static void
5413 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5414 {
5415 	u8 len = cea_db_payload_len(db);
5416 
5417 	if (len >= 6 && (db[6] & (1 << 7)))
5418 		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5419 
5420 	if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5421 		connector->latency_present[0] = true;
5422 		connector->video_latency[0] = db[9];
5423 		connector->audio_latency[0] = db[10];
5424 	}
5425 
5426 	if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5427 		connector->latency_present[1] = true;
5428 		connector->video_latency[1] = db[11];
5429 		connector->audio_latency[1] = db[12];
5430 	}
5431 
5432 	drm_dbg_kms(connector->dev,
5433 		    "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5434 		    connector->base.id, connector->name,
5435 		    connector->latency_present[0], connector->latency_present[1],
5436 		    connector->video_latency[0], connector->video_latency[1],
5437 		    connector->audio_latency[0], connector->audio_latency[1]);
5438 }
5439 
5440 static void
5441 monitor_name(const struct detailed_timing *timing, void *data)
5442 {
5443 	const char **res = data;
5444 
5445 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5446 		return;
5447 
5448 	*res = timing->data.other_data.data.str.str;
5449 }
5450 
5451 static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5452 {
5453 	const char *edid_name = NULL;
5454 	int mnl;
5455 
5456 	if (!drm_edid || !name)
5457 		return 0;
5458 
5459 	drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5460 	for (mnl = 0; edid_name && mnl < 13; mnl++) {
5461 		if (edid_name[mnl] == 0x0a)
5462 			break;
5463 
5464 		name[mnl] = edid_name[mnl];
5465 	}
5466 
5467 	return mnl;
5468 }
5469 
5470 /**
5471  * drm_edid_get_monitor_name - fetch the monitor name from the edid
5472  * @edid: monitor EDID information
5473  * @name: pointer to a character array to hold the name of the monitor
5474  * @bufsize: The size of the name buffer (should be at least 14 chars.)
5475  *
5476  */
5477 void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5478 {
5479 	int name_length = 0;
5480 
5481 	if (bufsize <= 0)
5482 		return;
5483 
5484 	if (edid) {
5485 		char buf[13];
5486 		struct drm_edid drm_edid = {
5487 			.edid = edid,
5488 			.size = edid_size(edid),
5489 		};
5490 
5491 		name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5492 		memcpy(name, buf, name_length);
5493 	}
5494 
5495 	name[name_length] = '\0';
5496 }
5497 EXPORT_SYMBOL(drm_edid_get_monitor_name);
5498 
5499 static void clear_eld(struct drm_connector *connector)
5500 {
5501 	memset(connector->eld, 0, sizeof(connector->eld));
5502 
5503 	connector->latency_present[0] = false;
5504 	connector->latency_present[1] = false;
5505 	connector->video_latency[0] = 0;
5506 	connector->audio_latency[0] = 0;
5507 	connector->video_latency[1] = 0;
5508 	connector->audio_latency[1] = 0;
5509 }
5510 
5511 /*
5512  * drm_edid_to_eld - build ELD from EDID
5513  * @connector: connector corresponding to the HDMI/DP sink
5514  * @drm_edid: EDID to parse
5515  *
5516  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5517  * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5518  */
5519 static void drm_edid_to_eld(struct drm_connector *connector,
5520 			    const struct drm_edid *drm_edid)
5521 {
5522 	const struct drm_display_info *info = &connector->display_info;
5523 	const struct cea_db *db;
5524 	struct cea_db_iter iter;
5525 	uint8_t *eld = connector->eld;
5526 	int total_sad_count = 0;
5527 	int mnl;
5528 
5529 	if (!drm_edid)
5530 		return;
5531 
5532 	mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5533 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5534 		    connector->base.id, connector->name,
5535 		    &eld[DRM_ELD_MONITOR_NAME_STRING]);
5536 
5537 	eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5538 	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5539 
5540 	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5541 
5542 	eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5543 	eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5544 	eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5545 	eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5546 
5547 	cea_db_iter_edid_begin(drm_edid, &iter);
5548 	cea_db_iter_for_each(db, &iter) {
5549 		const u8 *data = cea_db_data(db);
5550 		int len = cea_db_payload_len(db);
5551 		int sad_count;
5552 
5553 		switch (cea_db_tag(db)) {
5554 		case CTA_DB_AUDIO:
5555 			/* Audio Data Block, contains SADs */
5556 			sad_count = min(len / 3, 15 - total_sad_count);
5557 			if (sad_count >= 1)
5558 				memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5559 				       data, sad_count * 3);
5560 			total_sad_count += sad_count;
5561 			break;
5562 		case CTA_DB_SPEAKER:
5563 			/* Speaker Allocation Data Block */
5564 			if (len >= 1)
5565 				eld[DRM_ELD_SPEAKER] = data[0];
5566 			break;
5567 		case CTA_DB_VENDOR:
5568 			/* HDMI Vendor-Specific Data Block */
5569 			if (cea_db_is_hdmi_vsdb(db))
5570 				drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5571 			break;
5572 		default:
5573 			break;
5574 		}
5575 	}
5576 	cea_db_iter_end(&iter);
5577 
5578 	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5579 
5580 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5581 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5582 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5583 	else
5584 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5585 
5586 	eld[DRM_ELD_BASELINE_ELD_LEN] =
5587 		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5588 
5589 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5590 		    connector->base.id, connector->name,
5591 		    drm_eld_size(eld), total_sad_count);
5592 }
5593 
5594 static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5595 			    struct cea_sad **sads)
5596 {
5597 	const struct cea_db *db;
5598 	struct cea_db_iter iter;
5599 	int count = 0;
5600 
5601 	cea_db_iter_edid_begin(drm_edid, &iter);
5602 	cea_db_iter_for_each(db, &iter) {
5603 		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5604 			int j;
5605 
5606 			count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5607 			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
5608 			if (!*sads)
5609 				return -ENOMEM;
5610 			for (j = 0; j < count; j++) {
5611 				const u8 *sad = &db->data[j * 3];
5612 
5613 				(*sads)[j].format = (sad[0] & 0x78) >> 3;
5614 				(*sads)[j].channels = sad[0] & 0x7;
5615 				(*sads)[j].freq = sad[1] & 0x7F;
5616 				(*sads)[j].byte2 = sad[2];
5617 			}
5618 			break;
5619 		}
5620 	}
5621 	cea_db_iter_end(&iter);
5622 
5623 	DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5624 
5625 	return count;
5626 }
5627 
5628 /**
5629  * drm_edid_to_sad - extracts SADs from EDID
5630  * @edid: EDID to parse
5631  * @sads: pointer that will be set to the extracted SADs
5632  *
5633  * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5634  *
5635  * Note: The returned pointer needs to be freed using kfree().
5636  *
5637  * Return: The number of found SADs or negative number on error.
5638  */
5639 int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5640 {
5641 	struct drm_edid drm_edid;
5642 
5643 	return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5644 }
5645 EXPORT_SYMBOL(drm_edid_to_sad);
5646 
5647 static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5648 					   u8 **sadb)
5649 {
5650 	const struct cea_db *db;
5651 	struct cea_db_iter iter;
5652 	int count = 0;
5653 
5654 	cea_db_iter_edid_begin(drm_edid, &iter);
5655 	cea_db_iter_for_each(db, &iter) {
5656 		if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5657 		    cea_db_payload_len(db) == 3) {
5658 			*sadb = kmemdup(db->data, cea_db_payload_len(db),
5659 					GFP_KERNEL);
5660 			if (!*sadb)
5661 				return -ENOMEM;
5662 			count = cea_db_payload_len(db);
5663 			break;
5664 		}
5665 	}
5666 	cea_db_iter_end(&iter);
5667 
5668 	DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5669 
5670 	return count;
5671 }
5672 
5673 /**
5674  * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5675  * @edid: EDID to parse
5676  * @sadb: pointer to the speaker block
5677  *
5678  * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5679  *
5680  * Note: The returned pointer needs to be freed using kfree().
5681  *
5682  * Return: The number of found Speaker Allocation Blocks or negative number on
5683  * error.
5684  */
5685 int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5686 {
5687 	struct drm_edid drm_edid;
5688 
5689 	return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5690 					       sadb);
5691 }
5692 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5693 
5694 /**
5695  * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5696  * @connector: connector associated with the HDMI/DP sink
5697  * @mode: the display mode
5698  *
5699  * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5700  * the sink doesn't support audio or video.
5701  */
5702 int drm_av_sync_delay(struct drm_connector *connector,
5703 		      const struct drm_display_mode *mode)
5704 {
5705 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5706 	int a, v;
5707 
5708 	if (!connector->latency_present[0])
5709 		return 0;
5710 	if (!connector->latency_present[1])
5711 		i = 0;
5712 
5713 	a = connector->audio_latency[i];
5714 	v = connector->video_latency[i];
5715 
5716 	/*
5717 	 * HDMI/DP sink doesn't support audio or video?
5718 	 */
5719 	if (a == 255 || v == 255)
5720 		return 0;
5721 
5722 	/*
5723 	 * Convert raw EDID values to millisecond.
5724 	 * Treat unknown latency as 0ms.
5725 	 */
5726 	if (a)
5727 		a = min(2 * (a - 1), 500);
5728 	if (v)
5729 		v = min(2 * (v - 1), 500);
5730 
5731 	return max(v - a, 0);
5732 }
5733 EXPORT_SYMBOL(drm_av_sync_delay);
5734 
5735 static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5736 {
5737 	const struct cea_db *db;
5738 	struct cea_db_iter iter;
5739 	bool hdmi = false;
5740 
5741 	/*
5742 	 * Because HDMI identifier is in Vendor Specific Block,
5743 	 * search it from all data blocks of CEA extension.
5744 	 */
5745 	cea_db_iter_edid_begin(drm_edid, &iter);
5746 	cea_db_iter_for_each(db, &iter) {
5747 		if (cea_db_is_hdmi_vsdb(db)) {
5748 			hdmi = true;
5749 			break;
5750 		}
5751 	}
5752 	cea_db_iter_end(&iter);
5753 
5754 	return hdmi;
5755 }
5756 
5757 /**
5758  * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5759  * @edid: monitor EDID information
5760  *
5761  * Parse the CEA extension according to CEA-861-B.
5762  *
5763  * Drivers that have added the modes parsed from EDID to drm_display_info
5764  * should use &drm_display_info.is_hdmi instead of calling this function.
5765  *
5766  * Return: True if the monitor is HDMI, false if not or unknown.
5767  */
5768 bool drm_detect_hdmi_monitor(const struct edid *edid)
5769 {
5770 	struct drm_edid drm_edid;
5771 
5772 	return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5773 }
5774 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5775 
5776 static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5777 {
5778 	struct drm_edid_iter edid_iter;
5779 	const struct cea_db *db;
5780 	struct cea_db_iter iter;
5781 	const u8 *edid_ext;
5782 	bool has_audio = false;
5783 
5784 	drm_edid_iter_begin(drm_edid, &edid_iter);
5785 	drm_edid_iter_for_each(edid_ext, &edid_iter) {
5786 		if (edid_ext[0] == CEA_EXT) {
5787 			has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5788 			if (has_audio)
5789 				break;
5790 		}
5791 	}
5792 	drm_edid_iter_end(&edid_iter);
5793 
5794 	if (has_audio) {
5795 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
5796 		goto end;
5797 	}
5798 
5799 	cea_db_iter_edid_begin(drm_edid, &iter);
5800 	cea_db_iter_for_each(db, &iter) {
5801 		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5802 			const u8 *data = cea_db_data(db);
5803 			int i;
5804 
5805 			for (i = 0; i < cea_db_payload_len(db); i += 3)
5806 				DRM_DEBUG_KMS("CEA audio format %d\n",
5807 					      (data[i] >> 3) & 0xf);
5808 			has_audio = true;
5809 			break;
5810 		}
5811 	}
5812 	cea_db_iter_end(&iter);
5813 
5814 end:
5815 	return has_audio;
5816 }
5817 
5818 /**
5819  * drm_detect_monitor_audio - check monitor audio capability
5820  * @edid: EDID block to scan
5821  *
5822  * Monitor should have CEA extension block.
5823  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5824  * audio' only. If there is any audio extension block and supported
5825  * audio format, assume at least 'basic audio' support, even if 'basic
5826  * audio' is not defined in EDID.
5827  *
5828  * Return: True if the monitor supports audio, false otherwise.
5829  */
5830 bool drm_detect_monitor_audio(const struct edid *edid)
5831 {
5832 	struct drm_edid drm_edid;
5833 
5834 	return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5835 }
5836 EXPORT_SYMBOL(drm_detect_monitor_audio);
5837 
5838 
5839 /**
5840  * drm_default_rgb_quant_range - default RGB quantization range
5841  * @mode: display mode
5842  *
5843  * Determine the default RGB quantization range for the mode,
5844  * as specified in CEA-861.
5845  *
5846  * Return: The default RGB quantization range for the mode
5847  */
5848 enum hdmi_quantization_range
5849 drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5850 {
5851 	/* All CEA modes other than VIC 1 use limited quantization range. */
5852 	return drm_match_cea_mode(mode) > 1 ?
5853 		HDMI_QUANTIZATION_RANGE_LIMITED :
5854 		HDMI_QUANTIZATION_RANGE_FULL;
5855 }
5856 EXPORT_SYMBOL(drm_default_rgb_quant_range);
5857 
5858 /* CTA-861 Video Data Block (CTA VDB) */
5859 static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
5860 {
5861 	struct drm_display_info *info = &connector->display_info;
5862 	int i, vic_index, len = cea_db_payload_len(db);
5863 	const u8 *svds = cea_db_data(db);
5864 	u8 *vics;
5865 
5866 	if (!len)
5867 		return;
5868 
5869 	/* Gracefully handle multiple VDBs, however unlikely that is */
5870 	vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
5871 	if (!vics)
5872 		return;
5873 
5874 	vic_index = info->vics_len;
5875 	info->vics_len += len;
5876 	info->vics = vics;
5877 
5878 	for (i = 0; i < len; i++) {
5879 		u8 vic = svd_to_vic(svds[i]);
5880 
5881 		if (!drm_valid_cea_vic(vic))
5882 			vic = 0;
5883 
5884 		info->vics[vic_index++] = vic;
5885 	}
5886 }
5887 
5888 /*
5889  * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
5890  *
5891  * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
5892  * using the VICs themselves.
5893  */
5894 static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
5895 {
5896 	struct drm_display_info *info = &connector->display_info;
5897 	struct drm_hdmi_info *hdmi = &info->hdmi;
5898 	int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
5899 
5900 	for (i = 0; i < len; i++) {
5901 		u8 vic = info->vics[i];
5902 
5903 		if (vic && y420cmdb_map & BIT_ULL(i))
5904 			bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
5905 	}
5906 }
5907 
5908 static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
5909 {
5910 	const struct drm_display_info *info = &connector->display_info;
5911 	int i;
5912 
5913 	if (!vic || !info->vics)
5914 		return false;
5915 
5916 	for (i = 0; i < info->vics_len; i++) {
5917 		if (info->vics[i] == vic)
5918 			return true;
5919 	}
5920 
5921 	return false;
5922 }
5923 
5924 /* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
5925 static void parse_cta_y420vdb(struct drm_connector *connector,
5926 			      const struct cea_db *db)
5927 {
5928 	struct drm_display_info *info = &connector->display_info;
5929 	struct drm_hdmi_info *hdmi = &info->hdmi;
5930 	const u8 *svds = cea_db_data(db) + 1;
5931 	int i;
5932 
5933 	for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
5934 		u8 vic = svd_to_vic(svds[i]);
5935 
5936 		if (!drm_valid_cea_vic(vic))
5937 			continue;
5938 
5939 		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
5940 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5941 	}
5942 }
5943 
5944 static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5945 {
5946 	struct drm_display_info *info = &connector->display_info;
5947 
5948 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5949 		    connector->base.id, connector->name, db[2]);
5950 
5951 	if (db[2] & EDID_CEA_VCDB_QS)
5952 		info->rgb_quant_range_selectable = true;
5953 }
5954 
5955 static
5956 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5957 {
5958 	switch (max_frl_rate) {
5959 	case 1:
5960 		*max_lanes = 3;
5961 		*max_rate_per_lane = 3;
5962 		break;
5963 	case 2:
5964 		*max_lanes = 3;
5965 		*max_rate_per_lane = 6;
5966 		break;
5967 	case 3:
5968 		*max_lanes = 4;
5969 		*max_rate_per_lane = 6;
5970 		break;
5971 	case 4:
5972 		*max_lanes = 4;
5973 		*max_rate_per_lane = 8;
5974 		break;
5975 	case 5:
5976 		*max_lanes = 4;
5977 		*max_rate_per_lane = 10;
5978 		break;
5979 	case 6:
5980 		*max_lanes = 4;
5981 		*max_rate_per_lane = 12;
5982 		break;
5983 	case 0:
5984 	default:
5985 		*max_lanes = 0;
5986 		*max_rate_per_lane = 0;
5987 	}
5988 }
5989 
5990 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
5991 					       const u8 *db)
5992 {
5993 	u8 dc_mask;
5994 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
5995 
5996 	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
5997 	hdmi->y420_dc_modes = dc_mask;
5998 }
5999 
6000 static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
6001 			       const u8 *hf_scds)
6002 {
6003 	hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
6004 
6005 	if (!hdmi_dsc->v_1p2)
6006 		return;
6007 
6008 	hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
6009 	hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
6010 
6011 	if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6012 		hdmi_dsc->bpc_supported = 16;
6013 	else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6014 		hdmi_dsc->bpc_supported = 12;
6015 	else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6016 		hdmi_dsc->bpc_supported = 10;
6017 	else
6018 		/* Supports min 8 BPC if DSC 1.2 is supported*/
6019 		hdmi_dsc->bpc_supported = 8;
6020 
6021 	if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6022 		u8 dsc_max_slices;
6023 		u8 dsc_max_frl_rate;
6024 
6025 		dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6026 		drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6027 				     &hdmi_dsc->max_frl_rate_per_lane);
6028 
6029 		dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6030 
6031 		switch (dsc_max_slices) {
6032 		case 1:
6033 			hdmi_dsc->max_slices = 1;
6034 			hdmi_dsc->clk_per_slice = 340;
6035 			break;
6036 		case 2:
6037 			hdmi_dsc->max_slices = 2;
6038 			hdmi_dsc->clk_per_slice = 340;
6039 			break;
6040 		case 3:
6041 			hdmi_dsc->max_slices = 4;
6042 			hdmi_dsc->clk_per_slice = 340;
6043 			break;
6044 		case 4:
6045 			hdmi_dsc->max_slices = 8;
6046 			hdmi_dsc->clk_per_slice = 340;
6047 			break;
6048 		case 5:
6049 			hdmi_dsc->max_slices = 8;
6050 			hdmi_dsc->clk_per_slice = 400;
6051 			break;
6052 		case 6:
6053 			hdmi_dsc->max_slices = 12;
6054 			hdmi_dsc->clk_per_slice = 400;
6055 			break;
6056 		case 7:
6057 			hdmi_dsc->max_slices = 16;
6058 			hdmi_dsc->clk_per_slice = 400;
6059 			break;
6060 		case 0:
6061 		default:
6062 			hdmi_dsc->max_slices = 0;
6063 			hdmi_dsc->clk_per_slice = 0;
6064 		}
6065 	}
6066 
6067 	if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6068 		hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6069 }
6070 
6071 /* Sink Capability Data Structure */
6072 static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6073 				      const u8 *hf_scds)
6074 {
6075 	struct drm_display_info *info = &connector->display_info;
6076 	struct drm_hdmi_info *hdmi = &info->hdmi;
6077 	struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6078 	int max_tmds_clock = 0;
6079 	u8 max_frl_rate = 0;
6080 	bool dsc_support = false;
6081 
6082 	info->has_hdmi_infoframe = true;
6083 
6084 	if (hf_scds[6] & 0x80) {
6085 		hdmi->scdc.supported = true;
6086 		if (hf_scds[6] & 0x40)
6087 			hdmi->scdc.read_request = true;
6088 	}
6089 
6090 	/*
6091 	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6092 	 * And as per the spec, three factors confirm this:
6093 	 * * Availability of a HF-VSDB block in EDID (check)
6094 	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6095 	 * * SCDC support available (let's check)
6096 	 * Lets check it out.
6097 	 */
6098 
6099 	if (hf_scds[5]) {
6100 		struct drm_scdc *scdc = &hdmi->scdc;
6101 
6102 		/* max clock is 5000 KHz times block value */
6103 		max_tmds_clock = hf_scds[5] * 5000;
6104 
6105 		if (max_tmds_clock > 340000) {
6106 			info->max_tmds_clock = max_tmds_clock;
6107 		}
6108 
6109 		if (scdc->supported) {
6110 			scdc->scrambling.supported = true;
6111 
6112 			/* Few sinks support scrambling for clocks < 340M */
6113 			if ((hf_scds[6] & 0x8))
6114 				scdc->scrambling.low_rates = true;
6115 		}
6116 	}
6117 
6118 	if (hf_scds[7]) {
6119 		max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6120 		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6121 				     &hdmi->max_frl_rate_per_lane);
6122 	}
6123 
6124 	drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6125 
6126 	if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6127 		drm_parse_dsc_info(hdmi_dsc, hf_scds);
6128 		dsc_support = true;
6129 	}
6130 
6131 	drm_dbg_kms(connector->dev,
6132 		    "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6133 		    connector->base.id, connector->name,
6134 		    max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6135 }
6136 
6137 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6138 					   const u8 *hdmi)
6139 {
6140 	struct drm_display_info *info = &connector->display_info;
6141 	unsigned int dc_bpc = 0;
6142 
6143 	/* HDMI supports at least 8 bpc */
6144 	info->bpc = 8;
6145 
6146 	if (cea_db_payload_len(hdmi) < 6)
6147 		return;
6148 
6149 	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6150 		dc_bpc = 10;
6151 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6152 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6153 			    connector->base.id, connector->name);
6154 	}
6155 
6156 	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6157 		dc_bpc = 12;
6158 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6159 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6160 			    connector->base.id, connector->name);
6161 	}
6162 
6163 	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6164 		dc_bpc = 16;
6165 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6166 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6167 			    connector->base.id, connector->name);
6168 	}
6169 
6170 	if (dc_bpc == 0) {
6171 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6172 			    connector->base.id, connector->name);
6173 		return;
6174 	}
6175 
6176 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6177 		    connector->base.id, connector->name, dc_bpc);
6178 	info->bpc = dc_bpc;
6179 
6180 	/* YCRCB444 is optional according to spec. */
6181 	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6182 		info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6183 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6184 			    connector->base.id, connector->name);
6185 	}
6186 
6187 	/*
6188 	 * Spec says that if any deep color mode is supported at all,
6189 	 * then deep color 36 bit must be supported.
6190 	 */
6191 	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6192 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6193 			    connector->base.id, connector->name);
6194 	}
6195 }
6196 
6197 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6198 static void
6199 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6200 {
6201 	struct drm_display_info *info = &connector->display_info;
6202 	u8 len = cea_db_payload_len(db);
6203 
6204 	info->is_hdmi = true;
6205 
6206 	if (len >= 6)
6207 		info->dvi_dual = db[6] & 1;
6208 	if (len >= 7)
6209 		info->max_tmds_clock = db[7] * 5000;
6210 
6211 	/*
6212 	 * Try to infer whether the sink supports HDMI infoframes.
6213 	 *
6214 	 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6215 	 * supports infoframes if HDMI_Video_present is set.
6216 	 */
6217 	if (len >= 8 && db[8] & BIT(5))
6218 		info->has_hdmi_infoframe = true;
6219 
6220 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6221 		    connector->base.id, connector->name,
6222 		    info->dvi_dual, info->max_tmds_clock);
6223 
6224 	drm_parse_hdmi_deep_color_info(connector, db);
6225 }
6226 
6227 /*
6228  * See EDID extension for head-mounted and specialized monitors, specified at:
6229  * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6230  */
6231 static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6232 				     const u8 *db)
6233 {
6234 	struct drm_display_info *info = &connector->display_info;
6235 	u8 version = db[4];
6236 	bool desktop_usage = db[5] & BIT(6);
6237 
6238 	/* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6239 	if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6240 		info->non_desktop = true;
6241 
6242 	drm_dbg_kms(connector->dev,
6243 		    "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6244 		    connector->base.id, connector->name, version, db[5]);
6245 }
6246 
6247 static void drm_parse_cea_ext(struct drm_connector *connector,
6248 			      const struct drm_edid *drm_edid)
6249 {
6250 	struct drm_display_info *info = &connector->display_info;
6251 	struct drm_edid_iter edid_iter;
6252 	const struct cea_db *db;
6253 	struct cea_db_iter iter;
6254 	const u8 *edid_ext;
6255 	u64 y420cmdb_map = 0;
6256 
6257 	drm_edid_iter_begin(drm_edid, &edid_iter);
6258 	drm_edid_iter_for_each(edid_ext, &edid_iter) {
6259 		if (edid_ext[0] != CEA_EXT)
6260 			continue;
6261 
6262 		if (!info->cea_rev)
6263 			info->cea_rev = edid_ext[1];
6264 
6265 		if (info->cea_rev != edid_ext[1])
6266 			drm_dbg_kms(connector->dev,
6267 				    "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6268 				    connector->base.id, connector->name,
6269 				    info->cea_rev, edid_ext[1]);
6270 
6271 		/* The existence of a CTA extension should imply RGB support */
6272 		info->color_formats = DRM_COLOR_FORMAT_RGB444;
6273 		if (edid_ext[3] & EDID_CEA_YCRCB444)
6274 			info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6275 		if (edid_ext[3] & EDID_CEA_YCRCB422)
6276 			info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6277 		if (edid_ext[3] & EDID_BASIC_AUDIO)
6278 			info->has_audio = true;
6279 
6280 	}
6281 	drm_edid_iter_end(&edid_iter);
6282 
6283 	cea_db_iter_edid_begin(drm_edid, &iter);
6284 	cea_db_iter_for_each(db, &iter) {
6285 		/* FIXME: convert parsers to use struct cea_db */
6286 		const u8 *data = (const u8 *)db;
6287 
6288 		if (cea_db_is_hdmi_vsdb(db))
6289 			drm_parse_hdmi_vsdb_video(connector, data);
6290 		else if (cea_db_is_hdmi_forum_vsdb(db) ||
6291 			 cea_db_is_hdmi_forum_scdb(db))
6292 			drm_parse_hdmi_forum_scds(connector, data);
6293 		else if (cea_db_is_microsoft_vsdb(db))
6294 			drm_parse_microsoft_vsdb(connector, data);
6295 		else if (cea_db_is_y420cmdb(db))
6296 			parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6297 		else if (cea_db_is_y420vdb(db))
6298 			parse_cta_y420vdb(connector, db);
6299 		else if (cea_db_is_vcdb(db))
6300 			drm_parse_vcdb(connector, data);
6301 		else if (cea_db_is_hdmi_hdr_metadata_block(db))
6302 			drm_parse_hdr_metadata_block(connector, data);
6303 		else if (cea_db_tag(db) == CTA_DB_VIDEO)
6304 			parse_cta_vdb(connector, db);
6305 		else if (cea_db_tag(db) == CTA_DB_AUDIO)
6306 			info->has_audio = true;
6307 	}
6308 	cea_db_iter_end(&iter);
6309 
6310 	if (y420cmdb_map)
6311 		update_cta_y420cmdb(connector, y420cmdb_map);
6312 }
6313 
6314 static
6315 void get_monitor_range(const struct detailed_timing *timing, void *c)
6316 {
6317 	struct detailed_mode_closure *closure = c;
6318 	struct drm_display_info *info = &closure->connector->display_info;
6319 	struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6320 	const struct detailed_non_pixel *data = &timing->data.other_data;
6321 	const struct detailed_data_monitor_range *range = &data->data.range;
6322 	const struct edid *edid = closure->drm_edid->edid;
6323 
6324 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6325 		return;
6326 
6327 	/*
6328 	 * These limits are used to determine the VRR refresh
6329 	 * rate range. Only the "range limits only" variant
6330 	 * of the range descriptor seems to guarantee that
6331 	 * any and all timings are accepted by the sink, as
6332 	 * opposed to just timings conforming to the indicated
6333 	 * formula (GTF/GTF2/CVT). Thus other variants of the
6334 	 * range descriptor are not accepted here.
6335 	 */
6336 	if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6337 		return;
6338 
6339 	monitor_range->min_vfreq = range->min_vfreq;
6340 	monitor_range->max_vfreq = range->max_vfreq;
6341 
6342 	if (edid->revision >= 4) {
6343 		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6344 			monitor_range->min_vfreq += 255;
6345 		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6346 			monitor_range->max_vfreq += 255;
6347 	}
6348 }
6349 
6350 static void drm_get_monitor_range(struct drm_connector *connector,
6351 				  const struct drm_edid *drm_edid)
6352 {
6353 	const struct drm_display_info *info = &connector->display_info;
6354 	struct detailed_mode_closure closure = {
6355 		.connector = connector,
6356 		.drm_edid = drm_edid,
6357 	};
6358 
6359 	if (drm_edid->edid->revision < 4)
6360 		return;
6361 
6362 	if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6363 		return;
6364 
6365 	drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6366 
6367 	drm_dbg_kms(connector->dev,
6368 		    "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6369 		    connector->base.id, connector->name,
6370 		    info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6371 }
6372 
6373 static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6374 				    const struct displayid_block *block)
6375 {
6376 	struct displayid_vesa_vendor_specific_block *vesa =
6377 		(struct displayid_vesa_vendor_specific_block *)block;
6378 	struct drm_display_info *info = &connector->display_info;
6379 
6380 	if (block->num_bytes < 3) {
6381 		drm_dbg_kms(connector->dev,
6382 			    "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6383 			    connector->base.id, connector->name, block->num_bytes);
6384 		return;
6385 	}
6386 
6387 	if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6388 		return;
6389 
6390 	if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6391 		drm_dbg_kms(connector->dev,
6392 			    "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6393 			    connector->base.id, connector->name);
6394 		return;
6395 	}
6396 
6397 	switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6398 	default:
6399 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6400 			    connector->base.id, connector->name);
6401 		fallthrough;
6402 	case 0:
6403 		info->mso_stream_count = 0;
6404 		break;
6405 	case 1:
6406 		info->mso_stream_count = 2; /* 2 or 4 links */
6407 		break;
6408 	case 2:
6409 		info->mso_stream_count = 4; /* 4 links */
6410 		break;
6411 	}
6412 
6413 	if (!info->mso_stream_count) {
6414 		info->mso_pixel_overlap = 0;
6415 		return;
6416 	}
6417 
6418 	info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6419 	if (info->mso_pixel_overlap > 8) {
6420 		drm_dbg_kms(connector->dev,
6421 			    "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6422 			    connector->base.id, connector->name,
6423 			    info->mso_pixel_overlap);
6424 		info->mso_pixel_overlap = 8;
6425 	}
6426 
6427 	drm_dbg_kms(connector->dev,
6428 		    "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6429 		    connector->base.id, connector->name,
6430 		    info->mso_stream_count, info->mso_pixel_overlap);
6431 }
6432 
6433 static void drm_update_mso(struct drm_connector *connector,
6434 			   const struct drm_edid *drm_edid)
6435 {
6436 	const struct displayid_block *block;
6437 	struct displayid_iter iter;
6438 
6439 	displayid_iter_edid_begin(drm_edid, &iter);
6440 	displayid_iter_for_each(block, &iter) {
6441 		if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6442 			drm_parse_vesa_mso_data(connector, block);
6443 	}
6444 	displayid_iter_end(&iter);
6445 }
6446 
6447 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6448  * all of the values which would have been set from EDID
6449  */
6450 static void drm_reset_display_info(struct drm_connector *connector)
6451 {
6452 	struct drm_display_info *info = &connector->display_info;
6453 
6454 	info->width_mm = 0;
6455 	info->height_mm = 0;
6456 
6457 	info->bpc = 0;
6458 	info->color_formats = 0;
6459 	info->cea_rev = 0;
6460 	info->max_tmds_clock = 0;
6461 	info->dvi_dual = false;
6462 	info->is_hdmi = false;
6463 	info->has_audio = false;
6464 	info->has_hdmi_infoframe = false;
6465 	info->rgb_quant_range_selectable = false;
6466 	memset(&info->hdmi, 0, sizeof(info->hdmi));
6467 
6468 	info->edid_hdmi_rgb444_dc_modes = 0;
6469 	info->edid_hdmi_ycbcr444_dc_modes = 0;
6470 
6471 	info->non_desktop = 0;
6472 	memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6473 	memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6474 
6475 	info->mso_stream_count = 0;
6476 	info->mso_pixel_overlap = 0;
6477 	info->max_dsc_bpp = 0;
6478 
6479 	kfree(info->vics);
6480 	info->vics = NULL;
6481 	info->vics_len = 0;
6482 
6483 	info->quirks = 0;
6484 }
6485 
6486 static void update_displayid_info(struct drm_connector *connector,
6487 				  const struct drm_edid *drm_edid)
6488 {
6489 	struct drm_display_info *info = &connector->display_info;
6490 	const struct displayid_block *block;
6491 	struct displayid_iter iter;
6492 
6493 	displayid_iter_edid_begin(drm_edid, &iter);
6494 	displayid_iter_for_each(block, &iter) {
6495 		if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6496 		    (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6497 		     displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6498 			info->non_desktop = true;
6499 
6500 		/*
6501 		 * We're only interested in the base section here, no need to
6502 		 * iterate further.
6503 		 */
6504 		break;
6505 	}
6506 	displayid_iter_end(&iter);
6507 }
6508 
6509 static void update_display_info(struct drm_connector *connector,
6510 				const struct drm_edid *drm_edid)
6511 {
6512 	struct drm_display_info *info = &connector->display_info;
6513 	const struct edid *edid;
6514 
6515 	drm_reset_display_info(connector);
6516 	clear_eld(connector);
6517 
6518 	if (!drm_edid)
6519 		return;
6520 
6521 	edid = drm_edid->edid;
6522 
6523 	info->quirks = edid_get_quirks(drm_edid);
6524 
6525 	info->width_mm = edid->width_cm * 10;
6526 	info->height_mm = edid->height_cm * 10;
6527 
6528 	drm_get_monitor_range(connector, drm_edid);
6529 
6530 	if (edid->revision < 3)
6531 		goto out;
6532 
6533 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
6534 		goto out;
6535 
6536 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6537 	drm_parse_cea_ext(connector, drm_edid);
6538 
6539 	update_displayid_info(connector, drm_edid);
6540 
6541 	/*
6542 	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6543 	 *
6544 	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6545 	 * tells us to assume 8 bpc color depth if the EDID doesn't have
6546 	 * extensions which tell otherwise.
6547 	 */
6548 	if (info->bpc == 0 && edid->revision == 3 &&
6549 	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6550 		info->bpc = 8;
6551 		drm_dbg_kms(connector->dev,
6552 			    "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6553 			    connector->base.id, connector->name, info->bpc);
6554 	}
6555 
6556 	/* Only defined for 1.4 with digital displays */
6557 	if (edid->revision < 4)
6558 		goto out;
6559 
6560 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6561 	case DRM_EDID_DIGITAL_DEPTH_6:
6562 		info->bpc = 6;
6563 		break;
6564 	case DRM_EDID_DIGITAL_DEPTH_8:
6565 		info->bpc = 8;
6566 		break;
6567 	case DRM_EDID_DIGITAL_DEPTH_10:
6568 		info->bpc = 10;
6569 		break;
6570 	case DRM_EDID_DIGITAL_DEPTH_12:
6571 		info->bpc = 12;
6572 		break;
6573 	case DRM_EDID_DIGITAL_DEPTH_14:
6574 		info->bpc = 14;
6575 		break;
6576 	case DRM_EDID_DIGITAL_DEPTH_16:
6577 		info->bpc = 16;
6578 		break;
6579 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6580 	default:
6581 		info->bpc = 0;
6582 		break;
6583 	}
6584 
6585 	drm_dbg_kms(connector->dev,
6586 		    "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6587 		    connector->base.id, connector->name, info->bpc);
6588 
6589 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6590 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6591 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6592 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6593 
6594 	drm_update_mso(connector, drm_edid);
6595 
6596 out:
6597 	if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
6598 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6599 			    connector->base.id, connector->name,
6600 			    info->non_desktop ? " (redundant quirk)" : "");
6601 		info->non_desktop = true;
6602 	}
6603 
6604 	if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
6605 		info->max_dsc_bpp = 15;
6606 
6607 	if (info->quirks & EDID_QUIRK_FORCE_6BPC)
6608 		info->bpc = 6;
6609 
6610 	if (info->quirks & EDID_QUIRK_FORCE_8BPC)
6611 		info->bpc = 8;
6612 
6613 	if (info->quirks & EDID_QUIRK_FORCE_10BPC)
6614 		info->bpc = 10;
6615 
6616 	if (info->quirks & EDID_QUIRK_FORCE_12BPC)
6617 		info->bpc = 12;
6618 
6619 	/* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6620 	drm_edid_to_eld(connector, drm_edid);
6621 }
6622 
6623 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6624 							    struct displayid_detailed_timings_1 *timings,
6625 							    bool type_7)
6626 {
6627 	struct drm_display_mode *mode;
6628 	unsigned pixel_clock = (timings->pixel_clock[0] |
6629 				(timings->pixel_clock[1] << 8) |
6630 				(timings->pixel_clock[2] << 16)) + 1;
6631 	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6632 	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6633 	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6634 	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6635 	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6636 	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6637 	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6638 	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6639 	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6640 	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6641 
6642 	mode = drm_mode_create(dev);
6643 	if (!mode)
6644 		return NULL;
6645 
6646 	/* resolution is kHz for type VII, and 10 kHz for type I */
6647 	mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6648 	mode->hdisplay = hactive;
6649 	mode->hsync_start = mode->hdisplay + hsync;
6650 	mode->hsync_end = mode->hsync_start + hsync_width;
6651 	mode->htotal = mode->hdisplay + hblank;
6652 
6653 	mode->vdisplay = vactive;
6654 	mode->vsync_start = mode->vdisplay + vsync;
6655 	mode->vsync_end = mode->vsync_start + vsync_width;
6656 	mode->vtotal = mode->vdisplay + vblank;
6657 
6658 	mode->flags = 0;
6659 	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6660 	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6661 	mode->type = DRM_MODE_TYPE_DRIVER;
6662 
6663 	if (timings->flags & 0x80)
6664 		mode->type |= DRM_MODE_TYPE_PREFERRED;
6665 	drm_mode_set_name(mode);
6666 
6667 	return mode;
6668 }
6669 
6670 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6671 					  const struct displayid_block *block)
6672 {
6673 	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6674 	int i;
6675 	int num_timings;
6676 	struct drm_display_mode *newmode;
6677 	int num_modes = 0;
6678 	bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6679 	/* blocks must be multiple of 20 bytes length */
6680 	if (block->num_bytes % 20)
6681 		return 0;
6682 
6683 	num_timings = block->num_bytes / 20;
6684 	for (i = 0; i < num_timings; i++) {
6685 		struct displayid_detailed_timings_1 *timings = &det->timings[i];
6686 
6687 		newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6688 		if (!newmode)
6689 			continue;
6690 
6691 		drm_mode_probed_add(connector, newmode);
6692 		num_modes++;
6693 	}
6694 	return num_modes;
6695 }
6696 
6697 static int add_displayid_detailed_modes(struct drm_connector *connector,
6698 					const struct drm_edid *drm_edid)
6699 {
6700 	const struct displayid_block *block;
6701 	struct displayid_iter iter;
6702 	int num_modes = 0;
6703 
6704 	displayid_iter_edid_begin(drm_edid, &iter);
6705 	displayid_iter_for_each(block, &iter) {
6706 		if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6707 		    block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6708 			num_modes += add_displayid_detailed_1_modes(connector, block);
6709 	}
6710 	displayid_iter_end(&iter);
6711 
6712 	return num_modes;
6713 }
6714 
6715 static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6716 					 const struct drm_edid *drm_edid)
6717 {
6718 	const struct drm_display_info *info = &connector->display_info;
6719 	int num_modes = 0;
6720 
6721 	if (!drm_edid)
6722 		return 0;
6723 
6724 	/*
6725 	 * EDID spec says modes should be preferred in this order:
6726 	 * - preferred detailed mode
6727 	 * - other detailed modes from base block
6728 	 * - detailed modes from extension blocks
6729 	 * - CVT 3-byte code modes
6730 	 * - standard timing codes
6731 	 * - established timing codes
6732 	 * - modes inferred from GTF or CVT range information
6733 	 *
6734 	 * We get this pretty much right.
6735 	 *
6736 	 * XXX order for additional mode types in extension blocks?
6737 	 */
6738 	num_modes += add_detailed_modes(connector, drm_edid);
6739 	num_modes += add_cvt_modes(connector, drm_edid);
6740 	num_modes += add_standard_modes(connector, drm_edid);
6741 	num_modes += add_established_modes(connector, drm_edid);
6742 	num_modes += add_cea_modes(connector, drm_edid);
6743 	num_modes += add_alternate_cea_modes(connector, drm_edid);
6744 	num_modes += add_displayid_detailed_modes(connector, drm_edid);
6745 	if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6746 		num_modes += add_inferred_modes(connector, drm_edid);
6747 
6748 	if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6749 		edid_fixup_preferred(connector);
6750 
6751 	return num_modes;
6752 }
6753 
6754 static void _drm_update_tile_info(struct drm_connector *connector,
6755 				  const struct drm_edid *drm_edid);
6756 
6757 static int _drm_edid_connector_property_update(struct drm_connector *connector,
6758 					       const struct drm_edid *drm_edid)
6759 {
6760 	struct drm_device *dev = connector->dev;
6761 	int ret;
6762 
6763 	if (connector->edid_blob_ptr) {
6764 		const struct edid *old_edid = connector->edid_blob_ptr->data;
6765 
6766 		if (old_edid) {
6767 			if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6768 				connector->epoch_counter++;
6769 				drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6770 					    connector->base.id, connector->name,
6771 					    connector->epoch_counter);
6772 			}
6773 		}
6774 	}
6775 
6776 	ret = drm_property_replace_global_blob(dev,
6777 					       &connector->edid_blob_ptr,
6778 					       drm_edid ? drm_edid->size : 0,
6779 					       drm_edid ? drm_edid->edid : NULL,
6780 					       &connector->base,
6781 					       dev->mode_config.edid_property);
6782 	if (ret) {
6783 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6784 			    connector->base.id, connector->name, ret);
6785 		goto out;
6786 	}
6787 
6788 	ret = drm_object_property_set_value(&connector->base,
6789 					    dev->mode_config.non_desktop_property,
6790 					    connector->display_info.non_desktop);
6791 	if (ret) {
6792 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6793 			    connector->base.id, connector->name, ret);
6794 		goto out;
6795 	}
6796 
6797 	ret = drm_connector_set_tile_property(connector);
6798 	if (ret) {
6799 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6800 			    connector->base.id, connector->name, ret);
6801 		goto out;
6802 	}
6803 
6804 out:
6805 	return ret;
6806 }
6807 
6808 /**
6809  * drm_edid_connector_update - Update connector information from EDID
6810  * @connector: Connector
6811  * @drm_edid: EDID
6812  *
6813  * Update the connector display info, ELD, HDR metadata, relevant properties,
6814  * etc. from the passed in EDID.
6815  *
6816  * If EDID is NULL, reset the information.
6817  *
6818  * Must be called before calling drm_edid_connector_add_modes().
6819  *
6820  * Return: 0 on success, negative error on errors.
6821  */
6822 int drm_edid_connector_update(struct drm_connector *connector,
6823 			      const struct drm_edid *drm_edid)
6824 {
6825 	update_display_info(connector, drm_edid);
6826 
6827 	_drm_update_tile_info(connector, drm_edid);
6828 
6829 	return _drm_edid_connector_property_update(connector, drm_edid);
6830 }
6831 EXPORT_SYMBOL(drm_edid_connector_update);
6832 
6833 /**
6834  * drm_edid_connector_add_modes - Update probed modes from the EDID property
6835  * @connector: Connector
6836  *
6837  * Add the modes from the previously updated EDID property to the connector
6838  * probed modes list.
6839  *
6840  * drm_edid_connector_update() must have been called before this to update the
6841  * EDID property.
6842  *
6843  * Return: The number of modes added, or 0 if we couldn't find any.
6844  */
6845 int drm_edid_connector_add_modes(struct drm_connector *connector)
6846 {
6847 	const struct drm_edid *drm_edid = NULL;
6848 	int count;
6849 
6850 	if (connector->edid_blob_ptr)
6851 		drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
6852 					  connector->edid_blob_ptr->length);
6853 
6854 	count = _drm_edid_connector_add_modes(connector, drm_edid);
6855 
6856 	drm_edid_free(drm_edid);
6857 
6858 	return count;
6859 }
6860 EXPORT_SYMBOL(drm_edid_connector_add_modes);
6861 
6862 /**
6863  * drm_connector_update_edid_property - update the edid property of a connector
6864  * @connector: drm connector
6865  * @edid: new value of the edid property
6866  *
6867  * This function creates a new blob modeset object and assigns its id to the
6868  * connector's edid property.
6869  * Since we also parse tile information from EDID's displayID block, we also
6870  * set the connector's tile property here. See drm_connector_set_tile_property()
6871  * for more details.
6872  *
6873  * This function is deprecated. Use drm_edid_connector_update() instead.
6874  *
6875  * Returns:
6876  * Zero on success, negative errno on failure.
6877  */
6878 int drm_connector_update_edid_property(struct drm_connector *connector,
6879 				       const struct edid *edid)
6880 {
6881 	struct drm_edid drm_edid;
6882 
6883 	return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
6884 }
6885 EXPORT_SYMBOL(drm_connector_update_edid_property);
6886 
6887 /**
6888  * drm_add_edid_modes - add modes from EDID data, if available
6889  * @connector: connector we're probing
6890  * @edid: EDID data
6891  *
6892  * Add the specified modes to the connector's mode list. Also fills out the
6893  * &drm_display_info structure and ELD in @connector with any information which
6894  * can be derived from the edid.
6895  *
6896  * This function is deprecated. Use drm_edid_connector_add_modes() instead.
6897  *
6898  * Return: The number of modes added or 0 if we couldn't find any.
6899  */
6900 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6901 {
6902 	struct drm_edid _drm_edid;
6903 	const struct drm_edid *drm_edid;
6904 
6905 	if (edid && !drm_edid_is_valid(edid)) {
6906 		drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6907 			 connector->base.id, connector->name);
6908 		edid = NULL;
6909 	}
6910 
6911 	drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
6912 
6913 	update_display_info(connector, drm_edid);
6914 
6915 	return _drm_edid_connector_add_modes(connector, drm_edid);
6916 }
6917 EXPORT_SYMBOL(drm_add_edid_modes);
6918 
6919 /**
6920  * drm_add_modes_noedid - add modes for the connectors without EDID
6921  * @connector: connector we're probing
6922  * @hdisplay: the horizontal display limit
6923  * @vdisplay: the vertical display limit
6924  *
6925  * Add the specified modes to the connector's mode list. Only when the
6926  * hdisplay/vdisplay is not beyond the given limit, it will be added.
6927  *
6928  * Return: The number of modes added or 0 if we couldn't find any.
6929  */
6930 int drm_add_modes_noedid(struct drm_connector *connector,
6931 			int hdisplay, int vdisplay)
6932 {
6933 	int i, count, num_modes = 0;
6934 	struct drm_display_mode *mode;
6935 	struct drm_device *dev = connector->dev;
6936 
6937 	count = ARRAY_SIZE(drm_dmt_modes);
6938 	if (hdisplay < 0)
6939 		hdisplay = 0;
6940 	if (vdisplay < 0)
6941 		vdisplay = 0;
6942 
6943 	for (i = 0; i < count; i++) {
6944 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6945 
6946 		if (hdisplay && vdisplay) {
6947 			/*
6948 			 * Only when two are valid, they will be used to check
6949 			 * whether the mode should be added to the mode list of
6950 			 * the connector.
6951 			 */
6952 			if (ptr->hdisplay > hdisplay ||
6953 					ptr->vdisplay > vdisplay)
6954 				continue;
6955 		}
6956 		if (drm_mode_vrefresh(ptr) > 61)
6957 			continue;
6958 		mode = drm_mode_duplicate(dev, ptr);
6959 		if (mode) {
6960 			drm_mode_probed_add(connector, mode);
6961 			num_modes++;
6962 		}
6963 	}
6964 	return num_modes;
6965 }
6966 EXPORT_SYMBOL(drm_add_modes_noedid);
6967 
6968 /**
6969  * drm_set_preferred_mode - Sets the preferred mode of a connector
6970  * @connector: connector whose mode list should be processed
6971  * @hpref: horizontal resolution of preferred mode
6972  * @vpref: vertical resolution of preferred mode
6973  *
6974  * Marks a mode as preferred if it matches the resolution specified by @hpref
6975  * and @vpref.
6976  */
6977 void drm_set_preferred_mode(struct drm_connector *connector,
6978 			   int hpref, int vpref)
6979 {
6980 	struct drm_display_mode *mode;
6981 
6982 	list_for_each_entry(mode, &connector->probed_modes, head) {
6983 		if (mode->hdisplay == hpref &&
6984 		    mode->vdisplay == vpref)
6985 			mode->type |= DRM_MODE_TYPE_PREFERRED;
6986 	}
6987 }
6988 EXPORT_SYMBOL(drm_set_preferred_mode);
6989 
6990 static bool is_hdmi2_sink(const struct drm_connector *connector)
6991 {
6992 	/*
6993 	 * FIXME: sil-sii8620 doesn't have a connector around when
6994 	 * we need one, so we have to be prepared for a NULL connector.
6995 	 */
6996 	if (!connector)
6997 		return true;
6998 
6999 	return connector->display_info.hdmi.scdc.supported ||
7000 		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
7001 }
7002 
7003 static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
7004 			    const struct drm_display_mode *mode)
7005 {
7006 	bool has_hdmi_infoframe = connector ?
7007 		connector->display_info.has_hdmi_infoframe : false;
7008 
7009 	if (!has_hdmi_infoframe)
7010 		return 0;
7011 
7012 	/* No HDMI VIC when signalling 3D video format */
7013 	if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7014 		return 0;
7015 
7016 	return drm_match_hdmi_mode(mode);
7017 }
7018 
7019 static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7020 			   const struct drm_display_mode *mode)
7021 {
7022 	/*
7023 	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7024 	 * we should send its VIC in vendor infoframes, else send the
7025 	 * VIC in AVI infoframes. Lets check if this mode is present in
7026 	 * HDMI 1.4b 4K modes
7027 	 */
7028 	if (drm_mode_hdmi_vic(connector, mode))
7029 		return 0;
7030 
7031 	return drm_match_cea_mode(mode);
7032 }
7033 
7034 /*
7035  * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7036  * conform to HDMI 1.4.
7037  *
7038  * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7039  * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7040  *
7041  * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7042  * version.
7043  */
7044 static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7045 {
7046 	if (!is_hdmi2_sink(connector) && vic > 64 &&
7047 	    !cta_vdb_has_vic(connector, vic))
7048 		return 0;
7049 
7050 	return vic;
7051 }
7052 
7053 /**
7054  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7055  *                                              data from a DRM display mode
7056  * @frame: HDMI AVI infoframe
7057  * @connector: the connector
7058  * @mode: DRM display mode
7059  *
7060  * Return: 0 on success or a negative error code on failure.
7061  */
7062 int
7063 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7064 					 const struct drm_connector *connector,
7065 					 const struct drm_display_mode *mode)
7066 {
7067 	enum hdmi_picture_aspect picture_aspect;
7068 	u8 vic, hdmi_vic;
7069 
7070 	if (!frame || !mode)
7071 		return -EINVAL;
7072 
7073 	hdmi_avi_infoframe_init(frame);
7074 
7075 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7076 		frame->pixel_repeat = 1;
7077 
7078 	vic = drm_mode_cea_vic(connector, mode);
7079 	hdmi_vic = drm_mode_hdmi_vic(connector, mode);
7080 
7081 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7082 
7083 	/*
7084 	 * As some drivers don't support atomic, we can't use connector state.
7085 	 * So just initialize the frame with default values, just the same way
7086 	 * as it's done with other properties here.
7087 	 */
7088 	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7089 	frame->itc = 0;
7090 
7091 	/*
7092 	 * Populate picture aspect ratio from either
7093 	 * user input (if specified) or from the CEA/HDMI mode lists.
7094 	 */
7095 	picture_aspect = mode->picture_aspect_ratio;
7096 	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7097 		if (vic)
7098 			picture_aspect = drm_get_cea_aspect_ratio(vic);
7099 		else if (hdmi_vic)
7100 			picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7101 	}
7102 
7103 	/*
7104 	 * The infoframe can't convey anything but none, 4:3
7105 	 * and 16:9, so if the user has asked for anything else
7106 	 * we can only satisfy it by specifying the right VIC.
7107 	 */
7108 	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7109 		if (vic) {
7110 			if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7111 				return -EINVAL;
7112 		} else if (hdmi_vic) {
7113 			if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7114 				return -EINVAL;
7115 		} else {
7116 			return -EINVAL;
7117 		}
7118 
7119 		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7120 	}
7121 
7122 	frame->video_code = vic_for_avi_infoframe(connector, vic);
7123 	frame->picture_aspect = picture_aspect;
7124 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7125 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7126 
7127 	return 0;
7128 }
7129 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7130 
7131 /**
7132  * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7133  *                                        quantization range information
7134  * @frame: HDMI AVI infoframe
7135  * @connector: the connector
7136  * @mode: DRM display mode
7137  * @rgb_quant_range: RGB quantization range (Q)
7138  */
7139 void
7140 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7141 				   const struct drm_connector *connector,
7142 				   const struct drm_display_mode *mode,
7143 				   enum hdmi_quantization_range rgb_quant_range)
7144 {
7145 	const struct drm_display_info *info = &connector->display_info;
7146 
7147 	/*
7148 	 * CEA-861:
7149 	 * "A Source shall not send a non-zero Q value that does not correspond
7150 	 *  to the default RGB Quantization Range for the transmitted Picture
7151 	 *  unless the Sink indicates support for the Q bit in a Video
7152 	 *  Capabilities Data Block."
7153 	 *
7154 	 * HDMI 2.0 recommends sending non-zero Q when it does match the
7155 	 * default RGB quantization range for the mode, even when QS=0.
7156 	 */
7157 	if (info->rgb_quant_range_selectable ||
7158 	    rgb_quant_range == drm_default_rgb_quant_range(mode))
7159 		frame->quantization_range = rgb_quant_range;
7160 	else
7161 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7162 
7163 	/*
7164 	 * CEA-861-F:
7165 	 * "When transmitting any RGB colorimetry, the Source should set the
7166 	 *  YQ-field to match the RGB Quantization Range being transmitted
7167 	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7168 	 *  set YQ=1) and the Sink shall ignore the YQ-field."
7169 	 *
7170 	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7171 	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7172 	 * good way to tell which version of CEA-861 the sink supports, so
7173 	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7174 	 * on CEA-861-F.
7175 	 */
7176 	if (!is_hdmi2_sink(connector) ||
7177 	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7178 		frame->ycc_quantization_range =
7179 			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7180 	else
7181 		frame->ycc_quantization_range =
7182 			HDMI_YCC_QUANTIZATION_RANGE_FULL;
7183 }
7184 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7185 
7186 static enum hdmi_3d_structure
7187 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7188 {
7189 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7190 
7191 	switch (layout) {
7192 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
7193 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
7194 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7195 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7196 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7197 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7198 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7199 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7200 	case DRM_MODE_FLAG_3D_L_DEPTH:
7201 		return HDMI_3D_STRUCTURE_L_DEPTH;
7202 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7203 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7204 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7205 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7206 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7207 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7208 	default:
7209 		return HDMI_3D_STRUCTURE_INVALID;
7210 	}
7211 }
7212 
7213 /**
7214  * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7215  * data from a DRM display mode
7216  * @frame: HDMI vendor infoframe
7217  * @connector: the connector
7218  * @mode: DRM display mode
7219  *
7220  * Note that there's is a need to send HDMI vendor infoframes only when using a
7221  * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7222  * function will return -EINVAL, error that can be safely ignored.
7223  *
7224  * Return: 0 on success or a negative error code on failure.
7225  */
7226 int
7227 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7228 					    const struct drm_connector *connector,
7229 					    const struct drm_display_mode *mode)
7230 {
7231 	/*
7232 	 * FIXME: sil-sii8620 doesn't have a connector around when
7233 	 * we need one, so we have to be prepared for a NULL connector.
7234 	 */
7235 	bool has_hdmi_infoframe = connector ?
7236 		connector->display_info.has_hdmi_infoframe : false;
7237 	int err;
7238 
7239 	if (!frame || !mode)
7240 		return -EINVAL;
7241 
7242 	if (!has_hdmi_infoframe)
7243 		return -EINVAL;
7244 
7245 	err = hdmi_vendor_infoframe_init(frame);
7246 	if (err < 0)
7247 		return err;
7248 
7249 	/*
7250 	 * Even if it's not absolutely necessary to send the infoframe
7251 	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7252 	 * know that the sink can handle it. This is based on a
7253 	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7254 	 * have trouble realizing that they should switch from 3D to 2D
7255 	 * mode if the source simply stops sending the infoframe when
7256 	 * it wants to switch from 3D to 2D.
7257 	 */
7258 	frame->vic = drm_mode_hdmi_vic(connector, mode);
7259 	frame->s3d_struct = s3d_structure_from_display_mode(mode);
7260 
7261 	return 0;
7262 }
7263 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7264 
7265 static void drm_parse_tiled_block(struct drm_connector *connector,
7266 				  const struct displayid_block *block)
7267 {
7268 	const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7269 	u16 w, h;
7270 	u8 tile_v_loc, tile_h_loc;
7271 	u8 num_v_tile, num_h_tile;
7272 	struct drm_tile_group *tg;
7273 
7274 	w = tile->tile_size[0] | tile->tile_size[1] << 8;
7275 	h = tile->tile_size[2] | tile->tile_size[3] << 8;
7276 
7277 	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7278 	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7279 	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7280 	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7281 
7282 	connector->has_tile = true;
7283 	if (tile->tile_cap & 0x80)
7284 		connector->tile_is_single_monitor = true;
7285 
7286 	connector->num_h_tile = num_h_tile + 1;
7287 	connector->num_v_tile = num_v_tile + 1;
7288 	connector->tile_h_loc = tile_h_loc;
7289 	connector->tile_v_loc = tile_v_loc;
7290 	connector->tile_h_size = w + 1;
7291 	connector->tile_v_size = h + 1;
7292 
7293 	drm_dbg_kms(connector->dev,
7294 		    "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7295 		    connector->base.id, connector->name,
7296 		    tile->tile_cap,
7297 		    connector->tile_h_size, connector->tile_v_size,
7298 		    connector->num_h_tile, connector->num_v_tile,
7299 		    connector->tile_h_loc, connector->tile_v_loc,
7300 		    tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7301 
7302 	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7303 	if (!tg)
7304 		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7305 	if (!tg)
7306 		return;
7307 
7308 	if (connector->tile_group != tg) {
7309 		/* if we haven't got a pointer,
7310 		   take the reference, drop ref to old tile group */
7311 		if (connector->tile_group)
7312 			drm_mode_put_tile_group(connector->dev, connector->tile_group);
7313 		connector->tile_group = tg;
7314 	} else {
7315 		/* if same tile group, then release the ref we just took. */
7316 		drm_mode_put_tile_group(connector->dev, tg);
7317 	}
7318 }
7319 
7320 static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7321 				     const struct displayid_block *block)
7322 {
7323 	return (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_12 &&
7324 		block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7325 		(displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7326 		 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
7327 }
7328 
7329 static void _drm_update_tile_info(struct drm_connector *connector,
7330 				  const struct drm_edid *drm_edid)
7331 {
7332 	const struct displayid_block *block;
7333 	struct displayid_iter iter;
7334 
7335 	connector->has_tile = false;
7336 
7337 	displayid_iter_edid_begin(drm_edid, &iter);
7338 	displayid_iter_for_each(block, &iter) {
7339 		if (displayid_is_tiled_block(&iter, block))
7340 			drm_parse_tiled_block(connector, block);
7341 	}
7342 	displayid_iter_end(&iter);
7343 
7344 	if (!connector->has_tile && connector->tile_group) {
7345 		drm_mode_put_tile_group(connector->dev, connector->tile_group);
7346 		connector->tile_group = NULL;
7347 	}
7348 }
7349